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Abstract

We propose a visualisation framework for data exploration, analysis and
presentation of complex hydrological studies in large catchments. This fur-
thers a deeper understanding of the interrelations between the included data-
sets, allows for discussions among researchers from different disciplines and
is the basis for illustrating complex phenomena to stakeholders or the inter-
ested public. Based on the 162,000 km? catchment of Poyang Lake, the largest
freshwater lake in China, we developed a Virtual Geographic Environment
that combines a wide range of 2D and 3D observation data sets with simula-
tion results from both an OpenGeoSys groundwater model and a COAST2D
hydrodynamic model visualising water and solute dynamics within and across
hydrologic reservoirs. The system aims for a realistic presentation of the in-

vestigation area and implements approaches of scientific visualisation to il-
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lustrate interesting aspects of multi-variate data in intuitive ways. It employs
easy-to-learn interaction techniques for navigation, animation, and access to
linked data sets from external sources, such as time series data or websites, to
function as an environmental information system for any region of interest.

Keywords: Environmental Information System, Virtual Reality,

OpenGeoSys, Water Resources Management, Poyang Lake

1. Motivation

For complex environmental studies, there is a considerable number of data
sets required for setting up models and providing sufficient context for reli-
able predictions and recommendations. However, usually not all datasets can
be visualised in a unified context. Researchers need to view a certain subset
in geographic information systems (GIS), view time series data from obser-
vation sites online or using a dedicated plotting software and one or more
modelling frameworks to view their modelling data and simulation results.
Any cross-connections between these subsets have to be made mentally or
manually. Such a workflow is not only prone to result in mistakes, it also com-
plicates presenting results to stakeholders or the public in an intuitive way.
In addition, considering the complex hydrological cycle and its numerous
parameters and subprocesses as one typical area of application, state-of-the
art monitoring and modelling activities as well as sophisticated visualisation
and data integration systems are required together to facilitate system un-
derstanding and water resources management. Particularly on the scale of
entire catchments, which is appropriate for integrated management of water

resources (Jaspers, 2003), the large amount of available output datasets from
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models and remote sensing products are challenging for the development of
efficient and informative visualization approaches. We propose integrating
all datasets relevant for the analysis of a given region of interest into one uni-
fied framework that serves as an Environmental Information System (EIS)
for data exploration, interdisciplinary research, and knowledge transfer. We
presented a first prototype for such a framework in Rink et al. (2018). For the
work presented here, we use this EIS for a hydrological multi-compartment
study of the Poyang Lake Basin in China. Its large size of about 162,000 km?
and the complex hydrological processes within the highly dynamic lake-river-
wetland system influenced by numerous drivers in the catchment, are making
it an ideal study site for developing an integrated Environmental Information
System for large basins.

Considering that about 94 % of Jiangxi Province is located within Poyang
Lake Basin, an improved holistic representation of the overall hydrological
system and its interconnected compartments is beneficial for both the pur-
suit of sustainable water resources management and for the economic con-
struction and development at the provincial level. The current management
system of Poyang Lake is based on the Jiangxi Poyang Lake Wetland Pro-
tection Ordinance issued by the Provincial People’s Congress. The resulting
system consists of a large number of authorities working independently from
each other which weakens the power of both management and law enforce-
ment (Fan and Hu, 2018). As a response to this situation, China is fully
establishing a “river chief mechanism,” which assigns each part of a surface
waterbody to an appointed official in order to improve the comprehensive

management and public supervision of each basin. Consequently, integrat-
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ing the relevant mechanisms and dynamics in the Poyang Lake Basin into
a single visualisation framework has advantages with respect to evaluating
future hydraulic constructions, forecasting future water quality, delineating
protection zones, and mitigating environmental issues.

There have been previous initiatives to integrate data from different
sources into a holistic visualisation platform for Poyang Lake Basin. Zhao
(2018) set up a prototype system for analysing ecosystem simulation res-
ults obtained with the high accuracy surface modelling method HASM (Yue,
2011; Yue et al., 2015). The platform allows for the spatial-temporal analysis
of raster files in the thematic areas climate change, forest carbon storage and
population distribution. Gu et al. (2017) proposed a watershed ecological vir-
tual simulation and decision support platform that combines GIS data with
a 2D WATLAC hydrological model into a Virtual Geographical Environ-
ment to be presented on large displays. Chen et al. (2015) integrated GIS
database management systems, results from a numerical soil model and a
3D Visualisation framework into a Virtual Hydrologic Environment (VHE)
for Meijiang subcatchment. Zhu (2011) developed a 2D GIS environment to
display hydrological data from WebGIS services and a POSTGIS database
with the aim to validate the results of a two-dimensional hydrodynamic wa-
ter and pollutant transport model for Poyang Lake. Similar approaches of
using 2D GIS based visualization schemes for wetland data visualisation at
Poyang Lake have been utilized by Zhong (2008), Xiang and Zhou (2009)
and Zhao (2012) with the latter adding spatial relationship operations and
their graphic representations into the developed framework. Focussing on

flood inundation, Chen et al. (2012) set-up a 3D GIS system for the Poy-
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ang wetlands embedding 3D structures and hydrodynamic simulation results
as well as geographic objects from a object-relational database. Yan et al.
(2018) developed a basic 3D environmental information system for Poyang
Lake Basin. A large number of data sets, based on observation and simula-
tion, have been included in this case study. Examples include temperature,
precipitation, or ecosystem quality as well as water dynamics. However, from
an implementation point-of-view the technical contribution is limited, as all
data sets are imported as raster files and texture-mapped onto a 3D-model
of a digital elevation model for the region.

The environmental information system (EIS) proposed here aims at cre-
ating suitable representations for all included data sets, such that the nature
or certain aspects of the data are intuitively recognisable by users. Examples
include the integration of precipitation data as point clouds or the simulated
changes to the groundwater head as an actual triangulated plane within the
3D finite element model. This has the added advantage of being able to
potentially display more data or simply remove colour as an indicator for a
parameter in favour of alternative means of visualisation. In addition, we
have extended the functionality of our EIS considerably and chose this case
study to demonstrate both its portability to arbitrary regions of interest as
well as the scalability for large volumes of data.

After a short introduction to Virtual Geographic Environments in sec-
tion 2, section 3 gives an overview of the Poyang Lake Basin, including the
multiple compartments included in this study. It presents details about spe-
cific data sets, modelling and simulation approaches, as well as necessary

modifications during pre- and postprocessing. Section 4 gives an overview of
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the Environmental Information System for the catchment. It shows work-
flows, lists extensions to the previously presented prototype and gives ex-

amples for data integration and visualisation based on specific data sets.

2. Virtual Geographic Environments

The holistic representation of all available data sets for a given region
of interest is currently beyond the capabilities of established geographical
information systems (GIS) such as ArcGIS or QGIS (Cox et al., 2013; Tian
et al., 2016). Such frameworks have been originally designed for displaying
vector- and raster-data sets. Though approaches for displaying data in 3D ex-
ist, the software is usually lacking both interfaces and methods for advanced
visualisation of complex three- or four-dimensional data. Examples include
the representation of climate- or subsurface models, the colour-coded display
of vector data to represent locally varying parameters or measurements, or
the handling of time-variant data in general. On the other hand, all-purpose
visualisation software such as ParaView (Ahrens et al., 2005) or Vislt (Childs
et al., 2012) includes state-of-the-art visualisation techniques but lacks in-
terfaces to domain-specific software such as GIS or modelling frameworks.
To close this gap, we have developed the OpenGeoSys DataExplorer (Rink
et al., 2013, 2014) in recent years. This software serves as a graphical user
interface to the open-source modelling software OpenGeoSys (Kolditz et al.,
2012a) and implements interfaces to various GIS data formats, a wide range
of free and commercial modelling frameworks (for instance, FEFLOW (Dier-
sch, 2014), PETREL (Schlumberger, 2018), SWMM (Rossman, 2014), Open-
FOAM (Weller and Tabor, 1998)) as well as all-purpose formats such as
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NetCDF (Rew and Davis, 1990) and VTK (Schroeder et al., 2006). The
Data Explorer allows for the 3D visualisation of data via the open-source
library VTK (Visualization ToolKit). The Data Explorer has been designed
for the preprocessing and evaluation for numerical THM /C models, its func-
tionality is insufficient for complex collaborative research projects, where the
handling of large numbers of data sets can become confusing for unexperi-
enced users and the implemented visualisation algorithms can be insufficient
for collections of complex, possibly multi-variate or multi-modal data sets.
Therefore, we recently started developing virtual geographic environments
(VGE) specifically for the purpose of integrating large collections of hetero-
genous data sets for the visualisation of complex environmental processes
and interrelation of parameters of interest to researchers from a wide range
of domains within the environmental sciences.

Based on the definition by Ellis (1994), the term “virtual environment”
refers to an immersive, interactive experience inside a synthetic space. In re-
cent years, the term has been adapted for computer-mediated communication
in various domains, with “virtual learning environments” probably being the
most often cited application in the media. Virtual geographic environments
have been first proposed as an extension of GIS into 3D and VR (Batty,
2008; Yin, 2010). Later the concept has been extended to include data from
numerical models and simulation results as well as web-based data and collab-
orative approaches for data interaction (Lu, 2011; Lin et al., 2013b; Kolditz
et al., 2019).

However, our definition of a Virtual Geographic Environment slightly

differs from the previously proposed framework: Lin et al. (2013a) and Lin



143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

159

160

161

162

163

164

165

166

167

et al. (2013b) subdivide a VGE into four components: data environment,
modelling and simulation environment, interactive environment, and collab-
orative environment. In contrast, a diagram of our framework is depicted
in Fig. 1. The data life cycle starts with data added to some kind of data
storage (e.g. a database or file storage). This data is preprocessed to remove
artifacts, calculate derived parameter sets or project it into another coordin-
ate system. That modified version of the data is either stored or forwarded
into the VGE, depending on the complexity of the selected algorithms and
the use of the processed data for other users or subsequent stages of the
workflow. Not integrating the data processing component within the VGE is
debatable, as it includes pre- and postprocessing algorithms for general data
modification (e.g. for the removal of artefacts), specific algorithms for the
modelling and simulation (e.g. for the assessment of mesh element quality
for the finite element method), specific algorithms for a subsequent visual-
isation (e.g. data reduction methods for high-dimensional multivariate data),
as well as algorithms required for both modelling and visualisation (e.g. the
projection of data into a unified coordinate system). Both, data storage and
preprocessing are what is called “data environment” in Lin et al. (2013a). If
modelling- or simulation data is part of the VGE, the (preprocessed) data
serves as input for a suitable simulation software and results are written
back to the data storage. This simulation software might be OpenGeoSys,
but as mentioned before, interfaces for files from a multitude of other software
products have been implemented as well. While this modelling/simulation-
component corresponds to the “modelling environment”, it is explicitly not

part of the VGE but simulation results are instead accessed via an interface



168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

184

185

186

187

188

189

190

191

192

just like any other dataset. The VGE is agnostic to the origin of any data-
set. As long as there is an interface to read the data it does not matter if
it is research or observation data from scientific partners, state departments,
companies, or data openly available on the net. Moreover, the data storage-,
preprocessing-, and modelling components would work just as well without
a VGE accessing the data afterwards.

Instead, our interpretation of a VGE consists only of a visualisation-
and a presentation component, roughly corresponding to what Lin et al.
(2013a) call “interactive environment” and “collaborative environment”. The
visualisation component is used to create tesselated 3D objects out of envir-
onmental data sets in the form of suitable metaphors or expressions (such
as glyphs, streamlines, or surfaces). The presentation component includes
everything required for the user experience in virtual reality, starting from
the choice of shaders for 3D object and the lighting of the scene, but also
animations, predefined viewpoints, picking objects to access additional in-
formation, or switching objects or parameter sets live during a presentation.

It is worth pointing out that the workflow described above is not definit-
ive. As the immersive user experience is impaired if frame rates drop below
20 to 30 frames per second, it is common for complex and computationally
expensive forms of visualisation to store pre-rendered representations of data-
sets on a file server or database to guarantee fast rendering at all times, thus
creating a direct connection of the VGE to the data storage. Also, the VGE
might access the simulation component directly if in-situ visualisation (Bauer
et al., 2016) is part of the study. However, this requires that the simulation

software includes interfaces specifically designed for in-situ visualisation.
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We have previously implemented the above concept for a VGE for the
catchment of Chao Lake in the Anhui Province of China (Rink et al., 2018)
using the OpenGeoSys Data Explorer for preprocessing data sets and em-
ploying Unity (Unity Technologies, 2018), a cross-plattform game engine, for
implementation. Since both pre-processing algorithms as well as the neces-
sary extensions of Unity have been deliberately designed to be re-usable for
future case studies, we were able to apply and extend the existing framework

to build an application for the catchment of Poyang Lake presented here.

3. Case Study Poyang Lake Basin

3.1. Catchment Characteristics

Poyang Lake, the largest freshwater lake in China by maximum annual
extension, is located in the southeastern part of China (Fig. 2a). Annual
precipitation rates in the Poyang Lake basin show a distinct wet and a dry
season with a short transition period in between. Although precipitation
rates are highest in June (Fig. 2b), tropical cyclones regularly cause thun-
derstorms and heavy rainfall in the basin in late summer. The distribution
of rainfall in its catchment controls runoff generation in the five large river
systems (Ganjiang, Xinjiang, Xiushui, Raohe and Fuhe River) entering Poy-
ang Lake with an basin-averaged runoff coefficient of about 0.6 (Huang et al.,
2008). In addition, ungauged river systems may contribute between 12% (Li
et al., 2019) and 15.6% (Du et al., 2018) of total water inflow to the lake.
Poyang Lake drains into the Yangtze River at a rate of about 150 bn. m? per
year which takes about 15.5% of the rivers total runoff (Zhao et al., 2011).

Seasonal water level variations of the lake also depend on the discharge

10
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characteristics of Yangtze River and can reach more than 10m at Hukou
and Xingzi station between dry and wet season. At maximum extention, the
water surface of the lake expands up to 3 800 km? filled by a water volume
of 32 bn. m?. In addition, the fairly late yearly high water levels in Yangtze
River (Fig. 2b) periodically cause a water blockage at the outflow of Poyang
Lake which contributes to high water levels in the lake system (Ye et al.,
2011; Yao et al., 2018). In contrast, the lake shrinks to little more than a
river during the dry winter months. The corresponding change in inundation
area (Hui et al., 2008) forms a unique system of water areas, wetlands and
mudflats. For more details on the hydrology of the system, the interested
reader is referred to the relevant publications, e.g. Li et al. (2014) and Guo
et al. (2008).

According to the Chinese Environmental Quality Standards for Surface
Water (GB3838-2002), Poyang Lake has an overall water quality that is bet-
ter than most other large Chinese Lakes, such as Tai Lake or Chao Lake
(Fig. 9). However, water quality is continuously deteriorating as the lake
and the wetland system face several pollution pressures such as an continu-
ous inflow of nutrients and fertiliser residuals from its extensively cultivated
shorelines (Duan et al., 2016; Soldatova et al., 2018) as well as acidity and
heavy metals from mining areas (He et al., 1998) and industrial sites (Xu and
Wang, 2016). Additionally, the hydrological system is increasingly disturbed
by hydraulic construction measures. The opening of the Three-Gorges-Dam
(TGD) is considered one reason for generally decreasing water levels in Poy-
ang Lake during the last decade (Li et al., 2017). Furthermore, prevalent sand

mining activities increase water turbidity, restrict phytoplankton growth and
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have contributed to an annual water level decrease of 1.2 to 2m at the outflow
of Poyang Lake during dry season (Lai et al., 2014; Yao et al., 2018).

Apart from its large size, the ecosystem of Poyang Lake is of interna-
tional importance due its wide range of wetland habitats that support rich
biodiversity (Huang et al., 2016; Sheng et al., 2016). For instance, many mi-
gratory birds coming from Siberia, Mongolia, Japan, Korea, Northeast and
Northwest China rely on these diverse habitats for overwintering, giving the
ecological importance of Poyang Lake an supranational component (Yang

et al., 2016).

3.2. Preprocessing of Input Datasets

As motivated in section 2, we are able to integrate a large variety of data
formats into the Virtual Geographic Environment by using the OpenGeoSys
Data Explorer as a preprocessing tool and exporting the data representations
subsequently into Unity. For the hydrological study presented in this paper,
we focussed on integrating data available on the internet. Possible sources
included both websites providing monitoring data and publications providing
data sets.

Bibliographic studies showed that a total of about 9,600 Chinese and 1,300
English articles touching the topic “Poyang Lake” were published in scientific
journals between 1983 to 2017 (Zhou, 2018). This includes a considerable
number of publications in the field of Hydrology and Earth Sciences. How-
ever, many of the published datasets lack precise information on time and
location of data acquisition or have an insufficient resolution. Both are neces-
sary requirements for a meaningful representation within an environmental

information system. In addition, accessibility of official environmental data-
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sets provided by local or provincial authorities in the Poyang Lake Basin is
limited. Therefore, open data from remote sensing sources as well as data
produced by physically based models of parts of the hydrological system was
used to fill data gaps in the visualisation of spatio-temporal dynamics in the
Poyang Lake Basin. Consequently, a mix of data sets from open databases,
articles, remote sensing information and official data have been integrated

into the EIS. An overview of integrated data sets is given in table 1.

3.2.1. Surface Mapping

The catchment boundary of Poyang Lake Basin was obtained by apply-
ing a GIS catchment analysis on the digital elevation model (DEM) dataset
provided by the HydroSHEDS project (Lehner et al., 2008). This dataset is
based on data from the Shuttle Radar Topography Mission (SRTM), which
has been processed for hydrological purposes. HydroSHEDs DEM defines the
elevation of the lake’s water level as constant. We modified the derived DEM
for Poyang Lake Basin for pixels actually covered by water from the lake and
replaced those values with available bathymetry data. Comparing the eleva-
tion in the non-flooded wetland areas provided by both the HydroSHEDS and
the bathymetry dataset, the average difference of elevation values was not
more than 2m, i.e. less than the vertical height accuracy of the SRTM sensors
(https://www2.jpl.nasa.gov/srtm/statistics.html). Due to the large
size of the Poyang Lake Basin and the requirement for a detailed reconstruc-
tion of comparatively small areas within the catchment (such as subcatch-
ments of tributaries or the lake region itself), the resulting surface mesh is
very large when considering typically used data in Unity. The complete sur-

face of the catchment consists of 1.8 x 10° nodes and 3.75 x 10° triangles
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Table 1: Characteristics of primary data sources used within this study. Abbreviations

are explained in the running text.

Data type Data source Type Spatial Temporal
Resolution Resolution
Precipitation GPM Grid 0.1° 0.5h
DEM HydroSHEDS Grid 37 —
SRTM
Terrain Texture  Google Earth Grid 76.44m (Basin) —
19.11m (Core)
River Network OSM Vector — —
Poyang Lake (Du et al., 2018)  Grid 100 m 48h
Hydrodynamics
Poyang Lake (Du et al., 2018)  Grid 100 m 48h
Hydrochemistry
Poyang (Nixdorf, 2018) Grid 0.5-10km seasonal
Groundwater
Gan River (Li et al., 2018)  Vector + — —
Hydrochemistry Attributes
Le’an River (Jian, 2018) Vector + — seasonal
Hydrochemistry Attributes
Surface Water Jiangxi Water Vector + — —
Level Authority Attributes

with an average edge length of 500 m. This surface mesh has then been par-

titioned into smaller meshes to allow for performance optimisation such as

view-frustum culling. Technical details on suitable visualisation techniques

for large geoscientific data in Unity have been presented by Rink et al. (2017).

In addition to the regular surface representation, a number of refined meshes

14
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have been created for certain areas of interest. Most data acquisition, sim-
ulation and visualisation efforts focus on the Poyang Core Region, which is
defined as the area of a dozen counties around Poyang Lake with a total
area of about 19,833 km? (Tang et al., 2016). Poyang Lake is located in this
core region as well as Nanchang, the largest city in the catchment with a
population of about 3 million. Subsequently, the core region is in the focus
of this case study. The surface mesh for the core region consists of roughly
108 triangles (0.5 x 10° nodes) with an average edge length of 250m. A
second, much smaller region of interest is the Dexing copper and gold mining
area located about 100 km east of Poyang Lake, which is represented by a
surface representation using just 20,000 triangles. Textures for these meshes
have been acquired from Google Farth in varying resolutions. For the Dex-
ing Mining area, we made use of Google’s “Historical view”-functionality to
create a texture-series and show the expansion of the mines from 2009 to

2018.

3.2.2. Meteorological and Hydrological Datasets

For the visualisation of precipitation, two heavy rainfall events were se-
lected from the precipitation datasets of the GPM satellite mission (Hou
et al., 2014). The first event covers the heavy rainfall caused by Typhoon
Soudelor in Southern China between 06 and 11 August 2015. A total of 287
global datasets in HDF5 format represent the time interval at a 30 minute
temporal resolution. These datasets were automatically downloaded, clipped
to the investigation area and converted into ASCII grids in the EPSG:16050
coordinate reference system using Python. A similar processing scheme was

applied for 527 precipitation grids in the time interval between the 20 and 30

15
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June 2017, which represent the heavy rainfall causing the 2017 China floods
in June 2017. In addition, the location of all river gauging stations, reser-
voir gauging stations and weather stations maintained by the Jiangxi Water
Resources Department as well as the related hydrographs were included in
the EIS. The stream network of five main tributaries of Poyang Lake was
obtained from OpenStreetMaps (OSM) and classified into three orders each.
All observation sites and river geometries have been mapped onto the tri-
angulated three-dimensional surface generated from the DEM using a linear
interpolation algorithm proposed in Rink et al. (2014). In addition, the res-
ults of a two-dimensional hydrodynamic lake model (Du et al., 2018) were
integrated into the EIS to visualise inundation changes as well as water and
matter transport in Poyang Lake (see Fig. 5). The provided dataset consist of
186 rasters representing the temporal dynamics in the lake between Septem-
ber 2009 to February 2011 with a temporal resolution of ~ 2.1 days. We
implemented a reader to convert the COAST2D simulation output into the
VTK unstructured grid format. Specifically, each time step would be writ-
ten to a separate file, with each parameter represented by an array within
that file. As a result, we ended up 186 mesh files, each consisting of 47,000
quad elements and containing information on flow direction, flow velocity
and four chemical concentrations for each cell. Given that representation,
it is straightforward to display a temporal sequence for any of the included
parameters and use VTK for subsequently applying visualisation algorithms
to the data set.

To represent the groundwater flow system, the distribution of hydraulic

heads, groundwater velocities and stream path trajectories in the Poyang
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Lake Basin has been visualised in the EIS based on the results of the ground-
water model developed by Nixdorf (2018) (see Fig. 6). The groundwater re-
gime was simulated in two-dimensional planar direction for low and high wa-
ter levels in Poyang Lake using the open source THMC FEM code OpenGeo-
SyS (Kolditz et al., 2012a), which has been applied for groundwater flow sim-
ulations on the regional scale under various scientific objectives in previous
studies (e.g. Walther et al. (2014); Wu et al. (2011); Nixdorf et al. (2017)).
The two-dimensional triangular FEM mesh used for the simulation consists
of about 150,000 Elements with a spatial resolution of about 500m inside
and about 10 km outside of the Poyang Lake Core Region (for details of the
model pre- and postprocessing see Nixdorf (2018)). The groundwater flow
model computes hydraulic head (Fig. 6a) and groundwater velocity vectors
(Fig. 6b) at each node/element of the FEM mesh for December 1999 (low
lake water level) and September 2000 (high water level) in VTK format, for

subsequent integration into the EIS system.

3.2.3. Hydrochemistry

In general, public information on water quality of surface waters — in-
cluding meta-data on sampling location and time — are difficult to obtain for
Chinese water bodies. Accessible datasets are rarely available in a sufficient
spatial resolution, particularly if the investigation aims to focus on large river
networks (Nixdorf et al., 2015). However, recently a number of studies has
been published, providing data on surface water pollution caused by min-
ing activities monitored along tributaries of Poyang Lake. He et al. (2018)
measured surface water contents of arsenic, chromium, copper, uranium and

thorium at 13 sampling sites in Fu River as well as in its tributary Lin River.
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Jian (2018) investigated seasonal changes of heavy metal concentration (cop-
per, lead and cadmium) in the water, soil and sediments at 13 sampling sites
of Le’an River, which is a tributary of Xin River, in order to reveal the im-
pact of the Dexing mining area on the stream ecosystem. The results of this
study were included in the EIS together with the study of Li et al. (2018), who
measured dissolved concentrations of 15 different heavy metals at 37 locations
covering the entire Gan River network. For the EIS, we limited ourselves to
two prototypical representations for the chemical data: (1) For Le’an River,
we display a spatio-temporal distribution for the concentration of copper in
the river during various seasons (the pollution during wet season is shown in
Fig. 9¢). (2) For the Gan River network, we included a multivariate data-
set for a fixed point in time, allowing the user to switch through a linearly
interpolated mapping of the 15 metal concentrations (see Fig. 7). The visu-
alisation of chemical concentration in 3D river representations has been kept
simple on purpose, to allow domain scientists to intuitively understand the
displayed data. The combination of both temporal and multivariate data is
not a technical issue, but the two dimensional parameter space (compound
vs time) becomes difficult to navigate without a specifically designed user
interface. Likewise, a concurrent visualisation of multivariate data, such as
via glyphs or small multiples, is not straightforward to understand without
being given instructions.

Hydrochemical data for Poyang Lake were integrated in the EIS based on
the two-dimensional lake model of Du et al. (2018). The simulation includes
information on the distribution and dynamics of total phosphorus, total ni-

trogen, ammoniacal nitrogen and the permanganate index in Poyang Lake in
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a spatial-temporal resolution of 100m and ~ 2.1 days, respectively. This is
identical to the hydrodynamic dataset mentioned previously; see conversion

details in section 3.2.2.

4. Construction of the Poyang Lake VGE

In Rink et al. (2018), we proposed a framework for creating Virtual Geo-
graphic Environments using Unity as well as a workflow for preparing the
data to be included. An illustration of the workflow is shown in Fig. 8 and
we will give a brief outline in the following: Based on the intended purpose
of the VGE, datasets to be included are selected based on availability and
their usefulness in the scope of the case study. Datasets often require prepro-
cessing for fitting seamlessly together with other available datasets. While
modification of the data (or their graphical representation) is possible at a
later stage of the workflow, it is recommended to use the software products
the datasets have been created with as much as possible to preserve the data’s
inherent structure and parameters, and avoid the creation of processing arte-
facts. A typical example is using a Geographical Information System for
the projection of all datasets into the same coordinate system. Once pre-
pared, all datasets are imported into a VTK-based processing software such
as the OGS Data Explorer or ParaView, where graphical representations
of each dataset are created. While ParaView is an all-purpose software for
scientific visualisation, the Data Explorer offers a number of interfaces and
algorithms specifically developed for the handling of environmental datasets.
Either framework is used to modify the data in ways that have either not

been supported in the original software or which are specific to the graphical
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representation of the data. An example of this is the mapping of a raster file
(e.g. remote sensing imagery) onto a warped surface representing the region
of interest. Also at this stage, artefacts are handled, and data reduction
algorithms are used to adequately prepare datasets for visualisation. Dur-
ing the visualisation-stage, suitable representations for each of the datasets
will be selected and visualisation algorithms are applied so the interesting
aspects of each datasets will become visible or emphasised. Suitable colours
and transfer functions are selected, if possible in such a way that the colours
will help users to understand the data. Finally, the finished graphical objects
representing the original datasets will be imported into the Unity framework
where parameters concerning the rendering within the scene will be set. At
the lowest level, this includes selecting light sources for the scene or assigning
specific shaders to a datasets (Bailey and Cunningham, 2011) (i.e. defining
how the dark, shiny, or colourful the object will appear, as well as setting
more elaborate rendering effects). In addition, presentation-specific function-
ality is set up. This includes viewpoints of positions in 3D space the user can
select from a menu and will automatically be guided to, picking objects to
receive additional information (we can link images (Fig. 4), movies or docu-
ments or even interactive graphs to any 3D object), selecting and controlling
animations via control menu, or switching simulation scenarios.

As an specific example, we would like to illustrate the above workflow
based on the dataset for Le’an river: The course of the 280 km long river
is part of the Chinese river network dataset acquired from OpenStreetMap.
The data is imported into QGIS, the river has been extracted and projected
into the EPSG:16050 (UTM zone 50N) coordinate system used for this case
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study (Fig. 9a). The river dataset has then been saved into the shapefile
vector format and imported into the OpenGeoSys Data Explorer. Here,
adjacent points with a distance of less than 100 m to each other have been
removed. This reduces the size of the dataset by more than 50 % without the
difference being visible to the human eye due to the size of study area and
the final representation of the river. Now, the dataset is mapped onto the 3D
representation of the DEM, so it fits into the geographic context of the case
study (Fig. 9b). We applied a VtkTubeFilter, changing the representation of
the polyline-vector-data into a triangulated pipe-like structure with a radius
of 50m. This is required because the original line structure will always
be rendered at a width of one pixel and is thus too inconspicuous to be
noticed. The dataset was assigned the colour blue, a colour that is typically
associated with water. At each point of the dataset we now added scalar
values representing the copper-concentration at different times of the year,
acquired via Jian (2018). The higher the concentration, the more the colour
of the associated river-segment will turn red. This colour is especially suitable
here, not only because red is usually associated as a warning or sign of danger,
but the severely high concentration of the copper actually gives the river a
reddish-brown colour. The transfer function we applied turns yellow at a
concentration of 1™9/1, red at 2™9/; and violet at 39/i. We then exported
the dataset into the Autodesk FBX format, which can be employed to import
data into Unity. Location, mapping and colour are automatically adopted
during this process. In Unity, we parameterised the dataset such that it is
rendered using a simply Gouraud-shader without casting shadows (which is

not necessary as it is being located on the catchment surface) and rendering
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backfaces (located at the inner side of the tube) in order to save computing
power. An animation was defined to change the colour of the dataset based
on the copper-concentration during different times of the year (Fig. 9¢), in
addition the user can access images of river to get a less abstract view of the
situation. A viewpoint was set near Dexing Mine where the Copper enters
the river. As a result, that particular point-of-view can be set automatically
during a presentation, and an interpolated path along the river will guide
the user from Dexing Mine to Poyang Lake.

Depending on the complexity of each of the included datasets, some of
the steps described above may not be necessary or other algorithms might
need to be applied instead. It’s important to note that all of the required
algorithms are implemented in OGS, ParaView or Unity and can be executed
via user dialogues in the respective software programme, thus significantly
reducing the time required for each of the steps. It is worth pointing out that
the workflow shown in Fig. 8 is a subset of the data workflow introduced by
Kolditz et al. (2012b), based on the structure shown in Fig. 1.

In addition to what had been presented in Rink et al. (2018), the func-
tionality of our framework has been expanded for handling a number of types
of datasets that will be presented here briefly:

Previously, it has only been possible to assign transfer functions based on
spatial-temporal parameters of FEM-based simulation results. These trans-
fer functions assign (and can interpolate) colour values to encode additional
information during the presentation. A generalisation of that algorithm now
also allows the assignment of data to geometrical data in OpenGeoSys and

has been used, as described above, to visualise the changing concentration
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of various chemical compounds in Poyang Lake and its tributary rivers. As
demonstrated by Samsel et al. (2017) (and more generalised in Zhou and
Hansen (2016)), suitable colour maps and transfer functions are of vital
importance for an intuitive understanding of visually presented data. As
such, we are using applications such as ParaView (Ahrens et al., 2005) or
ColorBrewer (Harrower and Brewer, 2011) to generate colour lookup tables
(LUT) that are either based on specific values or ranges (such as the LUTs
in Fig. 7 and 9c¢, based on permissable/critical values for Copper concentra-
tion in drinking water) or that can be adequately discriminated with human
perception.

We also created animations from remote sensing data acquired over mul-
tiple years: Google Earth imagery from 2009 to 2018 is used as texture for
the Dexing mining area. It shows topographical changes of area and adds
to the visualisation of the water pollution in Le’an river discussed above.
As such, it enriches the understanding for a user exploring the data via the
Environmental Information System and serves the holistic approach of the
framework.

To visualise the hydrological processes simulated via COAST2D and Open-
GeoSys and discussed in Section 3.2, we applied and adjusted algorithms
provided by VTK: For the groundwater simulation, triangle nodes have been
mapped to the elevation of the groundwater head, thus creating a warped
surface of the simulated water level. In addition, arrow-glyphs have been gen-
erated, where the direction of arrow indicates flow direction and the colour
the simulated velocity. A total of 10,000 arrows positioned on an equilat-

eral grid have been calculated and mapped onto the surface representing the
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groundwater head for low and higher water level, each (see Fig. 6b). For
the surface water hydraulics of the Poyang Lake, a streamline representation
of the flow was selected. Given the complex and drastically changing area
covered by the lake and large variations in velocity, representing flow via
arrow-glyphs as with the groundwater model results in a confusing visualisa-
tion where glyphs are not necessarily located on the lake surface and larger
glyphs may conceal smaller ones. In contrast, streamlines preserve the shape
of the original graphical object and are a suitable way to visualise eddies in
the water (see Fig. 5a).

During a concurrent visualisation of both surface and groundwater flow,
the different modes of representation also allow to easily differentiate between
data sets. Integrating surface and subsurface water flow fields in one visu-
alisation helps to reveal the complex spatio-temporal pattern of gaining and
losing conditions along the lake’s shoreline and subsequently may facilit-
ate the understanding of cross-compartment interaction in the Poyang Lake
Basin.

In previous studies, we have relied on the visualisation of diagrams for
time series of weather and climate data. Here, the occurrence of large storms
and extreme rain events required a different representation to meet the re-
quest for a multi-compartment approach for hydrological processes. Exem-
plary data from two extreme weather events (see section 3.2.2) have been
used to implement an algorithm for the 3D representation of precipitation
data. Given 288-528 raster data sets of precipitation intensity per rain event,
we created a point cloud representation for visualising rain. Each pixel

p; from the raster data is given an adjustable height-parameter and thus
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forms a bounding box B; in 3D space. Within B;, n;; points are randomly
seeded, with n;j being dependent on the amount of precipitation on pixel p;
at timestep t;. Colours can be adjusted based on height, intensity, or any
other parameter derived from the dataset. The result is a vivid impression
of rain clouds moving over the region of interest (see Fig. 10).

While such animations are very intuitive, we did also include diagrams
showing time series data from observation sites, to allow experts to verify
numbers and assess the development of the observed events. For intuitive
access, the available timeseries data is linked to the representation of ob-
servation sites in the 3D scenes. If these objects are picked via mouse or
flystick, a 2D overlay window opens, displaying the time series for that par-
ticular site as a diagram. For this case study, we also added an interface to the
AL.VIS/Timeseries framework developed by the WISUTEC Umuwelttechnik
GmbH, one of our cooperation partners during the project. This interface al-
lows online-access to the AL.VIS database and shows current measurements
at the selected observation site (Fig. 11). AL.VIS/Timeseries is able to im-
port data from different sources for quality assurance, research, analysis and
exporting. The used database model is very flexible and can process very
long time series with more than 10° measured values very fast. Multiple
diagrams linked to observation sites in the VGE can be opened concurrently
and allow users to investigate the time series data interactively via pan and
zoom functionality.

Due to the large extent of the Poyang Lake Basin, we encountered a
number of new challenges concerning the VGE for this region. The most

challenging issue was related to data volume: A sufficiently fine resolution is
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necessary to realistically depict areas of interest and to ensure that geographic
features such as river valleys are rendered correctly. This was of special im-
portance due to the requirement for spatio-temporal visualisation of rivers
and their pollution in the correct geographical context. Given the size of the
catchment, both surface grids and texture data is reasonably large. However,
for an interactive and immersive VR application, a sufficiently high frame-
rate is required so users won’t experience stuttering during animations or
missing time steps in the rendering of simulation results. Fortunately, recent
versions of the Unity engine support not only very large texture-sizes, but
also level-of-detail approaches, where multiple resolutions of surface grids
are assembled into a tree structure and cross-fading between data sets is
automatically handled by Unity itself. In addition, we included river net-
work representations with a varying number of tributaries included as well
as varying diameter of tube-representations of rivers. In addition, we use
standard procedures for saving rendering time by making use of backface
culling (i.e. only the front-faces of triangles are rendered) or view frustrum
culling (i.e. only currently visible objects are rendered). Another issue is re-
lated to the visibility of small (or thin) structures within a large context. We
have addressed this issue before, but due to the size of the catchment it was
of special importance in this case study. For an overview of the river network,
it required different representations of rivers, as mentioned before. A large
diameter of tube structures in required for the objects to be clearly visible
when showing the whole catchment. However, a much smaller representation
is needed when zooming in on certain regions of interest. Here, we solved

the issue by linking specific representations of datasets to given predefined
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viewpoints. If the user is selecting a viewpoint that will show large parts of
the catchment, larger representations of the rivers with fewer tributaries are
shown. If a viewpoint close to the surface is selected, those datasets become
transparent and instead a finer resolution with more tributaries is rendered.
The same approach is used for small regions of interest such as the Dexing
mining area.

We have used the proposed framework to present complex data collections
to a wide range of audiences. The 3D visualisation of multi-compartment
data has proven to be an excellent means to present research questions and
progress to both stakeholders and the interested public, allowing to present
complex processes and relationships in an easy-to-understand and engaging
way. The virtual reality approach fosters discussions between collaborating
scientists by allowing an in-depth look at data characteristics with a complex
context. In our Lab (Bilke et al., 2014), we use MiddleVr as a Unity plug-in to
present this case study in our Virtual Reality environment using 6 x 3 m video
wall with additional projections on both sides as well as the floor (Fig. 12).
The system is powered by 13 beamers and users are tracked via an array
of nine infrared cameras, thus providing an immersive environment during
presentations. Users can interact with the scene via a flystick or a gamepad.
However, MiddleVr also supports a multitude of other platforms and we have
built our applications for regular PCs as well as for head-mounted displays

such as the HTC Vive or the Oculus Rift.
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5. Conclusions

We presented a holistic analysis of water and solute dynamics in a large
catchment, highlighting the importance of visualisation for analysing and un-
derstanding complex data collections and simulation results. A wide range
of observation data in vector- and raster format have been converted into
3D models and are complemented by previously published simulation results
of a groundwater flow model for the Poyang Lake Basin as well as a solute
transport model of the lake itself. All data sets have been projected into
a unified geographical context for a complementary visualisation within a
Virtual Geographic Environment. Highlighting points of interest and visual-
ising phenomena relevant to a hydrological analysis of the region facilitates
a deeper understanding of the underlying processes and allows a visual cor-
relation of the integrated data. Additional information such as time series,
imagery, or websites is linked to corresponding objects in the scene, creating
a 3D Environmental Information System for the Poyang Lake Basin. The
application allows for interactive data exploration in Virtual Reality, both
in cave-like environments or using head-mounted displays, but can also be
run on regular personal computers. The software frameworks used and the
algorithms developed are in no way limiting the application to the presented
case study and can be easily applied to other regions of interest. This form of
presentation gives researchers a comprehensive view of all relevant data sets
for any given case study, allows for interdisciplinary discussions between col-
laborating scientists, supplements presentations of research results and has

been successfully used for knowledge transfer during open day events.
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Figure 1: Data life cycle for virtual environments for Earth system modelling. Solid lines
mark prevalent types of interfaces, dashed lines mark plausible but somewhat ususual

interfaces.
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Figure 2: a) Location of Poyang Lake and its catchment b) Climograph for Nanchang
City and hydrograph of Poyang Lake at Xingzi station prior (“Poyang old”) and post the
construction of the Three-Gorges-Dam (Guo et al., 2012; Feng et al., 2016).
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Figure 3: Classification of water quality in Poyang Lake and tributaries according to the
Chinese Environmental Quality Standards for Surface Water (Jiangxi Water Resources
Department, 2013).
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Figure 4: Practical use of the Virtual Reality environment: The user has zoomed in on
the Xin River catchment with the river and its tributaries visualised in light blue. Flood
hydrographs linked to gauging stations upstream, midstream and downstream (all marked
in white) have been opened for further analysis.
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(a) Flow direction and velo- (b) Total nitrogen concentra- (c) Surface area
city tion

Figure 5: Results of the hydrodynamic model of Poyang Lake developed by Du et al.
(2018). (a) shows flow direction and velocity of the lake water using trajectories. Obser-
vation sites for measuring water quality (green and purple) as well as eutrophic sampling
sites (orange) are included in the visualisation scene. (b) visualises the distribution and
concentration of total nitrogen in the lake. (c¢) illustrates the variation of inundated wet-
land area in Poyang Lake between May (red) and September (yellow).
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(a) Groundwater head (superelevated) (b) Groundwater flow and velocity

(c) Combined visualisation of groundwater head and surface data

Figure 6: Results of the groundwater flow simulation (Nixdorf, 2018).
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(a) Manganese concentration (b) Lead concentration

Figure 7: Concentration of various metals in the Gan River network. (a) Top-down view
of the manganese concentration in the river network. Measurement sites are marked in
white. Also visible is the overlay showing the legend for the included metals, where green
indicates a low concentration, yellow the recommended limit for drinking water and red
the critical concentration for drinking water. (b) Isometric view westward from Poyang
Lake (visible at the bottom). Colours indicate the lead concentration. Cones are marking
coal- (black), iron- (light blue) and tungsten-mines (dark blue) located in the region.
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Figure 8: Data life cycle for Virtual Environments for Earth system modelling.
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(a) Original data (b) Mapped & superelev- (c) Processed & added data
ated

Figure 9: Exemplarily application of data integration for Le’an River: (a) The original
dataset is georeferenced to fit the geographic context, (b) unneeded points are removed
from the dataset and polylines are mapped to the digital elevation model (shown here is
a 40x super-elevation to illustrate the effect), (c) the dataset is stylised as a tube to be
easily visible within the context and given an intuitive colour. Data representing copper-
concentration in the river is added and subsequently visualised using a manually adjusted
transfer function.
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(a) Top-down view (b) Rendering as points (¢) Rendering as discs

Figure 10: Visualisation of rain events via a time series of point clouds derived form
meteorological raster data. Two approaches have been tested: a simple rendering of points
is shown in figs. (a) and (b), whereas points have been rendered as small discs in fig. (c).

o1



Figure 11:  Visualisation of sensor measurements via on-line access to the
AL.VIS/Timeseries framework.
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Figure 12: Data analysis of groundwater and lake data in the virtual reality environment.
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