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Abstract 

Identifying stable coexistence in empirical systems is notoriously difficult. Here, we 

show how spatiotemporal structure and complex system dynamics can confound two commonly 

used stability metrics in empirical contexts – response to perturbation, and invasion rate when 

rare. We use these metrics to characterize stable coexistence across a range of spatial and 

temporal scales for five simulated models, in which the ability of species to coexist in the long-

term is known a priori, and an empirical old-field successional time-series. We term the resulting 

multivariate distribution of metrics a stability fingerprint. In accordance with a wide range of 

classic and recent studies, our results demonstrate that no combination of empirically tractable 

metrics or measurements is guaranteed to “correctly” characterize coexistence. However, we also 

find that heuristic information from the stability fingerprint can be used to broadly characterize 

dynamic behavior, and identify circumstances under which particular combinations of species 

are likely to persist. Moreover, stability fingerprints appear to be particularly well-suited for 

matching potential theoretical models to observed dynamics. These findings suggest that it may 

be prudent to shift the focus of empirical stability analysis away from quantifying single 

measures of stability, and towards more heuristic, multivariate characterizations of community 

dynamics. 

 

Key words: population stability; community stability; spatial scale; temporal scale; perturbation; 

mutual invasibility 
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Introduction 

The primary purpose of this paper is to demonstrate how an empiricist might study stable 

coexistence in real-world settings. Such assessments are of great practical importance, as they 

are necessary prerequisites for prescriptive management of ecological systems and for testing 

theory (Levin 1992; Murdoch 1994; Ives and Carpenter 2007). However, the proper application 

of existing coexistence metrics requires substantial a priori knowledge about community 

structure, or measurements that are infeasible in empirical contexts (Stommel 1963; Turelli 

1986; Donohue et al. 2016). Consequently, predictions about whether a particular combination of 

species is likely to coexist in the long-term remain rare, particularly in diverse, real-world 

systems (Lawton 1999; Chesson 2003; Siepielski and McPeek 2010; Adler et al. 2013). 

Although there is no universally accepted definition of “stable coexistence”, most 

ecologists would probably agree that a stably coexisting community should retain a particular 

combination of species, despite minor disturbances, even when measured at some point in the 

distant future. This property is called “persistence”, and encompasses a wide range of dynamic 

behaviors (Pimm 1984; Anderson et al. 1992; Grimm and Wissel 1997). Persistent states might 

be centered around a fixed point (Saavedra et al. 2017), an oscillatory cycle (May 1974), a 

stochastic distribution (Turelli 1986), or a moving trend (Chesson 2017). They might be robust to 

infinitely small perturbations (May 1973), perturbations that fall within a fixed range (Armstrong 

and McGehee 1980), or any perturbation of any size (MacArthur 1970). Species might 

theoretically be able to persist indefinitely, or only up to some finite time horizon (Turelli 1980). 

 In practice, ecologists typically classify coexistence using one of two methods. 

Perturbation tests measure species responses to small disturbances (i.e. asymptotic stability; May 

1973; Arnoldi et al. 2016). Stable coexistence is indicated if all species return to their pre-
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disturbance state (which could be a fixed abundance or a dynamic trajectory). Alternatively, 

invasion analyses test whether species can re-invade a community after being driven to low 

abundance (i.e. mutual invasibility; Chesson 2000a, 2003). If all species can invade, this is taken 

to imply stable coexistence. These two metrics are conceptually similar, as they measure, 

respectively, the behavior of a community as it is pushed away from equilibrium towards a 

boundary, or away from a boundary towards equilibrium. 

When applied correctly, either metric can rigorously codify opportunities for stable 

coexistence. However, fulfilling the necessary criteria can be onerous. For example, because 

perturbation tests only assess local stability (i.e. in the vicinity of individual equilibria), every 

possible equilibrium must be tested separately (Anderson et al. 1992; Saavedra et al. 2017). 

Similarly, in systems with multiple stable states – as might occur due to Allee effects, trophic 

structure, or intransitive competition – species may be able to coexist at high abundance even if 

they cannot invade when rare (Barabás et al. 2018). Thus, invasion analyses typically need to be 

augmented (Turelli 1981, 1986; Chesson and Ellner 1989), e.g. by introducing species at high 

enough density to exceed Allee thresholds (Chesson 2000a pp. 359-360), jointly introducing 

predator/prey or mutualist pairs (Chesson and Kuang 2008; Levine et al. 2017), or assessing 

invasions from every possible boundary point (Chesson 2018 p. 1786). 

For several reasons, it seems unlikely that these criteria can be fully satisfied in empirical 

systems. First, without perfect a priori understanding of system structure, it is unclear which test 

augmentations might be necessary. For example, if a species fails to invade, this could simply 

indicate that Allee thresholds were not overcome, or that an obligate mutualist was omitted 

(Levine et al. 2017; Barabás et al. 2018). Likewise, if a perturbed species does not recover its 

initial state, this might indicate lack of stability, or that the equilibrium is nonstationary (Chesson 
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2017). A second challenge is that real-world systems are subject to demographic stochasticity, 

which can obscure effects of perturbations or invasions (Durrett and Levin 1994). For example, 

failure to recover after a disturbance, or failure to invade from low density, might be indicative 

of random chance rather than average system behavior (Turelli 1981, 1986; Tilman 2004). 

Finally, even in well-understood systems, it may not be feasible to conduct all necessary 

measurements. For example, diverse communities have enormous numbers of potential 

equilibria, each of which might need to be tested in separate experiments (Levine et al. 2017; 

Saavedra et al. 2017; Chesson 2018). This challenge is compounded by effects of spatial and 

temporal structure, which can cause community responses to perturbations and invasions to vary 

greatly across scales (Stommel 1963; Levin 1992). Worse still, the scales required for 

coexistence to manifest may differ across species (Leibold and Chase 2018), and “may be much 

larger than is considered in most models and field studies” (Chesson 2000a, p. 344), e.g. 

continents or centuries (Lawton 1999; Davis and Shaw 2001; Ricklefs 2008). 

These fundamental challenges are potentially discouraging, and, in the words of Robert 

May, lead to “rather gloomy thoughts as to the extent to which one can, or cannot, hope to give 

the empiricist some precise, measurable definition of stability” (May 1973 p. 213). In other 

words, it seems likely that in empirical systems, no feasible combination of additional data or 

improved methods can conclusively demonstrate stable coexistence. In response, we suggest a 

shift of focus – away from rigidly interpreted tests, and towards a more heuristic approach. In 

doing so, we are inspired by classical insights from theory (Turelli 1986; Levin 1992; Lawton 

1999), and from a growing consensus in resilience ecology which suggests that stability is best 

summarized using suites of metrics (Pimm 1984; Grimm and Wissel 1997; Carpenter et al. 2001; 

Ives and Carpenter 2007; Donohue et al. 2013, 2016; Arnoldi et al. 2016; Hillebrand et al. 2018; 
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Meyer et al. 2018; Zelnik et al. 2018). Building on these results, we demonstrate: (i) that 

empirically feasible measurements of coexistence reveal complex stability landscapes, which 

confound attempts to classify stability in a definitive manner; but (ii) that by combining 

information from across multiple metrics and scales of measurement, this complexity can be 

used to inform studies of general system behavior. 

 

Methods 

We approach our analyses from the perspective of an empiricist who has been confronted 

with a novel ecosystem. Given limited ability to conduct measurements, and no a priori 

information about its constituent species, we attempt to characterize coexistence. Due to these 

constraints, our methods are never guaranteed to “correctly” identify stable coexistence. We 

therefore follow the advice of Turelli (1986, p. 331) who, in reference to applying invasion 

analyses to complex community dynamics, suggests: “In desperation, one can ignore 

mathematical rigor, apply a heuristic coexistence criterion, then do simulations to check its 

accuracy and hope for the best.” In other words, in cases where no theoretically sound, 

empirically tractable metrics exist, one must make do with imperfect, practical alternatives. In 

this spirit, we optimistically present a heuristic solution that provides useful insights to the 

problem of characterizing species coexistence in ecological communities. 

We proceed in three stages. First, we introduce five spatially and temporally explicit 

models of ecological communities. It is known a priori from theory that in some of these models, 

long-term coexistence is possible, whereas in others, it is not. However, we hide this information 

from the empiricist. Second, we allow the empiricist to conduct perturbation tests and invasion 

analyses in these systems across a variety of spatial and temporal extents. These do not 
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necessarily correspond to the “best” scales for measurements, but rather represent subsets of 

scales to which measurements might be limited due to practical constraints (Fig. 1). We term the 

resulting multi-scale distributions of metrics “stability fingerprints” because they summarize 

unique information about system dynamics, and use them to assess stability in each model. 

Lastly, we apply this fingerprinting procedure to characterize empirical dynamics during old-

field succession, using data from a 90-year chronosequence. This worked example serves as a 

guide for implementing our approach in a system where very few of the theoretical requirements 

for stability analysis have been met. 

 

Simulating model dynamics 

Our models are individual-based stochastic patch-occupancy simulations with similar 

structures. For all but one model (PSF – see below), we implement simulations using Gillespie’s 

method following Lehman et al. (2012). This method has several advantages, including that 

demographic stochasticity arises as an emergent property, and that simulations perfectly match 

analytically tractable models at large spatial scales (i.e. master equations, sensu Black and 

McKane (2012)), which contributes a priori theoretical knowledge about their stability. 

Simulations occur on a 100-by-100 site grid, where sites can be occupied by at most a single 

individual. For each species i, dynamics depend on interspecific interactions and stochastic 

colonization and mortality events, with average rates ci and mi, respectively. For simplicity, we 

assume uniform dispersal across all patches. See Appendix A.1-2 in the supplement model 

derivations and theoretical stability properties, Appendix B.1-2 for details on Gillespie’s method 

and for results in the absence of demographic stochasticity, and Appendix E for source code. 
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The first model, Levins, is a spatially and temporally explicit realization of the 

metapopulation model of Tilman (1994) and Levins (1969). At large spatial extents (i.e. large 

grids), average dynamics of species considered across all patches (i.e. the maximum spatial 

extent) follow Tilman (1994): 

d𝑝𝑖

d𝑡
= 𝑐𝑖𝑝𝑖(1 − ∑ 𝑝𝑗𝑗≤𝑖 ) − 𝑚𝑖𝑝𝑖 − 𝑝𝑖 ∑ 𝑐𝑗𝑝𝑗𝑗<𝑖  (1) 

where pi is the fraction of sites occupied by species i. Competition in Levins is perfectly 

transitive, such that species i=1 is competitively superior to all other species, species i=2 is 

competitively superior to all species but species 1, etc. The first term in Eq. (1) represents 

colonization into sites that are empty or occupied by inferior competitors, the second term 

represents mortality, and the third term represents displacement caused by superior competitors. 

Following Tilman (1994), species equilibrium abundance pi
* can be calculated sequentially 

starting with the best competitor as: 

𝑝𝑖
∗ = 1 −

𝑚𝑖

𝑐𝑖
− ∑ 𝑝𝑗

∗ (1 +
𝑐𝑗

𝑐𝑖
)𝑗<𝑖  if 𝑝𝑖

∗ > 0; = 0 otherwise (2) 

For species i to persist at equilibrium (i.e. pi
*>0), ci must exceed mi, and colonization rates of 

inferior competitors must be sufficiently large to offset competition. Coexistence is globally 

stable, meaning that species are drawn towards the equilibria in Eq. (2) from any nonzero 

starting abundance (Fig. 2a-b). 

Our second model, disturbance, is almost identical to Levins, but also includes periodic 

events every D time steps that destroy fraction di individuals of each species. When considered 

across time (i.e. periods with and without disturbances), disturbances increase average mortality 

rate by a factor log(1 – di)/D. Time-averaged abundances and global stability at large spatial 

scales can be calculated using these average rates and Eq. (2), just as in the Levins model 

(Chesson and Huntly 1997; Barabás and Ostling 2013) (see Appendix A.2 and Fig. S1 for more 
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details). However, the more erratic dynamics caused by disturbances mean that short-term 

responses to perturbations – and therefore empirical estimates of stability metrics – can differ 

greatly between Levins and disturbance. 

Our third model, plant-soil feedback (PSF), follows a previously published model 

(Suding et al. 2013) in which spatial structure and demography are similar to those in Levins, but 

species alter the environment in patches they occupy. These effects build up over time, such that 

species either increase their own mortality and decrease that of their competitors, or vice versa 

(for negative or positive feedbacks, respectively). Because of these feedbacks, we could not 

implement PSF using Gillespie’s method (see Appendix B.1 for details). Given uniform 

dispersal, long-term coexistence requires negative feedbacks for all species (Suding et al. 2013). 

This coexistence is locally stable, such that communities can recover from small perturbations, 

but large perturbations lead to alternate stable states. These alternate states form because 

negative feedbacks reduce species performance over time, eventually allowing invaders to 

displace resident species (Fig. 2e-f; see Appendix A.2 and Figs. S2-S3 for details). 

 Our fourth model, rock paper scissors (RPS), has the same structure as Levins, except 

that species follow an intransitive competitive hierarchy, such that in terms of competitive 

ability, species i>j, j>k, k>l, and l>i. All other species pairs can displace one another, but without 

hierarchical advantages. We consider a community of four species in which species share the 

same demographic rates m and c, which leads to neutrally stable oscillations around a fixed point 

(sensu Allesina and Levine 2011; Grilli et al. 2017). Demographic stochasticity therefore causes 

species to drift toward extinction, meaning that long-term coexistence of all four species is not 

possible (Fig. 2g-h). However, because oscillations are compensatory across species, total 
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summed community abundance acts like a single species in the Levins model, and is globally 

stable around: 

∑ 𝑝𝑖
∗𝑛

𝑖=1 = 1 −
𝑚

𝑐
 (3) 

Lastly, our fifth model, neutral, again follows the same form as Levins, except that all 

species share the same demographic rates m and c, and no species are competitively dominant 

(i.e. no species can colonize an occupied site). Population-level dynamics are therefore 

dominated by ecological drift sensu Hubbell (2001), and species cannot coexist in the long-term 

(Fig. 2i-j). As with RPS, equilibrium total community abundance is globally stable and is 

approximated following Eq. (3). 

For simplicity, we simulated communities of two species for all models, except for RPS 

which included four species. Whenever possible, we chose parameters that resulted in long-term 

persistence of all species (see Appendix A.3 for parameter values). For Levins, we included a 

fast-dispersing inferior competitor and a slow-dispersing superior competitor, for which globally 

stable coexistence is predicted by Eq. (2). For disturbance, we chose parameter values such that 

competitive exclusion was predicted in the absence of disturbance, but long-term coexistence 

was possible due to trade-offs between competitive ability and resistance to disturbance. For 

PSF, we included two species, both with negative feedbacks, which allowed locally stable 

coexistence. Recall that long-term coexistence is not possible in RPS or neutral. 

 

Testing for stable coexistence 

For each model, we characterized coexistence across a range of spatial and temporal 

extents (denoted s and t, respectively) by conducting perturbation tests and invasion analyses. 

These extents represent contiguous units of space and time, as might be sampled in an empirical 
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study (e.g. a 1-by-1 m plot, measured over five field seasons). We considered extents ranging 

from 0.5% to 100% of the maximum spatial extent (i.e. all 100-by-100 sites), and from 1 to 200 

simulated time-steps. 

We conducted manipulations and measurements only at the focal extents corresponding 

to each test. These procedures were meant to mimic plot-based ecological observations, where 

only a fraction of the landscape can be manipulated and observed (e.g. Fig. 1; see Appendix A.4 

for details). We simulated 20,000 iterations of each model, and report the median test result 

across iterations (see Fig. S4 for distributions). This procedure generated fingerprints for each 

model that summarized stability across extents. 

 To conduct perturbation tests, we applied small perturbations to a species (20% reduction 

in abundance), and compared dynamics to those in simulations without the perturbation (e.g. as 

might be accomplished by comparing control and treatment plots; see Fig. 2, “perturbation”). We 

quantified this response as the average rate of return: 

𝑟𝑒(𝑠, 𝑡) = max (over all species 𝑖) [
1

𝑡
log (

|𝑝𝑖,𝑠,𝑡−𝑝𝑖,𝑠,𝑡
0 |

|𝑝𝑖,𝑠,0−𝑝𝑖,𝑠,0
0 |

)] (4) 

where pi,s,t describes abundance of species i, measured at spatial extent s and temporal extent t, 

and p0
i,s,t describes what the abundance of species i would have been had the perturbation not 

occurred. If the system returns towards its initial state, then re<0, which is interpreted as stability. 

Thus, re represents the most positive, and therefore the least stable, response observed across all 

species (see Fig. S5a-c for examples), and is formally an approximation of the Lyapunov 

exponent (see Appendix A.5 for details and justification). 

 To conduct invasion analyses, we removed a species from the community, allowed the 

resulting community to equilibrate to account for transient dynamics, and then re-introduced the 

species at low abundance (5% of unoccupied sites) sensu Chesson (2000a) (e.g. as might be 
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accomplished through experimental introduction of species into an existing community; see Fig. 

2, “removal” and “invasion”). We quantified invasions using the average growth rate: 

𝑟0(𝑠, 𝑡) = min(over all species 𝑖) [
1

𝑡
log (

𝑝𝑖,𝑠,𝑡

𝑝𝑖,𝑠,0
)] (5) 

where t describes time since re-invasion, and r0 describes the minimum rate observed across all 

species (i.e. the least positive, and therefore the least stable; see Fig. S5d-e for examples).  

Note that if systems recover from perturbations or invasions, both re and r0 necessarily 

approach zero for large t. Ideally, this property should be controlled for by considering different 

subsets of temporal extents (Sheil and May 1996). However, this may not always be possible in 

empirical settings (e.g. Fig. 1a, where system dynamics are fast relative to measurements). Thus, 

particularly for large t, our results represent potential outcomes that might arise due to sampling 

constraints, rather than ideal tests that are best suited for detecting coexistence. 

 

Empirical example 

To demonstrate how our methods might be applied to real-world systems, we analyzed a 

90-year old-field successional chronosequence from the Cedar Creek Ecosystem Science 

Reserve in Minnesota, USA (Inouye et al. 1987; Clark et al. 2019). This chronosequence 

includes 23 fields, abandoned from agricultural use between 1927 and 2015. In each field, 

species-level percent-cover of herbaceous plants has been surveyed in 100 permanent 0.5-by-1-m 

plots, roughly every five years since 1983. We chose this dataset because of its uniquely large 

range of measured spatial and temporal extents (see Fig. S6). Note, however, that very few 

theoretical assumptions for coexistence analysis are met in this study: e.g. all species are 

perturbed to low abundance simultaneously through tilling, and no control observations in 
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undisturbed fields are available. Data can be accessed on the LTER network data portal: 

https://doi.org/10.6073/pasta/aa029df8f7a6091ea879ceb5c6673963 (Knops, 2018). 

We combined species into functional groups following Clark (2017), and retained the 

three most abundant categories: annual species, cool-season (C3) perennial grasses, and warm-

season (C4) perennial grasses/sedges. These accounted for >80% of total cover. Importantly, 

successional dynamics and long-term persistence for these groups are well-known: annuals are 

primarily found early in succession, C3 grasses are typically mid-successional, and C4 grasses 

dominate late in succession (Clark et al. 2019). See Appendix C for more details on the site and 

analysis methods. 

We conducted analyses in three steps. First, to measure stability, we treated succession as 

an invasion event and approximated r0 based on changes in percent-cover over successional time 

following Eq. (5). Similar metrics might be calculated following any large disturbance that 

reduces species to low abundance – e.g. experimental manipulations or natural events. Although 

we could not do so here, in other systems it may be possible to approximate re based on 

differences between perturbed and unperturbed replicates, following Eq. (4). 

Next, we calculated r0 across observed spatial and temporal extents to generate an 

empirical stability fingerprint. We used years since agricultural abandonment as a proxy for t, 

yielding extents ranging from 1 to 89 years post-disturbance. For spatial extents, we aggregated 

nested subsets of plots based on proximity (e.g. neighboring plots), and calculated s as total 

surveyed area, ranging from 0.5 to 406 m2 (n.b. we excluded some experimentally burned plots 

from analyses). Similar methods could be employed in any system with repeated sampling 

through time or spatially replicated observations. Unlike our analyses of simulated data, we 

present rates scaled by time (i.e. r0t), as this helps visualize dynamics over long temporal extents 
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(n.b. this transformation does not influence subsequent analyses of metric distributions or model 

comparisons, which focus on relative values within individual spatiotemporal extents). In 

general, we suggest similar transformations for any analysis of long-term data, especially if 

systems appear to approach an equilibrium. 

Finally, we compared empirical fingerprints from the old-fields to those from two 

models: (i) Levins-OF, a realization of Levins parameterized with demographic rates following 

Clark (2017); and (ii) neutral-OF, a realization of neutral based on species average demographic 

rates. We test Levins-OF because it has been hypothesized as a model of successional dynamics 

at Cedar Creek (Tilman 1994; Clark et al. 2019). We include neutral-OF as a simple alternate 

model, because it requires little a priori information for parameterization. To emulate the old-

fields’ disturbance history, we initialized models using abundances observed immediately post-

abandonment, and simulated 90 years of succession. We then compared the empirical and 

simulated systems by calculating the likelihood of empirical fingerprint given simulated 

fingerprints (see Appendix D for details). 

 

Results 

Model dynamics 

Levins most clearly demonstrated properties that are commonly associated with stable 

coexistence. At large extents, species recovered rapidly following perturbations and invasions, 

and equilibrated around analytical expectations from Eq. (2) (Fig. 2a-b). Results were similar for 

disturbance, except that species followed oscillatory cycles (Fig. 2c-d). For PSF, species 

recovered from perturbations, but invasions led to alternate stable states wherein each species 

could displace its competitor, but the two could not coexist (Fig. 2e-f). For RPS, perturbation 
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tests led to persistent changes in oscillatory dynamics (Fig. 2g; n.b. solid and dashed lines do not 

converge). In invasion tests, removing one species led to extinction of a second species, which 

left the removed species’ superior competitor unchecked (Fig. 2h). Thus, subsequent re-invasion 

was only transiently successful. Lastly, as expected for neutral, both perturbation and invasion 

tests changed system dynamics, with no recovery to initial state (Fig. 2i-j). 

 

Stability fingerprints 

 As expected, neither heuristic metric “correctly” identified stable coexistence across all 

models and scales (recall, long-term coexistence is possible in Levins, disturbance, and PSF, but 

not RPS and neutral). Across models, re generally decreased with spatial extent, such that below 

1% of the maximum extent, it was always positive (Fig. 3a-e). For r0, patterns were more 

variable, though it often increased at larger spatial extents (Fig. 3f-j). Both metrics approached 

zero for large temporal extents, as expected for time-averaged growth rates (Sheil and May 

1996). 

For Levins, both metrics correctly indicated that long-term coexistence was possible, with 

negative re (i.e. recovery from perturbation) and positive r0 (i.e. successful invasion), except at 

large spatial or small temporal extents (Fig. 3a,f). For disturbance, metrics gave conflicting 

results. Although long-term coexistence was possible, immediately after disturbances we found 

negative re (indicating stability – note narrow bands visible at larger spatial scales) and negative 

r0 (indicating lack of stability), whereas between disturbance events we detected positive re and 

positive r0 (Fig. 3b,g). For PSF, for which long-term coexistence is locally stable, results were 

similar to those for Levins, despite the existence of alternative stables states (Fig. 3c,h). Finally, 

for RPS and neutral, both metrics correctly indicated lack of stability at large spatiotemporal 
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extents (Fig. 3d-e,i-j). However, for both models, r0 incorrectly indicated stability at small spatial 

extents, and for RPS, r0 also indicated stability during periods of transient reinvasion. 

 

Empirical example 

 Although our empirical analysis of successional dynamics failed to meet many theoretical 

requirements, results nevertheless accorded with species hypothesized successional niches. 

Across spatial extents, annuals showed successful invasions for roughly the first ten years of 

succession, followed by population declines over longer temporal extents (Fig. 4a). For C3 

grasses, growth was generally negative for the first 5 years and then positive for longer temporal 

extents, though growth was always positive at spatial extents above about 25 m2, and declined 

somewhat at temporal extents above 20 years (Fig. 4b). Trends for C4 grasses were similar, 

except that positive growth only began around successional year 20 or spatial extents above 70 

m2, and then increased monotonically for larger temporal extents (Fig. 4c). 

Correspondence between simulated and empirical fingerprints was almost always higher 

for Levins-OF than for neutral-OF, particularly for temporal extents above 10 years, or spatial 

extents above 50 patches (Fig. 4d-f). Unlike neutral-OF, Levins-OF successfully predicted 

declines in r0 with field age for annuals, and increases in r0 with field age at smaller spatial 

extents for C3 and C4 grasses (Fig. 4g-i). Interestingly, this was true even though both models 

predicted similar dynamics over the first decade of succession, and consistently over-predicted 

abundances (see Fig. S7). 
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Discussion 

Across all models, no combination of empirically tractable measurements was guaranteed 

to correctly identify stable coexistence. While not surprising, this result serves as a reminder that 

attempts to characterize coexistence are necessarily heuristic from the perspective of an 

empiricist – i.e. given limited ability to make measurements and imperfect understanding of 

system structure (Turelli 1986; Levin 1992; Murdoch 1994; Lawton 1999; Donohue et al. 2016). 

Thus, definitive statements about coexistence in empirical contexts are probably neither testable 

nor warranted. 

 More encouragingly, our results show that multi-metric, multi-scale empirical tests can 

still produce useful results. Specifically, multivariate stability fingerprints contribute three main 

types of insight, described in detail below. First, based on empirically tractable measurements, 

fingerprints summarize major components of system dynamics which often relate closely to 

long-term coexistence. Second, in cases were predictions about long-term dynamics are unclear 

or confounded, fingerprints help identify potential drivers of uncertainty. Third, fingerprints aid 

in identifying potential mechanisms underlying observed dynamics. Jointly, these findings 

support conjectures from a broad range of studies, which suggest that the focus of stability 

analysis should be shifted towards more holistic, multivariate assessments (Levin 1992; Grimm 

and Wissel 1997; Ives and Carpenter 2007; Donohue et al. 2016; Zelnik et al. 2018). 

 

Applying fingerprinting 

Although the simulation methods we employ are complex, note that generating the 

stability fingerprints themselves is relatively simple: r0 is effectively a log response ratio 

comparing population size at time t vs. initial observed population size, and re compares the log 
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ratio between two observed time-series (e.g. replicates with and without an experimental 

perturbation). Moreover, our results do not rely on a theoretically “optimal” perturbation. For 

example, our analysis of empirical old-field data is in many ways a “worst case scenario” for 

stability analyses, as all species were perturbed to low abundance simultaneously, and no control 

plots were available. 

Despite their simplicity, fingerprints generally succeeded in characterizing complex 

dynamics. For example, matching a priori expectations for our models, r0 demonstrates that re-

invasion in RPS is transient (Fig. 3i), and re shows that in neutral, species abundances can 

recover from small perturbations, but only temporarily (Fig. 3e) (Hubbell 2001; Grilli et al. 

2017). Likewise, for empirical old-field dynamics, r0 shows that growth rates for C3 and C4 

grasses are only positive when measured at extents above a few dozen plots, or temporal extents 

of greater than 5-10 years (Fig. 4a-c). This result accords with theoretical expectations for the 

Levins model, which suggests that long-term persistence of late-successional species requires 

large spatial extents (Tilman 1994). 

Note that stability fingerprints are strongly influenced by perturbation type. We 

demonstrate two types of responses, which effectively represent different ends of a continuum 

ranging from small and instantaneous (re) to large and distributed across time (r0) (Ives and 

Carpenter 2007). However, many other perturbation types also contain useful information. For 

example, although the regularly occurring mortality events in disturbance generally confounded 

our tests, species responses to these events help demonstrate the long-term viability of 

coexistence (see Fig. S8). Combining information from across many species, or many different 

perturbation types including experimental manipulations and natural events, could therefore 

greatly increase information availability, especially in systems where observational scales are 
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limited (Pimm 1984; Carpenter et al. 2001; Donohue et al. 2013, 2016; Arnoldi et al. 2018). This 

approach has recently been termed “probing”, and suggested as a general method for classifying 

complex dynamics (Zelnik et al. 2018). 

 

Addressing problems 

It is tempting to imagine that deviations between our predictions from individual indices 

and the actual long-term persistence of species are idiosyncratic to the metrics and models we 

consider. However, as noted, our results accord with a broad array of studies, which suggest that 

many of the mischaracterizations that we demonstrate are indicative of fundamental obstacles 

and unavoidable trade-offs (Turelli 1986; Levin 1992; Murdoch 1994; Chesson 2000b; Carpenter 

et al. 2001; Hubbell 2001; Levine et al. 2017; Saavedra et al. 2017; Barabás et al. 2018). 

Nevertheless, most of these challenges can be at least partially overcome by assessing multiple 

metrics and scales. 

First, consider alternate stable states, which can confound tests if perturbations are 

sufficiently strong to overcome locally stable coexistence (Chesson 2000a; Levine et al. 2017; 

Saavedra et al. 2017; Barabás et al. 2018). In PSF, for example, invasion tests shift simulations 

into a state where both species can displace the other, but the two cannot coexist (Fig. 2f; see 

Appendix A.2; n.b. although r0>0, most ecologists would probably classify this result as 

unstable). In contrast, re indicates that species can coexist in the long-term at most scales (Fig. 

3c). Jointly, these results (correctly) suggest that coexistence in PSF is locally stable, but that 

coexistence is not robust to large disturbances. 

Conversely, just as disturbances that are too large risk obscuring local stability, 

perturbations that are too small can be impossible to distinguish from background noise (May 
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1973; Turelli 1980). For example, re consistently predicts instability at small spatial extents 

(s<0.05) regardless of underlying dynamics (Fig. 3a-e). This is because these extents harbor 

small populations, which allows demographic stochasticity to overwhelm effects of perturbations 

(see Figs. S9-S10). Similar effects confound re at all spatial extents for disturbance, because 

species are frequently driven to low abundance (see Appendix B.2 and Fig. S11). Results from 

invasion tests are less strongly influenced by stochasticity, as effects of larger perturbations are 

easier to detect (Fig. 3f-j). Thus, especially when populations are small, cases where both re and 

r0 are positive likely indicate that long-term coexistence is possible, but that dynamics are 

strongly influenced by stochastic fluctuations. 

A related trade-off involves temporal extent. Effects of perturbations or invasions are 

typically diluted over time, making responses difficult to detect (Sheil and May 1996). A partial 

solution is to scale estimates of re and r0 by t, as we do in Fig. 4, as these transformed metrics 

measure total recovery rather than recovery per unit time. If long-term estimates of ret remain 

negative, or r0t remain positive, then this indicates long-term coexistence. Tests conducted at 

shorter temporal extents also risk being confounded by transient or fluctuating dynamics, as is 

the case with r0 for RPS (Fig. 2h,3i), or short temporal extents (t<D) in disturbance (Fig. 3b,g). 

In general, we therefore advocate caution when interpreting results from systems that may be 

subject to transience or fluctuations if it is suspected that surveys are too short to accurately 

capture the full range of potential dynamics. 

One last obstacle pertains to processes acting outside of the scope of tests. For example, 

in PSF and neutral, r0 incorrectly indicates stability at small scales because dispersal from 

outside the focal area overwhelms local dynamics (Fig. 3i,j) (Pimm 1984; Hubbell 2001). 

Similarly, re incorrectly indicates stability for neutral even at large spatial extents because total 
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community abundance is stable (see Fig. S12), which leads to compensatory increases in 

abundance that are shared across species (see Fig. S13). While these effects could potentially be 

mitigated by preventing immigration into the focal patch, or by replacing removed individuals 

with those of another species, such interventions would be difficult to implement in practice, and 

could inadvertently destabilize the system, e.g. by altering metacommunity processes (Tilman et 

al. 1994; Leibold and Chase 2018) (see example in Fig. S14). In these cases, there is no general 

solution. Either statements about stability must be limited to the observed range of spatial and 

temporal extents, or specific assumptions must be made about how the system behaves outside of 

these extents (see Identifying mechanisms, below). 

 

Identifying mechanisms 

 In addition to providing qualitative information about system dynamics, fingerprints also 

appear to be useful for identifying potential underlying mechanisms that influence system 

dynamics. For example, our old-field analyses suggest that Levins-OF better explains observed 

dynamics than does neutral-OF, in accordance with results from long-term studies at Cedar 

Creek (Gleeson and Tilman 1990; Tilman 1990, 1994; Clark et al. 2019). Likewise, despite 

superficial similarities among some fingerprints – e.g. Levins vs. PSF (Fig. 3a,c) – we were 

typically able to distinguish among simulated models with high certainty, especially when 

considered across multiple extents (see Appendix D and Fig. S15). Critically, once an appropriate 

model has been identified, its stability properties can be used as a proxy of those for the 

empirical system, which overcomes many of the problems discussed here (Ellner et al. 2019). 

An important caveat is that all information that is contained in stability fingerprints is 

also available in timeseries data of species abundances. Thus, similar results could probably be 
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achieved by fitting dynamic models to multi-scale information about species abundances. 

However, doing so requires complex methods that are rarely applied in practice (Detto and 

Muller-Landau 2016; Clark et al. 2018). Fingerprints may therefore be useful as a low-

dimensional summary of dynamic information, which is comparatively easy to interpret and 

compare across models. This feature could be particularly important in empirical systems where 

community composition is influenced by large-scale processes such as metacommunity 

dynamics, biogeography, or evolutionary history (Lawton 1999; Chesson 2000a; Davis and 

Shaw 2001; Ricklefs 2008; Leibold and Chase 2018). Ideally, information already collected as 

part of other studies may provide sufficient spatial and temporal extents to identify underlying 

mechanisms. However, for some systems or mechanisms, available data may not be sufficient to 

identify unique aspects of fingerprints, and surveying the necessary scales may not be feasible. 

Under these circumstances, fingerprinting may still help reduce the number of potential 

mechanisms that could explain observed patterns. 

 

Future directions 

Here, we present an empirically tractable approach for characterizing long-term 

coexistence in ecological communities. By exploring some of the challenges that confront 

stability analysis, we hope that we have convinced readers that rigidly interpreted, binary metrics 

of coexistence are probably not appropriate in most empirical contexts. More importantly, by 

demonstrating how fingerprinting can be applied to heuristically characterize system dynamics 

and stability, we hope to encourage future empirical studies to employ a wider range of 

experimental perturbation treatments, and to conduct measurements across a broader array of 

spatial and temporal extents. 
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The next challenge will be to find combinations of metrics, scales, and perturbation types 

that can uniquely identify a wide range of dynamic behavior across many systems (Levin 1992; 

Ives and Carpenter 2007). For some systems, this may require new measurements, or methods 

for extrapolating dynamic behavior across unobserved spatial and temporal scales (Leibold and 

Chase 2018). However, in many cases, it seems likely that the data, methods, and theory 

necessary for conducting these tests are already in place. We are therefore optimistic that 

stability fingerprinting could help greatly expand our understanding of coexistence in a rich 

variety of theoretical and empirical systems. 
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Appendix A. Model parameterization 

A.1: Model derivations 

 At large spatial extents, effects of demographic stochasticity can be ignored, and 

dynamics for Levins follow the master equation form described in Eq. (1) in the main text 

(equation reproduced here for convenience): 

d𝑝𝑖

d𝑡
= 𝑐𝑖𝑝𝑖(1 − ∑ 𝑝𝑗𝑗≤𝑖 ) − 𝑚𝑖𝑝𝑖 − 𝑝𝑖 ∑ 𝑐𝑗𝑝𝑗𝑗<𝑖  (1) 

where pi is the fraction of sites occupied by species i, ci and mi are per-capita colonization and 

mortality rates, respectively, and species indices are ordered by competitive ability, such that j<i 
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implies that species j is competitively superior to species i. Note that this is identical to the 

Levins model, sensu Tilman (1994), and is the master equation for our stochastic implementation 

of the model. 

In the model disturbance, disturbance events occur at regular time intervals, killing off 

fixed fraction di of the individuals of each species. Between disturbance events, dynamics follow 

the same form as Levins. Thus, dynamics at large extents can be expressed as: 

d𝑝𝑖

d𝑡
= 𝑐𝑖𝑝𝑖(1 − ∑ 𝑝𝑗𝑗≤𝑖 ) − 𝑚𝑖𝑝𝑖 − 𝑝𝑖 ∑ 𝑐𝑗𝑝𝑗𝑗<𝑖  if t  mod D ≠ 0 (A1a) 

𝑝𝑖|𝐷 = (1 − 𝑑𝑖)𝑝𝑖|𝐷′  if t  mod D = 0 (A1b) 

where 𝑝𝑖|𝐷 is abundance of species i immediately after the disturbance event, 𝑝𝑖|𝐷′ is the 

abundance immediately before, and the modulo operator “x mod y” takes the remainder of x/y 

(thus, t mod D = 0 only if t is a multiple of D). Note that rate di is consequently a rate in discrete-

time, whereas mi is a rate in continuous-time, which is why the log transformation log(1 – di)/D 

is required in our calculation of mean mortality rate for the master equation. 

 For RPS, we simulated a system of four species in a competitive loop, such that species i 

is competitively superior to species j, j is competitively superior to species k, k is competitively 

superior to species l, and l is competitively superior to species i. All other species pairs (i.e. i vs 

k; j vs. l; and k vs. i) are competitively equivalent, meaning that either can displace the other. 

Demographic rates are equal across all species, yielding a system of equations of the form: 

d𝑝𝑖

d𝑡
= 𝑐𝑝𝑖(1 − 𝑝𝑖 − 𝑝𝑙) − 𝑚𝑝𝑖 − 𝑐𝑝𝑖(𝑝𝑘 + 𝑝𝑙) (A2a) 

d𝑝𝑗

d𝑡
= 𝑐𝑝𝑗(1 − 𝑝𝑗 − 𝑝𝑖) − 𝑚𝑝𝑗 − 𝑐𝑝𝑗(𝑝𝑖 + 𝑝𝑙) (A2b) 

d𝑝𝑘

d𝑡
= 𝑐𝑝𝑘(1 − 𝑝𝑘 − 𝑝𝑗) − 𝑚𝑝𝑘 − 𝑐𝑝𝑘(𝑝𝑖 + 𝑝𝑗) (A2c) 

d𝑝𝑙

d𝑡
= 𝑐𝑝𝑙(1 − 𝑝𝑙 − 𝑝𝑘) − 𝑚𝑝𝑙 − 𝑐𝑝𝑙(𝑝𝑗 + 𝑝𝑘) (A2d) 
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 For neutral, dynamics are identical to Eq. (1), except that species share the same 

demographic rates, and do not have direct competitive interactions. Thus, given a community of 

n species, dynamics can be written as: 

d𝑝𝑖

d𝑡
= 𝑐𝑝𝑖(1 − ∑ 𝑝𝑗

𝑛
𝑗=1 ) − 𝑚𝑝𝑖 (A3) 

Note that dynamics match those of Hubbel’s neutral model (Hubbell 2001), except that we 

include time-explicit colonization and mortality, rather than following the zero-net-sum 

assumption (i.e. that empty sites are immediately filled). Thus, fewer than 100% of sites are 

occupied at any given moment in time. 

 Lastly, for PSF, we used a model presented by Suding et al. (2013). Spatial structure and 

demography are similar to that for Levins, except that there are no direct competitive interactions 

among species (i.e. species cannot displace one another). Rather, species influence local 

conditions in sites that they occupy in ways that either hurt themselves and favor their 

competitors (negative feedbacks), or favor themselves and hurt their competitors (positive 

feedbacks). Given two species i and j (“exotic” and “native”, respectively, in the original model), 

survival probability in any given time-step is calculated as: 

𝑠𝑖 =
(1−𝑠𝑖𝑔𝑛(𝑓𝑖)𝑆)

2
− 𝑚𝑖 (A4a) 

𝑠𝑗 =
(1+𝑠𝑖𝑔𝑛(𝑓𝑗)𝑆)

2
− 𝑚𝑗 (A4b) 

where fi indicates the strength and direction of feedbacks, S is the local site condition, sign(fi) 

indicates whether fi is positive or negative, and m is the background rate of stochastic mortality. 

Local site state S varies from –1 to 1. 

 In our implementation of the model, soil state declines by 1 percentage point every time 

step that a site is occupied by species i, whereas every time step that it is occupied by species j, S 

increases by 1 percentage point, with respective maxima and minima determined by –abs(fi) and 
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+abs(fj). In unoccupied sites, S approaches 0 by 1 percentage point per time step. Note that with 

negative feedbacks for both species, each species increases its own mortality in sites that it 

occupies, and decreases mortality for its competitor. Lastly, in our implementation of the model, 

probability of establishment in empty sites is determined following the formula: 

𝑝𝑖 = (1 − 𝑝0)
𝑐𝑖𝑠𝑖

𝑐𝑖𝑠𝑖+𝑐𝑗𝑠𝑗
 (A5a) 

 𝑝𝑗 = (1 − 𝑝0)(1 − 𝑝𝑖) (A5b) 

where ci is the seed production of species i relative to j, and p0 is the probability that neither 

species successfully recruits into the patch. Note that this equation differs slightly from that in 

the original publication, for which p0=0. 

 

A.2: Analytical stability properties 

Recall that unless noted otherwise, all discussions here and in the main text relate to 

population stability (i.e. the stability of the least stable species in the community, meaning the 

species with the highest re or the smallest r0). Nevertheless, results for community stability (i.e. 

stability of total community biomass) are similar to those for population stability (see Fig. S12 

for results for community stability). 

 As shown in the main text, we can solve for the analytical expectation of species 

equilibrium abundances by setting Eq. (1) to zero, and solving for pi, which yields Eq. (2) from 

the main text (equation reproduced here for convenience): 

𝑝𝑖
∗ = 1 −

𝑚𝑖

𝑐𝑖
− ∑ 𝑝𝑗

∗ (1 +
𝑐𝑗

𝑐𝑖
)  if 𝑝𝑖

∗ > 0; = 0 otherwise𝑗<𝑖  (2) 

This estimate is accurate at spatial extents that are large enough to avoid strong effects from 

demographic stochasticity (e.g. thousands of cells). At these scales, Levins is globally stable 

around these equilibrium values (i.e. they are approached from any non-trivial starting point) 
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(Tilman 1994). As discussed in the main text, species achieve positive equilibrium biomass 

given a sufficiently strong trade-off between competitive and colonization ability. Note that 

because the equilibrium abundance of each species is globally stable, community abundance and 

composition are necessarily also stable. 

 For disturbance, stability properties are identical to those in Levins provided that all 

species are predicted to have positive abundances following Eq. (2) based on their time-averaged 

demographic rates (again, assuming that the grid is large enough to avoid large effects of 

demographic stochasticity). By “time-averaged”, we mean the average rates when considered 

across time periods with and without disturbances. These rates can be calculated as mi – log(1 – 

di)/D, where mi is the mortality rate in the absence of disturbance, di is the fraction of individuals 

destroyed during disturbances, and D is the time between disturbance events (n.b. ci parameters 

are not influenced by disturbance). Given a trade-off between species competitive abilities and 

their tolerance to disturbance events (i.e. di), stable coexistence is therefore possible even among 

combinations of species that would competitively exclude one another in the absence of 

disturbance (Fig. S1). Average abundances of species through time in disturbance can be 

calculated exactly from the standard Levins model using Eq. (2), by setting the mortality rates to 

equal the time-averaged rate. Nevertheless, disturbance displays substantial transient dynamics 

between disturbance events which differ from the average abundances, and significantly 

influence perceived system stability (as discussed in the main text). 

 For PSF, stability properties have been extensively analyzed in Suding et al. (2013). 

Locally stable coexistence occurs given sufficiently strong negative feedbacks for both species. 

Under these circumstances, species fall into fixed oscillatory cycles. In our model, these cycles 

are compensatory, such that total community abundance remains at a fixed level (Fig. 1e-f in the 
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main text). Note, however, that the model is subject to alternate stable states. Given positive 

feedbacks between species and their environment (i.e. such that positive effects build up over 

time as species occupy a site), these alternate stable states occur from almost any starting point 

(Fig. S2). Given negative feedbacks, as we explore in the main text (i.e. where negative effects 

build up over time as species occupy a site), alternate stable states are possible, but only if 

species have spent a prolonged time growing in monoculture before they are invaded (Fig. S3). 

These alternate stable states occur because negative feedbacks become so intense that the 

resident species is no longer able to resist competitive exclusion by a reintroduced competitor. 

Although this result does not accord directly with the classical plant-soil-feedback model of 

Bever et al. (1997) (which does not predict alternate stable states in cases with negative 

feedbacks), this is not due to a major conceptual difference between our models, but rather 

because we consider stronger negative feedbacks (n.b. an equivalent result in their model would 

arise from feedbacks that are sufficiently strong to drive the phase cycle in their Fig. 2 into one 

of the zero boundaries). 

 For neutral, recall that because all individuals share the same demographic rates, 

dynamics for total community abundance can be treated as a single species in the Levins model, 

with equilibrium abundance (equation reproduced here for convenience): 

∑ 𝑝𝑖
∗𝑛

𝑖=1 = 1 −
𝑚

𝑐
 (3) 

Thus, though population abundances and composition are purely subject to ecological drift and 

should therefore not be indicated as stable by any of our metrics (Hubbell 2001), total 

community abundance has the same stability properties as it does in Levins. Note that because of 

this drift, long-term coexistence is not possible. 
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 Lastly, for RPS, dynamics follow a four-species competitive loop, sensu Fig. 1b in Grilli 

et al. (2017). For communities including all four species, all species are inhibited by a 

competitor, leading to a neutral, oscillatory system (Allesina and Levine 2011; Grilli et al. 2017). 

Because the system is neutrally stable, even small perturbations can lead to changes in the period 

and amplitude of oscillations, and long-term coexistence is not possible due to the effects of 

demographic stochasticity. However, because oscillations are compensatory, total community 

abundance remains relatively constant regardless of perturbation or invasion events (e.g. Fig. 1g-

h in the main text). Thus, community abundance is likely to be indicated as stable following any 

of our metrics. Conversely, our perturbation and invasion metrics should indicate instability for 

population abundance and composition. 

For communities in RPS composed of a single species, or any pair of species that have 

equal competitive abilities (i.e. i vs k; j vs. l; and k vs. i), species dynamics in RPS reduce to the 

neutral model, since individuals are equivalent in terms of demographic rates. Any combinations 

of species that include unconstrained competitive interactions (e.g. i and j alone; or i, j, and l) is 

inherently unstable, as it results in asymmetrical competitive interactions among otherwise 

identical species, which leads to rapid competitive displacement by the unconstrained species. 

For example, given competition between species i and j, equilibrium abundances predicted from 

Eq. (2) are: 

𝑝𝑖
∗ = 1 −

𝑚

𝑐
 (A6a) 

𝑝𝑗
∗ = 1 −

𝑚

𝑐
− 𝑝𝑖

∗ (1 +
𝑐

𝑐
) = 1 −

𝑚

𝑐
− 2 (1 −

𝑚

𝑐
) = −(1 −

𝑚

𝑐
) (A6b) 

which implies competitive exclusion of species j (since m < c). Note that removal of a single 

species can therefore initiate a cascade of events, which ultimately prevent its successful re-

introduction. For example, removing species i leaves growth of species j unchecked, thereby 
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driving species k extinct. Without species k, species l is able to grow unchecked, ultimately 

excluding i if it is re-introduced to the community (see Fig. 1h in the main text). 

 

A.3: Parameter values 

For all simulations, including all figures in the main text and supplement, we used the 

following parameter values: 

1. Levins: 

a. c1 = 0.45; c2 = 1.05 

b. m1 = m2 = 0.3 

2. disturbance: 

a. c1 = 0.435; c2 = 0.600 

b. m1 = m2 = 0.3 

c. disturbance frequency = 1 per 50 time-steps 

d. d1 = 95% mortality; d2 = 0% mortality 

3. PSF: 

a. c1 = 1/c2 = 1.5 

b. f1 = f2 = –80% 

c. m1 = m2 = 5% 

d. initial soil state = 0 

e. p0 = 50% 

4. RPS: 

a. c = 0.48 for all species 

b. m = 0.224 for all species 

5. neutral: 

a. c = 1.5 for all species 

b. m = 0.7 for all species 

For each set of extents, we simulated 20,000 iterations of each model. We simulated 300 

time-steps before conducting manipulations, and 200 post-manipulation time-steps, including an 

additional 200 time-step burn-in period for invasion tests to account for transient dynamics. 
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A.4: Simulation procedure 

All simulations were carried out on a 100-by-100 cell rectangular grid. In the simulations, 

each of the 10,000 resulting cells is either empty, or holds a single individual of a single species. 

We assume global dispersal in all models (i.e. all available cells are equally likely to be reached 

by propagules, regardless of distance). Results in the main text are based on the median of 

20,000 simulated iterations of each model, at each of seven spatial extents (0.5%, 1%, 5%, 10%, 

50%, 75%, and 100% of the maximum extent). 

To calculate stability metrics, we first ran each model for a 300 time-step burn in period 

to avoid transient dynamics. We then paused the simulation, and branched it into three classes of 

runs: null, perturbation, and invasion. These branches all retained the same spatial and species 

layout, random number seeds, and projected future events (for the Gillespie simulations – see 

Appendix B), meaning that they would produce identical time series if left un-disturbed. For the 

null test, only a single branch was simulated, no additional changes were made, and dynamics 

were simulated for an additional 200 time-steps. For the perturbation tests, one branch was 

simulated per species. For each branch, the abundance of a single species was reduced by 20% at 

the beginning of the simulation, and the simulation was then run for an additional 200 time-steps 

to observe recovery. For the invasion tests, one branch was simulated per species. For each 

branch, the abundance of a single species was reduced to zero, and the remaining community 

was allowed to adjust to the change for 200 time-steps. Then, the removed species was re-

introduced at an abundance equal to 5% of the total unoccupied sites. 
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A.5: Justification of perturbation metric 

Perturbation analyses are usually conducted by calculating eigenvalues of the Jacobian 

matrix that describes interactions among system components (typically individual species), 

evaluated at equilibrium (May 1973). However, because eigenvalues represent a linear 

approximation of a high-dimensional system, it is impossible to characterize their response to 

noise without specific assumptions about the functional form of interactions among system 

components (e.g. mechanism of competition) and the statistical distribution of the noise (e.g. 

Gaussian, log-normal) (Chesson 1990; Anderson et al. 2010). Consequently, even minor 

observation error can lead to enormous uncertainty in eigenvalue estimates (Dormann 2008; 

Clark and Neuhauser 2018). 

We therefore use a metric of response to perturbation measured at the level of individual 

species, rather than at the level of eigenvectors – i.e. re from Eq. (4) in the main text. Though our 

metric re can potentially be confounded by transient dynamics over short time periods (Fig. C1 in 

Arnoldi et al. 2018), its sign is guaranteed to match that of the dominant Eigenvalue over 

sufficiently long temporal extents, as both metrics correspond to asymptotic stability of the least 

stable species. Moreover, note that re is formally an approximation of the most positive 

Lyapunov exponent of our system, which is a very general metric commonly used to test for 

stability in complex dynamical systems. 

 

Appendix B. Implementation of Gillespie’s method 

B.1: Primer on method 

As noted in the main text, we used an implementation of Gillespie’s method to simulate 

model dynamics. A major advantage of this method is that it perfectly matches analytical 
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expectations (e.g. Eq. 1) for large grids at the maximum spatial extent, but produces discrete, 

spatial results at smaller scales. By “discrete”, we mean that birth and death events for 

individuals are explicitly considered, which allows us to account for temporal structure caused 

by demographic stochasticity (Durrett and Levin 1994). By “spatial”, we mean that individuals 

occupied specific locations in a grid, which introduces spatial structure into our model. Note, 

however, that because we consider only interactions at the scale of an individual grid cell, and 

include global dispersal for all simulations, the specific spatial arrangement of individuals is not 

relevant for our study. 

 To implement Gillespie’s method, we used the procedure and source code described in 

Lehman et al. (2012). This implementation simulates dynamics event-by-event (i.e. rather than 

time-step-by-time-step) by forecasting the expected time of future events (e.g. mortality or 

colonization) using an exponential waiting time distribution: 

𝑡𝑒𝑣𝑒𝑛𝑡 = log(−𝑥 + 1)/(−𝑟) (B1) 

where tevent is number of time-steps in the future that the event will occur, x is a random uniform 

number drawn from over the range (0, 1), and r is a rate constant (e.g. m or c from the equations 

above). Note that tevent need not be an integer. 

 The method described in Lehman et al. (2012) is particularly fast and efficient because it 

bins future events into pre-sorted locations in computer memory, which allows rapid recall of 

events without the need to sort or search through large lists. Though describing the specifics of 

the algorithm is beyond the scope of this paper, we strongly recommend this procedure 

(available either in the cited paper, or in the “.c” files in our source code in Appendix E) for any 

readers who wish to implement their own versions of Gillespie’s method, as it typically runs 
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more than three orders of magnitude faster than other versions of the algorithm that we have 

worked with. 

 One downside to the method is that it does not lend itself to cases with feedbacks 

between species and their environments. This is because the state of the environment depends on 

the precise history of occupancy in the patch, which is itself influenced by the changing state of 

the environment. This makes it impossible to project the timing of dispersal and mortality events 

into the future, and instead these must be updated every timestep as is done in standard time-step 

based simulation methods. This is why we used the previously published model for PSF rather 

than adapting it to match Gillespie’s method, as we did with the other models. 

 

B.2: Simulating master equations 

 To examine the behavior of our models in the absence of demographic stochasticity, we 

simulated the master equations in Eqs. 1 and A1-A3. These simulations were similar to those in a 

model by Muller-Landau (2010), in that we included two distinct patch types in each simulation: 

fraction s of the habitat was subject to observations and manipulations, similar to the observed 

spatial extent in our spatiotemporally explicit simulations, and fraction (1 – s) of the habitat was 

not manipulated, but still contributed to and was influenced by dynamics in s due to dispersal. 

 As an example, for the Levins model, we simulated the following two patch system: 

dpi,(1-s)/dt = ci(pi,s + pi,(1-s))(1 – s – pi,(1-s)) – mi pi,(1-s) (B2a) 

dpi,s/dt = ci(pi,s + pi,(1-s))(s – pi,s) – mi pi,s (B2b) 

dpj,(1-s)/dt = cj(pj,s + pj,(1-s))(1 – s – pi,(1-s) – pj,(1-s)) – ci(pi,s + pi,(1-s)) pj,(1-s) – mj pj,(1-s)  (B2c) 

dpj,s/dt = cj(pj,s + pj,(1-s))(s – pi,s – pj,s) – ci(pi,s + pi,(1-s)) pj,s – mj pj,s (B2d) 
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where pi,s is the abundance of species i in manipulated patches, and pi,(1-s) is abundance in 

unmanipulated sites. Note that abundance is always written in terms of fraction of the total 

patches occupied – thus, pi,s ≤ s, pi,(1-s) ≤ (1 – s), and pi,s + pi,(1-s) ≤ 1. Functional forms for the 

remaining models were similar, always with two differential equations per species (see source 

code in Appendix E for specific equations relating to each model). We did not simulate a version 

of the PSF without demographic stochasticity because we had no corresponding master equation 

for the model. 

 In general, results for the simulations of the master equations were similar to those for the 

spatiotemporally explicit models that we discuss in the main text (Fig. S11). For r0, fingerprints 

from the models with and without demographic stochasticity were almost identical. In contrast, 

we found fewer instances of positive re, especially at small spatial extents. As discussed in the 

main text, this indicates that the instability detected by perturbation tests at small spatial extents 

is driven by demographic stochasticity rather than deterministic model behavior (see also Figs. 

S9-S10). 

 For three models – disturbance, RPS, and neutral – we generally found more instances of 

negative re across all scales for the master equations than for the stochastic simulations. For 

disturbance, this occurs because populations of both species are driven to small sizes during 

oscillatory dynamics. Thus, demographic stochasticity leads to relatively large random shifts in 

the starting abundance of species before they begin the recovery phase of their dynamics (Fig. 

S8), which can mask the effects of small perturbations even at large spatial extents. For RPS and 

neutral, demographic stochasticity influences the effects of perturbation tests – especially at 

large temporal extents – precisely because the systems are not deterministically stable. Thus, 

random fluctuations in population sizes compound over time, eventually driving replicate 
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trajectories apart. Interestingly, in the simulations of the master equations, both models “appear” 

stable based on re. As discussed in the main text, this occurs because total community biomass is 

stable in these models, leading to partial recovery at the population level following small 

perturbations, even in the absence of stable coexistence (S14). 

 

Appendix C. Old-field succession example 

 A detailed description of the old-field succession experiment at the Cedar Creek 

Ecosystem Science Reserve is available in Clark (2017), in chapter 1, and in Clark et al. (2019). 

Briefly, Cedar Creek is a reserve run by the University of Minnesota and US Long Term 

Ecological Research Program, and located in Minnesota, USA (45.4°N, 93.2°W). The site is near 

the boundary between deciduous forest, boreal forest, and prairie biomes, though prior to 

European colonization, vegetation was primarily prairie, oak savanna, deciduous forests, and 

wetlands (Cushing 1963). Mean annual precipitation is a bit below 800 mm per year, with most 

occurring between April and August. Temperatures are highly variable, with summer highs 

averaging 27°C, and winter lows averaging -14°C. Soils are very sandy, and plant communities 

are strongly nitrogen limited (Tilman 1987). 

Since 1983, successional dynamics of herbaceous plants have been followed in >20 old-

fields at Cedar Creek. Of these, 23 are still surveyed roughly every 5 years for species-level 

percent cover. Each field includes 100 permanent plots, each 0.5-by-1 m. Plots are arranged into 

four parallel transects, each containing 25 plots. Transects are spaced 25 m apart, with 1 meter 

between plots within the same transect. Plots in four fields have experienced heavy afforestation, 

and since about 2008, half of the plots in most fields have been experimentally burned every 2-3 
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years. We excluded forested and burned plots, yielding a total of 1100 plots in 21 fields (roughly 

50 plots per field). 

To calculate r0, we measured change in abundance as a function of successional age (i.e. 

years since abandonment), relative to initial abundance in year 1. Based on mean observations 

across fields, starting abundances were set to 0.6% for C4 grasses, 2.3% for C3 grasses, and 

11.8% for annuals (n.b. annuals tend to be highly abundant in the seed bank even after many 

decades of agricultural use (Kitajima and Tilman 1996)). For all plots, we added 0.01% cover 

(i.e. 0.5 cm2) to observed abundances, to represent the detection limit and prevent infinite growth 

rate estimates. 

To parameterize the Levins-OF model, we used estimates of mean colonization and 

mortality rates for the three species groups in unburned plots, as calculated in Clark (2017; Ch. 1, 

Fig. 2a). These resulted in c1 = 0.1 for C4 grasses, c2 = 0.3 for C3 grasses, and c3 = 0.4 for 

annuals, with m = 0.02 for all species groups. For neutral-OF, we used the average of these 

parameters, i.e. c = 0.27 and m = 0.02. We then simulated this three species model at 15 discrete 

spatial extents (0.01%, 0.02%, 0.04%, 0.06%, 0.09%, 0.12%, 0.20%, 0.30%, 0.49%, 0.72%, 

1.00%, 1.96%, 3.06%, 4.00%, and 8.12% of the total 100-by-100-unit grid – numbers were 

chosen to ensure an integer number of grid cells). 

 

Appendix D. Model identification 

To test whether fingerprints derived from re and r0 could be used to identify the 

underlying model responsible for generating observed dynamics, we constructed density 

functions summarizing observed inter-simulation variation in re and r0 for each model and extent 

using the density function in R (2017, version 3.4.2). These were effectively multivariate 
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probability distributions, that allowed us to calculate the likelihood of a particular observed 

stability fingerprint given a hypothesized underlying model. 

We then used these density functions to determine the likelihood of each simulated 

stability fingerprint under all five of the candidate models at each extent, Lm,n(s,t), where m is the 

model that generated the fingerprint, and n is the model used to define the density function. 

Third, to determine how including information from across multiple extents altered likelihoods, 

we calculated cumulative likelihoods for subsets of nested extents: 

𝐶𝐿𝑚,𝑛(𝑠, 𝑡) = ∏ ∏ 𝐿𝑚,𝑛(𝑗, 𝑘)𝑡
𝑘=1

𝑠
𝑗=1  (D1) 

Finally, we calculated the likelihood that model m matched its own density function relative to 

the density function of all other models, as: 

𝑅𝐶𝐿𝑚|𝑚(𝑠, 𝑡) = 𝐶𝐿𝑚,𝑚(𝑠, 𝑡)/ ∑ 𝐶𝐿𝑚,𝑛(𝑠, 𝑡)𝑛  (D2) 

Eq. (D2) thus describes the relative likelihood of correctly identifying the underlying model 

responsible for generating each fingerprint. 

To quantify the relative explanatory power the Levins-OF and neutral-OF models 

relative to the observed old-field stability fingerprints, we calculated RCLm|OF, where OF is the 

density function derived from observed old-field dynamics. Because of the limited amount of 

empirical information, especially at large extents, density functions were calculated based on the 

sign of fingerprints (i.e. r0>0 or r0<0) observed across bootstrapped replicates of the empirical 

data, and simulated iterations of the two models rather than raw values. 

Interestingly, attempts to identify underlying simulated models based on their stability 

fingerprints was highly successful (Fig. S15). In general, RCLm|m (i.e. likelihood of correctly 

matching a simulated fingerprint to the model that generated it) increased with spatial and 
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temporal extents, and r0 yielded higher rates of correct identification than re. For large spatial and 

temporal extents, identification success was always greater than 99%. 

Importantly, across all tests, we found almost monotonic increases in identification 

success with increasing spatial and temporal extents (Fig. S15). This property is particularly 

valuable, as it suggests that increasing the scale of sampling also increases identification success. 

In contrast, larger extents did not guarantee that measured stability better coincided with long-

term persistence of system components (Pimm 1984; Levin 1992; Leibold and Chase 2018). 

These results support the notion that it may be easier to identify underlying mechanisms that 

contribute to system dynamics than it is to identify whether or not a system is stable, even given 

rigorously defined tests and metrics (Ives and Carpenter 2007). 

 

Appendix E. Source code for replicating study 

 The full source code for replicating the analyses in this manuscript, including all data 

needed for fitting and testing models, is available in the file stability_scaling.tar.gz 

in the supplement, and at https://github.com/adamtclark/coexistence_scale. 

 The file “HPC_iterate_spatial_scale_array.R” is an automated script that 

loads and runs all functions needed to replicate simulations for the five models described in the 

main text. Note that for 20,000 iterations, the script requires roughly 2500 processor hours, and 

is therefore written to be implemented in parallel on a high-performance computing cluster. The 

script “plot_iterate_out_array.R” reproduces all summary figures related to these 

simulations. 

 The file “HPC_calcualte_empirical_staility_e014.R” is an automated 

script that loads and runs all functions needed to replicate the empirical examples and 
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simulations related to the old-fields. Again, note that for 20,000 iterations, the script requires 

roughly 400 processor hours, and is therefore written to be implemented in parallel on a high-

performance computing cluster. The script “plot_stability_e014.R” reproduces all 

summary figures related to these simulations. 

The script “plot_matchcor_out_array.R” runs all analyses and reproduces all 

figures related to identifying simulated models, “plot_matchcor_out_array_emp.R” 

runs all analyses and reproduces all figures related to identifying empirical dynamics, 

“plot_example_timeseries.R” reproduces figures related to examples of time-series and 

stability analyses, and  “plot_disturbance_example.R” shows the example of 

persistence for the disturbance model shown in Fig. S1. The script and  

“plot_Levins_nodemstoch.R” runs simulations of the master equations for the Levins, 

disturbance, RPS, and neutral models (i.e. dynamics without demographic stochasticity), and 

plots the resulting stability fingerprints. 

The script “plot_stability_e014.R” plots the mean observed and simulated 

dynamics for the old fields. The script “plot_demstoch_vs_scale.R” runs analyses and 

plots figures demonstrating the strength of demographic stochasticity as a function of spatial 

extent. The scripts “plot_psf_example_negtivetransient.R” and 

“plot_psf_example_positive.R” run analyses and plot figures related to examples of 

alternate stable states in the PSF model. The directory “util” and the script 

“run_metapopulation_wrapper.R” contain annotated helper functions for the other 

scripts. 

 Lastly, several “.c” scrips are compiled and run automatically by the R scripts described 

above, and include the source code for implementing Gillespie’s method with our five models.  
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See “run_metapopulation_wrapper.R”, and comments within the individual files, for more 

details. 
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Figure legends 

 Figure 1: Because of a combination of physical limitations, financial barriers, and 

historical legacy, the spatial and temporal scales at which one can reasonably observe and 

manipulate ecological systems do not always correspond to those that are useful for studying 

coexistence. Consider a time-series comprised of three observations, in each of three different 

types of communities. (A) Samples of microbial communities might include millions of 

individuals, and hundreds of generations can pass between surveys. (B) Herbaceous plant 

communities can contain hundreds of individuals per square meter, and measurements of 

species-level biomass are sufficiently destructive and time-consuming that only a small fraction 

of the total landscape can be surveyed. (C) For tree communities, survey plots might only 

contain a few individuals, but dynamics can be very slow, playing out over decades or centuries. 

 Figure 2: Example dynamics of each model at the maximum spatial extent (i.e. across all 

simulated sites). Each row shows results for a single model. Colored lines show species 

abundances. Vertical dashed lines and arrows show perturbation events for perturbation tests 

(a,c,e,g,i), or removals and invasion events for invasion test (b,d,f,h,j), always for the red 

species. Colored dashed lines in (a,c,e,g,i) show trajectory in the absence of perturbation. 

Horizontal lines in (a,b) show equilibria from Eq. (2), and in (c,d) show mean abundances 

predicted from temporally averaged mortality rates (see Appendix A.2 for details). Vertical 

dotted lines in (c,d) show disturbance events. 

 Figure 3: Stability fingerprints summarizing median results across spatial and temporal 

extents, based on 20,000 iterations of each model. Columns show different metrics, rows show 

different models. Colors show median value for maximum re (a-e) or minimum r0 (f-j) observed 

across species. Cooler colors indicate greater measured stability (recall that negative re or 
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positive r0 indicate stable coexistence). Bright red regions indicate extinction of at least one 

species in more than one third of simulations. Dark grey shading shows regions where between-

simulation variability is sufficiently large that >50 observations would be required to detect a 

significant difference from zero. Shading is semi-transparent, so that the sign of the index is still 

visible. For more information on the distribution of results, see Fig. S4. 

 Figure 4: Stability fingerprints for successional dynamics in old-fields at Cedar Creek 

generated from approximated invasion statistic r0. Rows show results for different species 

groups, columns show fingerprints for observed dynamics (a-c), simulated results from Levins-

OF (d-f), and simulated results from neutral-OF (g-i). Colors show median stability metrics, 

either from 20,000 bootstrapped samples drawn from old-field surveys (a-c), or 20,000 

simulations (d-i). Contour lines show relative cumulative likelihood of observed pattern given 

the Levins-OF (d-f) vs. neutral-OF (g-i) models (defined as RCLm|OF in the supplement – see 

Appendix D and Fig. S16 for more details). Note that unlike Eq. (5) and Fig. (3f-j), r0 is 

multiplied by temporal extent t to make patterns at larger temporal extents clearer (Sheil and 

May 1996). 
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I. Model parameterization 

I.1: Model derivations 

 At large spatial extents, effects of demographic stochasticity can be ignored, and 

dynamics for Levins follow the master equation form described in Eq. (1) in the main text 

(equation reproduced here for convenience): 

!"#
!$
= 𝑐'𝑝')1 − ∑ 𝑝--.' / − 𝑚'𝑝' − 𝑝' ∑ 𝑐-𝑝--1'  (1) 

where pi is the fraction of sites occupied by species i, ci and mi are per-capita colonization and 

mortality rates, respectively, and species indices are ordered by competitive ability, such that 

j<i implies that species j is competitively superior to species i. Note that this is identical to the 

Levins model, sensu Tilman (1994), and is the master equation for our stochastic 

implementation of the model. 

In the model disturbance, disturbance events occur at regular time intervals, killing off 

fixed fraction di of the individuals of each species. Between disturbance events, dynamics 

follow the same form as Levins. Thus, dynamics at large extents can be expressed as: 

!"#
!$
= 𝑐'𝑝')1 − ∑ 𝑝--.' / − 𝑚'𝑝' − 𝑝' ∑ 𝑐-𝑝--1'  if	t		mod	D	≠	0 (S1a) 

𝑝'|= = (1 − 𝑑')𝑝'|=A  if	t		mod	D	=	0 (S1b) 

where 𝑝'|= is abundance of species i immediately after the disturbance event, 𝑝'|=A is the 

abundance immediately before, and the modulo operator “x mod y” takes the remainder of x/y 

(thus, t mod D = 0 only if t is a multiple of D). Note that rate di is consequently a rate in 

discrete-time, whereas mi is a rate in continuous-time, which is why the log transformation 

log(1 – di)/D is required in our calculation of mean mortality rate for the master equation. 

 For RPS, we simulated a system of four species in a competitive loop, such that 

species i is competitively superior to species j, j is competitively superior to species k, k is 

competitively superior to species l, and l is competitively superior to species i. All other 

species pairs (i.e. i vs k; j vs. l; and k vs. i) are competitively equivalent, meaning that either 
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can displace the other. Demographic rates are equal across all species, yielding a system of 

equations of the form: 

!"#
!$
= 𝑐𝑝'(1 − 𝑝' − 𝑝B) − 𝑚𝑝' − 𝑐𝑝'(𝑝C + 𝑝B) (S2a) 

!"E
!$
= 𝑐𝑝-)1 − 𝑝- − 𝑝'/ − 𝑚𝑝- − 𝑐𝑝-(𝑝' + 𝑝B) (S2b) 

!"F
!$

= 𝑐𝑝C)1 − 𝑝C − 𝑝-/ −𝑚𝑝C − 𝑐𝑝C(𝑝' + 𝑝-) (S2c) 
!"G
!$
= 𝑐𝑝B(1 − 𝑝B − 𝑝C) − 𝑚𝑝B − 𝑐𝑝B(𝑝- + 𝑝C) (S2d) 

 For neutral, dynamics are identical to Eq. (1), except that species share the same 

demographic rates, and do not have direct competitive interactions. Thus, given a community 

of n species, dynamics can be written as: 

!"#
!$
= 𝑐𝑝')1 − ∑ 𝑝-H

-IJ / −𝑚𝑝' (S3) 

Note that dynamics match those of Hubbel’s neutral model (Hubbell 2001), except that we 

include time-explicit colonization and mortality, rather than following the zero-net-sum 

assumption (i.e. that empty sites are immediately filled). Thus, fewer than 100% of sites are 

occupied at any given moment in time. 

 Lastly, for PSF, we used a model presented by Suding et al. (2013). Spatial structure 

and demography are similar to that for Levins, except that there are no direct competitive 

interactions among species (i.e. species cannot displace one another). Rather, species 

influence local conditions in sites that they occupy in ways that either hurt themselves and 

favor their competitors (negative feedbacks), or favor themselves and hurt their competitors 

(positive feedbacks). Given two species i and j (“exotic” and “native”, respectively, in the 

original model), survival probability in any given time-step is calculated as: 

𝑠' =
(JLM'NH(O#)P)

Q
− 𝑚' (S4a) 

𝑠- =
(JRM'NH(OE)P)

Q
− 𝑚- (S4b) 

where fi indicates the strength and direction of feedbacks, S is the local site condition, sign(fi) 

indicates whether fi is positive or negative, and m is the background rate of stochastic 

mortality. Local site state S varies from –1 to 1. 
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 In our implementation of the model, soil state declines by 1 percentage point every 

time step that a site is occupied by species i, whereas every time step that it is occupied by 

species j, S increases by 1 percentage point, with respective maxima and minima determined 

by –abs(fi) and +abs(fj). In unoccupied sites, S approaches 0 by 1 percentage point per time 

step. Note that with negative feedbacks for both species, each species increases its own 

mortality in sites that it occupies, and decreases mortality for its competitor. Lastly, in our 

implementation of the model, probability of establishment in empty sites is determined 

following the formula: 

𝑝' = (1 − 𝑝S)
T#M#

T#M#RTEME
 (S5a) 

	𝑝- = (1 − 𝑝S)(1 − 𝑝') (S5b) 

where ci is the seed production of species i relative to j, and p0 is the probability that neither 

species successfully recruits into the patch. Note that this equation differs slightly from that in 

the original publication, for which p0=0. 

 

I.2: Analytical stability properties 

Recall that unless noted otherwise, all discussions here and in the main text relate to 

population stability (i.e. the stability of the least stable species in the community, meaning the 

species with the highest re or the smallest r0). Nevertheless, results for community stability 

(i.e. stability of total community biomass) are similar to those for population stability (see 

Fig. S12 for results for community stability). 

 As shown in the main text, we can solve for the analytical expectation of species 

equilibrium abundances by setting Eq. (1) to zero, and solving for pi, which yields Eq. (2) 

from the main text (equation reproduced here for convenience): 

𝑝'∗ = 1 − V#
T#
− ∑ 𝑝-∗ W1 +

TE
T#
X 	if	𝑝'∗ > 0;= 0	otherwise-1'  (2) 

This estimate is accurate at spatial extents that are large enough to avoid strong effects from 

demographic stochasticity (e.g. thousands of cells). At these scales, Levins is globally stable 



  5 

around these equilibrium values (i.e. they are approached from any non-trivial starting point) 

(Tilman 1994). As discussed in the main text, species achieve positive equilibrium biomass 

given a sufficiently strong trade-off between competitive and colonization ability. Note that 

because the equilibrium abundance of each species is globally stable, community abundance 

and composition are necessarily also stable. 

 For disturbance, stability properties are identical to those in Levins provided that all 

species are predicted to have positive abundances following Eq. (2) based on their time-

averaged demographic rates (again, assuming that the grid is large enough to avoid large 

effects of demographic stochasticity). By “time-averaged”, we mean the average rates when 

considered across time periods with and without disturbances. These rates can be calculated 

as mi – log(1 – di)/D, where mi is the mortality rate in the absence of disturbance, di is the 

fraction of individuals destroyed during disturbances, and D is the time between disturbance 

events (n.b. ci parameters are not influenced by disturbance). Given a trade-off between 

species competitive abilities and their tolerance to disturbance events (i.e. di), stable 

coexistence is therefore possible even among combinations of species that would 

competitively exclude one another in the absence of disturbance (Fig. S1). Average 

abundances of species through time in disturbance can be calculated exactly from the 

standard Levins model using Eq. (2), by setting the mortality rates to equal the time-averaged 

rate. Nevertheless, disturbance displays substantial transient dynamics between disturbance 

events which differ from the average abundances, and significantly influence perceived 

system stability (as discussed in the main text). 

 For PSF, stability properties have been extensively analyzed in Suding et al. (2013). 

Locally stable coexistence occurs given sufficiently strong negative feedbacks for both 

species. Under these circumstances, species fall into fixed oscillatory cycles. In our model, 

these cycles are compensatory, such that total community abundance remains at a fixed level 

(Fig. 1e-f in the main text). Note, however, that the model is subject to alternate stable states. 
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Given positive feedbacks between species and their environment (i.e. such that positive 

effects build up over time as species occupy a site), these alternate stable states occur from 

almost any starting point (Fig. S2). Given negative feedbacks, as we explore in the main text 

(i.e. where negative effects build up over time as species occupy a site), alternate stable states 

are possible, but only if species have spent a prolonged time growing in monoculture before 

they are invaded (Fig. S3). These alternate stable states occur because negative feedbacks 

become so intense that the resident species is no longer able to resist competitive exclusion by 

a reintroduced competitor. Although this result does not accord directly with the classical 

plant-soil-feedback model of Bever et al. (1997) (which does not predict alternate stable states 

in cases with negative feedbacks), this is not due to a major conceptual difference between 

our models, but rather because we consider stronger negative feedbacks (n.b. an equivalent 

result in their model would arise from feedbacks that are sufficiently strong to drive the phase 

cycle in their Fig. 2 into one of the zero boundaries). 

 For neutral, recall that because all individuals share the same demographic rates, 

dynamics for total community abundance can be treated as a single species in the Levins 

model, with equilibrium abundance (equation reproduced here for convenience): 

∑ 𝑝'∗H
'IJ = 1 − V

T
 (3) 

Thus, though population abundances and composition are purely subject to ecological drift 

and should therefore not be indicated as stable by any of our metrics (Hubbell 2001), total 

community abundance has the same stability properties as it does in Levins. Note that because 

of this drift, long-term coexistence is not possible. 

 Lastly, for RPS, dynamics follow a four-species competitive loop, sensu Fig. 1b in 

Grilli et al. (2017). For communities including all four species, all species are inhibited by a 

competitor, leading to a neutral, oscillatory system (Allesina and Levine 2011; Grilli et al. 

2017). Because the system is neutrally stable, even small perturbations can lead to changes in 

the period and amplitude of oscillations, and long-term coexistence is not possible due to the 
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effects of demographic stochasticity. However, because oscillations are compensatory, total 

community abundance remains relatively constant regardless of perturbation or invasion 

events (e.g. Fig. 1g-h in the main text). Thus, community abundance is likely to be indicated 

as stable following any of our metrics. Conversely, our perturbation and invasion metrics 

should indicate instability for population abundance and composition. 

For communities in RPS composed of a single species, or any pair of species that have 

equal competitive abilities (i.e. i vs k; j vs. l; and k vs. i), species dynamics in RPS reduce to 

the neutral model, since individuals are equivalent in terms of demographic rates. Any 

combinations of species that include unconstrained competitive interactions (e.g. i and j alone; 

or i, j, and l) is inherently unstable, as it results in asymmetrical competitive interactions 

among otherwise identical species, which leads to rapid competitive displacement by the 

unconstrained species. For example, given competition between species i and j, equilibrium 

abundances predicted from Eq. (2) are: 

𝑝'∗ = 1 − V
T

 (S6a) 

𝑝-∗ = 1 − V
T
− 𝑝'∗ W1 +

T
T
X = 1 − V

T
− 2 W1 − V

T
X = −(1 − V

T
) (S6b) 

which implies competitive exclusion of species j (since m < c). Note that removal of a single 

species can therefore initiate a cascade of events, which ultimately prevent its successful re-

introduction. For example, removing species i leaves growth of species j unchecked, thereby 

driving species k extinct. Without species k, species l is able to grow unchecked, ultimately 

excluding i if it is re-introduced to the community (see Fig. 1h in the main text). 

 

I.3: Parameter values 

For all simulations, including all figures in the main text and supplement, we used the 

following parameter values: 

1. Levins: 
a. c1 = 0.45; c2 = 1.05 
b. m1 = m2 = 0.3 



  8 

2. disturbance: 
a. c1 = 0.435; c2 = 0.600 
b. m1 = m2 = 0.3 
c. disturbance frequency = 1 per 50 time-steps 
d. d1 = 95% mortality; d2 = 0% mortality 

3. PSF: 
a. c1 = 1/c2 = 1.5 
b. f1 = f2 = –80% 
c. m1 = m2 = 5% 
d. initial soil state = 0 
e. p0 = 50% 

4. RPS: 
a. c = 0.48 for all species 
b. m = 0.224 for all species 

5. neutral: 
a. c = 1.5 for all species 
b. m = 0.7 for all species 

For each set of extents, we simulated 20,000 iterations of each model. We simulated 

300 time-steps before conducting manipulations, and 200 post-manipulation time-steps, 

including an additional 200 time-step burn-in period for invasion tests to account for transient 

dynamics. 

 

I.4: Simulation procedure 

All simulations were carried out on a 100-by-100 cell rectangular grid. In the 

simulations, each of the 10,000 resulting cells is either empty, or holds a single individual of a 

single species. We assume global dispersal in all models (i.e. all available cells are equally 

likely to be reached by propagules, regardless of distance). Results in the main text are based 

on the median of 20,000 simulated iterations of each model, at each of seven spatial extents 

(0.5%, 1%, 5%, 10%, 50%, 75%, and 100% of the maximum extent). 

To calculate stability metrics, we first ran each model for a 300 time-step burn in 

period to avoid transient dynamics. We then paused the simulation, and branched it into three 

classes of runs: null, perturbation, and invasion. These branches all retained the same spatial 

and species layout, random number seeds, and projected future events (for the Gillespie 
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simulations – see Appendix II in the supplement), meaning that they would produce identical 

time series if left un-disturbed. For the null test, only a single branch was simulated, no 

additional changes were made, and dynamics were simulated for an additional 200 time-steps. 

For the perturbation tests, one branch was simulated per species. For each branch, the 

abundance of a single species was reduced by 20% at the beginning of the simulation, and the 

simulation was then run for an additional 200 time-steps to observe recovery. For the invasion 

tests, one branch was simulated per species. For each branch, the abundance of a single 

species was reduced to zero, and the remaining community was allowed to adjust to the 

change for 200 time-steps. Then, the removed species was re-introduced at an abundance 

equal to 5% of the total unoccupied sites. 

 

I.5: Justification of perturbation metric 

Perturbation analyses are usually conducted by calculating eigenvalues of the Jacobian 

matrix that describes interactions among system components (typically individual species), 

evaluated at equilibrium (May 1973). However, because eigenvalues represent a linear 

approximation of a high-dimensional system, it is impossible to characterize their response to 

noise without specific assumptions about the functional form of interactions among system 

components (e.g. mechanism of competition) and the statistical distribution of the noise (e.g. 

Gaussian, log-normal) (Chesson 1990; Anderson et al. 2010). Consequently, even minor 

observation error can lead to enormous uncertainty in eigenvalue estimates (Dormann 2008; 

Clark and Neuhauser 2018). 

We therefore use a metric of response to perturbation measured at the level of 

individual species, rather than at the level of eigenvectors – i.e. re from Eq. (4) in the main 

text. Though our metric re can potentially be confounded by transient dynamics over short 

time periods (Fig. C1 in Arnoldi et al. 2018), its sign is guaranteed to match that of the 

dominant Eigenvalue over sufficiently long temporal extents, as both metrics correspond to 
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asymptotic stability of the least stable species. Moreover, note that re is formally an 

approximation of the most positive Lyapunov exponent of our system, which is a very general 

metric commonly used to test for stability in complex dynamical systems. 
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II. Implementation of Gillespie’s method 

II.1: Primer on method  

As noted in the main text, we used an implementation of Gillespie’s method to 

simulate model dynamics. A major advantage of this method is that it perfectly matches 

analytical expectations (e.g. Eq. 1) for large grids at the maximum spatial extent, but produces 

discrete, spatial results at smaller scales. By “discrete”, we mean that birth and death events 

for individuals are explicitly considered, which allows us to account for temporal structure 

caused by demographic stochasticity (Durrett and Levin 1994). By “spatial”, we mean that 

individuals occupied specific locations in a grid, which introduces spatial structure into our 

model. Note, however, that because we consider only interactions at the scale of an individual 

grid cell, and include global dispersal for all simulations, the specific spatial arrangement of 

individuals is not relevant for our study. 

 To implement Gillespie’s method, we used the procedure and source code described in 

Lehman et al. (2012). This implementation simulates dynamics event-by-event (i.e. rather 

than time-step-by-time-step) by forecasting the expected time of future events (e.g. mortality 

or colonization) using an exponential waiting time distribution: 

𝑡bcbH$ = log(−𝑥 + 1)/(−𝑟) (S7) 

where tevent is number of time-steps in the future that the event will occur, x is a random 

uniform number drawn from over the range (0, 1), and r is a rate constant (e.g. m or c from 

the equations above). Note that tevent need not be an integer. 

 The method described in Lehman et al. (2012) is particularly fast and efficient because 

it bins future events into pre-sorted locations in computer memory, which allows rapid recall 

of events without the need to sort or search through large lists. Though describing the 

specifics of the algorithm is beyond the scope of this paper, we strongly recommend this 

procedure (available either in the cited paper, or in the “.c” files in our source code in 

Appendix V in the supplement) for any readers who wish to implement their own versions of 
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Gillespie’s method, as it typically runs more than three orders of magnitude faster than other 

versions of the algorithm that we have worked with. 

 One downside to the method is that it does not lend itself to cases with feedbacks 

between species and their environments. This is because the state of the environment depends 

on the precise history of occupancy in the patch, which is itself influenced by the changing 

state of the environment. This makes it impossible to project the timing of dispersal and 

mortality events into the future, and instead these must be updated every timestep as is done 

in standard time-step based simulation methods. This is why we used the previously published 

model for PSF rather than adapting it to match Gillespie’s method, as we did with the other 

models. 

 

II.2: Simulating master equations 

 To examine the behavior of our models in the absence of demographic stochasticity, 

we simulated the master equations in Eqs. 1 and S1-S3. These simulations were similar to 

those in a model by Muller-Landau (2010), in that we included two distinct patch types in 

each simulation: fraction s of the habitat was subject to observations and manipulations, 

similar to the observed spatial extent in our spatiotemporally explicit simulations, and fraction 

(1 – s) of the habitat was not manipulated, but still contributed to and was influenced by 

dynamics in s due to dispersal. 

 As an example, for the Levins model, we simulated the following two patch system: 

dpi,(1-s)/dt = ci(pi,s + pi,(1-s))(1 – s – pi,(1-s)) – mi pi,(1-s) (S8a) 

dpi,s/dt = ci(pi,s + pi,(1-s))(s – pi,s) – mi pi,s (S8b) 

dpj,(1-s)/dt = cj(pj,s + pj,(1-s))(1 – s – pi,(1-s) – pj,(1-s)) – ci(pi,s + pi,(1-s)) pj,(1-s) – mj pj,(1-s)  (S8c) 

dpj,s/dt = cj(pj,s + pj,(1-s))(s – pi,s – pj,s) – ci(pi,s + pi,(1-s)) pj,s – mj pj,s (S8d) 

where pi,s is the abundance of species i in manipulated patches, and pi,(1-s) is abundance in 

unmanipulated sites. Note that abundance is always written in terms of fraction of the total 
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patches occupied – thus, pi,s ≤ s, pi,(1-s) ≤ (1 – s), and pi,s + pi,(1-s) ≤ 1. Functional forms for the 

remaining models were similar, always with two differential equations per species (see source 

code in Appendix V for specific equations relating to each model). We did not simulate a 

version of the PSF without demographic stochasticity because we had no corresponding 

master equation for the model. 

 In general, results for the simulations of the master equations were similar to those for 

the spatiotemporally explicit models that we discuss in the main text (Fig. S11). For r0, 

fingerprints from the models with and without demographic stochasticity were almost 

identical. In contrast, we found fewer instances of positive re, especially at small spatial 

extents. As discussed in the main text, this indicates that the instability detected by 

perturbation tests at small spatial extents is driven by demographic stochasticity rather than 

deterministic model behavior (see also Figs. S9-S10). 

For three models – disturbance, RPS, and neutral – we generally found more instances 

of negative re across all scales for the master equations than for the stochastic simulations. For 

disturbance, this occurs because populations of both species are driven to small sizes during 

oscillatory dynamics. Thus, demographic stochasticity leads to relatively large random shifts 

in the starting abundance of species before they begin the recovery phase of their dynamics 

(Fig. S8), which can mask the effects of small perturbations even at large spatial extents. For 

RPS and neutral, demographic stochasticity influences the effects of perturbation tests – 

especially at large temporal extents – precisely because the systems are not deterministically 

stable. Thus, random fluctuations in population sizes compound over time, eventually driving 

replicate trajectories apart. Interestingly, in the simulations of the master equations, both 

models “appear” stable based on re. As discussed in the main text, this occurs because total 

community biomass is stable in these models, leading to partial recovery at the population 

level following small perturbations, even in the absence of stable coexistence (S14).  
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III. Old-field succession example 

 A detailed description of the old-field succession experiment at the Cedar Creek 

Ecosystem Science Reserve is available in Clark (2017), in chapter 1, and in Clark et al. 

(2019). Briefly, Cedar Creek is a reserve run by the University of Minnesota and US Long 

Term Ecological Research Program, and located in Minnesota, USA (45.4°N, 93.2°W). The 

site is near the boundary between deciduous forest, boreal forest, and prairie biomes, though 

prior to European colonization, vegetation was primarily prairie, oak savanna, deciduous 

forests, and wetlands (Cushing 1963). Mean annual precipitation is a bit below 800 mm per 

year, with most occurring between April and August. Temperatures are highly variable, with 

summer highs averaging 27°C, and winter lows averaging -14°C. Soils are very sandy, and 

plant communities are strongly nitrogen limited (Tilman 1987). 

Since 1983, successional dynamics of herbaceous plants have been followed in >20 

old-fields at Cedar Creek. Of these, 23 are still surveyed roughly every 5 years for species-

level percent cover. Each field includes 100 permanent plots, each 0.5-by-1 m. Plots are 

arranged into four parallel transects, each containing 25 plots. Transects are spaced 25 m 

apart, with 1 meter between plots within the same transect. Plots in four fields have 

experienced heavy afforestation, and since about 2008, half of the plots in most fields have 

been experimentally burned every 2-3 years. We excluded forested and burned plots, yielding 

a total of 1100 plots in 21 fields (roughly 50 plots per field). 

To calculate r0, we measured change in abundance as a function of successional age 

(i.e. years since abandonment), relative to initial abundance in year 1. Based on mean 

observations across fields, starting abundances were set to 0.6% for C4 grasses, 2.3% for C3 

grasses, and 11.8% for annuals (n.b. annuals tend to be highly abundant in the seed bank even 

after many decades of agricultural use (Kitajima and Tilman 1996)). For all plots, we added 

0.01% cover (i.e. 0.5 cm2) to observed abundances, to represent the detection limit and 

prevent infinite growth rate estimates. 
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To parameterize the Levins-OF model, we used estimates of mean colonization and 

mortality rates for the three species groups in unburned plots, as calculated in Clark (2017; 

Ch. 1, Fig. 2a). These resulted in c1 = 0.1 for C4 grasses, c2 = 0.3 for C3 grasses, and c3 = 0.4 

for annuals, with m = 0.02 for all species groups. For neutral-OF, we used the average of 

these parameters, i.e. c = 0.27 and m = 0.02. We then simulated this three species model at 15 

discrete spatial extents (0.01%, 0.02%, 0.04%, 0.06%, 0.09%, 0.12%, 0.20%, 0.30%, 0.49%, 

0.72%, 1.00%, 1.96%, 3.06%, 4.00%, and 8.12% of the total 100-by-100-unit grid – numbers 

were chosen to ensure an integer number of grid cells). 
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IV. Model identification 

To test whether fingerprints derived from re and r0 could be used to identify the 

underlying model responsible for generating observed dynamics, we constructed density 

functions summarizing observed inter-simulation variation in re and r0 for each model and 

extent using the density function in R (2017, version 3.4.2). These were effectively 

multivariate probability distributions, that allowed us to calculate the likelihood of a particular 

observed stability fingerprint given a hypothesized underlying model. 

We then used these density functions to determine the likelihood of each simulated 

stability fingerprint under all five of the candidate models at each extent, Lm,n(s,t), where m is 

the model that generated the fingerprint, and n is the model used to define the density 

function. Third, to determine how including information from across multiple extents altered 

likelihoods, we calculated cumulative likelihoods for subsets of nested extents: 

𝐶𝐿V,H(𝑠, 𝑡) = ∏ ∏ 𝐿V,H(𝑗, 𝑘)$
CIJ

M
-IJ  (S9) 

Finally, we calculated the likelihood that model m matched its own density function relative 

to the density function of all other models, as: 

𝑅𝐶𝐿V|V(𝑠, 𝑡) = 𝐶𝐿V,V(𝑠, 𝑡)/∑ 𝐶𝐿V,H(𝑠, 𝑡)H  (S10) 

Eq. (S10) thus describes the relative likelihood of correctly identifying the underlying model 

responsible for generating each fingerprint. 

To quantify the relative explanatory power the Levins-OF and neutral-OF models 

relative to the observed old-field stability fingerprints, we calculated RCLm|OF, where OF is 

the density function derived from observed old-field dynamics. Because of the limited amount 

of empirical information, especially at large extents, density functions were calculated based 

on the sign of fingerprints (i.e. r0>0 or r0<0) observed across bootstrapped replicates of the 

empirical data, and simulated iterations of the two models rather than raw values. 

Interestingly, attempts to identify underlying simulated models based on their stability 

fingerprints was highly successful (Fig. S15). In general, RCLm|m (i.e. likelihood of correctly 
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matching a simulated fingerprint to the model that generated it) increased with spatial and 

temporal extents, and r0 yielded higher rates of correct identification than re. For large spatial 

and temporal extents, identification success was always greater than 99%. 

Importantly, across all tests, we found almost monotonic increases in identification 

success with increasing spatial and temporal extents (Fig. S15). This property is particularly 

valuable, as it suggests that increasing the scale of sampling also increases identification 

success. In contrast, larger extents did not guarantee that measured stability better coincided 

with long-term persistence of system components (Pimm 1984; Levin 1992; Leibold and 

Chase 2018). These results support the notion that it may be easier to identify underlying 

mechanisms that contribute to system dynamics than it is to identify whether or not a system 

is stable, even given rigorously defined tests and metrics (Ives and Carpenter 2007). 
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V. Source code for replicating study 

 The full source code for replicating the analyses in this manuscript, including all data 

needed for fitting and testing models, is available in the file stability_scaling.zip in 

the supplement, and at https://github.com/adamtclark/coexistence_scale. 

 The file “HPC_iterate_spatial_scale_array.R” is an automated script 

that loads and runs all functions needed to replicate simulations for the five models described 

in the main text. Note that for 20,000 iterations, the script requires roughly 2500 processor 

hours, and is therefore written to be implemented in parallel on a high-performance 

computing cluster. The script “plot_iterate_out_array.R” reproduces all summary 

figures related to these simulations. 

 The file “HPC_calcualte_empirical_staility_e014.R” is an automated 

script that loads and runs all functions needed to replicate the empirical examples and 

simulations related to the old-fields. Again, note that for 20,000 iterations, the script requires 

roughly 400 processor hours, and is therefore written to be implemented in parallel on a high-

performance computing cluster. The script “plot_stability_e014.R” reproduces all 

summary figures related to these simulations. 

The script “plot_matchcor_out_array.R” runs all analyses and reproduces all 

figures related to identifying simulated models, “plot_matchcor_out_array_emp.R” 

runs all analyses and reproduces all figures related to identifying empirical dynamics, 

“plot_example_timeseries.R” reproduces figures related to examples of time-series 

and stability analyses, and  “plot_disturbance_example.R” shows the example of 

persistence for the disturbance model shown in Fig. S1. The script and  

“plot_Levins_nodemstoch.R” runs simulations of the master equations for the Levins, 

disturbance, RPS, and neutral models (i.e. dynamics without demographic stochasticity), and 

plots the resulting stability fingerprints. 
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The script “plot_stability_e014.R” plots the mean observed and simulated 

dynamics for the old fields. The script “plot_demstoch_vs_scale.R” runs analyses 

and plots figures demonstrating the strength of demographic stochasticity as a function of 

spatial extent. The scripts “plot_psf_example_negtivetransient.R” and 

“plot_psf_example_positive.R” run analyses and plot figures related to examples 

of alternate stable states in the PSF model. The directory “util” and the script 

“run_metapopulation_wrapper.R” contain annotated helper functions for the other 

scripts. 

 Lastly, several “.c” scrips are compiled and run automatically by the R scripts 

described above, and include the source code for implementing Gillespie’s method with our 

five models.  See “run_metapopulation_wrapper.R”, and comments within the individual  
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Supplementary Figures 

 

Figure S1: Example of long-term persistence of multiple species caused by periodic 

disturbance events in the disturbance model. Parameter values are identical to those used for 

the simulations described in the main text. Because disturbance events (vertical dashed lines) 

affect the superior competitor (red) more than the inferior competitor (blue), regular 

disturbances prevent the superior competitor from remaining at a high abundance for long 

enough to drive the inferior competitor extinct. This can lead to persistence by both species 

for arbitrarily long periods of time, depending on their relative growth rates and relative 

responses to disturbance. When disturbance events are discontinued after time step 1500, the 

superior competitor is able to rapidly drive the inferior competitor extinct. Note that species 

average abundances correspond to the mean expectation from Eq. (2), based on time-averaged 

mortality rates (horizontal dotted lines), as discussed in Appendix I.2 in the supplement. 
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Figure S2: Example dynamics of the RPS model at the maximum spatial extent, for a case 

with positive feedbacks (in contrast to the simulations in the main text, which are for systems 

with negative feedbacks). Colored lines show species abundances. Vertical dashed lines and 

arrows show invasion events for invasion tests. In accordance with common results for such 

models, we find no coexistence, and strong priority effects, such that both species is able to 

prevent its competitor from invading. 
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Figure S3: Example dynamics of the RPS model at the maximum spatial extent, for a case 

with negative feedbacks (i.e. the same model as shown in Fig. 2f in the main text). Colored 

lines show species abundances. Vertical dashed lines and arrows show invasion events for 

invasion tests. In cases where species are allowed to approach their monoculture equilibrium 

state before re-invasion of their competitor (a,b), we find alternate stable states, as discussed 

in the main text. This is because negative feedbacks build up over time in monocultures, 

eventually reducing the local fitness of the resident species so profoundly that they can no 

longer coexist with their competitor. In contrast, in cases where only a short time interval 

passes between species removal and subsequent reinvasion (c,d), negative feedbacks do not 

build up sufficiently to allow exclusion of the resident species. Thus, the two species return to 

their initial state of coexistence, following a period of damped oscillations. 
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Figure S4: Distributions of perturbation and invasion metrics. Panels and axes match those 

described in Fig. 3 in the main text. Colors and contour lines show z-score and average 

sample size (n) needed to detect a significant difference from zero, based on variation among 

20,000 simulations. Dark grey shows regions where z > 50 observations would be required to 

detect a significant difference from zero. Note that unlike in Fig. 3 in the main text, we do not 

invert axis colors for re vs r0. In this figure, cooler colors always indicate more negative 

numbers and thus greater stability for re (panels a-j), whereas warmer colors always indicate 

more positive numbers and thus greater stability for r0 (panels k-o). 
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Figure S5: Example calculation of perturbation (a-c) and invasion (d-e) statistics. Time series 

match the Levins simulation from Fig. 1a-b. (a) Solid line shows species response to a pulse 

perturbation applied at time step 200. Dashed line shows trajectory in the absence of the 

perturbation. (b) Distance between the population trajectories with and without the pulse 

perturbation. (c) Time-averaged growth of distance, re, following Eq. (4) in the main text. 

Negative values indicate return to pre-perturbation state. (d) Invasion at time step 400 of 

removed (red) species into an established population (blue species). (e) Time-averaged 

growth of removed species after re-invasion, r0, following Eq. (5) in the main text. Positive 

values indicate successful invasion. 



  27 

 

Figure S6: Examples of available spatial and temporal scales of data for surveys of grassland 

plants. Hatched regions show (a) actual sampled portions of each plots, and actual number of 

sampling years, or (b) total plot size and range of sampling years. Green shows the NutNet 

experiment (Borer et al. 2014), red the main experimental plots at Jena (Weisser et al. 2017), 

and dark blue, blue, and light blue show, respectively, the old field experiment (E014) (Clark 

et al. 2019), the “big” biodiversity experiment (E120) (Tilman et al. 1997), and the nitrogen 

addition experiments (E001/E002) at Cedar Creek (Tilman 1987). 
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Figure S7: Temporal trends for species group dynamics. Results for simulated Levins-OF (a) 

and neutral-OF (b), vs. mean observed trends in old-fields at Cedar Creek (c). Model 

parameters are estimated from observed colonization and mortality events at Cedar Creek. 

Red shows annuals, blue shows C3 grasses, and green shows C4 grasses. Though simulations 

and empirical observations differ in terms of absolute cover, the general trends and timing of 

increases and decreases within each species group are quite similar between the empirical 

data and predictions from Levins-OF. Note that initial differences in species dynamics in the 

neutral case are a result of founder effects, due to differences in starting abundances. 
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Figure S8: Population-level responses to (a) perturbation and (b) invasion tests for the 

disturbance model, observed at the maximum spatial extent. Recall that the red species is the 

inferior competitor and is not influenced directly by disturbance events, whereas the blue 

species is the superior competitor and is negatively influenced by disturbances. Solid red and 

blue lines show median results across simulations for each species. Vertical dashed lines show 

disturbance events. (a) For the perturbation test, the system is only indicated as stable (i.e. all 

re < 0) around the time of disturbances, when the inferior competitor is able to recover from 

competitive suppression and when the superior competitor is recovering from disturbances. 

(b) For the invasion test, both species contribute to the slowest growth rate when rare (i.e. 

minimum r0). However, negative growth (i.e. r0 < 0), and thus predictions of instability, occur 

only for the blue species, and during disturbance events, because of the sharp decline that 

disturbance causes in the abundance of the superior competitor. Note that for clarity, both re 

and r0 are scaled by time (i.e. as in Fig. 4 in the main text). 
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Figure S9: Example of perturbation tests at a small spatial extent. Dynamics match those 

from the Levins model in Fig. 1a, given a spatial extent of 1% of the maximum. Dashed 

vertical line and arrow shows a local perturbation, removing 20% of individuals (length of 

arrow indicates size of perturbation). Horizontal dotted line shows expected equilibrium from 

the analytical model. Shaded region shows mean abundance ± one standard deviation due to 

demographic stochasticity (i.e. stochastic birth/death). Note that demographic stochasticity 

leads to larger average deviations from the equilibrium than does the perturbation at this 

extent. Thus, the effect of the perturbation is difficult to detect. 
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Figure S10: Effect of demographic stochasticity on dynamics of the Levins model as a 

function of spatial scale. Vertical axis shows coefficient of variation (CV), measured as the 

standard deviation of species abundance divided by the mean abundance that would be 

analytically expected in the absence of demographic stochasticity, following Eq. 2 in the main 

text. Solid and dashed lines show mean ± one standard deviation, based on 100 iterations of 

the model. At extents below 500 grid cells (i.e. 5% of the maximum extent), demographic 

stochasticity leads to relatively large variability in abundance, but declines rapidly as a 

function of spatial extent. At larger spatial extents, this variability is small relative to mean 

abundance (i.e. CV < 0.1), suggesting that demographic stochasticity has minor effects at 

these spatial scales. Note that variability is always higher for species 2 than for species 1, 

because it is influenced not only by its own demographic stochasticity, but also that of the 

superior competitor. 
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Figure S11: Stability fingerprints summarizing re and r0 across spatial and temporal extents 

for the analytical versions the Levins, disturbance, RPS, and neutral models, following Eq. 1 

and S1-S4. Colors and labels are as described in Fig. 3 in the main text. Because results are 

simulated directly from the underlying master equation rather than from a spatially explicit 

implementation based on Gillespie’s method, there is no impact of demographic stochasticity 

on model dynamics. Note that results are almost identical to those in Fig. 3, except for spatial 

extents below 0.05, for perturbation tests of neutral at large temporal extents, and for 

perturbation tests of disturbance and RPS at all scales. 
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Figure S12: Simulation results for perturbation statistic across all models (columns) and 

spatial/temporal extents (rows). Unlike Fig. 2 in the main text, contours show median re from 

20,000 simulations for total summed community biomass, rather than population-level 

biomass. 
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Figure S13: Example of stability at the community level leading to spurious detection of 

stability at the population level, from the neutral model. Solid black line shows summed 

community abundance, while red and blue lines show results for individual species. Vertical 

dashed lines and arrows show perturbations. (a) A perturbation applied to the red species with 

no subsequent correction in the abundance of other species leads to a decline in total 

community biomass. Because the neutral model is stable at the community level, this decline 

leads to an increase in the growth rate of all species. Thus, the red species appears to 

“recover” from the perturbation, even though species cannot actually coexist in the long-term. 

(b) If the population size of the blue species is increased to counteract the perturbation to the 

red species, there is no net change in summed community abundance. Thus, the red species no 

longer appears to “recover” following the perturbation. 
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Figure S14: Example of invasion test for the neutral model applied at spatial extents of (a) 

20% and (b) 1% of the maximum. Solid lines show abundance dynamics at the maximum 

extent. Vertical dashed lines and arrows show removal and re-invasion events. (a) At 

intermediate spatial extents, removal leads to deterministic extinction of the species at the 

maximum extent, because subsequent exclusion from the experimental region causes an 

effective decrease in colonization rate. Though the species is later re-introduced in the 

experimental plots, the resulting abundance at the maximum extent is very low. Thus, 

demographic stochasticity frequently leads to extinction. Note that for tests implemented at 

the maximum spatial extent, resulting population sizes are larger, and successful re-invasion 

is therefore more likely. (b) At small spatial extents, removal has weaker effects on 

abundance and dynamics at the maximum spatial extent, and the resulting deterministic 

declines in abundance are much slower. Thus, the species rarely goes extinct at the global 

extent. 
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Figure S15: Relative cumulative likelihood (RCLm|m) of successful identification of 

underlying models across spatial and temporal extents, based on the methods described in 

Appendix IV. Rows show results for different models. Contours show median likelihood 

observed across simulations, either for re (a-e) or r0 (f-j). Note RCLm|m>0.2 implies 

identification is more accurate than a random guess among the five models. 
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Figure S16: Cumulative likelihood of Levins-OF relative to neutral-OF, based on their 

abilities to explain empirically observed stability fingerprints generated from old-field 

dynamics at Cedar Creek (RCLm|OF). See Appendix IV for details. Contours show median 

likelihood observed across simulations. Rows show different species groups. RCLm>0.5 

implies that empirical fingerprints are better matched by Levins-OF than by neutral-OF. 

 
 

 

 

 

 




