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Abstract: In vitro assays indicative of different stages of cellular toxicity pathways have been 17 

applied to both source water and drinking water. The majority of studies showed a decrease in 18 

receptor-mediated effects after drinking water treatment due to the removal of micropollutants, 19 

while reactive toxicity typically increased after chlorination due to the formation of disinfection by-20 

products. Using both chemical analysis and bioanalysis, iceberg modelling can be applied to 21 

determine which chemicals are contributing to the observed effect, though one limitation is that 22 

typical sample pretreatment for bioanalysis fails to capture volatile chemicals. Bioassays are 23 

increasingly sensitive and effects can be detected in clean samples, thus effect-based trigger values 24 

can be applied to determine whether an effect in drinking water is acceptable.  25 

 26 

Keywords: bioanalysis; drinking water treatment; effect-based trigger value; estrogenic activity; 27 

iceberg modelling; reactive toxicity 28 

 29 
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1. Introduction 31 

There is increasing concern about the presence of micropollutants, such as pharmaceuticals, 32 

pesticides and industrial compounds, in drinking water, with micropollutants detected in both 33 

source water and treated drinking water around the world [1-4]. During water treatment, 34 

disinfection by-product (DBPs) can form from the reaction of disinfectants, such as chlorine, 35 

chloramine and ozone, with organic and inorganic matter naturally present in source water [5], with 36 

DBPs commonly detected in disinfected drinking water [6, 7]. Further, micropollutant 37 

transformation products (TP) can also form during water treatment with disinfectants and during 38 

other advanced oxidation processes [8]. Consequently, drinking water can contain a complex 39 

mixture of micropollutants, TPs and DBPs (Figure 1). While targeted chemical analysis is often 40 

used for monitoring drinking water quality, it is unlikely to comprehensively capture the diversity 41 

of chemicals potentially present in drinking water, especially as many micropollutants and their TPs 42 

will be present at low nanogram per litre concentrations. Instead, in vitro bioassays can be applied 43 

complementary to chemical analysis as they can incorporate the mixture effects of all active 44 

chemicals in a sample without the identification of single compounds [9, 10]. They are also risk-45 

scaled, meaning that more potent chemicals will have a greater contribution to the mixture effect 46 

than less potent chemicals at similar concentrations. In the current study we review the application 47 

of high-throughput in vitro assays to drinking water, with a focus on studies that have been 48 

published in the last two years. In addition, we also discuss the application of iceberg modelling for 49 

drinking water, sample preparation considerations and the need for effect-based trigger values. 50 

 51 

2. Application of in vitro bioassays to drinking water 52 

In vitro bioassays indicative of different stages of cellular toxicity pathways, including induction of 53 

xenobiotic metabolism [11, 12], hormone receptor-mediated effects [1, 13, 14], reactive modes of 54 

action [15, 16], adaptive stress responses [11, 17, 18] and cytotoxicity [19, 20], have been applied to 55 

evaluate effects in drinking water. While some of the assays utilized in the cited studies are not 56 

currently high-throughput (e.g. run in 96 or 384 well plate), they all have the potential to be high-57 

throughput (e.g. Ames plate-incorporation test using agar plates versus the Ames fluctuation test in 58 

384 well plates).  59 

The effect in a bioassay is often expressed as a bioanalytical equivalent concentration (BEQbio), 60 

which relates the effect of a sample to the concentration of a reference compound that would elicit 61 

the same response as the mixture of chemicals in the tested water sample. For example, estrogenic 62 

activity is often expressed as an estradiol equivalent concentration (EEQ).  63 

 64 
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Estrogenic activity has been widely studied in treated drinking water using a range of in vitro assays 65 

[11-14, 21-25], with an overview of reported activity provided in Figure 2. Many studies also 66 

measure estrogenic activity in source water and compare BEQbio before and after treatment, with 39 67 

to 99% removal of estrogenic activity reported [12, 13, 23-25], which indicates the removal or 68 

degradation of causative compounds. In many cases, estrogenic activity was below the assay 69 

detection limit after treatment. While less studied, other types of hormonal activity, such as 70 

activation of the androgen receptor (AR), progesterone receptor (PR), glucocorticoid receptor (GR) 71 

and thyroid receptor (TR), have not been detected in drinking water [1, 11, 12, 26-28], with the 72 

exception of low androgenic activity in one drinking water sample from the Netherlands [29].  73 

 74 

Reactive toxicity, specifically genotoxicity [16, 18, 19] and mutagenicity [15, 25, 30], is also 75 

commonly studied in drinking water. The majority of studies typically showed an increase in 76 

reactive toxicity after water treatment with disinfectants [15, 16, 18, 25, 30], which is attributed to 77 

the formation of DBPs. In contrast, while some source water samples induced a response in the 78 

micronucleus test for genotoxicity and the Ames fluctuation test for mutagenicity, Shi et al. [12] 79 

found that none of the corresponding treated water samples had an effect after conventional 80 

treatment (coagulation, sedimentation and sand filtration) with chlorination. The effect in the source 81 

water was attributed to the presence of micropollutants, such as polycyclic aromatic hydrocarbons 82 

and polychlorinated biphenyls, as mutagenicity in the source water was only observed after 83 

metabolic activation using rat liver S9.  84 

 85 

While most studies focus on surface water as a source of drinking water, several studies have 86 

applied in vitro assays to assess reactive toxicity of drinking water from groundwater sources [20, 87 

30, 31]. In all studies, there was negligible toxicity in treated water, with Pellacani et al. [20] 88 

observing a decrease in genotoxicity and cytotoxicity after treatment despite disinfection being the 89 

only form of treatment. The negligible toxicity after treatment was attributed to the low 90 

concentrations of DBP precursor natural organic matter in groundwater.    91 

 92 

As all active chemicals will induce a response in a bioassay, it is difficult to distinguish between the 93 

effect of micropollutants, TPs and DBPs in the assay. In an attempt to differentiate the contribution 94 

of micropollutants and DBPs to the oxidative stress response in samples from drinking water 95 

distribution systems, Hebert et al. [17] compared BEQbio before and after treatment (Equation 1) 96 

and found that DBPs could contribute up to 58% of the oxidative stress response. A limitation of 97 

this approach is that it does not account for removal of micropollutants during treatment and thus 98 

may potentially underestimate the contribution from DBPs.  99 
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 100 

BEQbio,   DBP=	BEQbio,   after treament-	BEQbio,   before treatment 

(1) 101 

 102 

3. Which chemicals are driving the observed effects in drinking water? 103 

Several studies have applied both bioanalysis and chemical analysis to assess drinking water quality 104 

[12, 17, 30] and iceberg modelling can be used to determine the contribution of detected chemicals 105 

to the observed effect [32]. In iceberg modelling BEQbio is compared to bioanalytical equivalent 106 

concentrations from chemical analysis (BEQchem), which is calculated using the detected chemical 107 

concentration and the relative effect potency (REPi) of the detected chemical to the assay reference 108 

compound (Figure 3). Comparison of BEQbio and BEQchem can reveal if a certain chemical or group 109 

of chemicals can explain the majority of the effect or whether the effect is predominately triggered 110 

by unknown chemicals. Iceberg modelling has been applied to both source water and treated 111 

drinking water recently, with natural and synthetic hormones found to explain the majority of 112 

observed estrogenic activity [12, 13, 23]. In contrast, the detected chemicals could only explain 113 

between 0.2 to 6.5% of the dioxide-like response in the EROD assay in source water [12]. This is in 114 

line with previous observation in surface water [33]. A similar approach is the TIC-Tox metric, 115 

which aims to determine the forcing agents in disinfected water [34]. Using semi-quantitative total 116 

ion current (TIC) data from Jeong et al. [19] and cytotoxicity data (Tox) from Wagner and Plewa 117 

[35], haloacetonitriles and haloacetamides were found to be the main drivers of toxicity in drinking 118 

water extracts [34]. 119 

 120 

The effect of the individual detected chemicals is required for iceberg modelling in order to 121 

calculate REPi. Recently, the effect of conventional and emerging DBPs have been fingerprinted in 122 

bioassays commonly used for water quality monitoring [e.g. 6, 35-39]. While technically in vivo, 123 

early life-stage whole organism assays, such as the fish embryo toxicity (FET) assay, can also be 124 

run in high-throughput mode and are considered legally as in vitro, with a recent study 125 

fingerprinting the effects of individual DBPs in the FET assay [40]. In addition, the US EPA 126 

ToxCast database (https://actor.epa.gov/dashboard/) contains effect data for over 9000 chemicals, 127 

including many DBPs and other micropollutants detected in drinking water. It has already been 128 

utilized for iceberg modelling in surface water and wastewater [33, 41]. 129 

 130 

4. Sample pretreatment for bioanalysis 131 

As micropollutants are typically present in drinking water at low concentrations, sample enrichment 132 

is required prior to applying in vitro bioassays, with several studies enriching drinking water 133 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

samples 10,000 times or more [12, 19, 31, 42]. The majority of studies apply solid phase extraction 134 

(SPE) [e.g. 12, 13, 14] or XAD resins [e.g. 15, 19, 31] to enrich drinking water. While these 135 

extraction methods will extract non-volatile and semi-volatile chemicals, they are unable to capture 136 

volatile chemicals. This is particularly pertinent for DBPs, as many are volatile and thus typical 137 

enrichment techniques may not capture all of the toxicologically relevant chemicals. To investigate 138 

this further, Stalter et al. [43] applied both SPE and purge and cold-trap methods to capture both 139 

non-volatile and volatile DBPs from disinfected drinking water samples. For the bacterial Microtox 140 

assay the volatile fraction induced a greater effect than the non-volatile fraction in some samples, 141 

while the non-volatile fraction induced the majority of the oxidative stress response in the AREc32 142 

assay. Similarly, using iceberg modelling, Hebert et al. [17] found that volatile DBPs only had a 143 

minor contribution to the observed oxidative stress response in samples collected from French 144 

drinking water distribution systems. As these examples only focus on two assays, further work is 145 

required to understand the contribution of volatile and non-volatile DBPs in other assays commonly 146 

applied to water extracts, such as the Chinese hamster ovary (CHO) cell line [19] and the Ames 147 

assay [15, 25].    148 

 149 

5. Is drinking water quality acceptable? 150 

Many in vitro assays, particularly reporter gene assays, are very sensitive and can detect an effect in 151 

clean water samples with sufficient enrichment, including highly treated drinking water and bottled 152 

water [17]. However, just because a water sample induces a response in a bioassay does not mean 153 

that the water quality is necessarily unacceptable. Consequently, effect-based trigger values (EBT) 154 

can be applied to differentiate between acceptable and unacceptable water quality [44], with 155 

drinking water EBTs developed for a number of in vitro assays [29, 45, 46]. Estrogenic activity in 156 

drinking water was compared to available EBTs for the ER-CALUX, E-Screen and yeast estrogen 157 

screen (YES) assays (Figure 2). In the majority of cases, the reported activity was far below the 158 

corresponding EBT, with the exception of two treated drinking water samples from China [12]. 159 

Further, the oxidative stress response in drinking water from France and Australia was compared to 160 

the proposed oxidative stress EBT from Escher et al. [46] (Figure 4). While there was a margin of 161 

safety of 2 to 16 for treated drinking water from France [17], drinking water sampled in Australia 162 

often exceeded the EBT [18, 26, 47]. EBTs are important tools for interpreting bioassay results, 163 

though further work is required to derive EBTs for more assays used for drinking water quality 164 

monitoring. 165 

 166 

 167 

 168 
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6. Conclusions 169 

In vitro bioassays are a valuable tool to complement to chemical analysis for drinking water quality 170 

monitoring as they are able to integrate the effects from a complex mixture of micropollutants, TPs 171 

and DBPs. While a range of effects, including estrogenic activity, oxidative stress response, reactive 172 

toxicity and cytotoxicity, have been detected in treated drinking water, the effects are generally low 173 

and are mostly below available EBTs. Although volatile DBPs are not captured by common sample 174 

pretreatment processes, iceberg modelling has suggested that volatile DBPs only have a minor 175 

contribution to the oxidative stress response, though this remains to be seen for other biological 176 

endpoints. To better understand the contribution of micropollutants and DBPs to the observed effect 177 

in drinking water a bioassay test battery covering different stages of cellular toxicity pathways is 178 

recommended. Based on the current review, a suitable test battery for drinking water may include 179 

assays indicative of activation of the estrogen receptor, genotoxicity, oxidative stress response and 180 

cytotoxicity. 181 
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Figure 1: Overview of chemicals potentially present in source water and treated drinking water 373 

with the solid arrows indicating the formation of new chemicals after treatment. Comparison of 374 

bioanalytical equivalent concentrations before treatment (BEQbefore treatment) and after treatment 375 

(BEQafter treatment) can shed light on treatment efficiency and disinfection by-product (DBP) 376 

formation.  377 

 378 
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Figure 2: Estradiol equivalent concentrations (EEQ) measured in treated drinking water from 381 

around the Netherlandsa, Chinab,d,e,f, Taiwanc,g, United Statesh, South Africai and Swedenj using 382 

different in vitro bioassays for binding to the estrogen receptor. The solid coloured lines indicate 383 

effect-based trigger values (EBT) from Escher et al. [45], while the dotted red line indicates the ER 384 

CALUX EBT from Brand et al. [29]. No EBT has been developed for the T47D-KBluc or 385 

VM7Luc4E2 assays. 386 
aBrand et al. [29] (2/3 samples above limit of detection (LOD)), bShi et al. [12] (2/7 samples above 387 

LOD), cGou et al. [22] (maximum EEQ shown only), dLv et al. [23] (4/4 sample above LOD), eXiao 388 

et al. [24] (22/36 samples above LOD), fXiao et al. [25] (8/54 samples above LOD), gChou et al. 389 

[21] (average EEQ of 5 samples shown), hConley et al. [13] (3/24 samples above LOD), iVan Zijl et 390 

al. [14] (33/80 samples above LOD), jRosenmai et al. [11] (3/3 samples around LOD) 391 

 392 
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Figure 3: Application of iceberg modelling to drinking water samples. 395 

 396 

 397 
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Figure 4: Oxidative stress response, expressed as toxic units (TU), measured in treated drinking 399 

water in Australiaa,b,c and Franced using the AREc32 and Nrf2-CALUX assays. The solid red line 400 

indicates the EBT for the AREc32 assay from Escher et al. [46]. No EBT is available for the Nrf2-401 

CALUX assay. TU calculated from effect concentration causing an induction ratio of 1.5 (ECIR1.5) 402 

in units of relative enrichment factor (REF).  403 
aEscher et al. [47], bNeale et al. [18], cEscher et al. [26], dHebert et al. [17] 404 
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• Bioassays from varied stages of cellular toxicity pathway applied to drinking water 

• Receptor-mediated effects typically decreased after drinking water treatment 

• Reactive toxicity often increased after disinfection due to the formation of DBPs 

• Iceberg modelling can identify which chemicals are contributing to the effect 

• Effect-based trigger values can be applied to assess if water quality is acceptable  

 


