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Abstract: Invitro assays indicative of different stages of celltteicity pathways have been
applied to both source water and drinking watee frtajority of studies showed a decrease in
receptor-mediated effects after drinking waterttresnt due to the removal of micropollutants,
while reactive toxicity typically increased aftdrlgrination due to the formation of disinfection-by
products. Using both chemical analysis and bioamslyceberg modelling can be applied to
determine which chemicals are contributing to theewved effect, though one limitation is that
typical sample pretreatment for bioanalysis falgapture volatile chemicals. Bioassays are
increasingly sensitive and effects can be detdaotetban samples, thus effect-based trigger values

can be applied to determine whether an effectiimkarg water is acceptable.

Keywords: bioanalysis; drinking water treatment; effectdxhsrigger value; estrogenic activity;

iceberg modelling; reactive toxicity
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1. Introduction

There is increasing concern about the presenceabpollutants, such as pharmaceuticals,
pesticides and industrial compounds, in drinkingemnavith micropollutants detected in both
source water and treated drinking water arounavibréd [1-4]. During water treatment,

disinfection by-product (DBPs) can form from thaggon of disinfectants, such as chlorine,
chloramine and ozone, with organic and inorganigden@aaturally present in source water [5], with
DBPs commonly detected in disinfected drinking wfe 7]. Further, micropollutant
transformation products (TP) can also form durirage~ treatment with disinfectants and during
other advanced oxidation processes [8]. Consequeinthking water can contain a complex
mixture of micropollutants, TPs and DBPs (FigureWile targeted chemical analysis is often
used for monitoring drinking water quality, it islikely to comprehensively capture the diversity
of chemicals potentially present in drinking waespecially as many micropollutants and their TPs
will be present at low nanogram per litre concdrdre. Insteadin vitro bioassays can be applied
complementary to chemical analysis as they carmrjpaoeate the mixture effects of all active
chemicals in a sample without the identificatiorsimigle compounds [9, 10]. They are also risk-
scaled, meaning that more potent chemicals wilehegreater contribution to the mixture effect
than less potent chemicals at similar concentratibmthe current study we review the application
of high-throughputn vitro assays to drinking water, with a focus on stuthes have been

published in the last two years. In addition, weoaliscuss the application of iceberg modelling for

drinking water, sample preparation considerationstae need for effect-based trigger values.

2. Application of in vitro bioassaysto drinking water

In vitro bioassays indicative of different stages of calubxicity pathways, including induction of
xenobiotic metabolism [11, 12], hormone receptodiaied effects [1, 13, 14], reactive modes of
action [15, 16], adaptive stress responses [1118]7and cytotoxicity [19, 20], have been applied t
evaluate effects in drinking water. While someha aissays utilized in the cited studies are not
currently high-throughput (e.g. run in 96 or 384Ivwéate), they all have the potential to be high-
throughput (e.g. Ames plate-incorporation testgisigar plates versus the Ames fluctuation test in
384 well plates).

The effect in a bioassay is often expressed asamhlytical equivalent concentration (BgR

which relates the effect of a sample to the comaéinh of a reference compound that would elicit
the same response as the mixture of chemical®itetited water sample. For example, estrogenic

activity is often expressed as an estradiol eqaivatoncentration (EEQ).
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Estrogenic activity has been widely studied intedadrinking water using a rangeiafvitro assays
[11-14, 21-25], with an overview of reported adivprovided in Figure 2. Many studies also
measure estrogenic activity in source water andpeoenBEQ;, before and after treatment, with 39
to 99% removal of estrogenic activity reported [12, 23-25], which indicates the removal or
degradation of causative compounds. In many casé®sgenic activity was below the assay
detection limit after treatment. While less studliether types of hormonal activity, such as
activation of the androgen receptor (AR), progestereceptor (PR), glucocorticoid receptor (GR)
and thyroid receptor (TR), have not been detectettinking water [1, 11, 12, 26-28], with the

exception of low androgenic activity in one dringiwater sample from the Netherlands [29].

Reactive toxicity, specifically genotoxicity [168,119] and mutagenicity [15, 25, 30], is also
commonly studied in drinking water. The majoritystfidies typically showed an increase in
reactive toxicity after water treatment with digofants [15, 16, 18, 25, 30], which is attributed t
the formation of DBPs. In contrast, while some seuwwvater samples induced a response in the
micronucleus test for genotoxicity and the Amestiliation test for mutagenicity, Shi et al. [12]
found that none of the corresponding treated wsdBrples had an effect after conventional
treatment (coagulation, sedimentation and sanatiin) with chlorination. The effect in the source
water was attributed to the presence of micropatitg, such as polycyclic aromatic hydrocarbons
and polychlorinated biphenyls, as mutagenicityhm source water was only observed after

metabolic activation using rat liver S9.

While most studies focus on surface water as aceanfrdrinking water, several studies have
appliedin vitro assays to assess reactive toxicity of drinkingewftom groundwater sources [20,
30, 31]. In all studies, there was negligible tityiin treated water, with Pellacani et al. [20]
observing a decrease in genotoxicity and cytotoxaiiter treatment despite disinfection being the
only form of treatment. The negligible toxicity efttreatment was attributed to the low
concentrations of DBP precursor natural organidenat groundwater.

As all active chemicals will induce a response aassay, it is difficult to distinguish betwedret
effect of micropollutants, TPs and DBPs in the gsBaan attempt to differentiate the contribution
of micropollutants and DBPs to the oxidative stresponse in samples from drinking water
distribution systems, Hebert et al. [17] comparé&d g, before and after treatment (Equation 1)
and found that DBPs could contribute up to 58%hefdxidative stress response. A limitation of
this approach is that it does not account for regtho’ micropollutants during treatment and thus
may potentially underestimate the contribution froBPs.

4



100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

BEQbio, DBP: BEQbio, after treameﬁtBEQbio, before treatment

1)

3. Which chemicals aredriving the observed effectsin drinking water ?

Several studies have applied both bioanalysis hethical analysis to assess drinking water quality
[12, 17, 30] and iceberg modelling can be useceterthine the contribution of detected chemicals
to the observed effect [32]. In iceberg modelling@;, is compared to bioanalytical equivalent
concentrations from chemical analysis (BE&), which is calculated using the detected chemical
concentration and the relative effect potency (RBFPthe detected chemical to the assay reference
compound (Figure 3). Comparison of Bfand BEQremcan reveal if a certain chemical or group
of chemicals can explain the majority of the effectvhether the effect is predominately triggered
by unknown chemicals. Iceberg modelling has be@tiegpto both source water and treated
drinking water recently, with natural and synthétarmones found to explain the majority of
observed estrogenic activity [12, 13, 23]. In casty the detected chemicals could only explain
between 0.2 to 6.5% of the dioxide-like responsth&nEROD assay in source water [12]. This is in
line with previous observation in surface water][#8similar approach is the TIC-Tox metric,
which aims to determine the forcing agents in diesited water [34]. Using semi-quantitatieal

ion current (TIC) data from Jeong et al. [19] agtbtoxicity data (Tox) from Wagner and Plewa
[35], haloacetonitriles and haloacetamides weradado be the main drivers of toxicity in drinking

water extracts [34].

The effect of the individual detected chemicaleerguired for iceberg modelling in order to
calculate REP Recently, the effect of conventional and emerddgiPs have been fingerprinted in
bioassays commonly used for water quality monitpfeng. 6, 35-39]. While technicalin vivo,
early life-stage whole organism assays, such asihhembryo toxicity (FET) assay, can also be
run in high-throughput mode and are consideredlliegain vitro, with a recent study
fingerprinting the effects of individual DBPs ingtlfET assay [40]. In addition, the US EPA
ToxCast database (https://actor.epa.gov/dashbaardiqins effect data for over 9000 chemicals,
including many DBPs and other micropollutants deetgen drinking water. It has already been
utilized for iceberg modelling in surface water amalstewater [33, 41].

4. Sample pretreatment for bioanalysis
As micropollutants are typically present in dringiwater at low concentrations, sample enrichment

is required prior to applyinm vitro bioassays, with several studies enriching drinkiager
5
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samples 10,000 times or more [12, 19, 31, 42].rbkprity of studies apply solid phase extraction
(SPE) [e.g. 12, 13, 14] or XAD resins [e.g. 15, 39} to enrich drinking water. While these
extraction methods will extract non-volatile andns@olatile chemicals, they are unable to capture
volatile chemicals. This is particularly pertindot DBPs, as many are volatile and thus typical
enrichment techniques may not capture all of thectdogically relevant chemicals. To investigate
this further, Stalter et al. [43] applied both S&tel purge and cold-trap methods to capture both
non-volatile and volatile DBPs from disinfectedrking water samples. For the bacterial Microtox
assay the volatile fraction induced a greater etfean the non-volatile fraction in some samples,
while the non-volatile fraction induced the majpmif the oxidative stress response in the AREc32
assay. Similarly, using iceberg modelling, Hebé#le[17] found that volatile DBPs only had a
minor contribution to the observed oxidative stnesgponse in samples collected from French
drinking water distribution systems. As these exiaspnly focus on two assays, further work is
required to understand the contribution of voladihel non-volatile DBPs in other assays commonly
applied to water extracts, such as the Chineseteamsary (CHO) cell line [19] and the Ames
assay [15, 25].

5. Isdrinking water quality acceptable?

Many in vitro assays, particularly reporter gene assays, aresemsitive and can detect an effect in
clean water samples with sufficient enrichmentludmg highly treated drinking water and bottled
water [17]. However, just because a water sampledes a response in a bioassay does not mean
that the water quality is necessarily unacceptabbmsequently, effect-based trigger values (EBT)
can be applied to differentiate between acceptatdeunacceptable water quality [44], with
drinking water EBTs developed for a numberrofitro assays [29, 45, 46]. Estrogenic activity in
drinking water was compared to available EBTs lier ER-CALUX, E-Screen and yeast estrogen
screen (YES) assays (Figure 2). In the majoritgasies, the reported activity was far below the
corresponding EBT, with the exception of two treladeinking water samples from China [12].
Further, the oxidative stress response in drinkmter from France and Australia was compared to
the proposed oxidative stress EBT from Escher.¢#8] (Figure 4). While there was a margin of
safety of 2 to 16 for treated drinking water fromace [17], drinking water sampled in Australia
often exceeded the EBT [18, 26, 47]. EBTs are ingmrtools for interpreting bioassay results,
though further work is required to derive EBTs fileore assays used for drinking water quality

monitoring.
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6. Conclusions

In vitro bioassays are a valuable tool to complement toada analysis for drinking water quality
monitoring as they are able to integrate the effécim a complex mixture of micropollutants, TPs
and DBPs. While a range of effects, including egtroc activity, oxidative stress response, reactive
toxicity and cytotoxicity, have been detected eated drinking water, the effects are generally low
and are mostly below available EBTs. Although vit#aDBPs are not captured by common sample
pretreatment processes, iceberg modelling has steghthat volatile DBPs only have a minor
contribution to the oxidative stress response, ghahis remains to be seen for other biological
endpoints. To better understand the contributiomiafopollutants and DBPs to the observed effect
in drinking water a bioassay test battery covediffigrent stages of cellular toxicity pathways is
recommended. Based on the current review, a seaitabt battery for drinking water may include
assays indicative of activation of the estrogerpéar, genotoxicity, oxidative stress response and

cytotoxicity.
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373 Figure1l: Overview of chemicals potentially present in soueger and treated drinking water
374 with the solid arrows indicating the formation @ chemicals after treatment. Comparison of
375 bioanalytical equivalent concentrations beforettreat (BEQetore reatmeptand after treatment
376  (BEQuater treatment Can shed light on treatment efficiency and desttibn by-product (DBP)

377 formation.
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Figure 2: Estradiol equivalent concentrations (EEQ) measurdreated drinking water from
around the Netherlan§<Chin& %" Taiwarf'9, United States South Africhand Swedérusing
differentin vitro bioassays for binding to the estrogen receptor.sbiid coloured lines indicate
effect-based trigger values (EBT) from Escher ef4dl], while the dotted red line indicates the ER
CALUX EBT from Brand et al. [29]. No EBT has beesvéloped for the T47D-KBluc or
VM7Luc4E2 assays.

Brand et al. [29] (2/3 samples above limit of détet(LOD)), "Shi et al. [12] (2/7 samples above
LOD), Gou et al. [22] (maximum EEQ shown onlSy et al. [23] (4/4 sample above LOD¥iao
et al. [24] (22/36 samples above LODjiao et al. [25] (8/54 samples above LOBGhou et al.

[21] (average EEQ of 5 samples showWi@onley et al. [13] (3/24 samples above LO®pN Zijl et
al. [14] (33/80 samples above LOPRosenmai et al. [11] (3/3 samples around LOD)
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Figure 3: Application of iceberg modelling to drinking wateamples.
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Figure 4: Oxidative stress response, expressed as toxie (irt)), measured in treated drinking
water in Australi&”°and Francbusing the AREc32 and Nrf2-CALUX assays. The sudid line
indicates the EBT for the AREc32 assay from Esehat. [46]. No EBT is available for the Nrf2-
CALUX assay. TU calculated from effect concentnatcausing an induction ratio of 1.5 (RG)

in units of relative enrichment factor (REF).
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Highlights

Bioassays from varied stages of cellular toxicity pathway applied to drinking water
Receptor-mediated effects typically decreased after drinking water treatment
Reactive toxicity often increased after disinfection due to the formation of DBPs
Iceberg modelling can identify which chemicals are contributing to the effect

Effect-based trigger values can be applied to assess if water quality is acceptable



