1 Das Projekt SAFIRA und der Einsatz reaktiver Zonen zur in situ-Grundwassersanierung

H. WEß

UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Projektbereich Industrie- und Börgbaufolgelandschaften, Permoserstraße 15, 04318 Leipzig

G. TEUTSCH

Eberhard-Karls-Universität, Geologisches Institut, Sigmundstraße 10, 72076 Tübingen

Das Projekt SAFIRA

Im Rahmen des Vorprojektes wurde die grundsätzliche technische Machbarkeit der Projektidee auf der Grundlage einer detaillierten Untersuchung der hydraulisch-hydrochemisch-mikrobiologischen Standortbedingungen und daraus abgeleiteter Laborexperimente nachgewiesen. Es wurden in diesem Zusammenhang mehrere Technologien identifiziert, die geeignet erscheinen, in einer in situ-Reaktionszone einsetzbar zu sein und
die das Potential besitzen, die am Standort vorhandenen Grundwasser-Schadstoffe entweder vollständig abzubauen oder zumindest sehr wesentlich abzureinigen.

Internationaler Stand von Forschung und Technik

**In situ**-Reaktionswände sind bisher vor allem in zwei Bauarten zur Anwendung gekommen. Es handelt sich dabei um die permeable Reaktionswand und das "Funnel-and-Gate"-System.

Die sogenannte **Permeable Reaktionswand** ist dadurch gekennzeichnet, daß praktisch über die gesamte Länge der Wand eine reaktive Zone (Reaktor) ausgebildet ist. Eine solche _**in situ**_-Reaktionszone kann z.B. durch Erstellen und Wiederverfüllen eines Grabens oder durch Einbringen von Fremdmaterial zwischen Spundwänden, durch Bohrfähle etc. errichtet werden.

Aufgrund der meist nicht unerheblichen Längen, die zur Abstomsanierung ganzer Standorte notwendig sind (oft >100 m), muß aus wirtschaftlichen Gründen bei der heute verfügbaren Tieflautechnik davon ausgegangen werden, daß die Füllung der reaktiven Zone nicht zu einem späteren Zeitpunkt ausgetauscht werden kann. Falls eine Regenerierung der reaktiven Zone während der veranschlagten Sanierungszeit erfordernlich erscheint, so müssen entsprechende Einbauten (z.B. Lanzen, Brunnen, Gräben etc.) vorgesehen werden. Es besteht grundsätzlich die Möglichkeit, mehrere reactive Zonen (Reaktortypen) in Reihe zu schalten und so entweder eine gewünschte Abfolge des Schadstoffabbaus bzw. der -immobilisierung zu erreichen oder aber mehrere Schadstoffgruppen gemeinsam zu behandeln. Aufgrund der nur einmaligen Reaktorfüllung muß bei der Permeablen Reaktionswand vor allem die Langzeitfunktion des Systems sichergestellt werden. Eine Alternative zu den permeablen Reaktionswänden ist das Prinzip des sogenannten **Funnel-and-Gate-Systems** (vgl. Abb. 1). Es beruht darauf, daß nur ein kleiner Teil der _**in situ**_-Wand als permeable reactive Zone (gate) verwendet wird, während der überwiegende Teil der Wand als geringdurchlässiger sogenannter Trichter (funnel), z.B. in Form von Spund- oder Schleiferwänden, ausgebaut wird. Ein wesentlicher Vorteil des Funnel-and-Gate-Prinzips besteht darin, daß grundsätzlich die Möglichkeit gegeben ist, die Reaktorfüllung auszutauschen. Jedoch ist im allgemeinen davon auszugehen, daß die hierfür erforderliche Reaktorkonstruktion, vor allem für Tiefen größer als 10 m, aufgrund der einzusetzenden Spezial-Tieflautechnik einen wesentlichen Kostenfaktor darstellt.
Das Funnel-and-Gate-Prinzip hat vor allem dort Vorteile, wo entweder der Reaktor in regelmäßigen Zeitabständen auszutauschen ist (z.B. bei Sorptionsreaktoren) oder die Reaktorfüllung relativ teuer ist und nur ein kleines Reaktorvolumen benötigt wird (z.B. schnelle Katalysereaktoren). Darüber hinaus ermöglicht es in stark heterogenen Aquifersystemen eine effizientere Nutzung der Reaktorfüllung.

Abb. 1: *In situ*-Reaktionswand; Prinzipskizzen

Neben den Permeablen Reaktionswänden und den Funnel-and-Gate-Systemen werden auch andere Bauarten diskutiert. Beispielsweise können Bohrpfähle, Drainagegräben, Horizontalbohrungen etc. als Behältnisse für reaktive Zonen dienen [2]. Das erste Funnel-and-Gate-System wurde vor 7 Jahren im Testfeld der University of Waterloo auf dem

Zahlreiche andere Methoden befinden sich in der Phase der Entwicklung, d.h. sie wurden bisher entweder im Pilotmaßstab oder gar nur im Labormaßstab erprobt [8]. Darüber hinaus existieren aus der klassischen Wasserbehandlung bekannte Methoden z.B. der Adsorption an Kohlen, Torf etc. Diese bekannten Techniken müssen allerdings für einen möglichen Langzeiteinsatz unter in situ-Bedingungen teilweise oder ganz überarbeitet und angepaßt werden.

auch den hohen Stand der Erkundung in diesen Ländern zurückzuführen. Es ist allerdings mehr als wahrscheinlich, daß vor allem in Osteuropa und außereuropäischen Schwellenländern vergleichbare Standorte existieren, die großflächig das Grundwasser kontaminieren.

Eine Übersicht über die in Nordamerika installierten und die in Europa geplanten oder in der Erprobung befindlichen in situ-Reaktionswände gibt die nachstehende Tabelle.

Reaktive Wände - Installiert

<table>
<thead>
<tr>
<th>Standort</th>
<th>Kontamination</th>
<th>Reaktor</th>
<th>Status</th>
<th>Beginn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borden Air Force Base, Canada</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>Pilotmaßstab</td>
<td>06/91</td>
</tr>
<tr>
<td>Industriestandort, New York, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>Pilotmaßstab</td>
<td>05/95</td>
</tr>
<tr>
<td>Lowry Air Force Base, Denver, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>Pilotmaßstab</td>
<td>12/95</td>
</tr>
<tr>
<td>U.S. Naval Air St., Moffett Field, CA, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>Pilotmaßstab</td>
<td>04/96</td>
</tr>
<tr>
<td>Somersworth Sanitary Landfill, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>Pilotmaßstab</td>
<td>11/96</td>
</tr>
<tr>
<td>U.S. Naval Air Station Alameda, USA</td>
<td>LCKW, BTEX</td>
<td>Fe(^{0}), ORC Funnel-and-Gate</td>
<td>Pilotmaßstab</td>
<td>12/96</td>
</tr>
<tr>
<td>U.S. DOE Savannah River Site, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) GeoSiphon</td>
<td>Pilotmaßstab</td>
<td>07/97</td>
</tr>
<tr>
<td>AFCEE Demonstration, Florida, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Schmalwand</td>
<td>Pilotmaßstab</td>
<td>11/97</td>
</tr>
<tr>
<td>U.S. DOE ANL, Illinois, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Bodenmixing</td>
<td>Pilotmaßstab</td>
<td>11/97</td>
</tr>
<tr>
<td>U.S. AFB Area 5 Dover, DE, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>Pilotmaßstab</td>
<td>01/98</td>
</tr>
<tr>
<td>NASA Demonstration, Florida, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Bodenmixing</td>
<td>Pilotmaßstab</td>
<td>02/98</td>
</tr>
<tr>
<td>Industriestandort, Edenkoben, BRD</td>
<td>LCKW</td>
<td>Fe(^{0})-Funnel-and-Gate</td>
<td>Pilotmaßstab</td>
<td>09/98</td>
</tr>
<tr>
<td>Industriestandort, Rheine, BRD</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>Pilotmaßstab</td>
<td>06/98</td>
</tr>
<tr>
<td>ANG Demonstration, Cape Cod, MS, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Hydrofracturating</td>
<td>Pilotmaßstab</td>
<td>07/98</td>
</tr>
<tr>
<td>U.S. ACE, Maxwell, AL, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Hydrofracturating</td>
<td>Pilotmaßstab</td>
<td>07/98</td>
</tr>
<tr>
<td>Industriestandort, Sunnyvale, CA, USA</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>02/95</td>
</tr>
<tr>
<td>Nickel Rim, Sudbury, Canada,</td>
<td>Metalle</td>
<td>Durchströmte Kompostwand</td>
<td>"full-scale"</td>
<td>08/95</td>
</tr>
<tr>
<td>Industriestandort, Fort Bragg, CA, USA</td>
<td>MKW</td>
<td>Aktivkohle Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>09/95</td>
</tr>
<tr>
<td>Industriestandort, Sunnyvale, CA, USA</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>09/95</td>
</tr>
<tr>
<td>Industriestandort, Belfast, N.I.R.L</td>
<td>LCKW</td>
<td>Fe(^{0})-Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>12/95</td>
</tr>
<tr>
<td>Industriestandort, Coffeyville, KA, USA</td>
<td>LCKW</td>
<td>Fe(^{0})-Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>01/96</td>
</tr>
<tr>
<td>USCG Facility, Elisas. City, NC, USA</td>
<td>LCKW, Cr(VI)</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>06/96</td>
</tr>
<tr>
<td>Government Facility, Lakewood, CO, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>10/96</td>
</tr>
<tr>
<td>Fry Canyon Site, Utah, USA</td>
<td>U</td>
<td>Tunnel-and-Gate: Fe(^{0}), AFO, PO(_{4})</td>
<td>"full-scale"</td>
<td>12/96</td>
</tr>
<tr>
<td>Industriestandort, South Carolina, USA</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>10/97</td>
</tr>
<tr>
<td>Industriestandort, Colorado, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>11/97</td>
</tr>
<tr>
<td>Industriestandort, New York, USA</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>12/97</td>
</tr>
<tr>
<td>Y-12 Site, OAK Ridge NL, TN, USA</td>
<td>U, Tc, HNO(_{3})</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>12/97</td>
</tr>
<tr>
<td>Industriestandort, Oregon, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>03/98</td>
</tr>
<tr>
<td>Superfund Site, New Jersey, USA</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>03/98</td>
</tr>
<tr>
<td>U.S. DOE Standort, Kansas City, USA</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>04/98</td>
</tr>
<tr>
<td>U.S. DOE Standort, Rock Flats, CO, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Gate und Drainage</td>
<td>"full-scale"</td>
<td>07/98</td>
</tr>
<tr>
<td>Industriestandort, New Jersey, USA</td>
<td>LCKW</td>
<td>Durchströmte Fe(^{0})-Wand</td>
<td>"full-scale"</td>
<td>08/98</td>
</tr>
<tr>
<td>Industriestandort, Vermont, USA</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>08/98</td>
</tr>
<tr>
<td>Industriestandort, Tübingen, BRD</td>
<td>LCKW</td>
<td>Fe(^{0}) Funnel-and-Gate</td>
<td>"full-scale"</td>
<td>11/98</td>
</tr>
</tbody>
</table>
Wie bereits erwähnt, fällt auf, daß in Nordamerika bisher praktisch ausschließlich die Fe⁰-
Technologie für LCKW-Schäden zum Einsatz kam, während in Europa daneben auch
Aktivkohle-Sortierungsanlagen für PAK-Schäden im Gespräch sind.

Tiefbautechnische Aspekte

Die Herstellung von Dichthewänden bis 30 m Tiefe als Teil von Funnel-and-Gate-Systemen
kann als Stand der Technik bezeichnet werden. Dabei genügen im Vergleich mit
Dichthewänden für Komplettumschließungen geringere Anforderungen an die Dichtigkeit
des „Funnels“. Ein Durchlässigkeitskontrast von drei bis vier Größenordnungen wird i.d.R.
für eine effektive Umlenkung der Grundwasserströmung zu den „Gates“ völlig ausreichen.

Eine kostengünstige Herstellung vollflächig durchströmter Reaktionswände erscheint
außer bei sehr kleinen Anlagen derzeit nur für geringmächtige und geringdurchlässige
Aquifere möglich. Dann kann mit einer offenen Wasserhaltung operiert und somit auf teure
Spund- und Schlitzwände verzichtet werden. Hier ist in naher Zukunft durch den Einsatz
umgebauter Drainagemaschinen, die bis in 10 m Tiefe reichen, eine erhebliche
Kosteneinbuße möglich. Dabei bleibt allerdings die Frage offen, wie das reaktive
Material in situ so verteilt werden kann, daß eine möglichst gleichmäßige Ausnutzung
erfolgt.

Bei der Herstellung von Funnel-and-Gate-Bauwerken geht es insbesondere um die
Herstellung des Gate-Bauwerks, in dem das reaktive Material unterzubringen ist. Für
mächtige Aquifere (>20 m), sind angepaßte, d.h. kostengünstige Bauverfahren gefragt.
Von besonderer Bedeutung ist dabei die Sicherstellung einer ausreichenden Durch-
lässigkeit der Gate-Bauwerke einschließlich der reaktiven Füllung. Dabei ist zu beachten,
daß für manche reaktive Medien ein periodischer Austausch bzw. eine regelmäßige
Wartung, z.B. in Form einer Rücksprüfmöglichkeit, erforderlich ist.

Die Realisierung der SAFIRA-Pilotanlage wird in der Weise erfolgen, daß die ver-
schiedenen Reaktoren vertikal durchströmt in Senkschächten eingebaut werden. Somit
lassen sich einerseits für diejenigen Verfahren, die längere Verweilzeiten des Grund-
wassers voraussetzen, die erforderlichen Durchströmungslängen realisieren, andererseits
für die „schnelleren“ Verfahren abstromseitig Aquifer-Säulen nachschalten, um die
Auswirkungen der Reaktionen auf die Grundwasserleiter zu untersuchen. Vor allem bei
heterogenen Aquiferen und/oder geschichteten Kontaminationen stellt auch für die
Implementierung die vertikal durchströmte Reaktorsäule eine Alternative zum
„klassischen“ gate-Prinzip dar (vgl. Abb. 2).
Vertikal durchströmter Schacht zur Grundwassersanierung

Abb. 2: Vertikal durchströmte Reaktoren; Prinzipskizze
Literatur

2. Statusbericht

Modellstandort, Mobile Testeinheit, Pilotanlage

Holger Weiß¹), Birgit Daus¹), Georg Teutsch²)

¹) UFZ-Umweltforschungszentrum Leipzig-Halle GmbH
PB Industrie- und Bergbaufolgelandschaften
Permoserstraße 15, 04318 Leipzig

²) Eberhard-Karls-Universität
Geologisches Institut
Sigwartstraße 10, 72076 Tübingen

ISSN 0948-9452