

UFZ-Bericht

Nr. 36/2000

Untersuchungen zum Abbau von β-HCH in stark kontaminierten Böden in der Muldeaue des Raumes Dessau

Abschlussbericht zu einem Förderprojekt des Ministeriums für Raumordnung und Umwelt Sachsen-Anhalt

Eva-Maria Klimanek (Projektleiterin)

UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Sektion Bodenforschung

Untersuchungen zum Abbau von β-HCH in stark kontaminierten Böden der Muldeaue des Raumes Dessau

Förderprojekt des Ministeriums für Raumordnung und Umwelt Sachsen-Anhalt

Förderkennzeichen: 76213/03/95

Abschlußbericht

Projektleiter: Dr. habil. Eva-Maria Klimanek

Bearbeiter: Dr. habil. Eva-Maria Klimanek

Dr. Elke Schulz

Judit Lehmann

Forschungsvorhaben des Umweltforschungszentrums Leipzig-Halle GmbH

Sektion Bodenforschung

Theodor-Lieser-Straße 4, D-06120 Halle/Saale

März 1999

Danksagung:

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Ministeriums für Raumordnung und Umwelt des Landes Sachsen-Anhalt gefördert.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Inhalt		Seite
1.	Einleitung	4
2.	Kenntnisstand	5
3.	Aufgabenstellung	11
4.	Planung des Vorhabens	11
5.	Freilandversuche	12
5.1	Methoden	12
5.2	Auswahl und Beschreibung der Versuchsflächen	15
5.3	Anlage der Freilandversuche	27
5.4	Ergebnisse	30
5.4.1	Einfluß der Nährstoffe auf die biologische Aktivität des Bodens	30
5.4.2	Einfluß der Nährstoffversorgung auf den $\beta\text{-HCH-Gehalt}$ des Bodens	41
6.	Laborversuche	49
6.1	Material und Methoden	49
6.2	Ergebnisse	49
7.	Gefäßversuch zur Pflanzenaufnahme von β -HCH	53
7.1	Material	53
7.2	Methoden	54
7.2.1	Anzucht und Ernte der Pflanzen	54
7.2.2	Aufbereitung des Pflanzenmaterials	55
7.2.3	Chemische Analyse des β-HCH	55
7.3	Ergebnisse	56
7.3.1	Trockenmassebildung der Wildpflanzen im Gefäßversuch zum	56
	Transfer von $\beta\text{-HCH}$ aus dem Boden in die pflanzliche Biomasse	
7.3.2	Einfluß des β -HCH-Kontaminationsgrades des Bodens auf die	59
	Aufnahme von β -HCH durch Wildpflanzen	
7.3.3	Verlauf der β-HCH-Aufnahme im Versuchszeitraum	61
7.3.4	Verteilung von β-HCH in verschiedenen Pflanzenteilen	65
7.3.5	Transferfaktoren für β-HCH	70
7.3.6	β-HCH-Gehalte des Bodens während des Versuchszeitraumes	71
7.3.7	β-HCH-Gehalte verschiedener Wildpflanzen des Standortes Kleutsch	73
8.	Zusammenfassung und Schlußfolgerungen	75

9. Literatur 79

- 10. Anlagen
 - 1. Ergebnisse zur mikrobiellen Aktivität des Bodens
 - 2. Ergebnisse der β -HCH-Bestimmungen im Boden
 - 3. Ergebnisse der Pflanzenuntersuchungen auf $\,\beta\text{-HCH}\,$

Abkürzungen, Maßeinheiten, Symbole

 α , β , δ , γ , η , θ -HCH

Isomere des Hexachlorcyclohexans

BCF

Biokonzentrationsfaktor

BIODEKON

Markenname eines Nährstoffpräparates der

Fa. Analytik Labor Dr. Kludas, Dessau

 C_{org}

organischer Kohlenstoff

 C_{mic}

Kohlenstoff der Mikroorganismen

D

Dipolmoment

DDT

Dichlordiphenyltrichlorethan

DMSO

Dimethylsulfoxid

HC

Henry-Konstante

HCB

Hexachlorbenzol

Kat A, HL

Kategorie A der Hollandliste

Kat B, HL

Kategorie B der Hollandliste

Kat C, HL

Kategorie C der Hollandliste

KBE

Kolonienbildende Einheit

 K_{ow}

n-Octanol/Wasser-Verteilungskoeffizient

 N_{an}

mineralischer Stickstoff (Nitrat u. Ammonium)

 N_t

Gesamtkohlenstoff

Pa

Pascal

PCB

polychlorierte Biphenyle

p-NP

para-Nitrophenol

ppm

part per millions

Salig.

Saligenin

TPF

Triphenylformazan

TS

Trockensubstanz

 Wk_{max}

maximale Wasserkapazität

1. Einleitung

Große Gebiete der Muldeaue sind im Bereich Bitterfeld/Dessau flächenweise stark mit β -HCH, einem bei der früheren Lindan-Herstellung anfallenden Isomeren des Hexachlor-cyclohexans, kontaminiert. Die anfallenden, nicht pestizid wirksamen α -, β -, δ -Isomere gelangten über die Abwässer in die Mulde. Durch Aufschwemmung von Sedimenten der Mulde bei Überflutungsereignissen kam es zu großflächigen Kontaminationen in der Aue.

Untersuchungen von Böden landwirtschaftlich genutzter Gebiete der Aue, sowie Pflanzen der Futtermittelnutzung als auch Nahrungsmittel führten zur Sperrung stark belasteter Gebiete für die weitere landwirtschaftliche Nutzung als Weidefläche bzw. zur Futtermittelproduktion.

Da ein Teil der stark kontaminierten Flächen im Biosphärenreservat "Mittlere Elbe" liegt, ergeben sich nach der Ausschaltung der Flächen als Weideland Konsequenzen für die Landschaftsgestaltung. Nicht bewirtschaftete Grünlandflächen werden schnell durch die einsetzende natürliche Sukzession von Pflanzenarten verändert, was oft nicht der Erhaltung des Landschaftsbildes entspricht. Pflegemaßnahmen, wie Mähen, erfordern die Verwertung des kontaminierten Mähgutes. Mulchen führt bei zu hoher Pflanzenmasse und Schwadenlänge zu einer starken Beeinträchtigung des Pflanzenwachstums unter der Pflanzenauflage und damit möglicherweise zu einem Artenverlust.

Von den zur Dekontamination von Böden einsetzbaren Verfahren ist in einer Kulturlandschaft, in der das Landschaftsbild mit seiner Vegetation erhalten werden soll, nur eine in-situ-Sanierung möglich, die durch gezielte Maßnahmen zum Abbau oder Pflanzenaufnahme der Verbindungen führt. Es resultiert daraus die Frage nach Strategien für kontaminierte Flächen in Form von

- a) Nutzungsänderungen
- b) Maßnahmen zur Sanierung von Böden.

Die Mineralisierung spezieller organische Substanzen kann im Boden oft nur durch eine spezialisierte, autochthone Mikroflora erfolgen. Dekontaminationen über Pflanzen erfordern lange Zeiträume und außerdem eine Verwertung des kontaminierten Materials.

Durch die bisher angenommene geringe Mobilität des β -HCH wurde kaum eine Verlagerung des Isomers im Boden und in die Pflanze erwartet. Festgestellte Kontaminationen in Pflanzenaufwuchs werden oft einer oberflächlichen Anhaftung des β -HCH zugeschrieben. Untersuchungen verschiedener Autoren, u. a. Kalbitz (1996) und Heinrich (1997) konnten

jedoch nachweisen, daß sowohl eine Eintrag des β -HCH in tiefere Bodenschichten als auch eine aktive Aufnahme durch Pflanzen erfolgt.

2. Kenntnisstand

Bei der Herstellung von Lindan (γ-HCH) entsteht durch Photochlorierung von Benzol ein HCH-Isomerengemisch folgender Zusammensetzung :

65-70 % α-HCH, 14-15 % γ-HCH, 7-10 % β-HCH, ca. 7 % δ-HCH, 1-2 % ε-HCH, < 1 % η-HCH, < 1% θ-HCH (Leber 1983) .

Aus diesem Gemisch besitzt jedoch nur das γ-Isomere eine insektizide Wirkung. Die Nebenprodukte wurden deponiert oder anschließend durch Pyrolyse zu Trichlorbenzolen umgesetzt, die als Ausgangsstoffe zur Herstellung vieler Chemikalien dienten (Anonym 1994).

Der jährlich weltweite Anfall von β -HCH betrug 1983 15000 t. Nach Schätzung von Sloof und Matthijsen (1987) gelangten davon 100 % in die Umwelt. Die Produktion von Lindan wurde 1989 in der BRD eingestellt. Durch bis dahin vorhandene anthropogene Quellen wurde β -HCH in der Umwelt (Gewässer, Sedimente, Boden, Luft, Pflanzen), in Nahrungsmitteln (Butter, Sahne) sowie in Fettgewebe, Milch und Blut von Mensch und Tier nachgewiesen (Anonym 1994).

β-HCH unterscheidet sich von den anderen Stereoisomeren in der Anordnung der Chloratome und damit verbunden in den Eigenschaften (Tab. 1). Es zeigt sich, daß β-HCH schwer wasserlöslich ist und sich durch sein unpolares, lipophiles Verhalten stark in Fett anreichert. Aufgrund seiner symmetrischen Struktur erweist es sich als außergewöhnlich stabil (Bachmann et al. 1988, Eichler 1983). Die thermodynamische Stabilität nimmt in der Reihenfolge γ - < α - < δ- < β-HCH zu (Eichler 1983). Im Gegensatz zu γ -HCH erweist sich β-HCH aufgrund der langsamen Elimination und der Kumulation im menschlichen Organismus über Jahre als außerordentlich persistent (O'Brien 1967, Edwards 1972, Herbst und Bodenstein 1973, Vohland und Koransky 1983).

Entscheidend für die Mineralisierung organischer Verbindungen sind Mobilität und Verfügbarkeit der Substanzen im Boden und eine angepaßte Mikroflora. Durch die Beiimpfung

des Bodens mit entsprechenden Mikrobenkulturen oder den Zusatz von Nährsubstraten, die auf das Bedürfnis der Mikroorganismen abgestimmt sind, kann unter bestimmten Bedingungen die Mineralisierung der Schadstoffe erhöht werden.

Tabelle 1: Eigenschaften der häufigsten HCH-Isomere (Rippen, 1990) die Mineralisierung der

	α-НСН	β-НСН	ү-НСН	δ-НСН
Konfiguration der	aaeeee	eeeeee	aaaeee	aeeeee
Chloratome				
Schmelzpunkt (C°)	159	312	113	138
Dampfdruck (Pa, 20 °C)	5,3 · 10 ⁻³	4,3 · 10 ⁻⁷	2,9 · 10 ⁻³	
Wasserlöslichkeit (mg/l, 20 °C)	1,59	0,32	6,20	9,00
Dipolmoment (D)	2,22	0	3,20	2,20
Verteilungskoeffizient	3,77	3,85	3,66	
n-Octanol/ Wasser (log Kow)				

β-HCH zeichnet sich durch eine hohe Persistenz aus. Der mikrobielle Abbau der HCH-Isomere nimmt in der Reihe γ-HCH > α-HCH > δ-HCH ab.

Informationen über die Beeinflussung der Mineralisierbarkeit sowie die Wirkung auf Mikroorganismen und ihre Aktivität liegen für Lindan vor, aber nur in geringem Umfang für β -HCH. Der Einsatz von Reinkulturen zur Beschleunigung des Abbaus ist ebenfalls bisher vorwiegend für γ -HCH und dann auch nur in vitro untersucht und beschrieben worden.

Beim mikrobiellen Abbau von β-HCH durch Mikroorganismen entstehen vorwiegend durch Dechlorierung und Dehydrochlorierung Tetra- und Pentachlorcyclohexene. Mit Ausnahme einiger Laborversuche (Mac Rae et al. 1967, Siddaramappa et al. 1975, Kludas 1995, Zimmermann et al. 1998) zeigte sich β-HCH im Boden persistent (Bachmann 1987, Doelmann et al. 1988 a, b, 1990, Bachmann et al. 1988 a, Sahu et al. 1993). In Nährsalzmedien und Bodenlösungen hingegen konnte der aerobe (Sahu et al. 1990 a, 1993, Bhuyan et al. 1993) und anaerobe (Jagnow et al. 1977, Sahu et al. 1990 b) Abbau von β-HCH oftmals nachgewiesen werden, wobei immer eine bessere Abbaubarkeit unter anaeroben Verhältnissen festgestellt wurde (Mac Rae et al.1984, Heinrich 1994, Zimmermann et al. 1998). Bei der Anwesenheit mehrerer Isomere wurden diese in der Reihenfolge γ - > α - > δ - > β -HCH (Bachmann et al. 1988 a, b) und α - > γ - > δ - > β -HCH (Bhuyan et al. 1993) mineralisiert.

Für den Abbau von β-HCH waren die Mikroorganismen *Pseudomonas sp.* (Sahu et al. 1990 a, 1993), *Bacillus sp.* (Kludas 1995), *Clostridium spp.* und *Citobacter freundii* (Jagnow et al. 1977) sowie *Sphingomonas paucimobilis* (Bhuyan et al. 1993) verantwortlich. Sahu et al.

(1990 a, 1993) stellten fest, daß α - und γ -HCH als Energiequelle zum Wachstum der *Pseudomonas sp.* genutzt wird, β - und δ - HCH jedoch abgebaut werden, ohne das ein Wachstum sichtbar wird. Als zusätzliche Kohlenstoffquelle wurde Natriumacetat hinzugegeben und eine Hemmung des γ -HCH- sowie eine Beschleunigung des β -HCH- Abbaus beobachtet. Bei α -HCH wurde der aerobe Abbau durch Zugabe von Acetat und Glucose ebenfalls unterdrückt (Bachmann 1987). Sahu et al. (1993) schlußfolgerten daraus den cometabolischen Abbau von β -HCH und erklärten das unterschiedliche Verhalten von α - und γ -HCH gegenüber β -HCH im Boden bei Anwesenheit dieser Mikroorganismen. Da α - und γ -HCH im Gegensatz zu β -HCH durch Pseudomonas sp. als Wachstumsquelle verwendet werden kann, werden diese Isomere abgebaut, β -HCH jedoch nicht.

Eine beschleunigte mikrobielle Zersetzung von β-HCH in Bodenlösungen gelang durch Zugabe von Aminosäuren (aerob und anaerob), Hefeextrakt und Inositol (Muskelzucker) (anaerob) sowie Harnstoff (aerob) (Mac Rae et al. 1984). Zusätze von Melasse und Vinasse verschiedener Konzentrationen im Boden zeigten keinen Einfluß auf die Abbaurate von β-HCH im Inkubationsversuch (Zimmermann et al. 1998). Nach Kludas (1995) hingegen fördert das auf Vinassebasis hergestellte Produkt BIODEKON den aeroben β-HCH-Abbau unter Laborsowie Freilandbedingungen erheblich.

Andere im Freiland vorgenommene Versuche zur aeroben und anaeroben biologischen Zersetzung von β-HCH blieben selbst unter verschiedenen Behandlungen (in Kombination: unbehandelt, kultiviert, belüftet, mit Folie abgedeckt, beheizt) erfolglos (Doelmann et al. 1988 a, 1990).

Organische Chemikalien können auf unterschiedlichen Wegen durch Pflanzen aus dem Boden aufgenommen werden (Caro 1969, Topp 1986, König 1988, Traves und Hattener-Frey 1988, O 'Connor et al. 1991, Hülster und Marschner 1993):

- Transport gelöster Stoffe über das Wurzelsystem in den oberen Pflanzenteil
- Aufnahme gasförmiger Organika über Wurzel und Blatt
- mechanische Anlagerung von Boden- bzw. Staubpartikeln an der Pflanzenoberfläche.

Ein direkter Kontakt oberirdischer Pflanzenteile mit kontaminierten Bodenpartikeln wird durch Wind und Regen begünstigt und ist nur im Freiland von Bedeutung (Caro 1969, Topp 1986). Einen höheren Stellenwert nimmt die Aufnahme gelöster Umweltchemikalien mit dem Bodenwasser über die Wurzel ein. Sie verläuft passiv über das Wasserleitsystem im Sproß

(Xylem) und mit Hilfe der Saugspannung, welche durch Transpiration der oberirdischen Pflanzenteile entsteht (Shone und Wood 1974, Topp 1986). Der Transpirationsstrom ist abhängig von (Caro 1969, Polizu et al. 1971, Matthies et al. 1993, Travis und Hattener-Frey 1988, O 'Connor et al. 1991):

- der Bodenbeschaffenheit (Humus-, Tongehalt, pH-Wert, mikrobielle Aktivität)
- Konzentration, physikalisch- chemischen Eigenschaften und Strukturmerkmalen des organischen Schadstoffes
- der Expositionszeit
- klimatischen Bedingungen
- der Pflanzenart
- dem Nährstoffhaushalt der Pflanze.

So mindert beispielsweise ein hoher Humusgehalt des Bodens die Pflanzenaufnahme, da ein Teil des Schadstoffes an den Huminstoffen adsorbiert wird (Beestman et al. 1969 a, b, Beall und Nash 1969, Nash 1974, Shirharan und Suess 1978).

Im sandigen Boden wurde allgemein eine höherer Boden/Pflanze-Transfer beobachtet als in lehmigem Boden (Lichtenstein 1980).

Für eine Aufnahme des Schadstoffes sind u. a. die Halbwertszeit, der n-Octanol/Wasser-Verteilungskoeffizient (K_{OW}) und die Henry-Konstante (HC) (O 'Connor et al. 1991) von Bedeutung. Beträgt die Halbwertszeit weniger als 10 Tage, ist eine Zersetzung der Substanz schon vor dem Transfer möglich. Ein signifikanter Transport in die Pflanze erfolgt ab log K_{OW} = 1-2. Hat HC (Luft/Wasser-Verteilungskoeffizient) einen Wert > 10^{-4} , tritt durch Verdunstung ein hoher Verlust aus dem Boden auf. Die Aufnahme über die Gasphase wäre aber noch möglich (Ryan et al. 1988).

Als wichtigster Faktor bestimmt die Wasserlöslichkeit die Aufnahme von Pestiziden über die Wurzel. Hierbei tendieren unpolare Substanzen stärker zur reversiblen Adsorption an der Wurzeloberfläche als zur Absorption durch die Rhizodermis (Nash 1974, Briggs et al. 1982 a). Für die meisten organischen Schadstoffewurde eine positive Korrelation zwischen Polarität und Aufnahmevermögen durch die Wurzel gefunden (Finnlayson und Mc Carthy 1965, Caro 1969, Nash 1974, Briggs et al.1976, 1982 a, Topp et al. 1986). Ein gewisser Grad der Lipophilität muß beim Durchtritt durch die Endodermis jedoch vorausgesetzt werden (Topp 1986). So wurde andererseits eine bevorzugte Aufnahme lipophiler Stoffe durch die Wurzel sowohl mit Verbleib in der Wurzel (Metcalf 1967, Beestman et al. 1969 a, Hulpke 1969,

Scheunert et al. 1983) als auch ein Weitertransport in den Sproß (Finnlayson und Mc Carthy 1965) beobachtet.

Zur quantitativen Beschreibung der Pflanzenaufnahme von Substanzen kann der Biokonzentrationsfaktor (BCF), das Verhältnis der Konzentration des Stoffes in der Pflanze zu der im Boden (Topp 1986, Schroll 1989, O 'Connor et al. 1991, Hülster et al. 1994) verwendet werden. Der BCF ist pflanzenspezifisch, bis zu einem bestimmten Grenzwert von der Konzentration der Substanz im Boden unabhängig und drückt ab dem Wert 1 eine Bioakkumulation aus. Für verschiedene Spezies und Pestizide besteht eine lineare Abhängigkeit der genannten Konzentration zwischen 0 und 10 ppm (Wheeler et al. 1967, Onsager et al. 1970, Häfner 1975, Sotiriou 1977, Kloskowski 1981a, b). Wird diese Konzentration überschritten, stellt sich eine Sättigung ein, die eine Schädigung der Leitbahnen hervorruft und somit einen schlechteren Transport zur Folge hat (Wheeler et al. 1967, Hull 1970, Häfner 1975, Wheatley 1965). Es wurde gezeigt, daß eine umge-kehrte Proportionalität zwischen dem Kow und dem BCF besteht (Baess 1982, Baess et al. 1982, Briggs et al. 1982 b). In Pflanzen mit höherem Lipidanteil besteht eine positive Korrelation zwischen dem BCF und dem Fettgehalt der Pflanzen (Bruce et al. 1966; SchrolL 1989). Die Aufnahme von Substanzen durch die Wurzel wird mit Hilfe des RCF (Root Concentration Factor) beschrieben. Er stellt das Konzentrationsverhältnis zwischen Wurzel und Bodenlösung dar und steigt mit zunehmender Lipophilie der Substanz exponentiell. Der Translokationsgrad eines gelösten Stoffes, der über die Wurzel zum Sproß gelangt, wird mit dem TSCF (Transpiration Stream Concentration Factor = Konzentration im Transpirationswasser / Konzentration der Bodenlösung) ausgedrückt. Der Faktor beträgt bei passiver Aufnahme maximal 1 und ist unabhängig von der Konzentration der Bodenlösung. Gemäß einer Gaußschen Glockenkurve wurde ein Optimum für den n-Octanol/Wasser-Verteilungskoeffizienten zwischen 1,5 und 1,8 ermittelt, bei dem eine maximale Translokation in den Sproß erreicht wird (Crowdy 1973, Hussain et al. 1974, Briggs et al. 1976, 1982 a).

Im Vergleich zum Lindan wurde in der Literatur bisher wenig zur Aufnahme von β -HCH durch Pflanzen ausgesagt. Das Vorhandensein von β -HCH in Futtermitteln (Wiesenheu, Luzerne, Mais-, Hirsesilage, Gräser) wurde meist auf Ackerflächen nah bei Industriestandorten beobachtet (Kampe 1983 b, Bräuer und Herzog 1997). In diesem Zusammenhang verglich man zwei Flächen ähnlicher Exposition, die zehn Jahre lang von einem viehlosen und viehstarken Betrieb genutzt wurden. Unter der Annahme der gleichen Grundbelastung führte

die Nutzung durch den letzteren Betrieb zur Halbierung des β-HCH-Gehaltes im Boden, da es dem Boden durch Verfütterung des Bewuchses entzogen wurde (Kampe 1983 b).

Nach einer Spritzbehandlung von grünen Pflanzenteilen wurden verschiedene HCH-Isomere $(\alpha$ -, β -, γ -, δ -HCH) nicht resorbiert. Dagegen konnte besonders für Wurzelgemüse mit höherem Lipidanteil (z.B. Möhren) eine Resorption über die Wurzel nachgewiesen werden (Eichler 1983). Vergleichende Studien mit den vier HCH-Isomeren an Tabakpflanzen zeigten eine höhere Resorption von α - und γ - gegenüber β - und δ -HCH (Kawahara und Nakamura 1971). Karant et al. (1981) mischten dem Boden im Feldversuch technisches HCH-Pulver in unterschiedlichen Mengen zu und säten sieben verschiedene Gemüsearten aus. Es wurde eine Aufnahme von HCH in der Reihenfolge Koriander > Fuchsschwanz> Möhre > Rosenkohl > Chilly > Gurke > Tomatenachgewiesen. Der Höchstwert an β -HCH betrug 0,143 ppm. Mit der Erhöhung des HCH-Gehaltes im Boden nahm dieser auch in der Pflanze zu.

Der Einfluß des Humusgehaltes (Kampe 1983) zeigte sich im Gefäßversuch im Vergleich des Transferfaktors von β -HCH in Stroh und Korn von Sommerweizen Die Pflanzen nahmen aus dem Boden mit dem höheren Humusanteil wesentlich weniger β -HCH auf, als die mit niedrigerem Anteil, da die organische Substanz die Pflanzenverfügbarkeit einschränkte (Kampe 1983 a).

Auf Grund seiner hydrophoben Eigenschaften wird β -HCH stark durch die organische Substanz des Bodens (OBS) sorbiert. Dadurch wird die Konzentration dieser Substanz in der Bodenlösung verringert und die Pflanzen- (Bio-)Verfügbarkeit reduziert. Es konnte eine signifikante negative Korrelation zwischen dem Gehalt an OBS und der Aufnahme von β -HCH durch einige landwirtschaftliche Kulturen nach gewiesen werden (Heinrich und Schulz 1996 a, b).

In Gefäßversuchen mit Ackerbohnen, Mais, Möhren (Heinrich 1998) und Weidelgras (Lehmann et al. 1998 a, b) wurde ebenfalls ein Transfer von β-HCH nachgewiesen. Sowohl in diesen als auch in Studien von Zimmermann et al. (1998) wurde die Möglichkeit einer Phytoremediation in Betracht gezogen. Jedoch erfolgte in Buchweizen, Sonnenblume,

Borretsch und Lupine kein β -HCH-Akkumulation, so daß ein dauerhafter Entzug aus dem Boden ausgeschlossen wird.

3. Aufgabenstellung

Ziel des Projektes war es, Grundlagen für ein Nutzungs- und Sanierungskonzept für die stark kontaminierten Flächen der Muldeaue zu erarbeiten und einen Beitrag zur Aufklä-rung des β-HCH-Transfers Boden-Pflanze zu leisten.

Die Untersuchungen wurden daher unter zwei Gesichtspunkten durchgeführt:

- Einfluß von Bewirtschaftungsmaßnahmen des Grünlandes und der Einsatz von Nährsubstraten zur Erhöhung der biologischen Aktivität der Bodenmikroben "in situ" mit dem Ziel, β-HCH im Cometabolismus abzubauen.
- 2. Nachweis eines Transfers von β -HCH aus dem Boden in die Pflanze über das Wurzelsystem.

4. Planung des Vorhabens

Neben der Prüfung der Wirkung unterschiedlicher Bewirtschaftungsformen auf einen Abbau von β -HCH in belasteten Flächen war ein Anliegen des Ministeriums für Raumordnung und Umwelt des Landes Sachsen-Anhalt, die Wirksamkeit von Mikrobenpräparaten für die β -HCH-Dekontamination des Bodens verschiedener Anbieter zu überprüfen.

Zur Durchführung des Vorhabens waren geplant:

- Kleinparzellenversuche in der Muldeaue auf Flächen mit unterschiedlichem Kontaminationsgrad und -tiefe bei unterschiedlicher Grundwasserbeeinflussung zur Erprobung von Mikroben- und Nährstoffpräparaten unter unterschiedlichen Nutzungsvarianten.
- Gefäßversuche unter Kalthausbedingungen mit unterschiedlich kontaminierten Böden des Untersuchungsgebietes in der Muldeaue zum Transfer des β-HCH Boden in die Pflanze während des Vegetationsverlaufes mit Wildpflanzen.
- Laborinkubationsversuche zum Abbau von β-HCH im Boden.

Vom Ministerium für Raumordnung und Umwelt des Landes Sachsen-Anhalt wurde darauf hingewiesen, dass wiederholt Mikrobenkulturen von Firmen angeboten werden, die die Fähigkeit besitzen sollen, β-HCH unter natürlichen Bedingungen in kurzer Zeit zu mineralisieren und damit eine Dekontamination des Bodens bewirken

Derartige Mikoorganismenstämme könnten die Grundlage für eine in natürlichen Räumen anzuwendende Regenerierungsmethode darstellen. Auf eine diesbezügliche Ausschreibung im Bundesanzeiger meldeten sich jedoch keine Interessenten, sodass nur ein angebotener Nährstoffkomplex, BIODEKON, im Projekt geprüft werden konnte.

Der Einsatz von Nährstoffen zur Förderung einer mikrobiellen Dekontamination ist eine gängige Praxis (Alef 1994, Geller et al. 1991, Dechema Fachgespräche 1992) und würde in Landschaftsschutzgebieten eine schonende Möglichkeit der Sanierung darstellen.

5. Freilandversuche

5.1 Methoden

Bodenprobenahme:

Vor Anlage der Versuchsparzellen wurden die ausgewählten Flächen auf die Variabilität ihrer Kontamination mit β-HCH untersucht. Die Bodenprobenahme dazu erfolgte auf 30 m Länge im Abstand von 1 m. Aus 10 Einstichen wurden Mischproben hergestellt und analysiert. Dabei erfolgte nur die Untersuchung der aus den Bodenprofilen ermittelten stark

kontaminierten Bodenschichten. Bei Versuchsanlage wurde die Anfangsbelastung jeder

einzelnen Parzelle bestimmt.

Zur Erfassung der chemischen und biologischen Parameter erfolgte im weiteren Versuchsverlauf die Bodenprobenahme in Abhängigkeit von den Witterungsbedingungen in einem ca. 6-wöchigen Abstand. Entlang der Ränder der Kernparzelle wurde aus 20 Einstichen pro Parzelle der Boden als Mischprobe entnommen.

Versuchsbewirtschaftung:

Vor der Bodenprobenahme erfolgte in der Regel die Pflege der Versuchsflächen. Die Schwarzbrache wurde mit Hilfe einer Gartenfräse erhalten, der Bewuchs auf den entsprechenden Parzellen gemäht, abgeharkt bzw. kleingehäckselt auf der Versuchsparzelle belassen. In der Trockenperiode im Juli 1996 war eine Bewässerung der Parzellen erforderlich geworden, um die Wirksamkeit der eingesetzten organischen Substrate zu gewährleisten.

HCH-Analytik:

Die Bodenproben wurden im Labor an der Luft getrocknet, auf 2 mm abgesiebt und die Trockensubstanz bestimmt.

Zur Bestimmung von HCH und HCB wurden die Bodenproben mittels ASE (Accelerated Solvent Extractor, Fa. DOINEX) extrahiert. Die Bedingungen sind Tab. 2 zu entnehmen.

Tabelle 2: ASE-Extraktionsbedingungen

Probeneinwaage	2g	
Lösungsmittel	n-Hexan/Aceton (1:1)	
Extraktionstemperatur	100°C	
Extraktionsdruck	100 bar	
Aufheizphase	5 min	
Statische Extraktionszeit	5 min	
Extraktionszyklen	1	

Die organische Phase wurde danach abgeschieden, über Na_2SO_4 getrocknet, am Rotationsverdampfer eingeengt und in Isooctan aufgenommen. Die Bestimmung von α -, β -, γ -, δ -HCH und HCB wurde die Kapillargaschromatographie mit EC-Detektion eingesetzt (HEWLETT-PACKARD GC 6890). Die Analysenbedingungen sind Tabelle 3 zu entnehmen.

Tabelle 3: Bedingungen der gaschromatographischen Untersuchungen der HCH-Isomeren und HCB

Trennsäule	Ultra 1 Methyl Siloxane (Hewlett Packard) Ø 0,2 mm; Länge 25 m; Belegung 0,11 μm
Injektortemperatur	250°C
Detektortemperatur	300°C
Temperaturprogramm	80°C 1 min mit 30°C/min auf 170°C mit 0,5°C/min auf 172°C mit 20°C/min auf 300°C 300°C 4 min

Die Errechnung der Nachweis- und Bestimmungsgrenzen erfolgte mit dem Programm STATISTIKA für WINDOWS - Version 5.1 (Tab. 4).

Tabelle 4: Nachweis- und Bestimmungsgrenzen [µg/l] des verwendeten GC/ECD

Verbindung	Nachweisgrenze	Bestimmungsgrenze	
α-НСН	63	96	
β-НСН	20	35	
ү-НСН	40	64	
δ-ΗСΗ	91	141	
HCB	16	31	

Zur Überprüfung der Eignung der Extraktionsmethoden wurden Wiederfindungstests vorgenommen. Die Ergebnisse sind in Tab. 5 dargestellt.

Tabelle 5: Wiederfindungsraten von HCH und HCB aus dem Boden (n=8)

Verbindung	Wiederfindung %	Standard- Abweichung %
α-НСН	96,8	3
β-НСН	92,5	2
ү-НСН	97,7	1
δ-НСН	96,1	2
HCB	94,9	1

 $\underline{\text{Corg \%}}$ nach Ströhjlein mit dem C-MAT 550 in Anlehnung an DIN bzw. DIN/15010694 $\underline{\text{N}_{\text{t}}\%}$ nach Kjeldahl in Anlehnung an DIN H11 bzw. DIN/15010694, N_{an} nach Extraktion mit 1 %igem Kaliumsulfat mit ionenselektiver Elektrode in Anlehnung an VDLUFA-Methode N_{min} (VDLUFA-Methodenbuch, 1991)

Mikrobielle Biomasse nach Anderson und Domsch (1978) in der SIR-Anlage von Heinemeyer et al. (1989)

Dehydrogenaseaktivität (TTC-Methode) nach Thalmann (1968)

<u>Dimethylsulfoxid (DMSO)-Reduktionsvermögen</u> nach Alef und Kleiner (1898), modifiziert nach Beck (1991)

Proteaseaktivität (verändert nach Ladd und Butler (1972)

Alkalische Phosphatase nach Tabatabai und Bremner (1969)

<u>β-Glucosidase</u> verändert nach Hoffmann und Dedeken (1965)

<u>Leuchtbakterientest</u>: Der Leuchtbakterientest **LUMIStox**® (Fa. Dr. Lange GmbH, Düsseldorf) wurde mit dem marinen Leuchtbakterienstamm *Vibrio fischeri* durchgeführt. Die Aufarbeitung der Proben erfolgte nach Karsten (1990). Proben mit einer Hemmung der Leuchtkraft von mehr als 20% gelten als toxisch.

5.2 Auswahl und Beschreibung der Versuchsflächen

Im Oktober 1995 wurden in Zusammenarbeit mit dem Geologischen Landesamt Sachsen-Anhalts an drei ausgewählten Stellen des Aue-Grünlandes und an zwei Stellen einer angrenzenden Ackerfläche in der Nähe des Ortes Kleutsch Bodenprofile aufgenommen. Es handelt sich dabei um zu Ödland gewordenes ehemaliges Grünland.

Das Landschaftsgebiet, in dem die Kleinparzellenversuche angelegt wurden, zeigen Abb. 1 und 2. Die Versuchsflächen sind in Tab. 6 charakterisiert.

Die Versuchsflächen zeichnen sich durch eine unterschiedliche Entfernung zur Mulde und zum Grundwasser aus. Sie erhielten folgende Bezeichnungen:

G1 in unmittelbarer Nähe des Muldeufers (Uferwall), Sandboden

G2 ca. 50 m vom Ufer entfernt, Senke mit Grundwasserbeeinflussung und Überflutungsgefahr,
Auenlehm

G3 ca. 500 m vom Ufer entfernt, auch bei Überflutungsereignissen keine Grundwasserbeeinflussung, Auenlehm

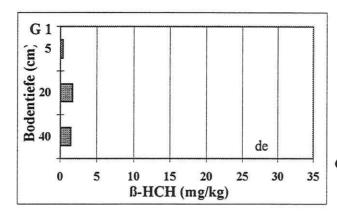
Tabelle 6: Charakterisierung der Probenahmeflächen (Geologisches Landesamt Sachsen-Anhalt: String, Weller, Müller 1995)

Fläche/Sc	hicht	Tiefe (cm)	Bodenbildendes Gestein	Organ. Substanz (%)
G1	1	5	Sand	2-3
(Gley)	2	20	Sand	>1
	3	210	Sand	> 1
	4	230	Sand	
G2	1	5	Auenlehm	4-6
(Gley)	2	35	Auenlehm	> 1
• • • • • • • • • • • • • • • • • • • •	3	57	Auenlehm	2-3
	4	87	Auenlehm	1-2
5		135	Sand	> 1
	6	150	Sand	
G3	1	15	Auenlehm	2-4
(Vegagley) 2 80		80	Auenlehm	> 1
, , , ,	3	105	Auenlehm	
	4	175	Auenlehm	

Abb. 1: Mulde bei Kleutsch (Dessau)

Abb. 2: Landschaft in der Muldeaue bei Kleutsch (Dessau)

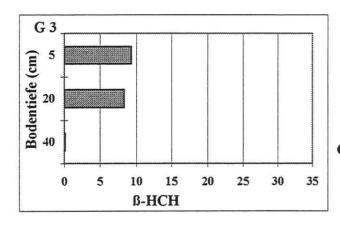
Tabelle 7: Chemische Kennwerte der Böden der Versuchsflächen (Kleutsch, 24.10.95)


Fläche	Bodentiefe	Corg %	N _t %	N _{an} ppm	В-НСН ррт	pН
G1/0	0-5	0,941	0,085	n.b.	0,385	5,28
G1/1	5-20	1,635	0,132	2,77	1,698	5,35
G1/2	20-40	1,598	0,133	6,83	1,485	5,38
G1/3	40-60	1,210	0,086	2,63	22,840	4,53
G1/4	60-80	1,116	0,059	2,26	0,607	4,74
G1/5	80-100	1,183	0,076	2,20	0,060	4,89
G1/6	100-125	1,108	0,063	3,15	2,237	4,94
G1/7	125-150	0,800	0,044	1,89	0,014	4,96
G2/0	0-5	7,007	0,536	n.b.	17,435	5,81
G2/1	5-20	5,740	0,448	14,02	33,640	5,92
G2/2	20-40	3,581	0,263	6,36	5,909	5,74
G2/3	40-60	2,026	0,145	1,02	0,080	5,57
G2/4	60-80	0,568	0,043	1,35	0,045	5,82
G2/5	80-100	0,808	0,047	3,71	0,028	5,70
G2/6	100-125	0,648	0,033	0,40	0,029	6,32
G3/0	0-5	6,223	0,532	n.n.	9,268	5,94
G3/1	5-20	3,878	0,370	8,60	8,250	5,87
G3/2	20-40	1,037	0,119	3,07	0,126	5,65
G3/3	40-60	0,452	0,062	1,16	0,503	6,36
G3/4	60-80	0,407	0,057	0,27	0,028	5,82
G3/5	80-100	0,331	0,042	0,70	n.n.	5,92
G3/6	100-125	0,311	0,038	0,77	n.n.	5,94
G3/7	125-150	0,292	0,036	0,66	n.n.	5,98
G3/8	150-175	0,276	0,030	0,72	n.n.	5,99

n.n. nicht nachweisbar

(Prüfwert zum Schutz von Boden, Schutzgut Pflanze 0,1mg/kg ∑ HCH, Rippen, 1994)

Die Verteilung des β -HCH entlang der Bodenprofile (Abb. 3) ist in den Flächen G1-G3 sehr unterschiedlich. Besonders interessant ist der Standort G1. In den beiden oberen Schichten (Tab. 7) sind nur etwa 1,5 ppm β -HCH enthalten. In der Schichttiefe von 40-60 cm hingegen sind rd. 23 ppm nachgewiesen worden, darunter wieder nur geringe Mengen.


Bei der Fläche G2 sind die oberen 20 cm am stärksten belastet. Mit zunehmender Entfernung vom Ufer und der abnehmenden Überflutungsgefahr gehen die β-HCH-Gehalte stark zurück.

G1: Grünland in Ufernähe der Mulde 63,81 m NN-Höhe

G2: Grünland, ca. 50 m von der Mulde entfernt, 62,75 m NN-Höhe (Grundwasser beeinflußt, Überflutung bei Hochwasser)

G3: Grünland, ca. 500 m von der Mulde entfernt, 63,64 m NN-Höhe (keine Grundwasserbeeinflussung, keine Überflutung)

Abb. 3: Gehalte an β-HCH bis in eine Tiefe von 60 cm der Bodenprofile G1, G2 und G3 im Auengebiet der Dessauer Mulde, Nähe Kleutsch (24.10.1995)

Neben β -HCH wurden die übrigen HCH-Isomere in den Böden der drei Profile bestimmt. Aus Abb. 4 ist ersichtlich, daß β -HCH die Hauptbelastungskomponente ist, während das Lindan selbst wie auch die α - und δ -Isomeren nur in Spuren, wenn -haupt, auftreten. Die Ursache dafür liegt in der Beschaffenheit und den Eigenschaften des β -HCH, das auf Grund seiner symmetrischen Molekülgestalt unpolar, sehr wenig wasserlöslich und schwer biologisch abbaubar ist.

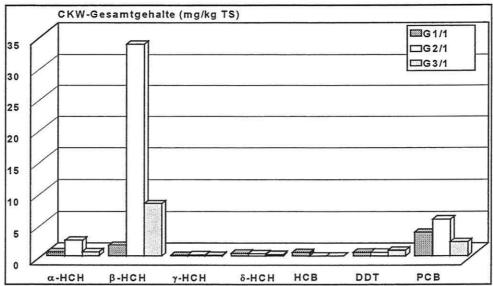


Abb. 4: Gesamtgehalte an ausgewählten Chlorkohlenwasserstoffen in der obersten Bodenschicht der Schürfe G1-G3 im Untersuchungsgebiet der Dessauer Muldeaue

Trotz teilweise hoher Gesamtgehalte an β-HCH im Boden sind in der Bodenlösung keine nennenswerten Mengen nachweisbar. Demgegenüber sind im Heißwasserextrakt der Böden (Abb.5) durchaus beachtliche Mengen dieser Substanz zu finden und zwar jeweils ca. 8-11 % des Gesamtgehaltes an β-HCH. Die Heißwasserftraktion enthält neben der mikrobiellen

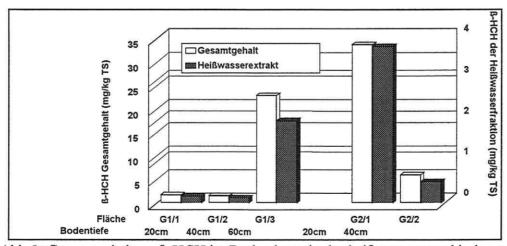


Abb.5: Gesamtgehalt an β-HCH im Boden bzw. in der heißwasserextrahierbaren Fraktion der OBS in verschiedenen Tiefen zweier Probenahmestellen im Auegebiet der Mulde nahe Dessau

Biomasse auch die besonders leicht umsetzbare Substanz des Bodens und korreliert eng mit einigen bodenbiologischen Parametern (Schulz 1990). Auf Grund dessen ist sie u.a. für die Abschätzung der Nährstoffnachlieferung aus der Bodenmatrix und möglicherweise auch für die Beurteilung einer Schadstoffverfügbarkeit nutzbar (Titova et al. 1995).

Für die geplanten Gefäß-und Laborversuche wurde aus den stark kontaminierten Schichten, außer Fläche G1, Boden entnommen und über den Winter unter natürlichen Bedingungen gelagert. Außerdem wurde Sproßmaterial von der Versuchsfläche entnommen und bei 21° C eingefroren. Bei der Aufarbeitung des Bodens im Frühjahr 1996 fielen Wurzeln, Stoppeln und Siebrückstände an, die ebenfalls auf ihre HCH-Belastung untersucht wurden.

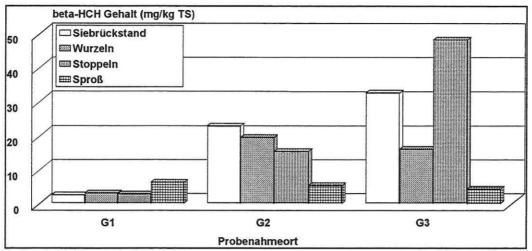


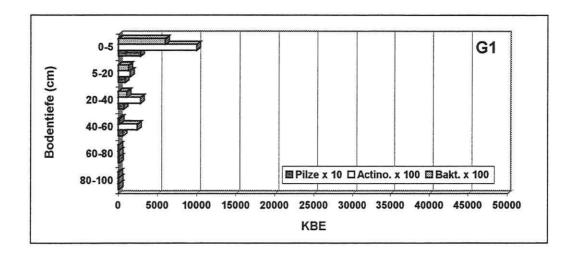
Abb. 6: Gehalt an β-HCH in verschiedenen Pflanzenteilen von auenspezifischen Gräsern der drei Probenahmestellen im Auengebiet der Dessauer Mulde

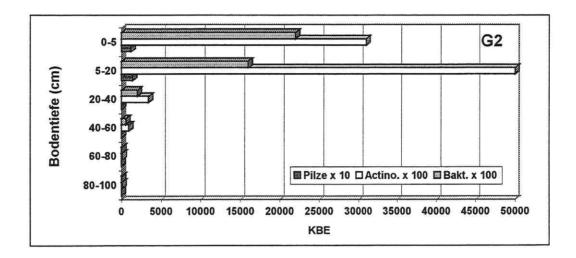
In Abb. 6 sind die Belastungshöhen an β -HCH, getrennt nach Wurzel, Stoppel, Sproß und Siebrückständen angegeben. Der unterschiedlichen Kontaminationsgrad der oberen Bodenschicht zeigte keinen Einfluß auf den doch recht beachtlichen Gehalt an β -HCH in den Sproßteilen der Gräser von rd. 3-5 mg/kg TS. Der Gehalt an β -HCH in den Stoppeln, Wurzeln und im Siebrückstand der Wurzeln dagegen folgt tendenziell dem Kontaminationsgrad des Bodens in der obersten Bodenschicht, wobei in den Stoppeln teilweise höhere Gehalte als im Boden gefunden wurden. Die hohen Werte in der Pflanzensubstanz können möglicherweise durch am Material anhaftende Bodenpartikel mit verursacht worden sein. Die Gehalte an β -HCH in den Stoppeln lassen jedoch die Vermutung zu, daß es zu einer Akkumulation dieser Substanz im Stoppelbereich kommt.

Neben der Belastung mit HCH-Isomeren sind die Aueböden teilweise stark mit Schwermetallen kontaminiert. Angaben zur Schwermetallbelastung der Untersuchungsgebiete sind Tab. 8 zu entnehmen.

Tabelle 8: Schwermetallgehalte der β-HCH belasteten Böden (LAU, Halle 1995)

Schurf	Bodentiefe	Zn	Pb	Cd	Ni	Cr	Cu	Hg
G1	Aw 0-10	192	86,6	< 0,65	2487,0	609,0	36,1	3,2
	AwGo 10-20	162	65,6	< 0,65	222,0	89,3	34,9	2,0
	Go 80-100	508	177,0	2,7	30,5	49,3	92,5	6,5
	IIG	224	103,0	< 0,65	20,9	37,6	49,9	0,6
G2	Aw	786	236,0	14,4	56,4	148,0	144,0	9,8
	yM	182	50,9	< 0,65	33,0	58,3	25,0	0,4
	Mgo	977	373,0	8,0	109,0	144,0	203,0	9,1
	MGoGr	764	728,0	3,2	40,7	150,0	217,0	1,6
	GoGr	351	392,0	< 0,65	26,8	44,4	49,0	0,6
	Gr	151	138,0	6,3	9,4	17,2	13,9	0,1
G3	Aw	599	300,0	< 0,65	41,7	102,0	98,4	4,0
	aM	193	115,0	< 0,65	19,6	38,6	27,6	0,1
	GoGr	45	12,8	< 0,65	3,8	8,6	5,9	0,0
	IIGr	195	81,6	< 0,65	19,1	31,0	26,6	0,1
	Kat. A, HL		Kat. B,	HL		Kat. C,	HL	


Kat. A, B, C, HL Kategorien der Hollandliste


Um das mikrobiellen Leistungspotential der Böden für einen biologischen Abbau zu beurteilen, wurden mikrobielle Kennwerte wie Besiedlung des Bodens mit Bakterien, Pilzen und Actinomyceten sowie mikrobielle Biomasse und ausgewählte Enzymaktivitäten (DMSO-Dimethylsulfoxid-Reduktion, Dehydrogenase, Protease, β-Glucosidase, alkalische Phosphatase) bestimmt. Die Ergebnisse in Abb. 7 lassen erkennen, daß die Flächen G2 und G3 in den oberen 20 cm eine hohe Besiedlung an Bakterien, Actinomyceten und Pilzen aufweisen. Auf der Fläche G1 ist dagegen eine wesentlich geringere Anzahl an Mikroben vorhanden. Ab 20 cm Tiefe gehen die KBE (kolonienbildende Einheiten) auf allen drei Flächen stark zurück.

Ähnliche Ergebnisse zeigen auch die Enzymaktivitäten und die mikrobielle Biomasse der drei Flächen (Tab. 9). Auch hier liegen die höchsten Werte in den oberen 20 cm. Sie nehmen aber erst ab 40 cm Tiefe drastisch ab. Ab 1m Tiefe sind die mikrobielle Biomasse und die Enzymaktivitäten Dehydrogenase und β-Glucosidase nicht mehr bestimmbar. Die Fläche G1 weist eine wesentlich geringere mikrobielle Aktivität als die Flächen G2 und G3 auf.

Eine Beziehung zwischen KBE, mikrobieller Biomasse und mikrobiellen Aktivitäten ist nicht zu erwarten, da mit den Keimzahlbestimmungen nur ein geringer Teil der im Boden vorkommenden Mikroorganismen erfaßt werden können. Die hohen KBE und mikro-biellen Aktivitäten auf den Flächen G2 und G3 bis in die Tiefe von 60 cm wird durch die hohen

Mengen organischer Substanz bedingt, die durch den Bewuchs eingetragen werden und sich auch in den C_{org}-Gehalten (Tab. 7) widerspiegeln.

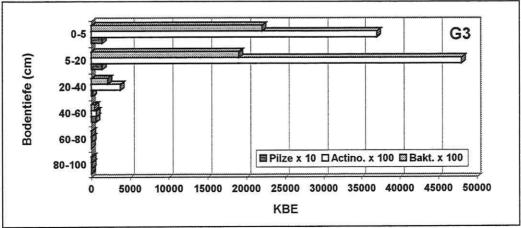


Abb. 7: Besiedlung der Böden mit Bakterien, Actinomyceten und Pilzen der Flächen G1-G3 in Abhängigkeit von der Bodentiefe

Tabelle 9: Mikrobielle Kennwerte der Böden der Versuchsflächen (mikrobielle Biomasse, Enzymaktivitäten und Hemmung der Lumineszenz der Leuchtbakterien) in den unterschiedlichen Bodentiefen der Profile G1-G3 (24.10.1995)

Fläche	Bodentiefe	Mikrob. Biom.	Fläche Bodentiefe Mikrob. Biom. Dehydrogenase	DMSO-Redukt.	DMSO-Redukt. Alkal. Phosphat.	Protease	B-Glucosidase	Leuchtbakt.*
	сш	μg Cmik/g TS	g TPF/g TS	ng DMS/g TS/g	ug p-NP/ g TS/ h	ug p-NP/ g TS/ h ug Tyrosin/ gTS/2h ug Salig./ gTS/ 3h	ug Salig./ gTS/ 3h	% Hemmung
G1	0-5	151	4,48	951	265,69	214,23	66,18	14
	5-20	145	7,73	704	111,88	128,00	91,62	31
	20-40	97	5,01	693	94,96	108,46	80,85	26
	40-60	50	1,16	367	76,26	39,11	12,90	26
	08-09	58	0	238	49,55	8,02	n.b.	12
	80-100	36	0	309	68,05	15,18	n.b.	14
	100-125	n.b.	n.b.	215	43,84	4,34	n.b.	13
	125-150	n.b.	n.b.	184	38,24	5,15	n.b.	21
G 2	0-5	1186	76,15	4574	2876,51	1104,74	323,31	13
	5-20	640	68,07	4973	1924,68	542,71	273,91	20
	20-40	219	11,9	877	587,22	181,72	67,25	12
	40-60	115	2,32	412	250,53	61,39	20,34	6
	08-09	35	0,04	116	52,44	23,71	n.b.	19
	80-100	32	0,44	176	44,20	22,39	n.b.	14
	100-125	n.b.	n.b.	188	60,13	10,52	n.b.	13
63	0-5	1257	202,6	10104	71,1097	1239,97	272,79	13
V2	5-20	519	163,6	4702	1259,57	679,57	192,01	18
	20-40	117	15,21	852	169,88	74,00	56,16	13
	40-60	19	0	202	224,09	22,01	7,47	33
	08-09	17	0	242	41,56	12,19	n.b.	25
	80-100	37	0	137	16,60	15,72	n.b.	16
	100-125	n.b.	n.b.	149	25,11	12,37	n.b.	13
	125-150	n.b.	n.b.	124	31,06	17,66	n.b.	10
	150-175	n.b.	n.b.	99	26,27	3,79	n.b.	15

Die höchste biologische Aktivität ist in der Schicht 0-5 cm zu finden. Es ist die im Grünland am stärksten durchwurzelte Schicht mit einer stark ausgeprägten Rhizosphärenflora. Deutlich unterscheiden sich diese Flächen auf Auenlehm von der Fläche G1 auf Sand. Sie wies zum Zeitpunkt der Untersuchungen einen wesentlich geringeren Pflanzenwuchs auf. Die C_{org} - Gehalte lagen hier in der Bodenstiefe 5-100 cm höher als in 0-5 cm. Die mikrobiellen Aktivitäten nahmen ab 40 cm deutlich ab und unterschieden sich ab 60 cm kaum noch von den zwei anderen Versuchsflächen.

Die für die Dekontaminationsversuche bedeutsame Bodentiefe war auf den Flächen G2 und G3 0-40 cm. In diesen Tiefen war eine hohe biologische Aktivität zu verzeichnen.

Bei der Fläche G1 mit einer hohen Kontamination in der Bodentiefe 40-60 cm lag nur noch ein Drittel der biologischen Aktivität der Schicht 0-20 cm vor.

Mit Hilfe des Leuchtbakterientestes erfolgte eine Abschätzung der Höhe der Bioverfügbarkeit vorhandener Schadstoffe. Nur auf Fläche G1 konnte in den Bodenschichten 5-60 cm eine leichte Hemmung der Lumineszenz der Bakterien festgestellt werden. Das sagt jedoch noch nichts über die Wirkung des β-HCH aus, da die Böden auch noch mit Schwermetallen belastet sind.

Witterungsverlauf

Angaben über den Witterungsverlauf (Lufttemperatur und Niederschlag) im Versuchszeitraum April 1996 - Dez. 1997 wurden vom Deutschen Wetterdienst in Potsdam bezogen und stammen aus der Wetterstation in Wittenberg.

In Abb. 8 ist der Verlauf von Temperatur und Niederschlag dargestellt. Die Niederschlagsmengen waren 1996 etwas gleichmäßiger verteilt als 1997.

Zu den Zeitpunkten der Nährstoffausbringung fielen in beiden Versuchsjahren nur geringe Niederschläge. 1996 machte sich im Juni eine zusätzliche Beregnung erforderlich, um die mikrobielle Aktivität des Bodens aufrecht zu erhalten.

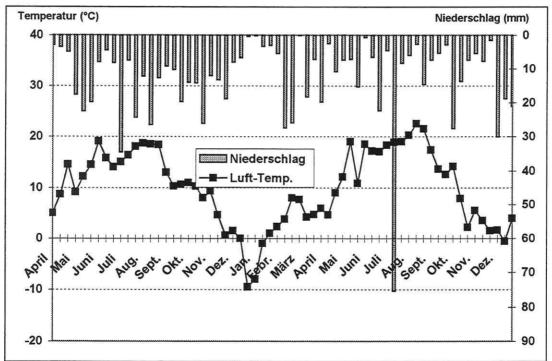


Abb. 8: Temperatur und Niederschlagsverlauf im Untersuchungsgebiet während des Versuchszeitraumes 1996/1997 (Wetterstation Wittenberg)

Vegetationscharakteristik:

Vom Büro für Landschaftsplanung und angewandte Ökosystemstudien Halle wurde die Vegetation der Grünlandflächen, auf denen die Kleinparzellenversuche G1-G3 liegen, aufgenommen (Tab. 10).

Tabelle 10: Vegetationscharakteristik der Flächen G1-G3 (Köck, OEKOKART GmbH 01.06.1996)

Fläche	G1	G2	G3
Aufnahmefläche (m²)	90	96	96
Deckung Fläche (%)	70	90	95
Artenzahl	10	10	19
Alopecurus pratensis	1b	3a	2a
Agropyron repens	3a	3b	2a
Poa pratensis	2a	2a	la
Rumex acetosa	+r	2b	1a
Festuca rubra	1a	1b	
Ranunculus repens	G•	+a	2b
Taraxacum officinalis	· ·	+p	2m
Galium album	74	1a	1a
Anthriscus sylvestris	· · · · · · · · · · · · · · · · · · ·		1b
Dactylis glomerata			+p
Festuca pratensis			+p
Heracleum spondylium	34	•	+p
Stellaria graminea		g.	+r
Phalaris arundinacea	3b		· · · · · · · · · · · · · · · · · · ·
Arrhentherum elatius	2	1b	3b
Poa compressa	1p		
Veronica arvensis	+ r		
Galium aparine	+r	¥	
Lathyrus cf. Tuberosus (jung)	+r	•	+p
Urtica dioica	*	+p	+a
Prunus spec. Kml.			+r
Veronica hederifolia			+r
Poa annua			+r
Atriplex spec. Kml.			+p

Die Angabe des Vorkommens der einzelnen Pflanzenarten erfolgte nach der Deckungsgrad-Skala von Braun-Blanquet (1964), die durch Buchstaben ergänzt wird.

Danach bedeuten: r (raro) = sporadisch; p (paululum) = wenige Exemplare; a (amplius) = zahlreiche Exemplare; m (multum) = sehr zahlreiche Exemplare.

Die aufgenommenen Grünlandbestände sind nach Köck (1996) pflanzensoziologisch dem Galio-Alopecuretum pratensis, der Wiesenfuchsschwanzwiese, zuzuordnen.

5.3 Anlage des Freilandversuches

Die drei Flächen wurden vor der Anlage des Versuches auf die Verteilung der HCH-Kontamination geprüft. Neben der oberen Schicht war auf der Fläche G1 die belastete Bodentiefe 30-60 cm von Interesse. Die Ergebnisse in Tab. 11 zeigen, daß die Flächen mit der vorliegenden Verteilung der HCH-Gehalte für die Anlage der Versuche geeignet sind. Eine Homogenität der Belastung war auf diesen von Hochwasser unterschiedlich betroffenen Flächen nicht zu erwarten.

Tabelle 11: β-HCH-Kontamination der Böden vor Anlage der Kleinparzellenversuche

Fläche	n 1	0-30 cm n 2	n 3	n 1	30-60 cm n 2	n 3
G1	1,835	1,118	1,864	25,923	16,726	23,740
G2	23,190	31,527	22,930	n.b.	n.b.	n.b.
G3	7,444	2,962	3,515	n.b.	n.b.	n.b.

n = Mittel aus 10 Finstichen

In der Nähe der drei Bodenprofile wurden drei Kleinparzellenversuche mit je 20 Parzellen angelegt, die eine Fläche von 3 x 3 m haben. Der Versuchsplan ist der Abb. 9 zu entnehmen. Ein angelegter Versuch wird in Abb. 10 wiedergegeben. Deutlich sind die unterschiedlich bewirtschafteten Parzellen zu erkennen.

Die Schwarzbrache wurde durch gründliches Fräsen erzeugt. Die Aufbringung der Nährsubstrate erfolgte oberflächlich nach Anlage der Parzellen.

Da bei der Fläche G1 die stark kontaminierte Schicht erst in 40 cm Tiefe lag, mußte das Biodekon über eine Sonde unter Druck (Stickstoff) in die entsprechende Bodentiefe eingebracht werden (Abb. 11). Zur gleichmäßigen Verteilung des Biodekons wurden dafür Raster im Abstand von 10 cm über die Fläche gelegt.

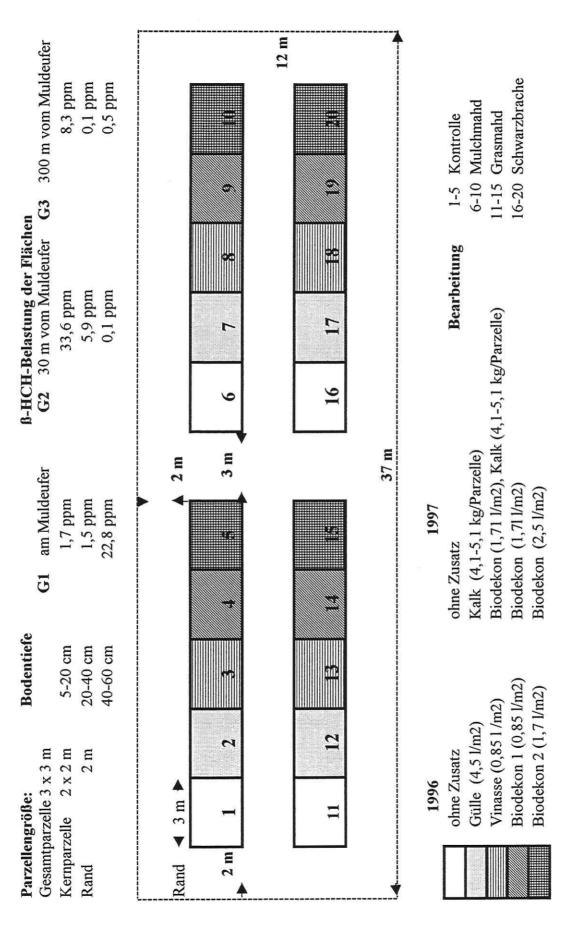


Abb. 9: Versuchsplan zum Kleinparzellenversuch "B-HCH-Abbau" in der Muldeaue bei Dessau (Kleutsch) für die Flächen G1, G2, G3

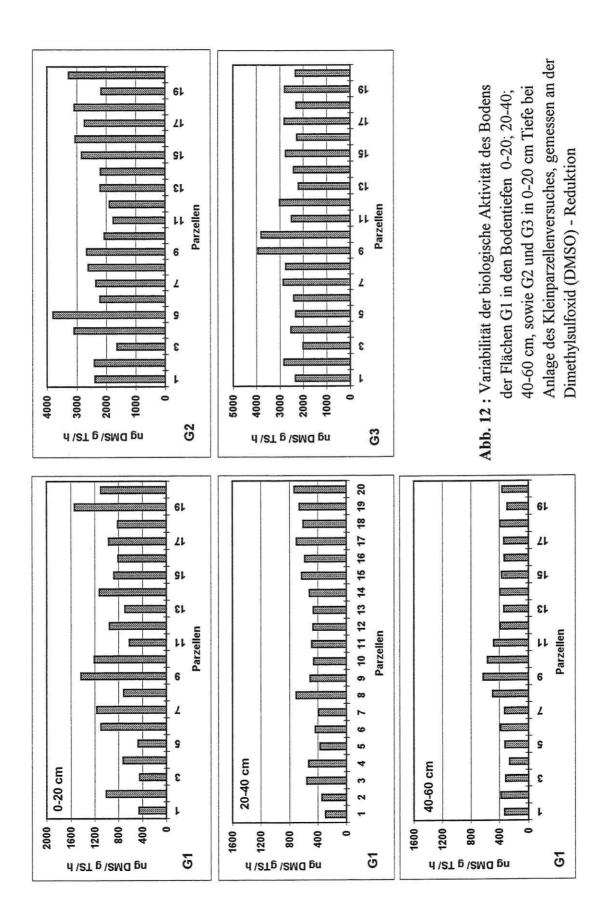
Abb. 10: Kleinparzellenversuch in der Muldeaue bei Kleutsch (Dessau)

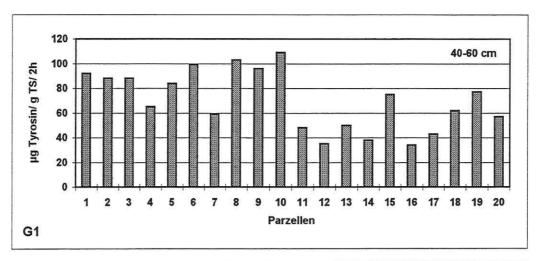
Abb. 11: Einbringung von Biodekon in die Bodentiefe 30-40 cm auf der Fläche G1

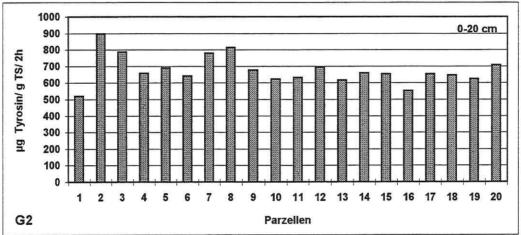
5.4 Ergebnisse

5.4.1 Einfluß der Nährstoffe auf die biologische Aktivität des Bodens

Im ersten Versuchsjahr kamen neben zwei unterschiedlichen Konzentrationen des Biodekons Vinasse und Gülle zum Einsatz. Diese Substrate wurden als Alternative zu Biodekon betrachtet, falls eine Dekontamination über die Erhöhung der mikrobiellen Aktivität erreicht werden kann.

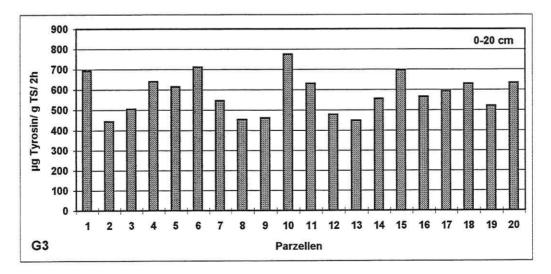

Zur Beurteilung der mikrobiellen Aktivität des Bodens wurden nur noch zwei Parameter eingesetzt. Als allgemeines Kriterium der biologischen Aktivität diente die Dimethylsulfoxid (DMSO) - Reduktion (ca. 96 % der Mikroben im Boden sind in der Lage, DMSO zu DMS zu reduzieren) und als Paramter für den Eiweißabbau die Protease.

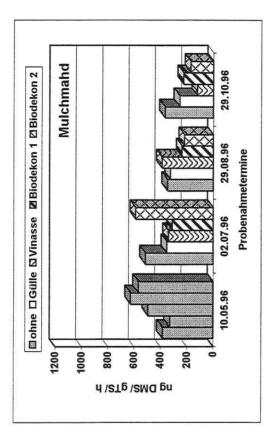

Auf die Erfassung der mikrobiellen Biomasse mußte verzichtet werden, da die zu ihrer Bestimmung erforderlichen Bodenmengen zu einer starken Beeinträchtigung der nur 9 m² großen Parzellen geführt hätten.

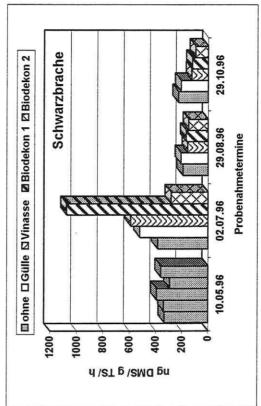

Die Parzellen zeigten bei Anlage des Versuches eine hohe Variabilität in der DMSO-Reduktion (Abb. 12), die durch den nicht homogenen Bewuchs und damit auch nicht gleichmäßigen Verteilung der organischen Substanz auf Grünland zurückzuführen ist. Die Streuung war auf allen Flächen besonders in der oberen Schicht von 0-20 cm sehr stark. Sie lag auf der Fläche G1 in der oberen Schicht am höchsten und nahm in die Bodentiefe ab. Auf dieser Fläche spielen für den starken Rückgang die geringen C_{org}-Gehalte in den tieferen Bodenschichten eine Rolle. In der β-HCH belasteten Tiefe von 40-60 cm war die biologische Aktivität ausgeglichener, betrug aber nur noch durchschnittlich 50 % der Aktivität der oberen 20 cm. Auf den Flächen G2 und G3 wiesen die Variationskoeffizienten 18-23 % aus. Ein ähnliches Verhalten konnte bei der Protease festgestellt werden (Abb. 13).

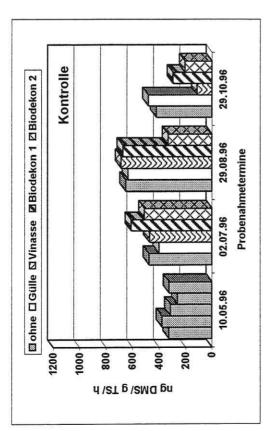
Nach Aufbringung der organischen Substanzen Vinasse, Gülle und Biodekon wurde ein Anstieg der mikrobiellen Aktivität im Boden erwartet. Wie die Ergebnisse in den Abb. 14-16 für DMSO zeigen, war im 1. Versuchsjahr keine eindeutige Wirkung auf die Dimethylsulfoxid Reduktion nachzuweisen.

Auf der Fläche G1 (Abb. 14) wurde nur die Bodentiefe 40-60 cm untersucht, da hier die Schadstoffbelastung vorliegt und die Substrate Vinasse und Biodekon eingebracht worden sind. Für Gülle war nur eine oberflächliche Aufbringung möglich.




Abb. 13: Variabilität der Proteaseaktivität des Bodens auf den Flächen G1-G3 in den belasteten Bodentiefen bei Anlage des Kleinparzellenversuches (s % für G1=34, G2=13, G3=16)


Auf den Prüfgliedern, auf denen keine Mahd erfolgte, konnte zu zwei Terminen ein Anstieg der biologischen Aktivität festgestellt werden, ebenso auf der Schwarzbrache am ersten Probenahmetermin nach der Behandlung. Die DMSO-Reduktion war auf den Schwarzbracheparzellen am niedrigsten. Hier wirkte sich das Fehlen organischer Substanz aus Pflanzenteilen und Wurzelexsudaten deutlich aus. Ein Vergleich der Nährstoffzufuhr zum unbehandelten Prüfglied (Kontrolle) ergab keine zu sichernden Unterschiede. Die auftretenden Aktivitätserhöhungen betreffen die Kontrolle ebenfalls und sind daher nicht im Zusammenhang mit der Nährstoffzufuhr interpretierbar. Die Prüfglieder mit der oberflächlich aufgebrachten Gülle zeigten zu einigen Terminen eine stärkere Wirkung auf die mikrobielle Aktivität als das Biodekon.


Auf den Flächen G2 und G3 (Abb. 15, 16) war die DMSO-Reduktion wesentlich höher im Vergleich zur Fläche G1, bedingt durch die unterschiedliche Bodentiefe und die Bodenqualität. Diese Flächen liegen auf Auenlehm im Gegensatz zur Fläche G1 auf Auensand und wiesen einen dichteren Bewuchs auf. Die zugeführten Nährsubstrate führten auch hier mit wenigen Ausnahmen zu keiner Erhöhung der mikrobiellen Aktivität. Die Gülle bewirkte teilweise höhere Enzymgehalte als das Biodekon. Auf der Schwarzbrache war trotz Nährstoffzufuhr im Versuchverlauf ein Rückgang der DMSO-Reduktion zu beobachten. Hier fehlen die Pflanzenrückstände und Wurzelexsudate.

Biodekon und Gülle enthalten hohe Mengen an Stickstoff, eine Voraussetzung zur Biomassebildung. Die Protease ist ein Enzym, das für die Transformation proteinhaltiger Verbindungen verantwortlich ist. Wie bei der DMSO-Reduktion war auch bei der Protease, abgesehen von einigen wenigen Ausnahmen, ebenfalls keine eindeutige Wirkung der einzelnen Substrate auf die Höhe der Aktivität bei allen drei Versuchsflächen im ersten Versuchsjahr nachzuweisen (Abb. 17-19). Auf der Fläche G2 führte die Zufuhr der organischen Substrate besonders auf der Schwarzbrache zu leichten Aktivitätserhöhungen im Juli und Oktober. Die Güllewirkung zeigte sich an einigen Terminen stärker als die Wirkung von Biodekon und ließ die Proteaseaktivität über das Niveau der Kontrolle ansteigen.

Auf der Fläche G3 (Abb. 20) bewirkten die eingesetzten organischen Substrate mit Ausnahme auf der Bewirtschaftung "Mulchmahd" im Juli eine leichte Erhöhung des Enzyms Protease. Dieser Einfluß war auf den ungemähten Parzellen und auf der Schwarzbrache auch noch im Oktober festzustellen.

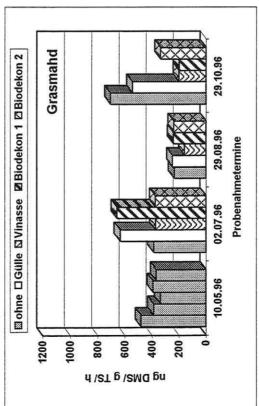
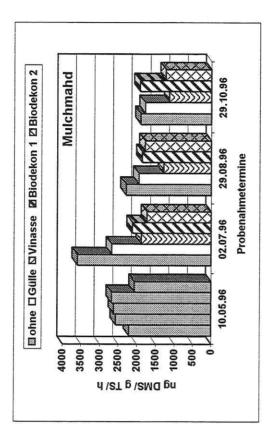
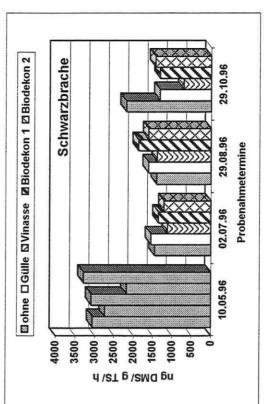
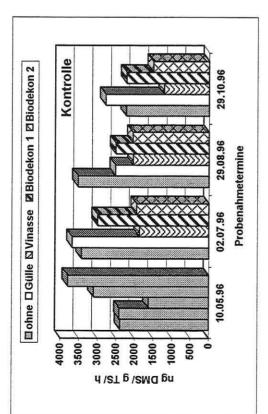





Abb.14: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die biologische Aktivität des Bodens der Fläche G1 (Ufer Mulde, Sandboden, Tiefe 40-60 cm), gemessen an der Dimethylsulfoxid-Reduktion (1996)

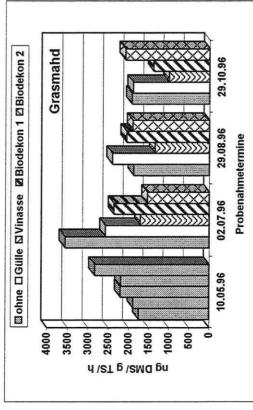
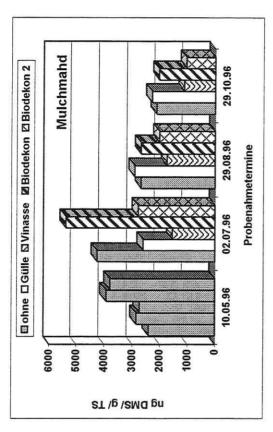
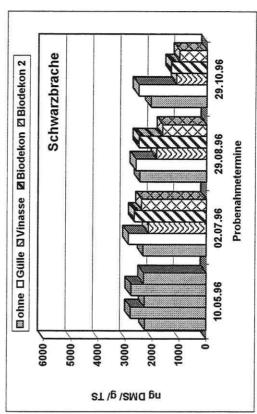
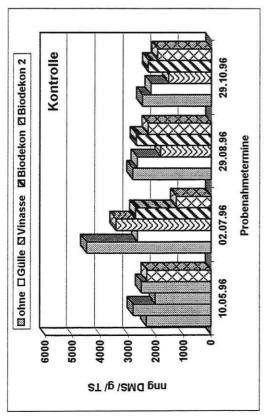
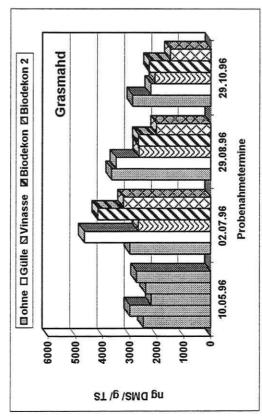
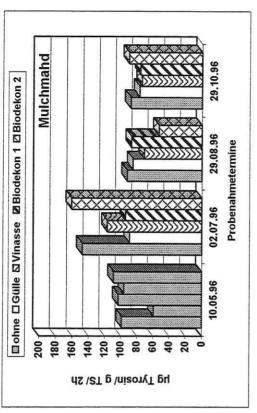
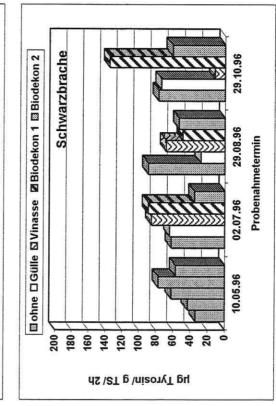
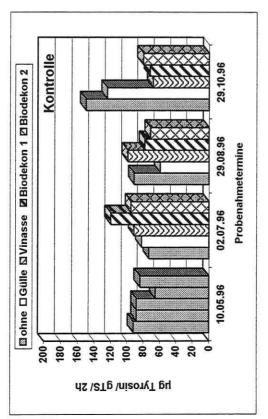





Abb. 15: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die biologische Aktivität des Bodens der Fläche G2 (Auelehm, grundwasserbeeinflußt, Tiefe 0-20 cm), gemessen an der Dimethylsulfoxid-Reduktion (1996)


Abb. 16: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die biologische Aktivität des Bodens der Fläche G3 (Auenlehm, grundwasserfern, 0-20 cm Tiefe), gemessen an der DMSO-Reduktion (1996)


Im zweiten Versuchsjahr wurde auf den Einsatz von Gülle und Vinasse verzichtet, dafür die Aufwandmengen von Biodekon erhöht und eine Veränderung des pH-Wertes durch eine Kalkung angestrebt, da Untersuchungen von Kludas (1995) eine gute Wirksamkeit von Biodekon im leicht basischen Bereich postulieren. Die Fläche G1 und G3 wurde in die Bestimmung der DMSO nicht mehr einbezogen. Zur Prüfung des Einflusses der eingesetzten organischen Substrate wurde die Fläche G2 mit ihrer höchsten Belastung als ausreichend angesehen, um den Versuchsaufwand zu minimieren.

Die Ergebnisse der DMSO-Reduktion der Fläche G2 (Tab. 5/ A 1) lassen erkennen, daß zwar die Werte der biologischen Aktivität mit Ausnahme der Schwarzbrache höher als im Vorjahr waren, aber auch der Einsatz von Kalk und höheren Biodekonkonzentra-tionen zu keiner Aktivitätssteigerung gegenüber der Kontrolle geführt haben.

Die Ergebnisse der Proteaseaktivität (Tab. 9-11/ A 1) ähnelten denen der DMSO-Reduktion. Der im ersten Versuchsjahr festgestellte Rückgang dieses Enzyms auf Schwarzbrache zeigte sich ebenfalls im zweiten Versuchsjahr. Das Fehlen der Pflanzenrückstände und der Wurzelexsudate sind dafür als Ursachen anzusehen, da kein proteinhaltiges Material anfällt. Die einmalige Biodekongabe reicht für eine Erhöhung der Aktivität nicht aus. Veränderungen im Proteasegehalt sind den Behandlungen und der Nährstoffversorgung nicht zuzuordnen. Die Werte liegen nach der Nährstoffgabe teilweise unter denen der unbehandelten Kontrollen. Veränderungen der Enzymaktivitäten während des Vegetationsverlaufes erfolgen unabhängig von der Nährstoffzuführung auch auf den unbehandelten Parzellen.

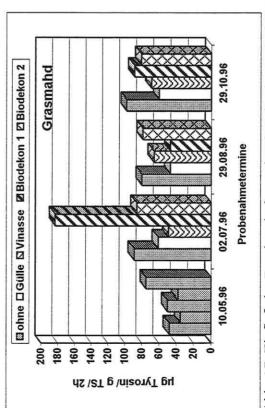
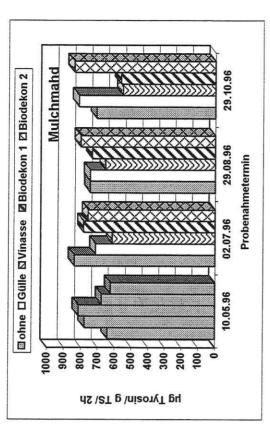
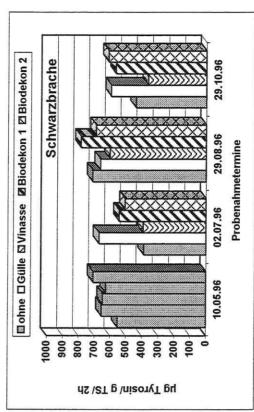
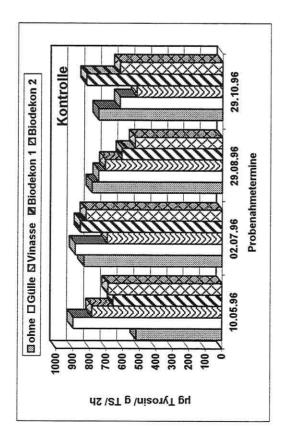





Abb. 17: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die biologische Aktivität des Bodens der Fläche G1 (Ufer Mulde, Sandboden, Tiefe 40-60 cm), gemessen an der Proteaseaktivität (1996)

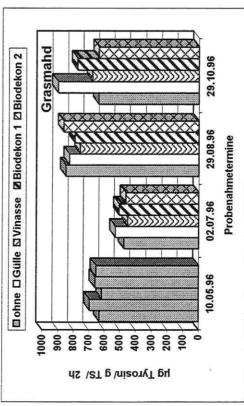
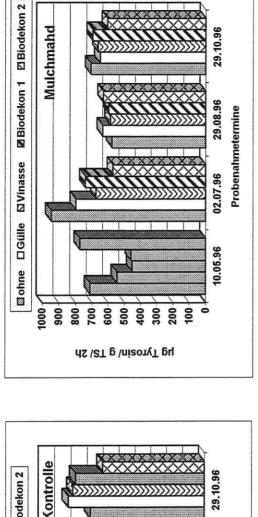
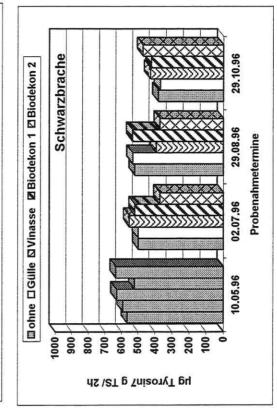
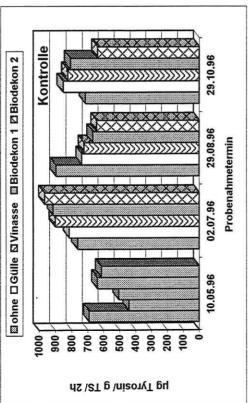





Abb. 18: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die biologische Aktivität des Bodens der Fläche G2 (grundwasserbeeinflußt, 0-20 cm Tiefe), gemessen an der Proteaseaktivität (1996)

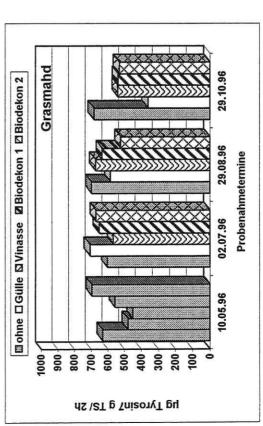


Abb. 20: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die biologische Aktivität des Bodens der Fläche **G3** (grundwasserfern, 0-20 cm Tiefe), gemessen an der Proteaseaktivität (1996)

5.4.2 Einfluß der Nährstoffversorgung auf den β-HCH-Gehalt des Bodens

Die Zufuhr organischer Substanz sollte die mikrobielle Aktivität des Bodens erhöhen und den Abbau von β-HCH im Cometabolismus verstärken oder doch wenigstens ermöglichen. Die zugeführten organischen Substanzen führten zu keiner sichtbaren Erhöhung der biologische Aktivität des Bodens, wie die geprüften Parameter gezeigt haben. Diese Parameter stellen jedoch nur einen kleinen Ausschnitt aus den mikrobiellen Leistungen im Boden dar. Daneben können aber noch Aktivitäten auftreten, die z.Z. noch nicht erfaßbar sind.

Der Erfolg von Maßnahmen kann daher nur an einer Verminderung des Belastungsgrades des Bodens gemessen werden. Aus diesem Grunde wurden die gleichen Bodenproben auf ihren β -HCH-Gehalt untersucht.

Wie bei der biologischen Aktivität erfolgte zunächst eine Erfassung der Variabilität der Bodenbelastung auf einer Fläche (G2). Von 6 unterschiedlich auf der Versuchsfläche liegenden Parzellen wurden jeweils 6 über die Fläche verteilte Einstiche auf ihren β-HCH-Gehalt untersucht. Die Ergebnisse sind in Abb. 20 wiedergegeben.

Es wird deutlich, daß die Belastung sehr inhomogen auf der Versuchsfläche verteilt ist. Diese Inhomogenität tritt auf engem Raum auf, wenn man die Lage der Parzellen auf dem Versuchsplan in Abb. 9 vergleicht und die β -HCH-Werte der einzelnen Einstiche betrachtet. Parzelle 11 liegt der Parzelle 1 gegenüber in einer Entfernung von 2m.

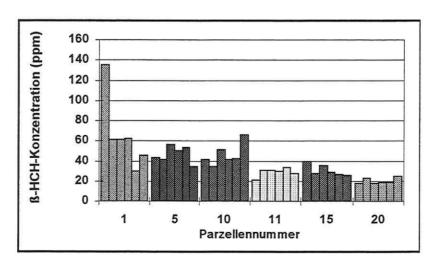


Abb. 20: Variabilität der β -HCH-Belastung auf der Versuchsfläche G2 (s % = 56)

In Abb. 21 sind die Ergebnisse zum Verlauf der β -HCH-Belastung während des Versuchszeitraumes 1996-1997 der unterschiedlich bewirtschafteten Prüfglieder ohne Nährsubstratzugabe dargestellt. Sie lassen noch einmal deutlich die hohe Variabiltität der Kontamination auf allen drei Flächen bei Versuchsanlage, mit Ausnahme der Schwarz-brache der Fläche G1, erkennen. Die β -HCH-Belastung war auf dieser Fläche in der Tiefe von 40-60 cm relativ homogen. Schon am ersten Probenahmetermin nach der Substrataufbringung differierten die Ergebnisse sehr stark. Zum Probenahmetermin im August hatte das β -HCH auf der Fläche G1 die höchsten Werte erreicht. Der Anstieg erfolgte 1996 bei allen Behandlungen gleichermaßen, wobei die Kontrolle (Aufwuchs ohne Schnitt) die niedrigsten Werte aufwies. Die hohen HCH-Werte auf der Schwarzbrache und der Fläche mit abgefahrenem Grünschnitt lassen sich nicht interpretieren. Eine Mobilisierung des β -HCH bei der Erzeugung der Schwarzbrache durch die Zerstörung der Pflanzenwurzeln und damit Bereitstellung leicht mineralisierbaren Materials, mit der eine erhöhte Freisetzung von β -HCH verbunden sein könnte, gilt für die hohen Werte bei Grasmahd nicht. Auch war in den mikrobiellen Parametern kein Anstieg der Aktivität nachzuweisen.

Auf den Flächen G2 und G3 streuten die Anfangswerte im Mai schon sehr stark. Zwischen den Bewirtschaftungsmaßnahmen ergaben sich während des Versuchszeitraumes 1996 keine eindeutigen Unterschiede. Die im Juli und August gemessenen β-HCH -Werte lagen etwas unter der Kontrolle. Im Oktober hatten sich die Unterschiede wieder ausgeglichen. Die außerordentlich hohen β-HCH-Gehalte im August bei der Mulchmahd sind in der hohen Variabilität der Belastung zu suchen. Ein Zusammenhang mit der Bewirtschaftungsart ist nicht anzunehmen, da bei früheren und späteren Terminen dieser Effekt nicht mehr auftrat.

Die anfänglich hohe Streuung der β -HCH -Werte auf den Prüfgliedern der Fläche G3 trat während des Versuchszeitraumes nicht mehr so stark in Erscheinung. Im Oktober war auf allen Prüfgliedern ein Anstieg der β -HCH-Gehalte festzustellen.

Zu Beginn des zweiten Versuchsjahres waren die β-HCH-Werte auf allen Kontrollflächen der unterschiedlichen Bewirtschaftungsformen sehr niedrig. Zwischen den Prüfgliedern bestanden kaum Unterschiede. Nach einem anfänglich leichten Anstieg der Werte schwankten die Gehalte mit ca. 2 ppm um die Kontrolle. Auf der Fläche G2 differenzierten sich die Prüfglieder während des Versuchszeitraumes ebenfalls kaum.

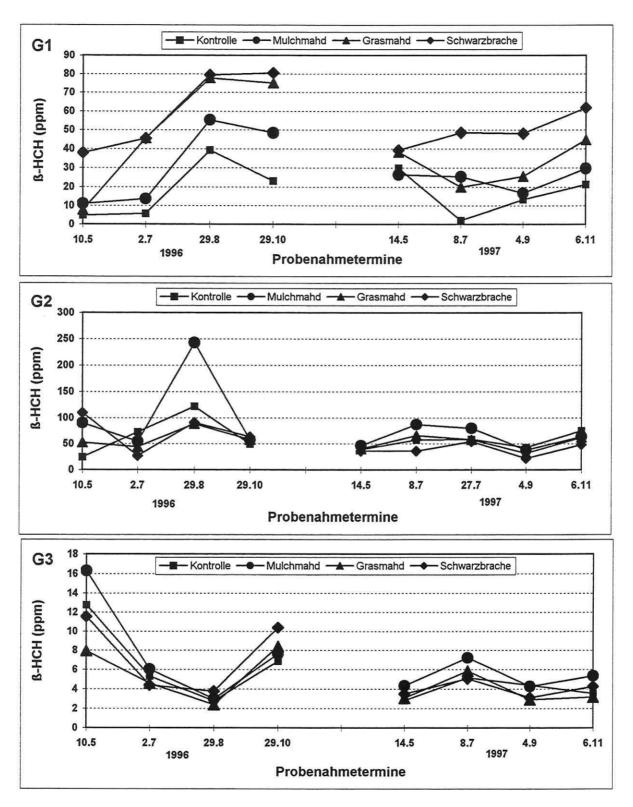


Abb. 21: Einfluß der Bewirtschaftung der Flächen G1-G3 auf den ß-HCH-Gehalt des Bodens während der Vegetationszeit

Im zweiten Versuchsjahr waren die β-HCH-Gehalte auf der Fläche G1 bei Schwarzbrache und auf der nach der Grasmahd beräumten Fläche im November gegenüber dem Ausgangsniveau angestiegen, erreichten aber nicht die Werte von 1996. Zwischen den Behandlungen bestanden zwar Unterschiede, die aber zu keiner Verminderung der Belastung geführt haben, sondern in der Regel über der Kontrolle lagen.

Die Zugabe der organische Substanzen bewirkte auf den unterschiedlich bewirtschafteten Parzellen der Fläche G1 (Abb. 22) mit Ausnahme eines Termines bei der Fläche "Grasmahd" keine Verringerung der β -HCH-Belastung. Auf allen vier Blöcken ist während des Versuchszeitraumes 1996 ein Anstieg unabhängig von der Substratzugabe erfolgt. Auf der Schwarzbrache stieg der β -HCH-Gehalt im August gegenüber der Parzelle ohne Nährstoffgabe stark an.

Mit Ausnahme des Untersuchungstermines im August auf dem Block "Mulchmahd" der Fläche G2 bestanden zwischen den einzelnen Prüfgliedern der Flächen G2 (Abb. 23 a, b) und G3 (Abb. 24) während des Versuchszeitraumes 1996 keine Unterschiede im β-HCH-Gehalt in Abhängigkeit von der Nährstoffversorgung. Anstiege und Abnahmen erfolgten gleichsinnig. Es konnte im 1. Versuchsjahr auf allen drei Versuchsflächen keine dekontaminierende Wirkung der zugesetzten Substrate festgestellt werden.

Im zweiten Versuchsjahr erfolgte eine Änderung der Nährstoffzugabe. Die Biodekonmenge wurde erhöht und auf der ehemaligen Gülleparzelle Kalk zur Veränderung des pH-Wertes ausgebracht. Neben der reinen Biodekongabe in erhöhten Aufwandmengen erfolgte auch die Kombination Kalk/Biodekon.

Zu Versuchsbeginn 1997 hatten sich auf der Fläche G1 die β-HCH-Gehalte im Bereich zwischen 20 und 30 ppm nivelliert. Sie waren niedriger als im Oktober 1996. Während des Versuchszeitraumes 1997 traten Schwankungen im Kontaminationsgrad auf, im November lagen die Werte teilweise höher, teilweise in der Höhe des Anfangsbereiches. Zwischen der Höhe der Belastung im Oktober 1996 und im Mai 1997 bestanden auf der Fläche G2 im Gegensatz zu den Flächen G1 und G3 nur geringe Unterschiede. Auf beiden Flächen konnten während des gesamten Versuchszeitraumes 1997 kaum Unterschiede zwischen den Prüfgliedern festgestellt werden.

Die erhöhte Biodekongabe, aber auch die Kalkung führten im zweiten Untersuchungsjahr zu keiner Verminderung des β -HCH-Gehaltes im Boden.

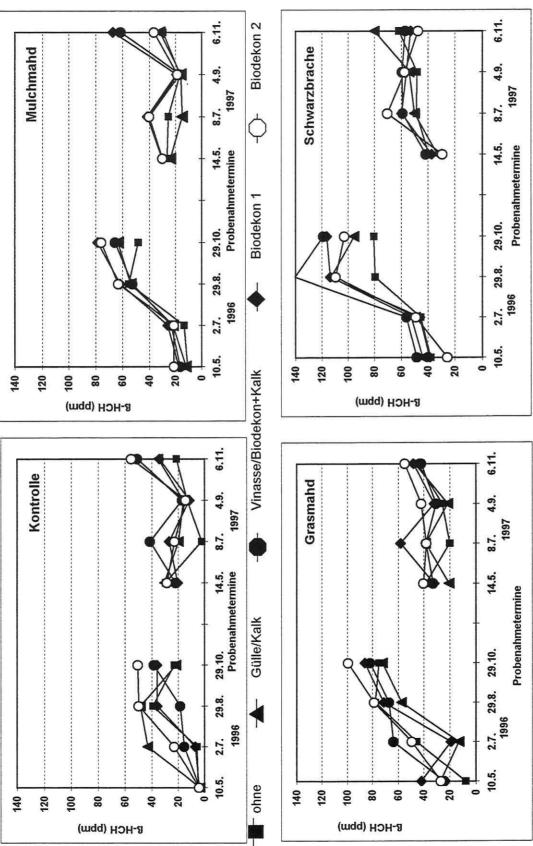
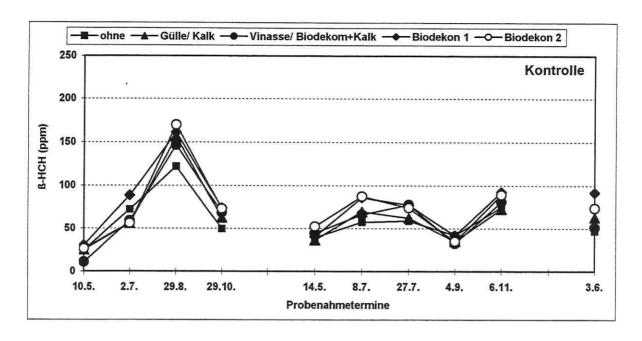



Abb. 22: ß-HCH-Gehalt in Abhängigkeit von Bewirtschaftung und Art des Nährsubstrates auf der Fläche G1 in 40-60 cm Bodentiefe

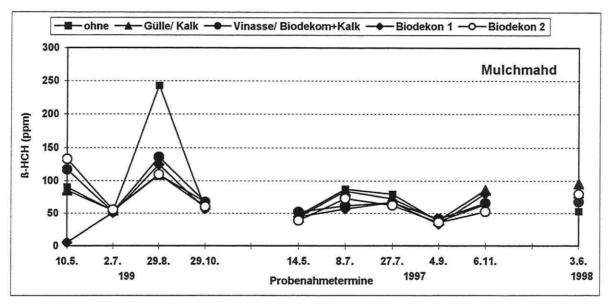
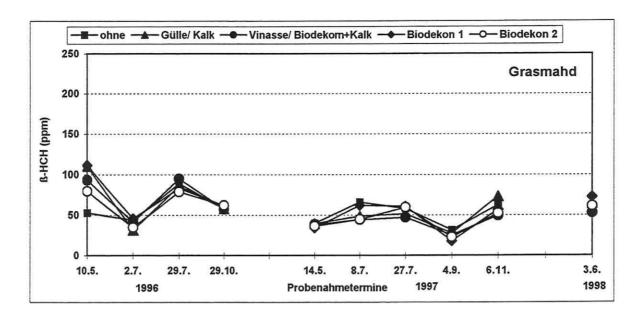



Abb. 24a: β-HCH-Gehalt in Abhängigkeit von Bewirtschaftung und Art des Nährsubstrates auf der Fläche **G3** in 0-20 cm Bodentiefe

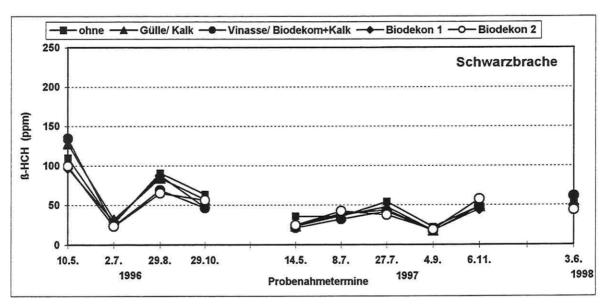


Abb. 24b: ß-HCH-Gehalt in Abhängigkeit von Bewirtschaftung und Art des Nährsubstrates auf der Fläche **G3** in 0-20 cm Bodentiefe

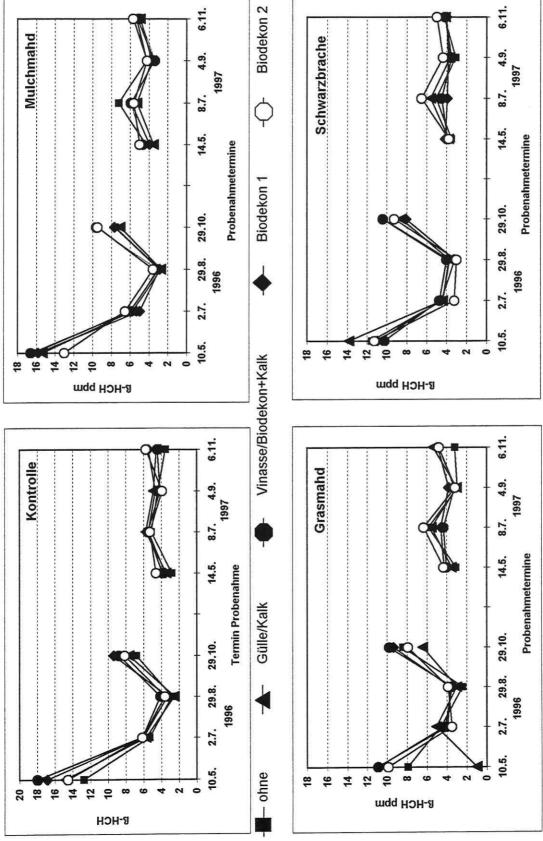


Abb. 24: B-HCH-Gehalt in Abhängigkeit von Bewirtschaftung und Art des Nährsubstrates auf der Fläche G3 in 0-20 cm Bodentiefe

6. Laborversuche

Unter natürlichen Bedingungen beeinflussen eine Reihe von Faktoren die mikrobielle Aktivität und den Abbau organischer Substanzen im Boden. Das mikrobielle Leistungs-vermögen ist neben den Nährstoffverhältnissen noch von einer Reihe weiterer Faktoren, wie Wassergehalt des Bodens, Durchlüftung, Acidität und Temperatur abhängig. In Laborversuchen können diese Bedingungen variiert oder konstant gehalten werden.

In den durchgeführten Laborversuchen wurde die Wirkung von Biodekon in verschiedenen Aufwandmengen, der Einfluß von Vinasse und Gülle sowie die Veränderung des pH-Wertes auf den Abbau von β-HCH im Boden geprüft.

6.1 Material und Methoden

Zur Durchführung von Laborversuchen wurde Boden der Fläche G2 aus der Bodentiefe 0-40 cm eingesetzt. Der Boden war auf 2mm gesiebt. Für die einzelnen Versuche wurden 10 bzw. 100g Boden eingesetzt.

Dem Boden wurde Biodekon, Vinasse und Gülle sowie Kalk entsprechend der Versuchsfrage zugesetzt und die Bodenfeuchte auf 60% der maximalen Wasserkapazität eingestellt. Die Inkubationstemperatur betrug 25°C.

Als Inkubationsgefäße dienten Edelstahlzylinder von 4 cm Höhe und einem Durchmesser von 3 cm, sowie Inkubationsgefäße aus Kunststoff mit einem Kunststoffeinsatz.

Die geringe Größe der Edelstahlzylinder wurde gewählt, um die gesamte Bodenmenge auf β-HCH zu analysieren und damit die Streuung der Ergebnisse zu vermindern. Die mit Zusatzstoffen versehenen Edelstahlzylinder wurden locker mit Aluminiumfolie verschlossen und der Feuchtigkeitsverlust wöchentlich ergänzt.

Die Inkubationsdauer betrug bis zu 30 Tage. Die Probenahmen erfolgten nach unterschiedlichen Zeitabständen (3, 10, 20, 30 Tagen). Es wurde mit 5 Wiederholungen earbeitet. Dazu mußte eine genügend hohe Anzahl Inkubationsgefäße angesetzt werden.

6.2 Ergebnisse

Einfluß von Biodekon und Vinasse/Gülle auf den β-HCH-Abbau:

Im ersten Laborversuch wurden Edelstahlzylinder mit einer Bodeneinwage von 10 g Boden inkubiert. Der Boden war mit 15 ppm β-HCH belastet. Entsprechend der Boden-menge

erfolgte die Nährstoffzugabe in einer den Freilandversuchen entsprechenden Biodekon-, Vinasse- und Güllmenge.

Die Ergebnisse in Abb. 25 zeigen, daß sich der β -HCH-Gehalt bis zum 20. Versuchstag kaum verändert hat. Ein Trend zur β -HCH-Abnahme liegt sowohl bei der unbehandelten als auch dem mit Biodekon versetzten Prüfglied vor. Die vorhandenen Unterschiede sind sehr gering und lassen keine statistische Sicherung zu.

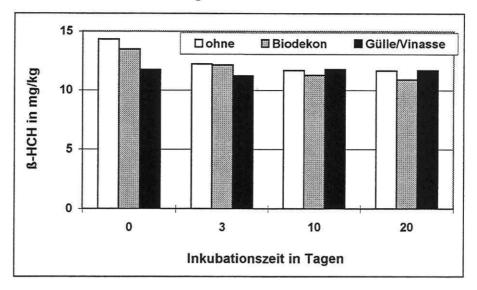


Abb. 25: Einfluß organischer Zusätze auf den Abbau von β-HCH im Boden unter Laborbedingungen (60 %Wk_{max} und 25°C)

Einfluß der Bodenmenge auf den β-HCH-Abbau:

Für die Untersuchung von belasteten Bodenproben ist es günstiger, die gesamte Bodenmenge einer Behandlung zu untersuchen. Aliquote Teile einer Probe können immer zu starken Streuungen führen, da auch hier die Variabilität des Kontaminationsgrades sehr hoch sein kann. Andererseits führen zu geringe Bodenmengen zu Ungenauigkeiten bei der Substrateinwaage. Aus diesem Grund wurden zwei verschiedene Bodenmengen mit und ohne mit Substratzugabe in unterschiedlichen Inkubationsgefäßen auf ihren β-HCH-Gehalt nach gestaffelten Inkubationszeiten verglichen.

Der eingesetzte Boden wies eine β-HCH-Belastung von 35 ppm auf. Das Biodekon wurde in einer Aufwandmenge von 0,3 ml (10 g Boden) und 3,0 ml (100 g Boden) zugegeben. Die Vinasse/Biodekon-Zugabe erfolgte zu gleichen Teilen (0,15 ml+0,15 ml bzw. 1,5 ml +1,5 ml).

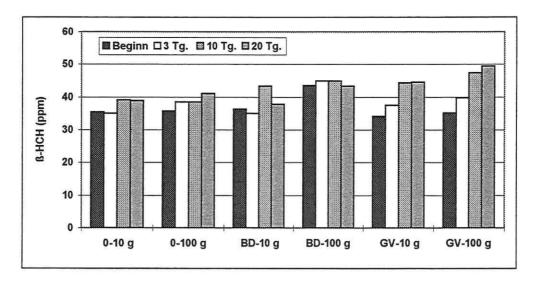


Abb. 26: Vergleich unterschiedlicher Bodenmengen auf den β-HCH-Gehalt nach Inkubation des Bodens mit Biodekon (BD)- und Vinasse/Gülle-Zusatz (G/V)

Die Ergebnisse in Abb. 26 lassen erkennen, daß sich die unterschiedlichen Bodenmengen nicht auf das Analysenergebnis auswirken. Ein Einfluß der zugesetzten organischen Substrate auf den β-HCH-Abbau konnte auch in diesem Laborversuch nicht nachgewiesen werden. Es ist eher die Tendenz eines β-HCH-Anstieges zu verzeichnen.

Einfluß des pH-Wertes auf den β-HCH-Abbau:

Die Untersuchungen von Kludas (1995) zum Abbau von β-HCH bei Einsatz von Biodekon erzielten im stark basischen Bereich besonders gute Ergebnisse. Im Laborversuch wurde daher der pH-Wert des Auenbodens (pH 5,28) mit Hilfe einer Kalkgabe von 3g (K1) und 6g (K2) zu 10 g Boden auf pH 7,03 bzw. 7,46 erhöht. Die Kalkgabe erfolgte mit und ohne Biodekon (BD). Der Boden wurde 30 Tage in Edelstahlzylindern bei 20° C und 60 % WK_{max} inkubiert.

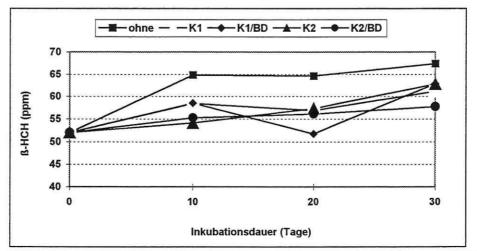


Abb. 27: Wirkung von Kalk in Kombination mit Biodekon den Abbau von β-HCH

Tabelle 11: Veränderungen des pH-Wertes nach Zugabe von Kalk und Biodekon während der Versuchszeit

Zusätze	0 Tg.	10 Tg.	20 Tg.	30 Tg.
Ohne	5,28	5,13	5,25	5,59
Kalk 1	7,03	7,27	7,47	7,47
Kalk1/BD	7,39	7,51	7,86	7,89
Kalk 2	7,46	7,51	7,70	7,65
Kalk 2/BD	7,57	7,64	7,87	7,93

Mit der zum Versuchsbeginn zugeführten Kalkmenge erreichte der Boden der einzelnen Prüfglieder die in Tab. 11 aufgeführten Werte. Während des Versuchszeitraumes war eine weitere Erhöhung des pH-Wertes zu verzeichnen.

Nach Zugabe von Kalk und Biodekon wurde β-HCH in parellel angesetzten Boden-proben bestimmt. Die Ergebnisse in Abb. 28 zeigen einen deutlich Anstieg des β-HCH-Gehalt zum 10. Inkubationstag auf der unbehandelten Variante. Das gekalkte Prüfglied (K1) folgte auf einem niedrigeren Niveau der unbehandelten Variante. Kalk1 mit Biodekon (K1/BD) wies am 20. Inkubationstag einen deutlichen Rückgang des β-HCH-Gehaltes auf. Am 30. Tage wurden aber wieder höhere Werte gefunden. Die Prüfglieder K1, K2 und K2/BD wiesen nach 10 Inkubationstagen einen Rückgang des β-HCH auf. Während des Versuchszeitraumes von 30 Tagen traten nur geringfügige Veränderungen auf. Am Ende der Versuchszeit bestanden, mit Ausnahme des Prüfgliedes K2/BD, zwischen den einzelnen Varianten kaum noch Unterschiede.

Eine eindeutige Wirkung der Kalkung in Kombination mit Biodekon auf den Abbau des β-HCH konnte auch unter diesen Bedingungen nicht nachgewiesen werden.

7. Gefäßversuch zur Pflanzenaufnahme von β-HCH

Im Gefäßversuch wurde der Boden/Pflanze - Transfer von vorwiegend β -HCH und ergänzend α -, γ -, δ -HCH sowie HCB an Wildpflanzen untersucht.

Folgende Fragestellung wurde hierbei untersucht:

- Vergleich verschiedener Wildpflanzenarten hinsichtlich des Transfers von β-HCH auf unterschiedlichen Böden
- 2. Verteilung von β-HCH in der Pflanze
- 3. Zeitlicher Verlauf der Aufnahme von β-HCH während des Versuchszeitraumes durch verschiedene Wildpflanzen

7.1 Material

Die im Gefäßversuch verwendeten Böden wurden den drei Standorten (G1, G2, G3) der Muldeaue bei Kleutsch, südlich von Dessau in 0-40 cm Tiefe entnommen (Tab. 12).

Tabelle 12:	Charakterisierung	der im	Gefäßversuch	eingesetzten Böden

Bezeichnung	G1	G2	G3
Corg in %	1,37	4,19	2,46
Nt in %	0,12	0,34	0,24
C/N-Verhältnis	11,42	12,32	10,25
pH-Wert (CaCl)	4,7	5,3	5,7
β-HCH in mg/kg TS	1,57	15,43	2,51

Die Auswahl der Pflanzenarten erfolgte nach verschiedenen Gesichtspunkten. Das Deutsche Weidelgras (*Lolium perenne*) wurde gewählt, da es bevorzugt auf frischen bis feuchten, nährstoffreichen Lehmböden wächst, in der Weide- und Wiesennutzung eingesetzt wird (Steinbach 1996) und auch auf den Auewiesen der Mulde als Futterpflanze angebaut wird. Deshalb ist es von besonderem Interesse, zu prüfen, ob ein Übergang des β-HCH vom Boden in die Pflanze stattfindet. Beifuß (*Artemisia vulgaris*) besitzt eine hohe Pflanzenmasse und Kamille (*Matricaria maritima*) enthält lipophile Zellen, in denen sich β-HCH aufgrund seiner niedrigen Polarität bevorzugt anreichern könnte. Da auf dem Boden der Fläche G1 das Wachstum von Beifuß sowie Kamille ausblieb, wurden die im Boden vorhandenen keimenden Samen der Brennessel (*Urtica dioica*) einbezogen und einmalig untersucht. Die Große Brennessel (*Urtica dioica*) ist eine typische Auepflanze, die besonders an Flußufern und lichten

Weidenauen vorzufinden ist (Wendelberger 1986). Pflanzen, die nicht dem Plan der Versuchsfragestellung entsprachen, wurden gejätet und verblieben im Gefäß.

7.2 Methoden

7.2.1 Anzucht und Ernte der Pflanzen

Der entnommene Boden wurde er luftgetrocknet und auf 2 mm gesiebt. Anschließend wurden insgesamt 123 Kick-Brauckmann Gefäße mit jeweils 8 kg Boden gefüllt und eine Startdüngung eingemischt.

Zusammensetzung der Düngung pro Gefäß:

- 1,0g Ca als CaHPO₄
- 2,7g N als NH₄NO₃
- 2,1g K als K₂SO₄ und 0,5g Mg als K-Mg Lösung
- 3 ml 5%ige FeCl₃ Lösung
- 1,5 ml A-Z Spurenelementlösung nach Hoagland (1933)

Danach erfolgte die Aussaat (Kamille, Weidelgras) von 30 Samen pro Gefäß, die später auf 20 Pflanzen vereinzelt wurden, bzw. das Verpflanzen von jeweils 3 jungen, unkontaminierten Beifußpflanzen. Die Anzahl der jeweiligen Wiederholungen sind in Tab. 13 aufgeführt. Die Feuchtigkeit des Bodens wurde auf 60% der maximalen Wasserkapazität eingestellt und durch tägliches Gießen mit destilliertem Wasser nach Wägung der Gefäße beibehalten.

Die Ernte der Pflanzen erfolgte nach folgenden Zeiträumen (Tab. 13):

Tabelle 13: Probenahmezeiten der Pflanzen im Gefäßversuch

Boden	Pflanze	Anzahl der Wiederholungen	Erntezeit in Wochen
G1	Weidelgras	15	11
	Brennessel *	10	27
G2	Weidelgras	15	11, 22, 33, 71
	Beifuß	18	8, 24, 33, 62, 74
	Kamille	10	12, 17, 31
G3	Weidelgras	15	11
	Beifuß	18	8
	Kamille	10	12

^{*} auf 10 Kamillewiederholungen gewachsen, Beifuß eingegangen

Bodenproben wurden zu Beginn und, aufgrund der starken Durchwurzelung mit Ausnahme des Weidelgrases, am Ende jedes Gefäßversuches entnommen.

7.2.2 Aufbereitung des Pflanzenmaterials

Bei der Ernte wurden die Pflanzen je nach Art in Blatt, Stoppel, Sproß, Blüte und Wurzel getrennt. Letztere wurden sorgfältig gewaschen und an der Luft getrocknet. Danach erfolgte die grobe Zerkleinerung und Portionierung repräsentativer 25 g - Proben sowie die Bestimmung der Trockenmasse (105°C, 24 h). Die portionierten Proben wurden bei -21°C gelagert.

7.2.3 Chemische Analyse des β-HCH

Zur Extraktion von HCH und HCB wurden jeweils 25g der Pflanzenproben im Mazerierungsgefäß mit so viel entionisiertem Wasser versetzt, daß sich einschließlich des Gehaltes in der Pflanze 50 ml Wasser ergaben. Nach 1 h Standzeit wurden 100 ml Aceton zugegeben (Specht und Tilkes 1980; 1985) und die Mischung 3 min bei 20000 U/min (Virtis 2000, Firma Schrader) homogenisiert und filtriert. Danach folgte die flüssig/flüssig Extraktion des Filtrats mit Dichlormethan im Verhältnis 2:1 (v/v). Nach der Zugabe von NaCl zur Absetzung der wäßrigen Phase wurde diese verworfen und die organische Phase mit Na₂SO₄ 1h getrocknet, filtriert und das Filtrat bei 30°C Badtemperatur im Rotationsverdampfer auf etwa 2 ml eingeengt.

Nach Verblasen des restlichen Lösungsmittels mit Stickstoff erfolgte die Reinigung mittels Säulenchromatographie an Kieselgel (nach Kampe et al. 1986 modifiziert).

Hierzu wurde Kieselgel 60 4h bei 450°C im Muffelofen erhitzt und nach Abkühlen mit 10% entionisiertem Wasser desaktiviert. Hiervon wurden jeweils 7,5g pro Säule mit 5g Na₂SO₄ überschichtet und mit einem Petrolether/Dichlormethan - Gemisch (4:1) konditioniert. Der Rohextrakt wurde stufenweise in 75 ml des Petrolether/Dichlormethan - Gemisches aufgenommen und auf die Säule aufgetragen. Anschließend wurde mit 50 ml Toluol (Thier und Frehse 1986) eluiert.

Das erhaltene Eluat wurde am Rotationsverdampfer eingeengt, in Isooctan aufgenommen und analog den Bodenproben kapillargaschromatographisch mit EC-Detektion vermessen.

Die Wiederfindungstests wurden an Mais, Weidelgras, Brennessel und Beifuß vorgenom-men. Die Ergebnisse sind aus Tab. 14 zu entnehmen.

Verbindung	Wiederfindung %	Standard- abweichung %	
α-НСН	88,34	7,12	
β-НСН *	92,98	5,06	
v-HCH	91 23	7 96	

81,96

85,7

Tabelle 14: Wiederfindungsraten von HCH und HCB aus Pflanzenmaterial (n = 30)

δ-ΗСΗ

Ergebnisse

7.3

7.3.1 Trockenmassebildung der Wildpflanzen im Gefäßversuch zum Transfer von β-HCH aus dem Boden in pflanzliche Biomasse

15,53

7,61

In Abb. 28 wird die Trockenmassebildung der Wildpflanzen nach 8 Wochen (Beifuß), 11 Wochen (Weidelgras), 12 Wochen (Kamille) und 27 Wochen (Brennessel) auf unterschiedlichen Böden des Muldeauestandortes Kleutsch im Gefäßversuch dargestellt (A 2 Tab. 1).

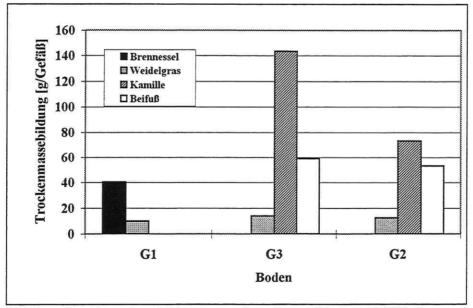


Abb. 28: Mittlere Trockenmassebildung vom Sproß verschiedener Wildpflanzen im Gefäßversuch mit Aueböden vom Standort Kleutsch (Muldeaue, Flächen G1, G2, G3)

Das stärkste Wachstum zeigte die Kamille. Die auf die Trockenmasse bezogenen Erträge dieser Pflanze sind auf G3 (134,48 g) signifikant höher als auf G2 (72,97 g). Die Pflanzenmasse steigt hier nicht mit dem Stickstoffgehalt im Boden, obwohl die Kamille normalerweise stickstoffreichere Böden bevorzugt (Schubert et al. 1983). Der Boden G2

^{*} n = 42

enthält mit 4,19 % C_{org} und 0,34 % N_t mehr Nährstoffe als der Boden G3 mit 2,46 % C_{org} und 0,24 % N_t, auf dem ein höherer Ertrag sichtbar wurde. Möglicherweise wird das Wachstum der Kamille durch den erhöhten Gehalt an β-HCH im Boden G2 gehemmt (G2: 15,43; G3: 2,51 mg/kg TS). Den schädigenden Einfluß von Chlororganika im Boden auf den Ertrag von Pflanzen (Mais) beobachtete auch Heinrich (1997).

Das Wachstum von Kamille und Weidelgras wird von der Bodenart nicht beeinflußt. Insgesamt steigen die Trockenmasseerträge in der Reihenfolge Weidelgras < Brennessel < Beifuß < Kamille. Allgemein war die Kultivierung der meisten Pflanzen (außer Weidelgras und Brennessel) auf dem Boden G1 aufgrund der sandigen Struktur eingeschränkt. Selbst die Hauptpflanzenmasse der Brennessel von 40,39 g wurde erst nach 27 Wochen gebildet.

Zur Untersuchung der Aufnahme von β-HCH im Vegetationsverlauf wurden Weidelgras, Beifuß und Kamille auf dem Boden G2 71, 74 bzw. 31 Wochen kultiviert und Zwischenernten in unterschiedlichen Abständen durchgeführt.

Weidelgras

Zu Beginn des Versuches im April 1996 wurden insgesamt 15 Gefäße angesetzt und die oberirdischen Pflanzenteile nach 11 (Juni) und 22 Wochen (September) geerntet (Tab. 15). Zum letzteren Termin wurde von fünf Wiederholungen die gesamte Pflanzenmasse, einschließlich der Wurzeln, entnommen. Vor der Überwinterung erfolgte Ende November die 3. Zwischenernte vom Sproß der 10 übrigen Gefäße (33 Wochen), wobei die Stoppeln (etwa 5 cm hoch) stehen blieben. Nach 71 Wochen, im August 1997, wurde der Gefäßversuch durch die Entnahme des gesamten Pflanzenmaterials abgeschlossen.

Beifuß

Von insgesamt 15 Gefäßen wurden 5 nach 24 Wochen (September 1996) vollständig geerntet und in Blüte, Blatt, Sproß und Wurzel separiert. Von den übrigen 10 Gefäßen wurden nach 8 (Juni 1996), 33 (November 1996) und 62 Wochen (Juni 1997) Blatt und Sproß abgetrennt und nach 74 Wochen (August 1997) zusätzlich die Wurzeln geerntet.

Kamille

Für die Versuche mit Kamille wurden 10 Gefäße nach 12 (Juli) und 17 (August) Wochen oberirdisch und nach 31 Wochen (November 1996) vollständig geerntet.

Tabelle 15: Mittlerer Trockenmassezuwachs (TM) von Wildpflanzen im Gefäßversuch mit Auenlehm vom Standort Kleutsch (Muldeaue, Fläche G2)

(Gesamt¹ = Summe der oberirdischen Teile)

Pflanze	Versuchsdauer	Teile	n=	TM	σ
	[Wochen]			[g/Gefäß]	
Weidelgras	11	Sproß	15	12,24	7,59
	22	Sproß	15	68,98	9,74
		Stoppel	15	24,39	11,40
		Gesamt ¹	15	93,37	15,75
		Wurzel	5	59,29	8,58
	33	Sproß	10	4,72	1,30
	71	Sproß	10	10,47	0,42
		Stoppel	10	8,98	0,49
		Gesamt ¹	10	19,41	0,84
		Wurzel	10	24,55	5,32
Beifuß	8	Sproß	10	24,01	9,46
		Blatt	10	28,73	7,9
		Gesamt ¹	10	50,58	15,52
	24	Sproß	10	136,84	13,64
		Blatt	10	42,14	4,31
		Blüte	10	44,95	7,44
		Gesamt ¹	10	221,15	18,04
		Wurzel	5	64,86	7,28
	33	Sproß	10	7,26	7,31
		Blatt	10	10,87	5,4
		Gesamt ¹	10	18,13	11,92
	62	Sproß	10	12,66	7,19
		Blatt	10	21,71	7,94
		Gesamt ¹	10	34,37	13,89
	74	Sproß	10	12,36	2,03
		Blatt	10	14,23	3,63
		Gesamt ¹	10	26,59	5,00
		Wurzel	10	22,72	4,78
Kamille	12	Sproß	10	24,95	11,81
		Blatt	10	49,99	18,98
		Gesamt ¹	10	74,94	30,12
	17	Sproß	10	83,91	4,28
		Blatt	10	60,72	24,57
		Blüte	10	46,3	3,37
		Gesamt ¹	10	190,93	23,22
	31	Sproß	10	8,52	5,58
		Blatt	10	11,58	8,04
		Blüte	10	8,35	1,34
		Gesamt ¹	10	24,27	17,75
		Wurzel	10	12,84	3,21

Die höchsten Erträge an oberirdischer Tockenmasse wurden erwartungsgemäß während der Hauptvegetationsphase vom Juni bis August 1996 gebildet. Sie betrugen für Weidelgras 93,37 (22 Wochen), für Beifuß 221,15 (24 Wochen) und für Kamille 190,93 g/Gefäß (17 Wochen).

Während der gesamten Versuchszeit bildete Weidelgras mit 129,7 g (oberirdisch) und 154,3 g (Gesamtpflanze) Trockenmasse zum Beifuß fast gleiche Mengen mit 129,7 g (oberirdisch) und 152,4 g (Gesamtpflanze). Der Trockenmasseertrag von Kamille lag mit 290,1 g (oberirdisch) und 303,0 g (Gesamtpflanze) signifikant höher.

7.3.2 Einfluß des β-HCH-Kontaminationsgrades des Bodens auf die Aufnahme von β-HCH durch Wildpflanzen

Zum Vergleich der Aufnahme von β -HCH durch Wildpflanzen aus unterschiedlich kontaminierten Böden (G1, G2, G3) wurden Weidelgras, Beifuß und Kamille im Gefäßversuch kultiviert. Wie bereits beschrieben, wuchsen auf dem sandigen Boden G1 anstelle von Kamille und Beifuß natürlich vorhandene Brennesseln.

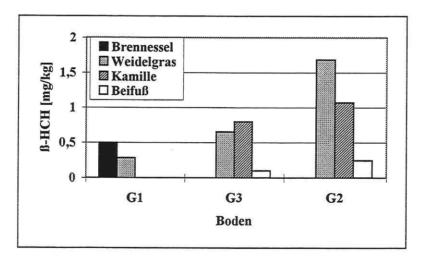


Abb. 29: Konzentration von β-HCH im Sproß verschiedener Wildpflanzen im Gefäßversuch mit Aueböden vom Standort Kleutsch (Muldeaue, Flächen G1, G3, G2, geordnet nach steigendem β-HCH-Gehalt im Boden)

Der oberirdische Teil der Pflanzen wurde nach 8 (Beifuß), 11 (Weidelgras), 12 (Kamille) bzw. 27 Wochen (Brennessel) geerntet und der Gehalt an HCH und HCB bestimmt. In allen Pflanzen konnte eine Aufnahme des immobilen und gering wasserlöslichen (0,3 mg/l) β-HCH nachgewiesen werden (Abb. 29; A 3 Tab. 1).

Der Grenzwert für Futtermittel von 0,01 mg/kg (Futtermittelverordnung 1997) wurde um ein Vielfaches überschritten. Eine Kontamination von äußerlich anhaftenden Bodenteilchen, die z. B. durch Regen hochgeschleudert wurden, kann im Gefäßversuch ausgeschlossen werden. Vielmehr erfolgt der Transport des Schadstoffs mit der Wasseraufnahme auf passivem Wege von der Wurzel in die Pflanze (Topp 1986, Trapp und Mc Farlane 1995).

Auf die Aufnahme von α -, γ -, δ -HCH und HCB durch die Pflanzen wird hier aufgrund nicht relevanter Konzentrationen nicht näher eingegangen. Die Gehalte und Standardabweichungen sind den entsprechenden Tabellen im Anhang zu entnehmen (A 3 Tab. 2 - 5).

Durch die Brennessel wurden, trotz der geringsten Bodenkontamination (G1: 1,57 mg/kg β-HCH), 0,5 mg/kg TS β-HCH aufgenommen. Im Vergleich dazu wurde beim Weidelgras (G1) nur 0,28 mg/kg TS nachgewiesen. Möglicherweise spielte die längere Wachstumszeit der Brennessel (27 Wochen) gegenüber der des Weidelgrases (11 Wochen) eine Rolle. Die Konzentration an β-HCH im Gras nimmt mit steigendem Gehalt im Boden (G1: 1,57 < G3: 2,51 < G2: 15,43 mg/kg TS) von 0,28 über 0,65 auf 1,68 mg/kg TS signifikant zu. Ebenso verhalten sich Kamille (G3: 0,80; G2: 1,07 mg/kg TS) und Beifuß (G3: 0,10; G2: 0,25 mg/kg TS).

Obwohl Beifuß die geringste Menge an β-HCH aufnahm, weist dies auf einen erheblichen Transfer aus dem Boden hin, da die Expositionszeit nur 8 Wochen betrug und, anstatt einer Aussaat (bei Weidelgras und Kamille), junge, unkontaminierte Pflanzen eingesetzt wurden. Eine vorzeitige Kontamination des Samenkorns und Keimlings beim Durchdringen des Bodens (Schroll 1989) kann somit vollkommen ausgeschlossen werden. Demzufolge ist der Gehalt ausschließlich auf einen Transport durch die Wurzel in die Pflanze zurückzuführen.

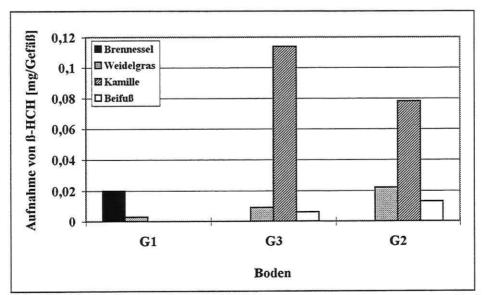


Abb. 30: Gehalt an β-HCH in mg pro Gefäß im Sproß verschiedener Wildpflanzen im Gefäßversuch mit Aueböden vom Standort Kleutsch (Muldeaue, Flächen G1, G3, G2, geordnet nach steigendem β-HCH-Gehalt im Boden)

Für den Transport von β -HCH in die Pflanze gibt die Schadstoffaufnahme pro Gefäß eine höhere Aussagekraft, da hier die unterschiedlichen Erträge an Pflanzenmasse berücksichtigt werden (Abb.30, A 3 Tab.1).

Die β-HCH-Aufnahme bezogen auf die gesamte Trockenmasse eines Gefäßes steigt für Weidelgras signifikant in der Reihe 0,003 mg (G1) < 0,009 mg (G3) < 0,021 mg (G2) mit steigender β-HCH-Konzentration im Boden (Abb.30). Dieser Abhängigkeit folgt auch Beifuß mit 0,013 (G3) und 0,006 mg (G2). Durch die Brennessel wurden aus dem Boden 0,02 mg in den Sproß transportiert. Die größte Menge an β-HCH wurde, bedingt durch die stärkste Bildung von Pflanzenmasse, in Kamille nachgewiesen. Im Gegensatz zu Weidelgras und Beifuß wurde auf G3 (0,114 mg) mehr aufgenommen als auf G2 (0,078 mg).

7.3.3 Verlauf der \(\beta \)-HCH-Aufnahme im Versuchszeitraum

Weidelgras

Die nach jeder Zwischenernte jeweils neu gebildeten oberirdischen Pflanzenteile nahmen unterschiedliche Mengen an β-HCH auf (Abb. 31, Tab. 15; A 3 Tab. 6).

Nach jeder Ernte änderte sich die Aufnahme von β-HCH signifikant von 1,68 (11 Wochen) über 1,87 (22 Wochen) und 0,89 (33 Wochen) auf 1,88 mg/kg TS (71 Wochen). Die Ursache für die deutlich verringerte Aufnahme nach 22 Wochen liegt in dem geringen Trockenmassezuwachs des Weidelgrases (4,72 g/Gefäß) von September bis November 1996 (Abb. 31, Tab. 15).

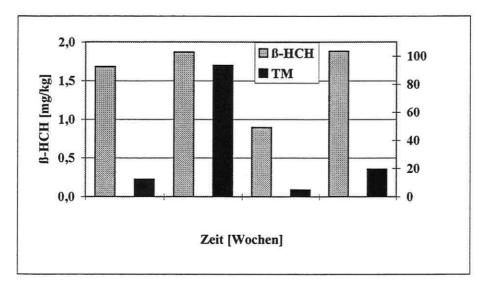


Abb. 31: Mittlerer Trockenmassezuwachs und Konzentration von β-HCH im Sproß von Weidelgras im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2)

Beifuß

Die β-HCH-Gehalte der nach 8 und 24 Wochen geernteten oberirdischen Pflanzenteile waren mit 0,26 bzw. 0,27 mg/kg TS in ähnlicher Höhe (Abb. 32, Tab. 15; A 3 Tab. 7) bei nach 24 Wochen signifikant höherer Trockenmassebildung. Dieser Massezuwachs führte vermutlich deshalb zu keiner signifikanten Erhöhung der Konzentration im Sproß nach 24 Wochen, da das aufgenommene β-HCH im zunächst unkontaminierten, gepflanzten Beifuß verdünnt wurde.

Nach 33 Wochen (2. Schnitt) hingegen zeigten die Pflanzen eine Erhöhung bezüglich des Transports von β -HCH in den Sproß auf 0,75 mg/kg TS. Nach 62 Wochen (3. Schnitt) erfolgte eine Abnahme auf 0,21 mg/kg TS und bis zum Versuchsende der Anstieg auf 0,53 mg/kg TS.

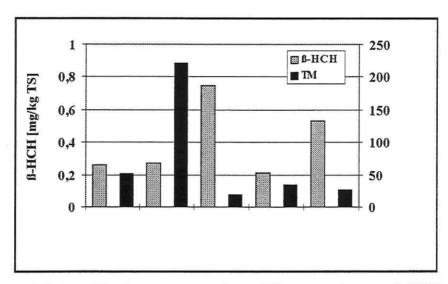


Abb. 32: Mittlerer Trockenmassezuwachs und Konzentration von β-HCH im Sproß von Beifuß im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2) (* 5 Gefäße vollständig geerntet)

Kamille

Die Konzentration an β -HCH im Sproß betrug zur ersten Ernte nach 12 Wochen 1,07 mg/kg. Diese erhöhte sich in den nach 17 Wochen neu ausgetriebenen Sproßteilen auf 1,55 und betrug nach 17 Wochen 1,35 mg/kg TS (Abb. 33, Tab. 15; A 3 Tab.8).

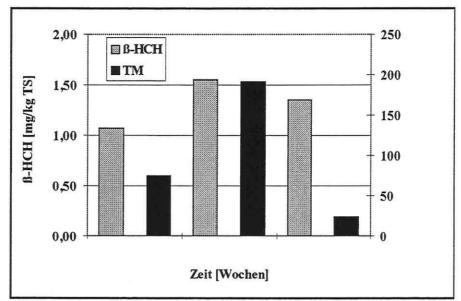


Abb. 33: Mittlerer Trockenmassezuwachs und Konzentration von β-HCH im Sproß von Kamille im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2)

Zur Betrachtung der β-HCH-Aufnahme pro Gefäß während der Versuchszeit wurden die oberirdischen Pflanzenteile einbezogen und zum Sproß zusammengefaßt. Alle ermittelten Entzüge wurden bis zum jeweiligen Zeitpunkt summiert (Abb. 34-36).

Für den zeitlichen Verlauf der Aufnahme von Schadstoffen ergaben sich zwei prinzipielle Formen, eine lineare (Beifuß, Abb. 35) und logaritmische (Weidelgras, Abb. 34 und Kamille, Abb. 36) Abhängigkeit.

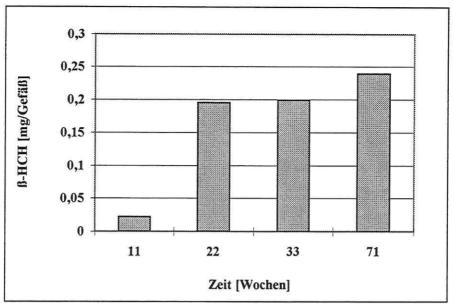


Abb. 34: Gesamtaufnahme von β-HCH in mg pro Gefäß durch Sproß von Weidelgras im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2)

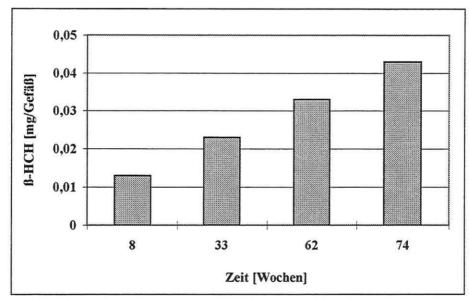


Abb. 35: Gesamtaufnahme von β-HCH in mg pro Gefäß durch Sproß von Beifuß im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2)

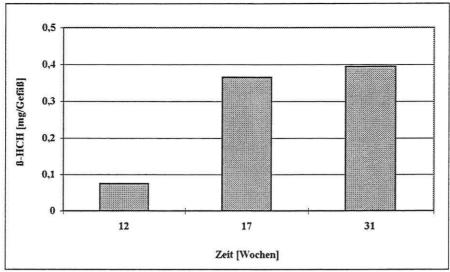


Abb. 36: Gesamtaufnahme von β-HCH in mg pro Gefäß durch Sproß von Kamille im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2)

Bei einem gegebenen Pestizid ist der Einfluß der Versuchszeit auf die Konzentration in der Pflanze von der jeweiligen Spezies abhängig (Nash 1974). Für das Verhalten von Weidelgras und Kamille wurden in bisherigen Untersuchungen verschiedene Ursachen gefunden. Durch ein starkes Pflanzenwachstum kommt es zu einem Verdünnungseffekt, wenn im Verhältnis dazu die Schadstoffaufnahme geringer ist. Der Absolutwert nimmt hierbei, wie auch aus den Abbildungen 34 und 35 ersichtlich, jedoch mit der Versuchszeit zu (Schroll 1989, Wheeler 1967). Weiterhin können Metabolisierungsreaktionen in der Pflanze auftreten, durch die sich der Gehalt an β-HCH verringern würde (Kloskowski 1981, Briggs et al. 1982 a, O'Connor et al.1991).

7.3.4 Verteilung von β-HCH in verschiedenen Pflanzenteilen

Zur Bestimmung der Verteilung von β-HCH in oberirdischen Pflanzenteilen wurden Beifuß (G2, G3) und Kamille (G2, G3) in Blatt, Sproß und Brennessel (G1) zusätzlich in die Blüte separiert.

In der Blüte der Brennessel wurde ein Gehalt von 0,24 mg/kg TS bestimmt, der signifikant geringer ist als der in Sproß (0,69 mg/kg TS) und Blatt (0,5 mg/kg TS) (Abb. 37; A 3 Tab.2). Auch die Verteilung, bezogen auf den Trockenmasseertrag pro Gefäß, beträgt für Blatt und Sproß 0,009 mg/Gefäß, für die Blüte ist sie mit 0,002 mg/Gefäß signifikant geringer.

In früheren Untersuchungen wurde berichtet, daß Konzentration und Verteilung chlorierter Kohlenwasserstoffe in Pflanzen abhängig von der Pflanzenart sind (Lichtenstein 1959, 1965,

Karanth et al. 1982). Eine im Vergleich zu Brennessel verschiedene Verteilung wird bei der Betrachtung von Beifuß und Kamille sichtbar. Im Gegensatz zur Brennessel ergaben sich für die Konzentrationen von β-HCH in Blatt und Sproß von Beifuß auf G2 und G3 signifikante Unterschiede (Abb. 38; A 3 Tab. 4).

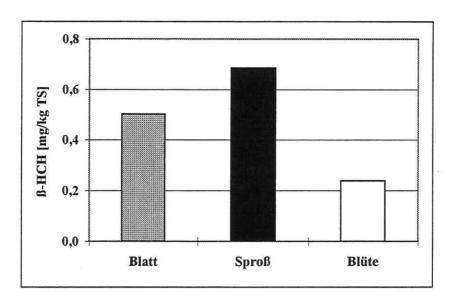


Abb.37: Konzentration von β-HCH in Blatt, Sproß (n= 9) und Blüte (n= 3) von Brennessel im Gefäßversuch mit Aueböden vom Standort Kleutsch (Muldeaue, Fläche G1) nach 27 Wochen

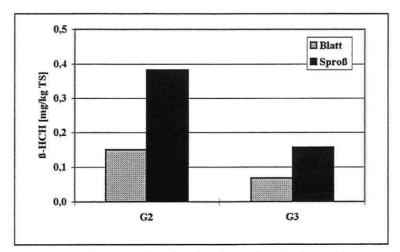


Abb. 38: Konzentration von β -HCH in Blatt, Sproß (G2: Blatt n = 7, Sproß n = 8, G3: n = 5) von Beifuß im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2, G3) nach 8 Wochen

Sie beträgt für das Blatt durchschnittlich 0,07 (G3) bzw. 0,15 mg/kg TS (G2) und für den Sproß 0,16 (G3) bzw. 0,38 mg/kg TS (G2). Wird Aufnahme bezüglich der Pflanzenmasse pro

Gefäß betrachtet, befinden sich im Sproß des Beifuß wieder höhere Mengen (G2: 0,009 mg; G3: 0,004 mg) an β-HCH als im Blatt (G2: 0,004; G3: 0,002 mg).

Eine ähnliche Verteilung wurde in den separierten Pflanzenteilen von Kamille (Abb. 39, A 3 Tab. 5) festgestellt. Im Vergleich zum Blatt mit 0,69 (G2) bzw. 0,51 mg/kg TS (G3) weist der Sproß einen höheren β-HCH-Gehalt mit 1,85 (G2) bzw. 1,82 mg/kg TS (G3) auf. Das trifft auch auf die gesamte aufgenommene Menge an β-HCH bezogen auf ein Gefäß zu.

Abb. 39: Konzentration von β-HCH in Blatt und Sproß (G2: n = 5, G3: n = 4) von Kamille im Gefäßversuch mit Auelehm vom Standort Kleutsch (Muldeaue, Fläche G2, G3) nach 12 Wochen

Im zeitlichen Verlauf des Gefäßversuches überschritt die Konzentration an β -HCH jedes Pflanzenteils (ober- und unterirdisch; Boden G 2), ausgenommen der Blüte, den aktuellen Grenzwert für Futtermittel von 0,01 mg/kg (Futtermittelverordnung 1997) (Tab. 16). Das macht die Relevanz von Untersuchungen des Transfers organischer Schadstoffe in die Pflanze deutlich.

Neben dem Schadstoffgehalt und dessen Langzeitverhalten im Boden ist auch die Betrachtung der Pflanzenaufnahme für eine Gefährdungsabschätzung an kontaminierten Standorten unbedingt erforderlich.

Die Wurzeln enthielten in allen untersuchten Pflanzen, die auf dem Boden gleichen Kontaminationsgrades kultiviert wurden, ein Vielfaches an β -HCH gegenüber den oberirdischen Teilen. Der Gehalt an β -HCH in der Wurzel zum Zeitpunkt der letzten Ernte stieg in der Reihenfolge Weidelgras (6,94) < Kamille (30,56) < Beifuß (51,90 mg/kg TS)

signifikant an. Diese Reihenfolge ist unabhängig von der Wurzelmasse. Die Trockenmasse zur letzten Ernte stieg in der Reihenfolge: Kamille (12,84 g) < Beifuß (22,72 g) < Weidelgras (24,55 g). Auffallend ist die relativ hohe Konzentration in der Kamillewurzel bei der niedrigsten Trockenmassebildung. Der β-HCH-Gehalt scheint somit von der Ausprägung des Wurzelkörpers abhängig zu sein. Die Flachwurzeln des Weidelgrases nahmen weniger β-HCH auf als die stärker ausgeprägten Pfahlwurzeln von Beifuß und Kamille. Trotz des sorgfältigen Waschens der Wurzeln nach der Ernte kann das Vorhandensein anhaftender Bodenpartikel nicht völlig ausgeschlossen werden.

Tabelle 16: Konzentration von β-HCH in verschiedenen Teilen von Wildpflanzen im Zeitraum des Gefäßversuches (Boden G2)

Pflanze	Zeit [Wochen]	Teile	n =	β-HCH [mg/kg TS]	_
Weidelgras	22	Sproß	15	1,88	σ 0,38
weidelglas	22	1	15	1,76	0,38
		Stoppel Wurzel	4	8,78	0,96
	71		3		
	/1	Sproß	5	3,16	1,51
		Stoppel	-	0,75	0,06
D :0.0		Wurzel	10	6,94	3,17
Beifuß	8	Sproß	8	0,38	0,14
		Blatt	8	0,15	0,08
	24	Sproß	10	0,33	0,24
		Blatt	9	0,36	0,11
		Blüte	10	0,02	0,01
		Wurzel	5	17,17	4,00
	33	Sproß	6	1,06	0
		Blatt	6	0,61	0
	62	Sproß	9	0,31	0,04
		Blatt	9	0,15	0,08
	74	Sproß	4	0,59	0,18
		Blatt	4	0,48	0,08
		Wurzel	4	51,90	21,32
Kamille	12	Sproß	5	1,85	1,04
		Blatt	5	0,69	0,32
	17	Sproß	5	2,93	0,59
		Blatt	5	0,72	0,3
		Blüte	5	1,70	0,64
	31	Sproß	10	1,7	0,64
	A Commence College	Blatt	10	1,36	0,66
		Blüte	5	0,28	0,12
20.00.000000000000000000000000000000000		Wurzel	8	30,56	15,85

Vor allen die Hauptwurzeln des Beifuß waren teilweise stark zerfurcht, so daß Bodenpartikel einwachsen konnten. Nur in den Wurzeln traten auch erhöhte Konzentrationen an HCB auf (Weidelgras: 0,2; Beifuß: 0,38; Kamille: 1,35 mg/kg TS).

Untersuchungen von Agnihotri et al. (1974), Friesel et al. (1984), Kampe et al. (1987), Schroll (1989) und Heinrich (1998) zur Aufnahme von HCH und HCB durch Pflanzen führten fast ausnahmslos zum gleichen Verteilungsmuster. Studien der Aufnahme unterschiedlicher Organika durch die Wurzeln (Beestman 1969 a, Scheunert 1983, Topp 1986) ergaben, daß unpolare Verbindungen in den Wurzeln zurückgehalten werden. Die Aufnahme gelöster Stoffe erfolgt über Wurzelhaare und spezielle Durchlaßzellen oberhalb des Wurzelhaarbereiches (Briggs et al. 1982 a, Topp 1986). Lipophile Substanzen werden vor allem im peripheren Wurzelbereich, also nicht homogen über den Wurzelkörper aufgenommen und reichern sich bevorzugt an der Wurzelschale an (Hermanson et al. 1970, Iwata et al. 1974, Wallnöfer et al. 1975, Shawney und Hankin 1984). HCB wird an der Wurzel sorbiert, ohne daß ein stärkerer Transport in tiefere Zellschichten und somit in obere Pflanzenteile stattfindet (Schroll 1989).

Im Weidelgras traten erst am Ende des Versuches signifikante Unterschiede in der Verteilung der Konzentrationen an β -HCH in oberirdischen Pflanzenteilen auf. In den Sproß wurde mit 3,16 mg/kg TS nach 38 Wochen (3. - 4. Ernte) deutlich mehr transportiert als in die Stoppel mit 0,75 mg/kg TS nach 49 Wochen (2. - 4. Ernte). Eine Ursache dafür ist die Schädigung der Stoppeln während der Überwinterungsperiode von November bis März nach der 3. Ernte. Trotz der Abdeckung der Gefäße erfror ein Teil der oberen Pflanzenmasse, so daß in der folgenden Vegetationsperiode β -HCH aus der Wurzel in den neu gebildeten Sproßteil verlagert wurde.

Die mehrmals geernteten Beifußpflanzen (Schnitt 1-4) wiesen einen signifikant steigenden Transfer von β-HCH in der Reihenfolge Blüte < Blatt < Sproß auf. Für Blatt und Sproß der 5 Gefäße, die bereits nach 24 Wochen geerntet wurden, ergab sich kein Unterschied.

Mit Ausnahme nach 17 Wochen (Blüte > Blatt) wurde das β -HCH in der gleichen Reihenfolge wie im Beifuß auch in die Teile der Kamille transportiert (Blüte < Blatt < Sproß).

Die größten Mengen an β -HCH pro Gefäß wurden in der Wurzel aufgenommen und stiegen zum Zeitpunkt der letzten Ernte in der Reihenfolge Weidelgras (0,17 mg) < Kamille (0,39 mg)

< Beifuß (1,24 mg) signifikant an (Tab.6). Von dort aus wurde β -HCH in obere Pflanzenteile in der Reihenfolge Stoppel < Sproß (Weidelgras), Blüte < Blatt < Sproß (Beifuß) und Blüte < Blatt < Sproß (Kamille) transportiert.

7.3.5 Transferfaktoren für β-HCH

Mit Hilfe des Transferfaktors kann das Maß für die Aufnahme des β-HCH durch Wildpflanzen verglichen werden. Er ermöglicht jedoch nur eine grobe Abschätzung, da die Substanz im Boden und Planzenmaterial durch Extraktion nicht vollständig erfaßt werden kann.

Zur Berechnung der Transferfaktoren der auf unterschiedlichen Böden gewachsenen Pflanzen diente der jeweilige Ausgangsgehalt an β-HCH im Boden (Tab. 18).

Tabelle 18: Mittlere Transferfaktoren von Wildpflanzen auf unterschiedlichen Böden

Boden	Pflanze	n =	Mittlere Transferfaktoren
G1	Weidelgras	15	0,179
	Brennessel	9	0,315
G2	Weidelgras	15	0,109
	Kamille	5	0,069
	Beifuß	8	0,016
G3	Weidelgras	15	0,260
	Kamille	5	0,317
	Beifuß	8	0,041

Eine Akkumulation von β -HCH (Transferfaktor ≥ 1) trat bei keiner Pflanze auf. Für die gleiche Pflanzenart steigt der Faktor in der Reihenfolge G2 < G1 < G3. Die Transfer-faktoren korrelieren weder mit dem Schadstoff-, noch mit dem Kohlenstoffgehalt im Boden. Die stärkste Aufnahme, bezogen auf den gleichen Boden fand auf G1 durch Brennessel, auf G2 durch Weidelgras und auf G3 durch Kamille statt. Für Beifuß wurden stets die niedrigsten Transferfaktoren berechnet.

Zur Berechnung des Transferfaktors der im Zeitraum des Gefäßversuches kultivierten Pflanzen auf dem Boden G2 wurde der entsprechende Ausgangsgehalt von 15,43 mg/kg TS β -HCH verwendet (Tab. 19).

Tabelle 19: Transferfaktoren von β-HCH in Wildpflanzen am Ende des Gefäßversuches

Pflanze	Konzentration an β-HCH [mg/kg Transferfaktor TS]					
	Sproß*	Wurzel	Gesamt	Sproß *	Wurze 1	Gesamt
Weidelgras	2,05	7,02	4,82	0,13	0,45	0,31
Beifuß	0,55	51,9	23,98	0,04	3,36	1,55
Kamille	1,34	30,56	11,82	0,09	1,98	0,77

^{*} oberirdische Pflanzenteile

Die Transferfaktoren im Sproß steigen in der Reihe Beifuß (0,04) < Kamille (0,09) < Weidelgras (0,13). Der Trockenmasseertrag scheint hier keinen Einfluß auszuüben, denn dieser steigt am Zeitpunkt der letzten Ernte von 19,39 mg (Weidelgras) über 24,69 mg (Kamille) auf 27,49 mg (Beifuß) (Tab.4). Es muß auch beachtet werden, daß der Transferfaktor zu verschiedenen Zeitpunkten berechnet wurde (Kamille: 31 Wochen, Weidelgras: 71 Wochen, Beifuß: 74 Wochen). Es kann mit Sicherheit festgestellt werden, daß in den oberirdischen Pflanzenteilen kein β-HCH akkumuliert wird. Im Gegensatz dazu fand in den Wurzeln von Beifuß und Kamille eine Akkumulation statt.

7.3.6 B-HCH-Gehalte des Bodens während des Versuchszeitraumes

Zu Beginn des Gefäßversuches wurden den Böden jedes Standortes (G1, G2, G3; homogene Mischproben aus 0-40 cm Tiefe) unmittelbar vor dem Einfüllen in die Gefäße Proben entnommen und HCH sowie HCB bestimmt (Tab.20). Am Versuchsende wurden die Gefäße jeder Variante beprobt. Eine Ausnahme bilden die Varianten der Fläche G1, da dort das Wachstum von Kamille und Beifuß ausblieb. Außerdem war es nicht möglich, Boden aus den Weidelgrasvarianten zu entnehmen, da die Gefäße sehr stark durchwurzelt waren. Durch die dadurch erforderliche mechanische Bearbeitung des Wurzelballens bestand eine Verletzungsgefahr dieser Pflanzenteile. Die Varianten wurden zusätzlich nach 24, 31 bzw. 36 Wochen stichprobenartig erfaßt (Tab. 21).

Die Ausgangsgehalte der Bodenproben weisen β-HCH als Hauptkontaminanten aus (Tab. 20). Da dieses Isomer keine insektizide Wirkung besitzt, wurde die Kontamination nicht durch

Aufbringung von Pflanzenschutzmitteln verursacht. Der Eintrag erfolgte nachweislich über Verunreinigungen der angrenzenden Mulde.

Tabelle 20: Mittlere Konzentrationen an HCH und HCB im Ausgangsboden des Gefäßversuches (n = 4)

Boden	Konzen	Konzentration und Standardabweichung [mg/kg TS]								
	α- HCH	σ	β- НСН	σ	γ-НСН	σ	δ-НСН	σ	НСВ	σ
G1	1,00	0,05	1,57	0,04	0,05	0,01	0,56	0,02	0,74	0,03
G2	1,33	0,06	15,43	0,34	0,02	0	0,24	0,02	0,96	0,03
G3	0,36	0,03	2,51	0,02	n.n		0,03	0	0,10	0

Während des Gefäßversuches erfolgte zunächst eine signifikante Erhöhung im β -HCH-Gehalt des Bodens (Tab. 21) in den Kamille- (G3) und Beifußvarianten (G2, G3) auf, die am Ende des Versuches absinkt.

Insgesamt zeigten alle Varianten signifikante Erhöhungen des β-HCH-Gehaltes während des Versuchsverlaufs gegenüber den zugehörigen Ausgangsböden. Vermutlich liegen die Schadstoffe an organische Bodenbetandteile (Huminfraktion) adsorptiv gebunden vor (Topp 1986, Scheffer und Schachtschabel 1989, Anonym 1994). Diese könnten durch Desorptionsvorgänge durch meist saure Wurzelausscheidungen wieder im Boden verfügbar werden. Möglicherweise wird die Änderung von chemischen Bedingungen aufgrund des beengten Wurzelraumes im Gefäß noch verstärkt. Zahlreiche Untersuchungen mit anderen Organika (z. B. PCDD/DF) bewiesen die begünstigende Wirkung von Wurzelexsudaten auf die Freisetzung gebundener Substanzen im Boden (Fuchsbichler et al. 1978, Hülster und Marschner 1994, 1995, Neumann et al. 1996).

Tatsächlich kann ein Rückgang des pH-Wertes im Boden aller beprobten Gefäße beobachtet werden (Tab. 22). Nach einem multiplen Mittelwertsvergleich zeigte sich eine signifikante Abnahme des Boden-pH für Beifuß (24, 74 Wochen) und Kamille (76 Wochen) im Vergleich zum Ausgangswert auf G3. Der unterschiedliche Bewuchs hatte keinen signifikanten Einfluß auf den pH-Wert (Beifuß, 74 Wochen verglichen mit Kamille, 76 Wochen). Auf der G2-Variante nahm der pH-Wert des Bodens nur nach 24 Wochen signifikant ab.

7.3.7 \(\beta\)-HCH-Gehalte verschiedener Wildpflanzen des Standortes Kleutsch

Im Mai 1996 wurden stichprobenartig oberirdische Teile verschiedener, nahe der Flächen G2 und G3 vorkommender Pflanzen entnommen, die teilweise auf den Flächen selbst nicht gefunden wurden. Auch hier ist ein Transfer von β-HCH nachweisbar (Tab. 23). Die β-HCH-Gehalte der Pflanzen vom Standort entsprechen etwa denen der im Gefäß kultivierten Wildpflanzen. Das läßt den Schluß zu, daß eine Aufnahme von β-HCH über das Wurzelsystem erfolgt ist. Eine zusätzliche äußere Kontamination durch Bodenpartikel, die durch Regen aufgeschleudert werden, ist zwar nicht völlig auszuschließen, kann aber aufgrund des sehr starken Bewuchses nicht als Hauptkontaminationsursache der Pflanzen angesehen werden.

Die Gesamtkonzentration an β-HCH von 0,49 mg/kg TS in den oberirdischen Teilen von Brennesseln am Standort ist annähernd gleich dem Gehalt, der im Gefäßversuch nach 27 Wochen im Sproß dieser Pflanze nachgewiesen wurde (0,50 mg/kg TS) (siehe Kapitel 7.3.1).

Tabelle 23: Konzentrationen an β-HCH in ausgewählten Wildpflanzen des Muldeauestandortes Kleutsch (n = 2)

Pflanze	Fläche	β-HCH [mg/kg TS]	σ [mg/kg TS]
Große Brennessel	G2	0,49	0.14
(Urtica dioica)	G2	0,49	0,14
		0.71	0.15
Wiesen- Sauerampfer		0,71	0,15
(Rumex acetosa)			
Gemeine Schafgarbe		1,29	0,86
(Achillea millefolium)			
Große Fetthenne		0,22	0,04
(Sedum telephium)		200	, and the second
Wiesenfuchsschwanz		1,09	0,55
(Alopecurus pratensis) *		***	**
Wiesenlabkraut		1,18	0,02
(Galium mollugo)			,
Ackerkratzdistel	G3	0,66	0,51
(Cirsium arvense)		1	
Gemeiner Löwenzahn		1,90	0,06
(Taraxacum officinale)		8	70
Kriechender Hahnenfuß		1,11	0,03
(Ranunculus repens)		75	

^{*} n = 5, Entnahme: April 1997

Auch die β-HCH-Gehalte von Weidelgras mit 1,68 mg/kg TS (Gefäßversuch) und Wiesenfuchsschwanz mit 1,09 mg/kg TS (Standort) liegen in gleicher Größenordnung.

Im Gefäßversuch wurden bei einer β -HCH-Konzentration im Boden von 15,43 mg/kg insgesamt durchschnittlich 0,021 mg /Gefäß β -HCH in den Sproß von Weidelgras transportiert (Kapitel 7.3.1). Unter Berücksichtigung der Trockenmasse des Bodens (7,7 kg/Gefäß = 119 mg β -HCH/Gefäß) fand eine Verlagerung des β -HCH vom Boden in die Pflanze von etwa 0,02 % statt. Unter gleichen Voraussetzungen entspricht dies einer Verlagerung von 2,7 g β -HCH je Hektar, wenn angenommen wird, daß β -HCH bei homogener Verteilung aus den oberen 100 cm des Bodens in die Pflanze verlagert wird (Dichte des Bodens = 0,87 g/cm³). Trotz der starken Abweichung der Bedingungen von denen am Standort (bezüglich Konzentration und Verteilung von β -HCH im Boden, Wachstumsbedingungen der Pflanzen) verdeutlicht diese grobe Abschätzung eine Größenordnung, die eine effektive Sanierung des Bodens über die Aufnahme von β -HCH durch den Bewuchs vollkommen ausschließt.

Im Gefäßversuch wurden pro Gefäß 20 Weidelgraspflanzen kultiviert. Bei gleicher Aufnahme wurden etwa 0,002 mg β -HCH in jede einzelne Pflanze transportiert. Da auch ähnliche Mengen für die am Standort vorhandenen Pflanzen berechnet wurden (Tab. 24), kommt auch bei diesen eine Phytoremediation nicht in Frage.

Tabelle 24: Trockenmasse und Transfer von β-HCH in den Sproß von ausgewählten Wildpflanzen des Muldeauestandortes Kleutsch

Pflanze	Trockenmasse [g/ Pflanze]	β-HCH [mg/ Pflanze]
Große Brennessel	7,94	0,004
Wiesen- Sauerampfer	7,18	0,005
Gemeine Schafgarbe	6,35	0,008
Große Fetthenne	6,51	0,001
Wiesenlabkraut	5,50	0,006
Ackerkratzdistel	6,99	0,005
Gemeiner Löwenzahn	7,80	0,015
Kriechender Hahnenfuß	3,92	0,004

8. Zusammenfassung und Schlußfolgerungen

Bei der Sanierung schadstoffbelasteter Naturlandschaften ist das Hauptproblem, Charakter und Vegetation der Landschaft zu erhalten. In Situ-Sanierungen derartiger Regionen lassen daher nur zwei Möglichkeiten offen: die Eliminierung der Schadstoffe über die Pflanzenaufnahme oder die Förderung des Abbaus durch Mikroorganismen des Bodens durch veränderte Bewirtschaftungsmaßnahmen, die Gestaltung des umgebenden Milieus und/oder den Einsatz substratspezifischer Mikroorganismen bzw. durch eine Erhöhung der Leistung der autochthonen Mikroflora im Boden mit Hilfe von Nährstoffen.

Im vorliegenden Projekt wurde

- die Wirkung von Bewirtschaftungsformen und der Zugabe von Nährsubstraten zur Steigerung des Leistungsvermögens der autochthonen Mikroflora hinsichtlich einer Verminderung des β-HCH-Gehaltes (Freilandversuch)
- der Transfer von β-HCH vom Boden in die Pflanze über das Wurzelsystem (Gefäßversuch) geprüft.

Bewirtschaftung des Grünlandes

Es wurden vier Varianten einer Bewirtschaftung von Grünland in ihrer Wirkung auf den β -HCH-Gehalt des Bodens geprüft.

- 1. ungestörte Kontrolle
- Grasmahd mit Abfuhr der Grünmasse (die kontaminierten Pflanzen werden dem Stoffkreislauf entzogen)
- 3. "Mulchen" (gegenwärtige Situation in einem Teil der Auenlandschaft)
- Schwarzbrache als für dieses Gebiet untypische (Prüfung stärkerer Durchlüftung des Bodens auf eine Förderung des Abbaus von β-HCH)

Die untersuchten Flächen unterschieden sich in Bodenart, Grundwasser- bzw. Überflutungseinfluß sowie Tiefe der Hauptkontaminationsschicht. Bei der Fläche G1 war die Kontamination in der Bodenschicht 40-60 cm lokalisiert, bei den Flächen G2 und G3 in den oberen 20 cm.

Die Erzeugung der Schwarzbrache hat auf der Fläche G1 zu einem Anstieg des β-HCH-Gehaltes im Boden geführt. Als Ursache dafür kommt eine verstärkte Mineralisierung von

leicht abbaubaren Material aus den Pflanzenrückständen wie aus dem Boden in Frage, die zu einer Freisetzung des β-HCH geführt hat.

Auf den Flächen G2 und G3 bestanden zwischen den Bewirtschaftungsformen keine signifikanten Unterschiede. Die geprüften Bewirtschaftungsweisen führten gegenüber der Kontrolle auf allen drei Flächen nicht zu einer Verminderung von β -HCH im Boden. Der zu einzelnen Terminen auftretende leichte Rückgang der β -HCH-Gehalte ist für eine Sanierung nicht relevant.

Nährsubstrateinfluß

Die Wirkung von Biodekon hinsichtlich einer Erhöhung der mikrobiellen Aktivität konnte auch mit erhöhten Aufwandmengen durch die Ergebnisse des Freilandversuches nicht bestätigt werden. Die alternativ eingesetzten Substrate Gülle und Vinasse bewirkten ebenfalls keinen meßbaren Abbau von β-HCH.

Die Böden der Versuchsflächen wiesen im Gegensatz zu den Versuchsserien von Kludas (1995) mit pH-Wert-Bereichen zwischen 8 und 9 pH-Werte von 4,4 (G1) und 5,15-5,30 (G2, G3) auf . Eine einmalige Kalkung mit einer sehr hohen Aufwandmenge führte zu keiner nenenswerten Veränderung des pH-Wertes; sie stellt sich erst nach der Anwendung über einen längeren Zeitraum ein. Eine pH-Wert-Verschiebung würde jedoch zu einer Veränderung der Biozönose der Aue führen und damit dem Anliegen eines Biosphärenreservats widersprechen.

Der Einsatz von Biodekon erfolgte durch das Analytik Labor Dr. Kludas (1995) auf dem stark kontaminierten, durch geringe mikrobielle Aktivität gekennzeichneten Gelände der Grube Antonie im Raum Bitterfeld bzw. im Labor bei pH-Werten zwischen 8 und 9. Diese pH-Werte sind im Freiland nicht zu erzielen und aus o.g. Gründen auch nicht anzustreben.

Darüber hinaus unterschied sich der Charakter der Böden der Kleinparzellen von denen der Versuche von Kludas (1995) auf Flächen der Grube Antonie hinsichtlich Nährstoffversorgung und mikrobiellen Aktivitäten. Die Mikroorganismen der Freilandparzellen sind aufgrund starken Pflanzenwuchses, hoher Durchwurzelung und Nährstoffversorgung nicht auf die zusätzlich mit dem Biodekon angebotenen Nährstoffe angewiesen. Durch die größere Substratauswahl ist keine cometabolische Verwertung des β-HCH erfolgt. Eine einmalige

Gabe von Biodekon während einer Vegetationsperiode kann hingegen zur Adaption spezieller Mikroorganismen für einen β-HCH-Abbau nicht ausgereicht haben. Häufigere Biodekongaben könnten andererseits infolge des gestiegenen Nährstoffangebotes, vor allem des Stickstoffs, zu einer Veränderung von Mikroflora und Vegetation führen und darüber hinaus hohe Kosten verursachen.

Untersuchungen zu einem β -HCH-Abbau unter Laborbedingungen führten ebenfalls nicht zu dessen Verringerung im Boden.

Variabilität des β-HCH-Gehaltes

Die Freilandflächen wiesen eine hohe Variabilität in der Verteilung des β -HCH im Boden auf. Während des Versuchszeitraumes waren starke Schwankungen des β -HCH-Gehaltes auffallend. Untersuchungen von Kalbitz (1996) weisen nach, daß diese Veränderungen an das Vorkommen von gelöster organischer Substanz (DOM=Dissoved Organic Matter) im Boden gebunden ist. Er konnte für β -HCH eine besonders hohe Affinität zu DOM feststellen. Die Veränderungen sind eine Folge von Austrocknung und Wiederbefeuchtung des Bodens, die die Mobilität von β -HCH stark erhöhen. Damit könnten die jahreszeitlichen Schwankungen im β -HCH-Gehalt des Bodens erklärt werden, da im Versuchszeitraum feuchte und trockene Perioden abwechselten

Aufnahme von β-HCH durch Pflanzen

Aus Untersuchungen unter Gewächshausbedingungen konnte die Aufnahme von β -HCH aus kontaminierten Böden des Untersuchungsgebietes der Muldeaue bei Dessau durch Wildpflanzen über das Wurzelsystem nachgewiesen werden. Es wurden die auetypischen Pflanzenarten Weidelgras, Beifuß, Kamille und Brennessel geprüft.

Die β-HCH-Gehalte der im Gefäß kultivierten Pflanzen waren vergleicbar mit denen von Pflanzen des Untersuchungsraumes.

Für Weidelgras, Beifuß und Kamille wurde mit steigender Bodenkontamination eine signifikante Erhöhung des β-HCH-Gehaltes in den Pflanzen festgestellt.

Obwohl Beifuß statt Aussaat in den kontaminierten Boden aus unkontaminierten Flächen verpflantzt wurde, fand ein Transfer in die Pflanzen sowie ein Transport in den Sproß statt.

Eine Kontamination von Samenkorn bzw. Keimling bei der Bodenpassage kann hierbei völlig ausgeschlossen werden. Gleiches kann unter den Versuchsbedingungen für eine Kontamination der oberirdischen Pflanzenteile durch Spritzwasser bei Regenereignissen ausgeschlossen werden.

Die aus den Gefäßversuchen berechneten Transferfaktoren für β -HCH liegen für die oberirdische Pflanzenmasse weit unter 1.

Aus vorliegenden Untersuchungen wird abgeleitet:

- Unter natürlichen Bedingungen in Naturlandschaften kann durch regional angepaßte Bewirtschaftungsmaßnahmen sowie durch Zufuhr von Nährstoffen zur Aktivierung der Bodenmikroflora ein Abbau von β-HCH nicht erreicht werden.
- Überhöhte Nährstoffgaben, extreme Veränderungen der Acidität des Bodens oder der Bewirtschaftung (Schwarzbrache) würden zu starken Veränderungen der Biosphäre der Landschaft führen.
- Eine Sanierung der Landschaft über die Pflanzenaufnahme des β-HCH ist durch die aufgenommenen geringen Mengen in überschaubaren Zeiträumen nicht möglich.

9. Literatur

Achenbach, S.; Fricke, A.; Lorenz, K.; Strauss, A. (1994): Untersuchungen zur Sanierung von HCH-belasteten Böden. Terra-Tech 1, 28-31

Agnihotri, N. P.; Pandey, S. Y.; Jain, H. K. (1974): Persistence of BHC and aldrin in soil and translocation in mung (Phaseolus aureus L.) and lobia (Vigna sinensis siva.).

Indian J. Ent. 36, 261-267

Anderson, J. P. E.; Domsch, K. H. (1978): A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem., Oxford 10, 215-221

Anonym (1994): Endbericht über die Untersuchung halogenorganischer Schadstoffe in der Muldeaue. Berichtnummer B94/81.

aus: Endbericht zum Modellprojekt "Sanierung Muldeaue" Ganzheitliche ökologische Untersuchung und Sanierung der Muldeaue von Bitterfeld bis zur Mündung in die Elbe mit dem Ziel der Erhaltung der Natur und Landschaftsnutzung sowie als Baustein zur Elbsanierung. Leistungsabschnitt 1993. Im Auftrag des Landratsamtes Bitterfeld - Dezernat für Umweltschutz, Naturschutz und Abfallwirtschaft.

Alef, K.; Kleiner, D. (1989): Rapid and sensitive determination of microbial activity in soils and in soil aggregates by dimethylsulfoxide reduction. Biol. Fertil. Soils, 8, 349-355

Anonym (1997): Futtermittelverordnung des Landes Sachsen-Anhalt, § 23, Anlage 5

Braun-Blanquet, J. (1964): Pflanzensoziologie. Grundzüge der Vegetationskunde.

Springer-Verlag, Berlin, Wien, New York. 865 S.

Bachmann, A. (1987): Biological treatment of soil contaminated with alphahexachlorocyclohexan. Proc. 4th European Congress on Biotechnology 4, 629-635

Bachmann, A.; Walel, P.; Wijnen, W.; De Bruin, W.; Huntjens, J. L. M.; Roelofsen, W.; Zehnder, A. J. B. (1988 a): Biodegradation of alpha- and beta-hexachlorocyclohexan in a soil slurry under different redox conditions. Appl. Environ. Microbiol. 54, 143-149

Bachmann, A.; De Bruin, W.; Jumelet, J. C.; Rijnaarts, H. H. N.; Zehnder, A. J. B. (1988 b): Aerobic biomineralization of alpha-hexachlorocyclohexane in contaminated soil. Appl. Environ. Microbiol. 54, 548-554

Baess, C. F. (1982): Trans. Amer. Nuclear Soc. 41, 53

Baess, C. F.; Sharp, R. D.; Sjoreen, A. L.; Shor, R. W. (1982): A rewiev and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture. U. S. Department of Energy, Oak Ridge National Laboratory, Report No. ORNL-5786

Beall, M. L.; Nash, R. G. (1969): Crop seedling uptake of DDT, Dieldrin, Endrin and Heptachlor from soil. Agron. J. 61, 571-575

Beck, T. (1991): in R. Maertens (Hrsg.): Untersuchungen über die toxische Wirkung der in Siedlungsabfällen häufigen Schwermetalle auf die Bodenmikroflora.-

In: Z. Pflanzenernähr. Bodenkd.- Weinheim 144. - 613-627

Beestman, G. B.; Keeney, D. R.; Chesters, G. (1969 a): Dieldrin translocation and accumulation in corn. Agron. J. 61, 390-392

Beestman, G. B.; Keeney, D. R.; Chesters, G. (1969 b): Dieldrin uptake by corn as affected by soil properties. Agron. J. 61, 247-250

Bhuyan, S.; Sreedharan, B; Adhya, T. K.; Sethunathan, N. (1993): Enhanced biodegradation of γ-hexachlorocyclohexane (γ-HCH) in HCH (commercial) acclimatized flooded soil: Factors affecting ist development and persistence. Pestic. Sci. 38, 49-55

Bräuer, G.; Herzog, M (1991): Landwirtschaftswandel - Entwicklungsziele in der mit Schadstoffen belasteten Muldeaue. In: Sonderheft - Naturschutz im Land Sachsen-Anhalt. Hrsg. Landesamt für Umweltschutz Sachsen-Anhalt. 34. Jahrgang. 1997. ISSN 0940-6638

Briggs, G. G.; Bromilow, R. H.; Edmondson, R.; Johnston, M. (1976): Chem. Soc. Spec. Publ. 29, 129-134

Briggs, G. G.; Bromilow, R. H.; Evans, A. A. (1982 a): Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 13, 495-504

Briggs, G. G.; Bromilow, R. H.; Evans, A. A. (1982 b): Pestic. Sci. 29, 1050

Bruce, W. N.; Decker, G. C.; Wilson, J. G. (1966): Relationship of levels of insecticide contamination of crop seeds to their fat content and soil concentration of aldrin, heptachlor and their epoxides. J. Econom. Entomol. 59, 179-181

Caro, J. H. (1969): Accumulation by plants of organochlorine insecticides from the soil. Phytopathology 59, 1191-1197

Crowdy, S. H. (1973): Proc. Br. Insectic. Fungic. Conf. 7, 831-839

FFG FORSCHUNGSBERICHT (1983): Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Materialien aus zwei Kolloquien der Senatskommission zur Prüfung von

Rückständen in Lebensmitteln am 28.-29.11.1979 und 06.03.1980.

Verlag Chemie GmbH, ISBN 3-527-27107-4

Dieter, H. H. (1990): Halogen-organische Verbindungen (HOV). Vergleichende und umwelthygienische Bewertung. UWSF-Z. Umweltchem. Ökotox. 2, 220-225

Doelmann, P.; Haanstra, L.; Vos, A. (1988 a): Microbial degradation by the autochthonous soil population of alpha and beta HCH under anaerobic field conditions in temperate regions. Chemosphere 17, 481-487

Doelmann, P.; Haanstra, L.; Vos, A. (1988 b): Microbial sanitation of soil with alpha and beta HCH under aerobic glasshouse conditions. Chemosphere 17, 489-492

Doelmann, P.; Haanstra, L.; Loonen, H.; Vos, A. (1990): Decomposition of α - and β -hexachlorocyclohexane in soil under field conditions in a temperate climate.

Soil Biol. Biochem. 22, 629-634

Edwards, C. A. (1972): Insecticides. M. Dekker Inc., New York, 513-568

Eichler, D. (1983): Physikochemische Eigenschaften, Verhalten und Analytik der HCH-Isomeren. DFG Forschungsbericht- Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Verlag Chemie GmbH, 14-17, ISBN 3-527-27107-4

EWG (1991): Richtlinie des Rates vom 15. Juli 1991 über das Inverkehrbringen von Pflanzenschutzmiteln. 91/414/EWG. ABL. EG, Nr. L 230 H/34 vom 19. August 1991

Friesel, P.; Milde, G.; Steiner, B. (1984): Fresenius Z. Anal. Chem. 319, 160-164

Heinemeyer, O.; Insam, H.; K.; Kaiser, E.-A.; Walenszik, G. (1989): Soil microbial biomass and respiration measurements: an automated technique based on infrared gasanalysis. Plant and Soil, 116 (1), 191-195

Hoffmann, D.; Dedeken, M. (1965): Eine Methode zur colorimetrischen Bestimmung der β-Glucosidase-Aktivität im Boden. Z. Pflanzenern. Düngung Bodenkd., 193-198

Häfner, M. (1975): Hexachlorbenzol-Rückstände im Gemüse bedingt durch Aufnahme von HCB aus dem Boden. Gesunde Pflanzen 27, 37-48

Heinrich, K.; Schulz, E. (1996a): Aufnahme ausgewählter Organochlorpestizide (CKW) aus einem Sandboden einer Tieflehm-Fahlerde durch Mais in einem Gefäßversuch. Mitteilung der Deutschen Bodenkundlichen Gesellschaft 79, 283-286

Heinrich, K.; Schulz, E. (1996b): Aufnahme ausgewählter Organochlorpestizide (CKW) aus einer Tieflehm-Fahlerde und einer Lößschwarzerde durch Mais in einem Gefäßversuch.

Tagung der Deutschen Bodenkundlichen Gesellschaft-AG Bodenschutz-Stoffliche
Bodenbelastung. Leipzig, 07.-08. Mai

Heinrich, K. (1998): Untersuchungen zum Boden/Pflanze - Transfer ausgewählter organischer Umweltschadstoffe in Abhängigkeit von Bodeneigenschaften.

Dissertation, Technische Universität Dresden. UFZ-Bericht Nr. 11/1998.

Heinrich, K.; Lehmann, J.; Klimanek, E.-M.; Schulz, E. (1998): Erfahrungen beim Einsatz von in situ Sanierungsverfahren in beta-HCH belasteten Aueböden. Tagungsband der Fachtagung "Sanierung kontaminierter Böden" vom 05.-07.10.1998 in Munster, P17, S.1-4 Herbst, M.; Bodenstein, G. (1973): Toxikologie des Lindan. Lindan- Monographie eines insektiziden Wirkstoffes. K. Schillinger- Verlag, Freiburg/Brsg., 23-82

Hermanson, H. P.; Anderson, L. D.; Gunther, F. A. (1970): Effects of variety and maturity of carrots upon uptake of endrin residues from soil. J. Econ. Entomol. 63, 1651-1654

Hoagland, D. R.; Snyder, W. C. (1933): Proc. Amer. Soc. horticult. Sci. 30, 288-294

Hull, H. M. (1970): Leaf structure as releated to absorption of pesticides and other compounds. Res. Rev. 31, 1-155

Hulpke, H. (1969): Beiträge zum Metabolismus des Pestizids Aldrin in Nahrungsketten. 1. Mitteilung: Saatgutinkrustierung von Möhren und Zwiebeln. Qual. Plant. Mater. Veg. 18, 331-348

Hülster, A.; Marschner, H. (1993): Transfer of PCDD/PCDF from contaminated soils to food and fodder crop plants. Chemosphere 27, 439-446

Hülster, A.; Marschner, H. (1994): PCDD/PCDF-Transfer in Zucchini und Tomaten. Veröff. PAÖ 8, 579-589

Hülster, A.; Marschner, H. (1995): Identifizierung PCDD/PCDF-mobilisierender Verbindungen in Wurzelexsudaten von Zucchini. Veröff. PAÖ 12, 359-369

Hülster, A.; Müller, J. F.; Marschner, H. (1994): Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (curcubitaceae). Environ. Sci. Technol. 28, 1110-1115

Iwata, Y.; Gunther, F. A.; Westlake W. E. (1974): Uptake of a PCB (Aroclor 1254) from soil by carrots under field conditions. Bull. Environ. Contam. Tocicol. 11, 523-528

Jagnow, G.; Haider, K.; Ellwardt, P.-C. (1977): Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch. Microbiol. 115, 285-292

Kalbitz, K. (1996): Untersuchungen zur Freisetzung der gelösten organischen Substanz des Bodens (DOM) und zum Einfluß der DOM auf die Mobilisierung ausgewählter Schadstoffe in Abhängigkeit von Boden und Standorteigenschaften.

Dissertation, Technische Universität Halle. UFZ-Bericht Nr. 23/1996.

Kampe, W. (1979): Landw. Forsch., Sonderh. 36, 84-97

Kampe, W. (1983 a): Vorkommen von Hexachlorcyclohexan im Boden. DFG-Forschungsbericht- Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Verlag Chemie GmbH, 18-23, ISBN 3-527-27107-4

Kampe, W. (1983 b): Kausalzusammenhänge von Gehalten an Isomeren des Hexachlorcyclohexans in Milch, Futtermitteln, Boden und Wasser aus dem Umfeld von Emittenten. DFG Forschungsbericht- Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Verlag Chemie GmbH, 85-100, ISBN 3-527-27107-4

Kampe, W.; Zürcher, C.; Jobst, H. (1986): Schadstoffe im Boden insbesondere
Schwermetalle und organische Schadstoffe aus langjähriger Anwendung von Siedlungsabfällen.
Landwirtschaftliche Untersuchungs- und Forschungsanstalt.

Berichtnummer UBA-FB 10701003

Kampe, W.; Zürcher, C.; Jobst, H. (1988): ...

VDLUFA- Schriftenreihe 23, Kongreßband 1987, 507-532

Karanth, N. G. K.; Jayaram, M.; Majumder, S. K. (1981): Insecticidal residue in vegetables obtained from soil treated with hexachlorocyclohexane. J. Food Sci. Technol. 19, 14-19

Kawahara, T.; Nakamura, H. (1971): Organochlorine pesticide residues in plants and soils. Absorption and translocation of organochlorine pesticides in tobacco.

Nayaku Kensasho Hokoku 11, 61

Klimanek, E.-M.; Lehmann, J.; Schulz, E (1999): Untersuchungen zum Abbau von β-HCH in stark kontaminierten Böden der Muldeaue des Raumes Dessau.

Forschungsvorhaben des Landesamtes für Umweltschutz Sachsen- Anhalt. Forschungsbericht Nr. 76213/03/95

Kloskowski, R. (1981): Konzeption und Optimierung eines Pflanzen-Boden-Testsystems zur Bewertung von Umweltchemikalien. Dissertation Technische Universität, München

Kloskowski, R.; Scheunert, I.; Klein, W.; Korte, F. (1981b): Laboratory screening of distribution, conversion and mineralisation of chemicals in the soil-plant system and comparison to outdoor experimental data. Chemosphere 10, 1089-1100

Kludas, U. (1995): Ein Verfahren zur Biodegradation von Hexachlorcyclohexan (HCH)-Isomeren. Biodekon und Biodekon-E - Nährstoffkomplexe zum schnellen mikrobiologischen Abbau organischer Schadstoffe im Boden und Wasser.

Informationsbroschüre, Analytiklabor Dr. Kludas, Dessau

König, W. (1988): Untersuchung und Berwertung von Kulturböden bei der Gefährdungsabschätzung von Altlasten. - Verfügbarkeit umweltrelevanter Stoffkomponenten:

Probenvorbereitung - Analytik - Bewertung. Seminar am 17., 18. März in Roetgen

Ladd, J. N.; Butler, J.H.A. (1972): Short-term assay of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem., 4, 19-30

Leber, G. (1983): Historische Entwicklung, Herstellung und Anwendung von HCH und Lindan. DFG Forschungsbericht- Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Verlag Chemie GmbH, 11-13, ISBN 3-527-27107-4

Lehmann, J.; Klimanek, E.- M.; Schulz, E. (1998 a): Investigations on remediation of soils in a riverine area polluted with β-HCH and ist herbage plant uptake.

5th international HCH and pesticides forum, 25.-27.06.1998 in Leioa, Spain.

Lehmann, J.; Klimanek, E.- M.; Schulz, E. (1998 b): Aufnahme von β-HCH durch Lolium perenne. 8. Wissenschaftliche Arbeitstagung zur Ökophysiologie des Wurzel-raumes. (Hrsg. W. Merbach) B. G. Teubner Verlagsgesellschaft Stuttgart, Leipzig

Lichtenstein, E. P. (1959): Absorption of some chlorinated hydrocarbon insecticides from soils into various crops. J. agric. Fd Chem., 7, 430

Lichtenstein, E. P. (1965): Research in pesticides. Academic Press., NewYork, 199
Lichtenstein, E. P. (1980): Bound residues in soils and transfer of soil residues in crops.
Res. Rev. 76, 147-153

Müller, G. (1965): Bodenbiologie, VEB Gustav Fischer Verlag Jena, 889 S.

Mc Rae, I. C.; Raghu, K.; Castro, T. F. (1967): Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils. J. Agr. Food Chem. 15, 911-915

Mac Rae, I. C.; Yamaya, Y.; Yoshida, T. (1984): Persistence of hexachlorocyclohexane isomers in soil suspensions. Soil Biol. Biochem. 16, 285-286

Matthies, M.; Trapp, S.; Kaune, A. (1993): Modellierung des Transferverhaltens von PCDD/F im System Boden/Pflanze/Luft. Texte 30/93, Umweltbundesamt, Berlin, 257-277 Metcalf, R. L. (1967): Absorption and transloction of systemic insecticides.

Agrochimica 11, 105-123

Nash, R. G. (1974): Plant uptake of insecticides, fungicides and fumigants from soil. In: Guenzi, W. D.; Beard, W. E. (Eds.): Pesticides in soil and water.

Amer. Soil Sci. Soc., Madison, Wisconsin

Neumann, G.; Hülster, A.; Marschner, H. (1996): Identifizierung PCDD/PCDF-mobilisierender Verbindungen in Wurzelexsudaten von Zucchini. Veröff. PAÖ 16, 13-28

O'Brien, R. D. (1967): Insectisides. Action and metabolism. Academic Press, New York and London

O'Connor, G. A.; Chaney, R. L.; Ryan, J. A. (1991): Bioavailability to plants of sludge-born toxic organics. Rev. Environ. Contamin. Toxicol. 121, 129-155

Onsager, J. A.; Rusk, H. W.; Butler, L. I. (1970): Residues of aldrin, dieldrin, chlordan, DDT in soil and sugar beets. J. Entomol. 63, 1143-1146

Polizu, A.; Floru, S.; Paulian, F. (1971): Absorption, translocation and distribution of lindane and DDT in the corn plant. Qual. Plant. Mater. Veg. 3, 203-213

Pruszynski, S.; Stobiecki, S. (1997): International co-operation of experts for the solution of the hexachlorocyclohexane and unwanted pesticide problems. 4th forum HCH and unwanted pesticides, 15.-16.01.1996 in Poznan, Poland. Zaklad Poligraficzny HEL-COM, Poznan ISBN 83-901356-7-1

Reichhoff, L.; Refior, K. (1997): Der Naturraum der unteren Mulde und seine Nutzungen. In: Sonderheft - Naturschutz im Land Sachsen-Anhalt. Hrsg. Landesamt für Umweltschutz Sachsen-Anhalt. 34. Jahrgang. 1997. ISSN 0940-6638

Rippen, G. (1990): Handbuch der Umweltchemikalien. Stoffdaten, Prüfverfahren, Vorschriften. Ecomed Verlagsgesellschaft mbH, Landsberg/Lech, ISBN: 3-609-73210-5

Ryan, J. A.; Bell, R. M.; Davidson, J. M.; O'Connor, G. A. (1988): Plant uptake of non-ionic organic chemicals from soil. Chemosphere 17, 2299-2323

Sahu, S. K.; Patnaik, K. K.; Sharmila, M.; Sethunathan, N. (1990 a): Degradation of alpha-, beta-, and gamma- hexachlorocyclohexane by a soil bacterium under aerobic conditions. Appl. Environ. Microbiol. 56, 3620-3622

Sahu, S. K.; Patnaik, K. K.; Sethunathan, N. (1990 b): Degradation of α -, β - and γ isomers of hexachlorocyclohexane by rhizosphere soil suspension from sugarcane.

Proc. Indian Acad. Sci. 100, 165-172

Sahu, S. K.; Patnaik, K. K.; Bhuyan, S.; Sethunathan, N. (1993): Degradation of soil-applied isomers of hexachlorocyclohexane by a pseudomonas sp. Soil Biol. Biochem. 25, 387-391

Sawhney, B. L.; Hankin, L. (1984): Plant contamination by PCBs from amended soil.

J. Food Protection 47, 232-236

Scheffer, F.; Schachtschabel, P. (1989): Lehrbuch der Bodenkunde.

Ferdinand Enke Verlag, Stuttgart, ISBN: 3-432-84772-6

Schroll, R. E. (1989): Aufnahme von ¹⁴C-markierten Chemikalien und Radionuklide aus Boden in Pflanzen in Abhängigkeit von Pflanzeneigenschaften.

Dissertation, Technische Universität München

Schubert, R.; Werner, K.; Meusel, H. (1983): Exkursionsflora.

Volk und Wissen Volkseigener Verlag, Berlin, ISBN: 3-06-012557-0

Schulz, E.; Klimanek, E.-M; Kalbitz, K.; Heinrich, K. (1997): Investigations on β-HCH decomposition in heavy polluted soils in the riverine area of the river Mulde in the region of Dessau. 4th forum HCH and unwanted pesticides, 15.-16.01.1996 Poznan, Poland. Zaklad Poligraficzny HEL-COM, Poznan, ISBN 83-901356-7-1

Shriharan, S.; Suess, A. (1978): Studies on the distribution of fenthion in plants ans soil systems. Chemosphere 7, 509-515

Sidderamappa, R.; Sethunathan N. (1975): Persistence of gamma-BHC in Indian rice soils under flooded conditions. Pestic. Sci. 6, 395-403

Sloof, W.; Matthijsen, A. J. C. M (1987): Integrated criteria document hexachlorocyclohexanes. National Institute of Public Health and Environmental Protection. Report No. 758473011. NL-Bilthoven.

Specht, W.; Tilkes, M. (1980): Gas-chromatographische Bestimmung von Rückständen an Pflanzenbehandlungsmitteln nach Clean-up über Gel-Chromatographie und Mini-Kieselgel-Säulenchromatographie. 3. Mitteilung. Fres. Z. Anal. Chem. 301, 300-307

Specht, W.; Tilkes, M. (1985): Gas-chromatographische Bestimmung von Rückständen an Pflanzenbehandlungsmitteln nach Clean-up über Gel-Chromatographie und Mini-Kieselgel-Säulenchromatographie. 5. Mitteilung. Fres. Z. Anal. Chem. 322, 443-455

Steinbach, G. (1996): Gräser. Mosaik Verlag GmbH, München, ISBN: 3-576-10702-9, 36 uzuki, M.; Yamato, Y.; Watanabe, T. (1975): Persistence of BCH (1,2,3,4,5,6-Hexachlorocyclohexane) and dieldrin residues in field soils. Bull. Environ. Contam. Toxikol. 14, 520-529

Tabatabai, M. A.; Bremner, J.M. (1969): Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301-307

Thier, H. P.; Frehse, H. (1986): Rückstandsanalytik von Pflanzenschutzmitteln. Thieme Verlag Stuttgart New York

Topp, E. M. (1986): Aufnahme von Umweltchemikalien in die Pflanze in Abhängigkeit von physikalisch-chemischen Stoffeigenschaften. Dissertation Technische Universität München Trapp, S.; Mc Farlane, J. C. (1995): Plant contamination. Modelling and simulation of organic chemicals processes. Lewis Publishers ISBN 0-56670-078-7

Travis, C. C.; Hattener-Frey, H. A. (1988): Uptake of organics by aerial plant parts. A call for research. Chemosphere 17, 227-284

Ulman, E. (1973): Lindan, Monographie eines insektiziden Wirkstoffs.

Verlag K. Schillinger, Freiburg im Breisgau

U. S. Environmental Protection Agency, Cincinnati, OH (1989): Health and environmental effects profile for hexachlorocyclohexanes. Report No. EPA / 600 / X-88 /248, NTIS PB 89-126585

Vohland, H.-W.; Koransky, W. (1993): Zum Verhalten und zu den Wirkungen des Hexachlorcyclohexans beim Menschen. DFG Forschungsbericht- Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Verlag Chemie GmbH, 246-262, ISBN 3-527-27107-4

Wallnöfer, P.; Königer, M.; Engelhardt, G. (1975): Verhalten von xenobiotischen Kohlenwasserstoffen (HCB und PCBs) in Kulturpflanzen und Böden.

Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 82, 91-100

Wendelberger, E. (1986): Pflanzen der Feuchtgebiete. Gewässer, Moore, Auen.

BLV Verlagsgesellschaft mbH, München, ISBN: 3-405-12967-2, 208

Wheatley, G. A. (1965): The assessment and persistence of residues or organochlorine insecticides in soils and their uptake by crops. J. Agric. Food Chem. 15, 231-234

Wheeler, W. B.; Frear, D. E. H.; Mumma, R. O.; Hamilton, R. N.; Cotner, R. C. (1967): Absorption and translocation of dieldrin by forage crops. J. Agric. Food Chem. 15, 231-234 Zimmermann, D.; Marquard, R.; Schmidt, T.; Platen, H. (1998): Elimination of β-HCH in agricultural used soil. 5th international HCH and pesticides forum, 25.-27.06.1998 in Leioa, Spain.

Anlage 1

Tab.1: Koloniebildende Einheiten (KBE) von Bakterien, Actinomyceten und Pilzen auf den Versuchsflächen G1 (Auesand), G2, und G3 (Auelehm) in Abhängigkeit von der Bodentiefe

Fläche		Bakterien	Actinomyceten	Pilze	
Bodentiefe (cm)		x 100	x 100		
G1	0-5	6 000	10 000	28 000	
	5-20	1 300	1 500	8 600	
	20-40	1 100	2 800	7 200	
	40-60	230	240	600	
	60-80	55	113	140	
	80-100	53	99	90	
G2	0-5	22 000	31 000	12 000	
	5-20	16 000	50 000	14 000	
	20-40	2 000	3 400	1 500	
	40-60	570	910	1 200	
	60-80	61	120	60	
	80-100	41	80	50	
G3	0-5	22 000	37 000	14 000	
	5-20	19 000	48 000	14 000	
	20-40	2 100	3 700	1 700	
	40-60	450	640	6 000	
	60-80	58	83	180	
	80-100	77	92	100	

Tab. 2: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die DMSO-Reduktion (ng DMS/g TS/h) des Bodens der Fläche G1 (Ufer Mulde, Sandboden, Tiefe 40-60 cm),

Bewirtschaftung	ı		Substratzusatz		
1996	ohne	Gülle	Vinasse	Biodekon	Biodekon 2
		4,5 I / m2	0,85 l / m2	0.85 l / m2	1.7 l / m2
ohne Mahd					
10.05.96	327	378	315	262	324
02.07.96	475	401	471	611	509
29.08.96	652	634	687	674	331
29.10.96	421	479	112	295	204
Mulchmahd					
10.05.96	385	329	494	626	566
02.07.96	512	352	340	310	587
29.08.96	347	325	389	237	218
29.10.96	367	256	122	227	172
Mahd (abgef.)					
10.05.96	480	388	337	392	367
02.07.96	388	635	373	658	375
29.08.96	234	248	159	242	238
29.10.96	706	545	199	198	336
Schwarzbrache					
10.05.96	334	338	393	292	359
02.07.96	386	522	591	1076	282
29.08.96	193	207	154	166	148
29.10.96	227	207	125	121	96

Tab. 3: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die DMSO-Reduktion (ng DMS/g TS/h) des Bodens der Fläche G2 (grundwasserbeeinflußt, 0-20 cm Tiefe)

Bewirtschaftung	I		Substratzusatz		
1996	ohne	Gülle	Vinasse	Biodekon	Biodekon 2
		4,5 l / m2	0,85 l / m2	0.85 l / m2	1.7 I / m2
ohne Mahd					
10.05.96	2386	2407	1628	3103	3800
02.07.96	3430	3675	1872	3003	1947
29.08.96	3528	2522	2041	2515	2049
29.10.96	2231	2790	1221	2226	1510
Mulchmahd					
10.05.96	2211	2570	2619	2679	2063
02.07.96	3595	2678	1876	2120	1735
29.08.96	2289	1951	1289	1863	1784
29.10.96	1902	1787	1139	1924	1234
Mahd (abgef.)					
10.05.96	1752	1887	2201	2196	2835
02.07.96	3564	2569	1709	2363	1537
29.08.96	1879	2399	1345	2056	1907
29.10.96	1925	1892	1003	1389	2091
Schwarzbrache					
10.05.96	3061	2737	3088	2174	3282
02.07.96	1454	1544	1116	1352	1206
29.08.96	1406	1616	1385	1871	1609
29.10.96	2193	1321	703	1319	1438
CONTROL PROCESSAGES		41.500.14110.00		110000000000000000000000000000000000000	VG 035-105-035-7

Tab. 4: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die DMSO-Reduktion (ng DMS/g TS/h) des Bodens der Fläche G3 (grundwasserfern, 0-20 cm Tiefe)

Bewirtschaftung			Substratzusatz		
1996	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
		4,5 I / m2	0,85 l / m2	0.85 I / m2	1.7 l / m2
ohne Mahd					
10.05.96	2349	2836	2024	2539	2336
02.07.96	4490	2681	3450	2752	1267
29.08.96	2855	2696	1835	2732	2307
29.10.96	2517	2199	1559	2301	1956
Mulchmahd	0440	0000	0740	2000	0700
10.05.96	2413	2863	2746	3930	3796
02.07.96	4250	2616	1540	5378	2792
29.08.96	2689	2915	1740	2691	2023
29.10.96	2129	2293	1122	2038	1044
Mahd (abgef.)					
10.05.96	2506	3003	2208	2418	2753
02.07.96	3002	4682	2698	4186	3235
29.08.96	3671	3513	2676	2691	2023
29.10.96	2903	2237	2084	2292	1507
Schwarzbrache					
10.05.96	2282	2810	2297	2793	2327
02.07.96	2354	2895	2158	2680	2415
29.08.96	2484	2627	1857	2520	1630
29.10.96	2076	2534	1126	1327	1015

Tab. 5: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die DMSO-Reduktion (ng DMS/g TS/h) des Bodens der Fläche G2 (grundwasserbeeinflußt, 0-20 cm Tiefe)

Bewirtschaftung	J		Substratzusatz		WATER MINISTER CO.
1997	ohne	Kalk	Biodekon 1	Biodekon 1	Biodekon 2
		0,5 kg / m2	Kalk 0,5 kg/m2		
ohne Mahd					
14.05.97	5949	5339	4625	4977	3664
08.07.97	4827	3957	2582	2744	2201
04.09.97	6542	6409	5284	4805	3212
06.11.97	4731	3557	3014	3509	3202
Mulchmahd					
14.05.97	4536	3340	3241	2964	3857
08.07.97	3931	3649	2472	3369	2983
04.09.97	5352	3993	3127	3462	3469
06.11.97	2720	3087	1852	3793	2847
Mahd (abgef.)					
14.05.97	4632	4618	4950	3322	3863
08.07.97	3768	3908	3601	3301	2643
04.09.97	4035	4603	4440	3858	3264
06.11.97	2610	3060	2280	3037	1873
Schwarzbrache					
14.05.97	1953	1769	1352	2034	1657
08.07.97	1550	1626	1203	1453	1335
04.09.97	1517	1929	1479	1767	1482
06.11.97	1532	1584	1446	1464	1544

Biodekon 1 1,7 l / m2

Biodekon 2 2,51/m2

Tab. 6: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die Proteaseaktivität (μg Tyrosin/ g TS/ 2h) des Bodens der Fläche G1 (Ufer Mulde, Sandboden, Tiefe 40-60 cm)

Bewirtschaft	ung		Substratzusa	ıtz	
1996	ohne	Gülle	Vinasse	Biodekon	Biodekon 2
		4,5 l / m2	0,85 l / m2	0.85 l / m2	1.7 l / m2
ohne Mahd					
10.05.96	92	88	88	65	84
02.07.96	73	82	91	120	95
29.08.96	91	59	99	78	71
29.10.96	150	124	68	72	80
Mulchmahd					
10.05.96	99	59	103	96	109
02.07.96	148	89	117	94	161
29.08.96	92	85	71	87	53
29.10.96	88	77	74	76	90
Mahd (abgef.	.)				
10.05.96	48	35	50	38	75
02.07.96	89	61	49	183	86
29.08.96	80	47	66	47	79
29.10.96	98	60	69	89	81
Schwarzbrac	he				
10.05.96	34	43	62	77	57
02.07.96	62	64	85	89	35
29.08.96	89	28	68	49	53
29.10.96	77	74	12	135	61

Tab. 7: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die Proteaseaktivität μg Tyrosin/ g TS/ 2h) des Bodens der Fläche G2 (grundwasserbeeinflußt, 0-20 cm Tiefe)

Bewirtschaft	ung	n n n	Substratzusa	atz	
1996	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
		4,5 l / m2	0,85 l / m2	0.85 l / m2	1.7 l / m2
ohne Mahd					
10.05.96	520	897	786	657	690
02.07.96	835	885	695	857	823
29.08.96	788	748	709	608	529
29.10.96	750	620	520	822	620
Mulchmahd					
10.05.96	641	779	814	676	623
02.07.96	838	712	613	784	757
29.08.96	745	746	654	734	802
29.10.96	708	814	553	565	841
Mahd (abgef.	l .)				
10.05.96	631	695	616	659	653
02.07.96	474	529	449	504	461
29.08.96	851	827	757	792	864
29.10.96	638	902	679	775	636
Schwarzbrac	he				
10.05.96	552	653	645	625	707
02.07.96	389	670	392	541	504
29.08.96	711	662	602	786	690
29.10.96	439	596	364	566	612

Tab. 8: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die Proteaseaktivtät (μg Tyrosin/ g TS/ 2h) des Bodens der Fläche G3 (grundwasserfern, 0-20 cm Tiefe)

Bewirtschaft	ung		Substratzusa	atz	
1996	ohne	Gülle	Vinasse		Biodekon 2
l.		4,5 l / m2	0,85 l / m2	0.85 l / m2	1.7 l / m2
ohne Mahd					
10.05.96	692	443	506	640	615
02.07.96	765	816	901	914	967
29.08.96	896	738	724	669	644
29.10.96	717	853	825	809	639
Mulchmahd					
10.05.96	712	546	453	461	775
02.07.96	945	798	674	742	571
29.08.96	576	634	586	596	629
29.10.96	708	650	663	697	604
Mahd (abgef.	l .)				
10.05.96	630	478	449	556	696
02.07.96	603	706	567	652	670
29.08.96	698	583	673	633	521
29.10.96	683	360	539	537	530
Schwarzbrac	he				
10.05.96	565	592	629	522	634
02.07.96	498	499	553	519	371
29.08.96	519	532	392	534	370
29.10.96	380	369	427	420	471

Tab. 9: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die Proteaseaktivität des Bodens der Fläche G1 (Ufer Mulde, Sandboden, Tiefe 40-60 cm),

Bewirtschaft	ung	lant f	Substratzusatz		
1997	ohne	Kalk	Biodekon 1	Biodekon 1	Biodekon 2
		0,5 kg / m2	Kalk 0,5 kg/m2		
ohne Mahd					
14.05.97	95	102	101	67	65
08.07.97	94	90	79	86	84
04.09.97	96	103	66	96	88
06.11.97	68	87	85	74	90
Mulchmahd					
14.05.97	72	88	85	95	99
08.07.97	126	74	62	112	116
04.09.97	133	100	122	134	128
06.11.97	100	83	62	79	96
Mahd (abgef.)				
14.05.97	116	89	77	97	107
08.07.97	89	64	105	82	112
04.09.97	137	112	89	105	92
06.11.97	112	91	82	102	40
l Schwarzbrac	he				
14.05.97	84	75	39	93	78
08.07.97	96	61	59	93	56
04.09.97	63	73	64	92	115
06.11.97	73	69	29	80	88
Biodekon 1	171/m2	Riodekon 2	2.5.1./0		

Biodekon 1 1,7 1 / m2 Biodekon 2 2,5 1 / m2

Tab. 10: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf dieProteaseaktivität (μg Tyrosin/g TS/ 2h)des Bodens der Fläche G2 (grundwasserbeeinflußt, 0-20 cm Tiefe)

Bewirtschaft	ung		Substratzusatz		
1997	ohne	Kalk	Biodekon 1	Biodekon 1	Biodekon 2
		0,5 kg / m2	Kalk 0,5 kg/m2		
ohne Mahd					
14.05.97	1035	1064	582	923	943
08.07.97	662	766	615	769	707
24.07.97	616	524	552	708	537
04.09.97	907	807	580	605	549
06.11.97	743	677	513	716	620
Mulchmahd					
14.05.97	1012	856	836	973	967
08.07.97	738	767	641	680	687
24.07.97	729	708	552	652	546
04.09.97	805	473	606	677	680
06.11.97	558	570	515	730	521
Mahd (abgef.	.)				
14.05.97	683	780	677	744	850
08.07.97	802	827	789	694	751
24.07.97	518	504	463	556	459
04.09.97	793	775	758	741	708
06.11.97	649	702	523	689	407
Schwarzbrac	he				
14.05.97	366	558	473	556	497
08.07.97	479	505	495	607	539
24.07.97	362	424	296	400	399
04.09.97	505	522	497	515	597
06.11.97	321	347	337	367	504

Biodekon 1 1,7 l / m2 Biodekon 2 2,5 l / m2

Tab. 11: Einfluß der Bewirtschaftung des Grünlandes und Einsatzes von Nährsubstraten auf die Proteaseaktivität (mg Tyrosin/g TS/2h) des Bodens der Fläche G3 (grundwasserfern, 0-20 cm Tiefe)

Bewirtschaft	ung		Substratzusatz		
1997	ohne	Kalk	Biodekon 1	Biodekon 1	Biodekon 2
		0,5 kg / m2	Kalk 0,5 kg/m2		
ohne Mahd					
14.05.97	599	584	609	566	510
08.07.97	685	627	621	557	523
04.09.97	883	881	833	860	869
06.11.97	595	741	740	794	707
Mulchmahd					
14.05.97	598	450	563	533	580
08.07.97	552	592	611	687	428
04.09.97	909	827	747	829	639
06.11.97	728	637	616	732	572
Mahd (abgef.	l .)				81
14.05.97	798	784	657	899	711
08.07.97	670	824	755	617	686
04.09.97	827	918	740	670	640
06.11.97	684	637	556	681	616
 Schwarzbrac	he				
14.05.97	531	528	518	612	553
08.07.97	410	342	302	599	547
04.09.97	405	543	479	506	347
06.11.97	344	400	299	306	330

Biodekon 1 1,7 l / m2 Biodekon 2 2,5 l / m2

Anlage 2

Tab. 1: ß-HCH-Gehalte (ppm) des Bodens der Fläche G1 in 40-60 cm Tiefe in Abhängigkeit von Art und Menge der zugeführten Nährsubstrate sowie der Bewirtschaftung während des Versuchszeitraumes Mai-Oktober 1996

Bewirtschaftung	9		Kontrolle	88				Mulchmahd		
Zusatz	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
Datum Proben.										
10.05.	4,765	3,350	3,822	4,026	4,175	10,939	11,988	16,323	17,495	21,182
02.07.	5,682	43,202	15,274	896'9	23,015	13,515	22,042	23,392	26,020	61,773
29.08.	39,395	48,838	18,528	35,927	49,992	55,382	53,967	52,781	61,773	63.091
29.10.	23,172	21,631	38,725	36,269	50,762	48,415	63,329	65,600	78,459	75,459
			Grasmahd					Schwarzbrache		
	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
10.05.	7,780	26,910	24,086	41,822	26,801	38,025	44,001	48,310	38,751	25,734
02.07.	45,642	12,833	63,610	18,856	49,398	45,452	52,481	56,119	46,436	49,127
29.08.	77,889	57,450	67,256	71,270	78,739	79,584	112,828	140,521	113,655	109,545
29.10.	75,023	72,381	81,900	86,056	99,483	80,508	95,565	118,946	116,200	102,999

Tab. 2: ß-HCH-Gehalte (ppm) des Bodens der Fläche G2 in 0-20 cm Tiefe in Abhängigkeit von Art und Menge der zugeführten Nährsubstrate sowie der Bewirtschaftung während des Versuchszeitraumes Mai-Oktober 1996

Bewirtschaftung			Kontrolle					Mulchmahd		
Zusatz Datum Proben.	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
10.05.	24,349	25,324	10,882	30,328	26,183	90,343	85,348	116,725	53,860	132,720
02.07.	72,259	56,030	58,796	88,549	55,979	53,998	54,322	52,330	50,681	55,220
29.08.	121,868	155,806	146,438	160,840	169,574	242,914	108,880	135,741	124,595	109,631
29.10.	49,576	62,621	68,509	74,234	73,184	57,365	67,326	67,200	56,509	60,139
	•		Grasmahd					Schwarzbrache		
	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
10.05.	52,588	110,207	93,204	111,402	79,336	109,855	127,787	134,336	97,075	99,517
02.07.	43,824	31,493	41,494	45,376	34,669	27,044	32,146	23,860	29,576	23,442
29.08.	88,588	85,798	94,704	83,219	78,766	90,746	84,094	68,823	87,432	65,272
29.10.	57,731	57,802	56,970	61,630	61,990	63,464	57,123	46,436	46,926	56,364
					The state of the s		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON	The state of the s	CONTRACTOR OF STREET,	Contract Commission of the Com

Tab. 3: ß-HCH-Gehalte (ppm) des Bodens der Fläche G2 in 0-20 cm Tiefe in Abhängigkeit von Art und Menge der zugeführten Nährsubstrate sowie der Bewirtschaftung während des Versuchszeitraumes Mai-Oktober 1996

Bewirtschaftung			Kontrolle					Mulchmahd	5	
Zusatz	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
Datum Proben.										
10.05.	12,750	14,809	17,957	16,900	14,517	16,303	15,341	16,585	15,817	13,030
02.07.	5,326	5,741	6,142	6,051	6,146	6,045	5,812	5,944	5,014	6,570
29.08.	2,800	2,545	4,082	3,314	3,576	2,982	2,741	3,146	2,859	3,582
29.10.	6,849	7,651	8,819	9,402	8,167	7,621	7,084	9,618	7,683	9,496
			Grasmahd	,	-			Schwarzbrache		
	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2	ohne	Gülle	Vinasse	Biodekon 1	Biodekon 2
10.05.	7,936	986.0	10,878	10,958	898'6	11,528	13,818	10,226	10,943	11,244
02.07.	4,590	5,043	4,177	3,958	3,476	4,405	4,400	4,726	4,531	3,225
29.08.	2,410	2,985	3,486	3,668	3,865	3,787	3,712	4,014	3,210	3,002
29.10.	8,403	6,435	8/1/8	9,364	7,926	10,387	8,544	10,405	8,101	9,268

Tab. 4: ß-HCH-Gehalte (ppm) des Bodens der Fläche G1 in 40-60 cm Tiefe in Abhängigkeit von der Biodekon- und Kalkgabe sowie der Bewirtschaftung während des Versuchszeitraumes Mai-November 1997

Bewirtschaftung			Kontrolle					Mulchmahd		
Zusatz	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2
Datum Proben.										
14.05.	29,802	30,587	22,033	20,487	28,544	26,532	23,771	30,142	30,272	30,043
08.07.	20,860	19,696	41,650	26,925	22,802	25,472	14,945	40,264	41.720	40,155
04.09.	13,289	16,085	16,954	11,954	14,351	16,657	16,002	16,558	19,313	18,534
06.11.	21,294	35,201	51,154	34,246	55,571	29,641	31,963	61,359	67,331	36,570
			Grasmahd	12				Schwarzbrache		
	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2
14.05.	38,368	20,444	32,792	31,980	40,373	39,337	32,812	41,599	37,251	29,190
08.07.	19,853	38,631	38,184	58,204	38,048	48,555	50,074	58,900	59,779	70,314
04.09.	25,588	21,417	30,453	32,093	42,033	48,061	53,926	59,452	56,019	57,622
06.11.	44,810	47,209	41,951	48,146	54,777	61,817	80,026	57,002	52,842	47,483

Tab. 5: B-HCH-Gehalte (ppm) des Bodens der Fläche G2 in 0-20 cm Tiefe in Abhängigkeit von der Biodekon- und Kalkgabe sowie der Bewirtschaftung während des Versuchszeitraumes Mai-November 1997

Bewirtschaftung	•		Kontrolle					Mulchmahd		
Zusatz	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2
Datum Proben.										
14.05.	39,177	36,330	44,546	40,469	52,400	46,490	43,562	51.972	44,748	38,696
08.07.	57,384	69,711	66,484	85,970	87,588	87,384	84,245	61,508	56.811	72,547
27.07.	58,831	62,240	78,017	77,614	74,057	899'62	72,341	66,580	66,956	62,239
04.09.	42,423	35,366	32,547	41,745	34,871	37,992	39,018	41,232	33,255	35,676
06.11.	74,835	72,864	81,256	92,604	89,355	63,544	85,813	65,564	80,596	52,341
	2.9		Grasmahd					Schwarzbrache		
	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2
14.05.	39,964	39,613	38,412	34,195	36,498	36,198	23,301	21,548	24,464	24.632
08.07.	65,830	48,711	44,334	61,972	44,645	35,773	36,827	32,340	39,336	42,608
27.07.	57,884	51,460	47,260	60,602	59,649	54,124	47,836	42,174	43,627	37,778
04.09.	31,708	27,546	25,157	17,861	22,871	22,137	17,983	17,389	18,154	19,072
06.11.	62,381	73,101	49,569	56,865	52,147	48,146	47,989	48,437	44,885	57,591
							The second secon		THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN	STREET, STREET

Tab. 6: ß-HCH-Gehalte (ppm) des Bodens der Fläche G3 in 0-20 cm Tiefe in Abhängigkeit von der Biodekon- und Kalkgabe sowie der Bewirtschaftung während des Versuchszeitraumes Mai-November 1997

			The second secon			-011 - 010000000				
Bewirtschaftung			Kontrolle					Mulchmahd		
Zusatz	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2
Datum Proben.										
14.05.	2,821	3,430	3,860	3,534	4,596	4,349	3,526	4,690	3,968	5,027
08.07.	5,155	0 <i>LL</i> 'S	5,558	5,457	5,300	7,242	5,311	5,955	5,924	5,637
04.09.	4,395	968'4	4,113	4,672	3,908	4,261	3,716	3,370	3,490	4,235
06.11.	3,533	4,548	4,440	5,476	5,770	5,347	4,953	4,983	5,271	5,695
			Grasmahd			3		Schwarzbrache		
	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2	ohne	Kalk	Biod.1+Kalk	Biodekon 1	Biodekon 2
14.05.	3,084	3,509	4,036	4,263	4,326	3,520	3,783	3,898	4,132	3,798
08.07.	5,846	685'5	4,335	4,602	6,319	5,045	5,623	4,488	3,937	6,517
04.09.	2,920	3,015	3,229	3,824	3,172	3,108	3,661	3,538	3,842	4,385
06.11.	3,196	698'5	4,789	4,880	4,787	4,260	4,136	4,169	3,997	5,002

Tab. 1: Mittlere Trockenmassebildung (TM) und Gehalt an β-HCH im Sproß verschiedener Wildpflanzen im Gefäßversuch mit Aueböden vom Standort Kleutsch (G1, G2, G3)

Boden	Boden Pflanze	= u	TM	ь	Aufr	nahme	Aufnahme von β-HCH	
			[g/Gefäß]		[mg/kg TS]	ь	[mg/Gefäß]	ь
G1	Weidelgras	15	9,71	5,3	0,28	0,05	0,003	00,00
	Brennessel	6	40,39	4,8	0,50	0,03	0,020	0,01
G2	Weidelgras	15	12,24	7,6	1,68	0,39	0,022	0,02
	Kamille	5	74,94	30,1	1,07	0,35	0,074	0,02
	Beifuß	8	50,58	15,5	0,26	90,0	0,013	0,01
63	Weidelgras	15	13,98	8,9	0,65	0,32	0,009	0,01
	Kamille	5	143,48	41,5	0,80	0,2	0,114	0,03
	Beifuß	8	59,08	28,0	0,10	0,01	900'0	00,00

Tab. 2: Konzentrationen von HCH und HCB in Brennessel (Blatt, Sproß, Blüte) im Gefäßversuch mit Aueböden vom Standort Kleutsch (G1) nach 27 Wochen

Pflanzenteil	= u				Konz	Konzentration	[mg/kg	TSJ			
		α-НСН	ь	в-нсн	р	у-НСН	ь	8-нсн	ь	HCB	ь
Blatt	6	0,02	0,01	0,50	0,31	0,01	0,01	n.n	1	0,01	0,01
Sproß	6	0,05	0,01	69'0	0,16	0,02	0,01	n.n	1	n.n	
Blüte	3	0,01	00'0	0,24	0,03	0,01	0,01	n.n	ı	n.n	,

n.n. nicht nachweisbar

Tab. 3: Konzentrationen von HCH und HCB in Weidelgras (Sproß) im Gefäßversuch mit Aueböden vom Standort Kleutsch (G1, G2, G3) nach 11 Wochen

Boden	= u		K	Konzentration und Stand	ion un	1 Standar	dabwei	lardabweichung [mg/kg]	g/kg]		
		α-НСН	Q	в-нсн	ь	у-НСН	р	8-нсн	ь	HCB	ь
Gl	5	0,03	00'0	0,28	90'0	0,02	00,00	0,02	00,00	0,01	00,00
G2	13	0,01	00'0	1,74	0,39	0,01	00,00	0,01	0,01	n.n.	ī
G3	5	n.n.	ı	0,65	0,05	0,03	00,00	0,02	00,00	n.n.	1

Tab. 4: Konzentrationen von HCH und HCB in Beifuß (Blatt, Sproß) im Gefäßversuch mit Aueböden vom Standort Kleutsch (G2, G3) nach 8 Wochen

Boden	Pflanzenteil	= u		X	Konzentration und Standardabweichung [mg/kg]	on und	Standard	abweic	hung [m	g/kg]		
			α-НСН	ь	д β-НСН	ь	у-НСН	ь	δ-	ь	HCB	ь
									HCH			
G2	Blatt	7	0,04	90,0	0,15	80,0	0,05	0,07		,	0,02	0,04
	Sproß	8		0,01	0,38	0,14	0,01	0,01	n.n.		0,01	0,01
63	Blatt	5	n.n.			0,02	0,02	00,00			0,01	0,01
	Sproß	5	n.n.	ı		0,02	0,01	0,01	n.n.	1	n.n.	Ĩ

Tab. 5: Konzentrationen von HCH und HCB in Kamille (Blatt, Sproß) im Gefäßversuch mit Aueböden vom Standort Kleutsch (G2, G3) nach 12 Wochen

Boden	Pflanzenteil	= u	•	K	Konzentration und	on und	Standard	abweic	Standardabweichung [mg/kg]	kg]	(9	
			α-НСН	g	в-нсн	р	γ-HCH	ь	8-нсн	ь	HCB	ь
G2	Blatt	5	0,01	0,01	69'0	0,32	60'0	0,05	n.n.	,	n.n.	ı
	Sproß	5	0,03	0,01	1,85	1,04	0,03	0,04	n.n.	1	n.n.	ı
G3	Blatt	4	n.n.	1	0,51	0,17	0,03	0,02	n.n.	ı	0,01	0,01
	Sproß	4	n.n.	.1	1,82	0,59	0,01	0,02	n.n.	1	90,0	0,05

Tab. 6: Gehalt an β-HCH in Weidelgras (Sproß, Stoppel, Wurzel) im Gefäßversuch mit Auelehm vom Standort Kleutsch (G2)

Versuchsdauer	Pflanzenteil	= u	9	ehalt a	Gehalt an β-HCH	
[Wochen]			[mg/kg TS]	р	[mg/Gefäß]	р
11	Sproß	15	1,68	0,39	0,022	0,02
22	Sproß	15	1,88	0,38	0,128	0,03
	Stoppel	15	1,76	0,39	0,044	0,03
	Gesamt ¹	15	1,87	0,30	0,173	0,03
	Wurzel	5	8,78	96'0	0,526	0,13
33	Sproß	10	0,89	0,05	0,004	0,00
71	Sproß	10	3,16	1,51	0,033	0,01
	Stoppel	10	0,75	0,06	200'0	0,00
	Gesamt ¹	10	1,88	0,64	0,040	0,01
	Wurzel	10	6,94	3,17	0,170	60,0

¹ oberirdische Pflanzenteile zusammengefaßt

Tab. 7: Gehalt an β-HCH in Beifuß (Sproß, Blatt, Blüte, Wurzel) im Gefäßversuch mit Auelehm vom Standort Kleutsch (G2)

Versuchsdauer	Pflanzenteil	= u		Gehalt a	Gehalt an β-HCH	
[Wochen]			[mg/kg TS]	р	[mg/Gefäß]	ь
8	Blatt	8	0,15	80,0	0,004	00,00
	Sproß	8	0,38	0,14	800'0	00'0
	Gesamt ¹	8	0,26	90'0	0,012	0,01
24	Blatt	6	96,0	0,11	0,015	00,00
	Sproß	6	0,33	0,02	0,044	0,03
	Blüte	10	0,02	0,01	0,000	
	Gesamt ¹	6	0,27	0,17	0,059	0,03
	Wurzel	5	17,17	4,00	1,110	0,27
33	Blatt	9	0,61	00,00	0,010	0,00
	Sproß	9	1,06	0,00	0,010	0,01
	Gesamt ¹	9	0,75	0,08	0,010	0,01
62	Blatt	6	0,15	0,08	0,003	0,00
	Sproß	6	0,31	0,04	0,004	00,00
	Gesamt ¹	6	0,21	90,0	0,007	00,00
74	Blatt	4	0,48	0,08	0,010	0,00
	Sproß	4	0,59	0,18	0,010	0,00
	Gesamt ¹	4	0,53	0,12	0,010	0,00
	Wurzel	4	51,9	21,32	1,240	19.0

1 oberirdische Pflanzenteile zusammengefaßt

Tab. 8: Gehalt an β-HCH in Kamille (Sproß, Blatt, Blüte, Wurzel) im Gefäßversuch mit Auelehm vom Standort Kleutsch (G2)

Versuchsdauer	Pflanzenteil	= u		Gehalt ar	Gehalt an β-HCH	
[Wochen]			[mg/kg TS]	Q	[mg/Gefäß]	ь
12	Blatt	5	69'0	0,32	0,030	0,01
	Sproß	5	1,85	1,04	0,039	0,02
	Gesamt ¹	5	1,07	0,35	0,074	0,02
17	Blatt	5	0,72	0,30	0,044	0,02
	Sproß	5	2,93	0,59	0,244	0,04
8	Blüte	5	0,05	0,10	0,003	0,01
	Gesamt ¹	5	1,55	0,30	0,291	0,04
31	Blatt	10	1,36	99,0	0,010	0,01
	Sproß	10	1,70	0,64	0,020	0,02
	Blüte	5	0,28	0,12	0,000	1
	Gesamt ¹	10	1,35	0,16	0,030	0,02
	Wurzel	8	30,56	15,85	0,390	0,25
- : -						

1 oberirdische Pflanzenteile zusammengefaßt

Tab. 9: Konzentrationen von HCH und HCB in Weidelgras (Sproß, Stoppel, Wurzel) im Gefäßversuch mit Auelehm vom Standort Kleutsch (G2)

Versuchsdauer	Pflanzenteil	= u	•	k	Conzentra	ion un	d Standa	rdabwe	Konzentration und Standardabweichung [mg/kg]	lg/kg]		
[Wochen]			α-НСН	р	в-нсн	р	γ -HCH	р	8-нсн	ь	HCB	ь
11	Sproß	13	0,01	0,00	1,74	0,39	0,01	0,00		0,01	n.n.	,
22	Sproß	15	0,02	0,00	1,88	0,38		0,01		0,02	n.n.	1
	Stoppel	14	0,02	0,01	1,79	0,38		0,01		0,01	n.n.	,
	Wurzel	4	0,10	0,02	8,78	96,0		0,03		0,00	0,11	0,02
33	Sproß	3	0,01	00,00	68'0	0,05		00,00		0,01	n.n.	
71	Sproß	3	0,04	0,01	3,16	1,51	n.n.	,	0,03	0,02	n.n.	
	Stoppel	5	0,01	0,00	0,75	0,06				1	0,01	00,00
	Wurzel	6	60,0	0,03	7,02	3,35		0.01		0.01	0.20	

Tab. 10: Konzentrationen von HCH und HCB in Beifuß (Sproß, Blatt, Blüte, Wurzel) im Gefäßversuch mit Auelehm vom Standort Kleutsch (G2)

Versuchsdauer	Pflanzenteil	= u			Konzentration und Standardabweichung [mg/kg]	pun uoiti	Standard	abweic	hung [mg	/kg]		
[Wochen]			а-НСН	Q	β-НСН	р	у-НСН	ь	8-нсн	ь	HCB	ь
8	Blatt	7	0,04	90,0	0,15	80,0	0,05	0,07	n.n.	,	0,02	0,04
	Sproß	8	0,02	0,01	0,38	0,14	0,01	0,01	n.n.	ı	0,01	0,01
24	Blatt	5	0,01	0,00	0,11	0,11	0,01	0,01	0,01	0,01	0,01	00,00
	Sproß	5	0,01	0,00	0,33	0,25	n.n.	1	n.n.		n.n.	1
	Blüte	5	n.n.		0,02	0,01	n.n.	I	n.n.	1	n.n.	î
	Wurzel	5	0,26	0,11	17,17	4,00	0,02	0,02	60'0	0,05	0,36	90,0
33	Blatt	-	0,01	0,00	0,61	00,00	0,01	1	n.n.	1	n.n.	ì
	Sproß	1	0,01	0,00	1,06	00'0	n.n.	3	n.n.		n.n.	,
62	Blatt	8	0,01	0,01	0,13	20,0	0,01	0,01	n.n.		n.n.	ı
	Sproß	9	0,01	0,00	0,31	90'0	u.n.	1	n.n.		n.n.	i
74	Blatt	4	0,01	0,00	0,48	60'0	n.n.	E.	n.n.		0,01	00,00
	Sproß	3	0,07	0,12	0,61	0,21	n.n.	1	0,01	0,02	0,10	0,18
	Wurzel	4	0,25	0,03	51,90	21,30	n.n.	•	0,04	0,01	0,38	0,05

Tab. 11: Konzentrationen von HCH und HCB in Kamille (Sproß, Blatt, Blüte, Wurzel) im Gefäßversuch mit Auelehm vom Standort Kleutsch (G2)

Versuchsdauer	Pflanzenteil	= u			Konzentration und Standardabweichung [mg/kg]	tion und	Standar	dabwei	chung [m	g/kg]		
[Wochen]			α-НСН	ь	в-нсн	ь	у-НСН	ь	8-нсн	ь	HCB	ь
12	Blatt	5	0,01	0,01	69'0	0,32	60'0	0,05	n.n.	1	n.n.	1
	Sproß	5	0,03	0,01	1,85	1,04	0,03	0,04	n.n.	ı	n.n.	1
17	Blatt	5	0,02	0,01	0,72	0,30	60,0	0,03	n.n.	1	n.n.	ı
	Sproß	5	0,03	0,02	2,93	0,59	0,03	0,02	n.n.		n.n.	ı
	Blüte	5	0,07	0,10	50'0	0,12	0,07	0,07	0,04	0,04	n.n.	ı
31	Blatt	3	0,02	0,02	1,41	98,0	0,11	0,04	0,01	0000	n.n.	
	Sproß	3	0,05	0,02	1,78	0,74	0,01	0,02	0,02	00,00	0,03	0,01
	Blüte	2	0,01	0,01	0,30	0,16	0,04	0,02	n.n.		n.n.	
	Wurzel	8	1,35	0,26	30,56	15,85	n.n.	1	0,12	0,12	1,35	0,26

UFZ-Umweltforschungszentrum Leipzig-Halle GmbH Sektion Bodenforschung Theodor-Lieser-Straße 4 06120 Halle Telefon 0345/5585-402 Telefax 0345/5585-449