Moose als Indikatoren ökosystemarer Schadstoffbelastungen

I. Bruns\(^1\), K. Sutter\(^1\), K. Friese\(^2\), G.-J. Krauß\(^1\), H. Schumann\(^3\) und K. Jung\(^4\)

\(^1\)Martin-Luther-Universität, FB Biochemie/Biotechnologie
\(^2\)UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Sektion Gewässerforschung
\(^3\)Landesamt für Umweltschutz Sachsen-Anhalt, Abteilung Umweltplanung/Umweltanalytik
\(^4\)UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Sektion Chemische Ökotoxikologie
Moose als Indikatoren ökosystemarer Schadstoffbelastungen

I. Bruns¹, K. Sutter¹, K. Friese², G.-J. Krauß¹, H. Schumann³, K. Jung⁴

¹ Martin-Luther-Universität
FB Biochemie/Biotechnologie
Institut für Biochemie
K.-Mothes-Str. 3, 06120 Halle

² UFZ-Umweltforschungszentrum
Leipzig-Halle
Sektion Gewässerforschung
Brückstr. 3 a, 39114 Magdeburg

³ Landesamt für Umweltschutz Sachsen-Anhalt
Abt. Umweltplanung/Umweltanalytik
Domplatz 7, 06108 Halle

⁴ UFZ-Umweltforschungszentrum
Leipzig-Halle
Sektion Chemische Ökotoxikologie
Permoberstr. 15, 04318 Leipzig

¹ Teilgefördert durch das Ministerium für Umwelt, Naturschutz und Raumordnung des Landes Sachsen-Anhalt
1. EINFÜHRUNG

2. ÜBERSICHT DER FORSCHUNGSSCHWERPUNKTE
2.1. Einfluß der Probenahme und Oberflächenodeposition von Schadstoffen auf die Ergebnisse der Schwermetall- und Schadstoffuntersuchungen
2.2. Bewertung des Akkumulationsvermögens ausgewählter terrestrischer Moose für Schwermetalle und organische Verbindungen an natürlichen Standorten in Sachsen-Anhalt
2.3. Laboruntersuchungen zur Akkumulation von Schwermetallen und ausgewählten organischen Verbindungen
2.4. Erarbeitung hoch sensiver Methoden zum Nachweis thiolhaltiger Verbindungen aus Moosproben
2.5. Laboruntersuchungen zum Einfluß von Cd auf den S- und N-Stoffwechsel
2.6. Freilanduntersuchungen zur Induktion thiolhaltiger Verbindungen
2.7. Korrelation von Schwermetallgehalten als Summenparameter und physiologische Reaktion (Thiolantwort)
2.8. Interspezifische Vergleiche der Effektivität von Toleranzmechanismen
2.9. Untersuchungen zur Nutzung der spezifischen biochemischen Reaktionen als Indikator für Belastung und ökotoxikologisches Gefährdungspotential auf Grundlage von Monitoringstudien
2.10. Studien zur saisonalen Varianz der Schwermetall- und PAK-Akkumulation und physiologischen Reaktion
2.11. Ergänzende Untersuchungen
2.12. Einfluß kurzfristiger Wetterereignisse auf den Thiolpeptidgehalt der Freilandpflanzen

3. MATERIAL UND METHODEN
3.1. Standorte der Freilanduntersuchungen
 3.1.1. Hohenfurth
 3.1.2. Petersberg
 3.1.3. Salzmünde
3.2. Pflanzenmaterial für die Laborversuche
3.3. Aufbewahrung der Proben
3.4. Vorbereitung der Pflanzen für Laborversuche
3.5. Bestimmung des intra- und extrazellulär gebundenen Cadmiums in F. antipyretica
3.6. Vorbereitung des Pflanzenmaterials für die Schwermetallanalytik
3.7. Analytik der Schwermetallgehalte
3.8. Bestimmung des Trockengewichtes
3.9. Induktion thiolhaltiger Verbindungen im Laborversuch
3.10. Extraktion thiolhaltiger Peptide
3.11. Analytik von Phytochelatinen
3.12. Trennung von γ-EC, Cys und GSH durch HPLC und Nachsäulenderivatisierung mit DTNB
3.13. Bestimmung von GSH- Cys und γ-EC durch Derivatisierung mit Monobrombiman
3.15. Analytik organischer Verbindungen

3.16. Bestimmung der natürlichen 15N/14N-Isotopenverhältnisse und 15N-Aufnahme unter Cd-Belastung

3.17. Untersuchungen zum Einfluß von Umweltparametern auf die Thiolpeptidsynthese in *Fontinalis antipyretica*
 3.17.1. Einfluß der Schwefelernährung
 3.17.2. Einfluß der Schwefelernährung nach S-Mangelbedingungen
 3.17.3. Bestimmung von Sulfat

3.18. Identifikation unbekannter Verbindungen aus Polytrichales
 3.18.1. Massenspektrometrie
 3.18.2. NMR

4. ERGEBNISSE UND DISKUSSION

4.1. Biologische Variabilität der Schwermetallgehalte am natürlichen Standort

4.2. Biosorption und intrazelluläre Aufnahme von Cd (Laborversuche)

4.3. Schwermetallgehalte der Freilandproben

4.4. Organische Verbindungen in Freilandmoosen

4.5. Erarbeitung hoch sensitiver Methoden zum Nachweis thiolhaltiger Verbindungen in Moosproben
 4.5.1. Derivatisierung mit Monobrombiman
 4.5.2. Enzymatische Bestimmung des GSH-Gehaltes
 4.5.3. Bestimmung thiolhaltiger Verbindungen durch Kapillarelektrophorese

4.6. Problematic der Analyse von Phytochelatins durch Nachsäulenderivatisierung mit DTNB

4.7. Laboruntersuchungen zur Induktion thiolhaltiger Verbindungen
 4.7.1. Glutathion
 4.7.2. Gesamtthiol-Gehalt (GSTH)
 4.7.3. Cystein und γ-EC

4.8. Einfluß von Cd auf den Stickstoffmetabolismus von *F. antipyretica*

4.9. Natürliche Variationen der stabilen Stickstoffisotope in terrestrischen Freilandmoosen

4.10. Einfluß von Umweltfaktoren (Schwefelernährung) auf die Synthese thiolhaltiger Verbindungen

4.11. Thiolgehalte in Freilandmoosen
 4.11.1. GSH-Gehalt
 4.11.2. γ-EC-Gehalt
 4.11.3. Cystein-Gehalt

4.12. Interspezifische Vergleiche der biochemischen Reaktion auf Cd

4.13. Korrelation von Schwermetallgehalten als Summenparameter und physiologische Reaktion ('Thiolantwort')

4.15. Nutzen der spezifischen biochemischen Reaktionen als Indikator für Belastung und ökotoxikologisches Gefährdungspotential
4.16. Saisonale Varianz der Schwermetall-Akkumulation 57
4.17. Einfluß kurzfristiger Wetterereignisse auf den Thiolpeptidgehalt der Freilandpflanzen 57

5. ZUSAMMENFASSUNG 58

6. LITERATUR 61

7. ANHANG
<table>
<thead>
<tr>
<th>Abkürzungsverzeichnis</th>
<th>Deutscher Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN</td>
<td>Acetonitril</td>
<td></td>
</tr>
<tr>
<td>BSO</td>
<td>Buthioninsulfoximin</td>
<td></td>
</tr>
<tr>
<td>CHES</td>
<td>2-(Cyclohexylamino)ethansulfonsäure</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Cystein</td>
<td></td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5'-Dithiobis(2-nitrobenzoesäure)</td>
<td></td>
</tr>
<tr>
<td>DTT</td>
<td>1,4-Dithiothreit</td>
<td></td>
</tr>
<tr>
<td>FG</td>
<td>Frischgewicht</td>
<td></td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathion (reduziert)</td>
<td></td>
</tr>
<tr>
<td>GSSG</td>
<td>Glutathion (oxidiert)</td>
<td></td>
</tr>
<tr>
<td>GSH-Äqui.</td>
<td>Glutathionäquivalente</td>
<td></td>
</tr>
<tr>
<td>GSTH</td>
<td>Gesamtthiol-Gehalt</td>
<td></td>
</tr>
<tr>
<td>γ-EC</td>
<td>γ-Glutamyl-Cystein</td>
<td></td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochleistungsflüssigchromatographie</td>
<td></td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Massenspektrometrie mit induktiv gekoppeltem Plasma</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektrometrie</td>
<td></td>
</tr>
<tr>
<td>m/z</td>
<td>Masse/Ladung</td>
<td></td>
</tr>
<tr>
<td>NADPH+H⁺</td>
<td>Nicotinamidadenin-nucleotidphosphat, reduziert</td>
<td></td>
</tr>
<tr>
<td>NEM</td>
<td>N-Ethylmaleinimid</td>
<td></td>
</tr>
<tr>
<td>n.g.</td>
<td>nicht gemessen</td>
<td></td>
</tr>
<tr>
<td>PAH</td>
<td>polyaromatische Kohlenwasserstoffe</td>
<td></td>
</tr>
<tr>
<td>PC/PCs</td>
<td>Phytochelatin/Phytochelatine</td>
<td></td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidon</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
<td></td>
</tr>
<tr>
<td>SSA</td>
<td>5′-Sulfosalicylsäure</td>
<td></td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
<td></td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoresigsäure</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>Trockengewicht</td>
<td></td>
</tr>
<tr>
<td>TNB</td>
<td>5-Thio-2-nitrobenzoesäure</td>
<td></td>
</tr>
<tr>
<td>U/min</td>
<td>Umdrehungen pro Minute</td>
<td></td>
</tr>
</tbody>
</table>
1. Einführung

GSH ist neben der Bereitstellung als Substrat für die PC-Synthese auch für die Entgiftung toxischer Verbindungen sowie die Abwehr von abiotischem und biotischem Stress in der pflanzlichen Zelle von großer Bedeutung (LAMMOUREUX UND RUSNESS, 1993; NOCTOR and FOYER, 1998; NOCTOR et al. 1998; FOYER und RENNENBERG, 2000).

Aus eigenen Untersuchungen mit dem Wassermoos F. antipyretica ist bekannt, daß sich der GSH-Pool erhöht, wenn die Pflanze Schwermetallstress ausgesetzt wird (BRUNS et al., 1997).

Gegenstand der vorliegenden Studie war es, in terrestrischen Moosarten die Syntheseleistung zu Thiolpeptiden unter Freiland- und Laborbedingungen hinsichtlich Rückschlüssen auf die Schwermetallbelastung im Sinne eines Biomonitoring zu untersuchen.

Darüber hinaus sollten durch Einsatz der 15N-Tracertechnik Aussagen zur Beeinflussung des Stickstoffmetabolismus der Moose durch Schwermetalle gewonnen werden.

Es handelt sich hierbei um grundlegende Untersuchungen, die zunächst Aufschluß über die Wirkung von Schwermetallen auf terrestrische Moose geben sollten. Es konnte aufgrund des geringen Probenmaterials an den Freilandstandorten nicht für alle Versuche die gleiche Spezies eingesetzt werden. Für die Laborversuche wurde vorwiegend das aquatische Moos Fontinalis antipyretica als Modellpflanze verwendet. Für Freilanduntersuchungen wurde das terrestrische Moos Scleropodium purum gesammelt.
2. Übersicht der Forschungsschwerpunkte

Bei den terrestrischen Moosen im Freiland kam es bedingt durch Witterungseinflüsse, wie starke Trockenheit in den Sommermonaten oder Schneebedeckung im Winter, teilweise zu Problemen bei der Probenahme.

Im Folgenden wird eine Kurzdarstellung zu den unter den einzelnen Schwerpunkten durchgeführten Studien gegeben. Die Ergebnisse sind in Kapitel 4 übersichtlich dargestellt. Die jeweiligen Rohdaten können dem Anhang zu entnommen werden.

2.1. Einfluß der Probenahme und Oberflächendeposition von Schadstoffen auf die Ergebnisse der Schwermetall- und Schadstoffuntersuchungen

Zur Bestimmung der biologischen Varianz der Schwermetallakkumulation am natürlichen Standort erfolgte am Standort Hohenthurm eine regelmäßige Probennahme von 3 Moosproben innerhalb eines Gebietes von 50 x 200 m. Zusätzlich wurde am 28.2.99 eine Dreifachbeprobung des Standortes Hohenthurm 3 auf einer Fläche von ca. 5 x 5 m durchgeführt (Kap. 4.1.).

Die Bestimmung der intra- und extrazellulären Verteilung der Schwermetalle in terrestrischen Moosen im Freiland erfolgte nicht, da die Gesamtschwermetallgehalte bereits im unteren Nachweisbereich lagen.

2.2. Bewertung des Akkumulationsvermögens ausgewählter terrestrischer Moose für Schwermetalle und organische Verbindungen an natürlichen Standorten in Sachsen-Anhalt

Im Zeitraum Januar 1998 bis Juli 1999 wurden drei Standorte im Gebiet um Halle regelmäßig beprobt und die Schwermetallgehalte der Moosproben bestimmt (Kap. 4.3.). Zusätzlich wurden erste Untersuchungen zum Gehalt an organischen Verbindungen in Freilandmoosen durchgeführt (Kap. 4.4.)
2.3. Laboruntersuchungen zur Akkumulation von Schwermetallen und ausgewählten organischen Verbindungen

Laboruntersuchungen zur Reaktion auf Schwermetallakkumulation wurden an unterschiedlichen terrestrischen und aquatischen Moosen vorgenommen. Es ergab sich hierbei im Vergleich zu höheren Pflanzen eine Besonderheit in der Stressantwort durch Thiolpeptide (Kap. 4.7.).

Organische Verbindungen wurden nur aus einigen Freilandproben bestimmt. Die Ergebnisse sind in Kap. 4.4. dargestellt.

2.4. Erarbeitung hoch sensitiver Methoden zum Nachweis thiolhaltiger Verbindungen aus Moosproben

Methoden, die im Rahmen des Projektes neu erarbeitet bzw. optimiert wurden, werden im Ergebnisteil (Kap. 4) dargestellt. Alle anderen Methoden werden unter Material und Methoden (Kap. 3) beschrieben.

Für Untersuchungen zum Vorkommen von PCs in unterschiedlichen Moosspezies wurde die Methode nach GRILL et al. (1991) mittels HPLC und online Nachsaüulendervatisierung mit DTNB eingesetzt. Diese erlaubt jedoch eine Trennung der PC-Vorstufen GSH und γ-EC nur mit einer extrem sauren mobilen Phase (pH 1,5). Da es unter diesen Bedingungen bei größerem Probenumfang zur Schädigung des HPLC-Säulenmaterials kommt, wurde diese Methode nur für die ersten Versuche eingesetzt (Kap. 3.12. und 4.7.3).

Der PC-Nachweis durch Nachsaüulendervatisierung mit DTNB erwies sich in Untersuchungen an Polytrichum formosum als nicht spezifisch für Thiolpeptide (Kap. 4.6.) Es wurden umfangreiche Versuche mit diesem Moos sowie mit Atrichum undulatum mittels MS und NMR durchgeführt. Wir konnten erstmalig zeigen, daß Coumarinderivate ebenfalls unter diesen Derivatisierungsbedingungen im HPLC-Chromatogramm nachweisbar sind.

Es wurden weitere Methoden erarbeitet, die es erlauben, thiolhaltige Verbindungen aus Moosen auch in geringsten Mengen nachzuweisen. Mittels Extraktion durch HCl und anschließender Derivatisierung der Proben mit Monobrombimamin können durch HPLC die Verbindungen Cys, GSH, und γ-EC in einem Analysengang erfaßt und quantifiziert werden (Kap. 3.13. und 4.5.1.).

Für sehr umfangreiche Meßreihen bzw. für einige Laborversuche wurde eine enzymatische Bestimmung des Gesamt-GSH-Gehaltes nach ANDERSON (1989) für das jeweilige Pflanzenmaterial optimiert (Kap. 4.5.2.).

Weiterhin wurde eine Methode zur Bestimmung der Thiolverbindungen aus Moosen mittels Kapillarelektrophorese erarbeitet (Kap. 4.5.3.).
2.5. Laboruntersuchungen zum Einfluß von Cd auf den S- und N-Stoffwechsel

Die Laboruntersuchungen zur Induktion thiolhaltiger Verbindungen wurden insbesondere in Bezug auf die Schwefelernährung (Kap. 3.1.7.) durchgeführt. Die Parameter sind für die hohe GSH-Syntheseleistung der Moose unter Schwermetallstress von besonderer Bedeutung. Der Einsatz von 15N als Stickstoffquelle machte die Untersuchung von N-Aufnahme und -Einbau in Aminosäuren und Proteine unter Cd-Streß möglich (Kap. 4.8.). Studien zu anderen Umweltparametern wie pH und Temperatur wurden zunächst zurückgestellt.

2.6. Freilanduntersuchungen zur Induktion thiolhaltiger Verbindungen

Aus den gesammelten Freilandproben wurden neben dem Schwermetallgehalt auch die thiolhaltigen Verbindungen Cys, γ-EC und GSH analysiert. (Kap. .4.11).

2.7. Korrelation von Schwermetallgehalten als Summenparameter und physiologische Reaktion ('Thiolantwort')

Die unter 4.3 und 4.11 erhaltenen Daten wurden gegenübergestellt und einer Korrelationsanalyse unterzogen (Kap. 4. 13.).

2.8. Interspezifische Vergleiche der Effektivität von Toleranzmechanismen

Verschiedene terrestrische und aquatische Moosspezies wurden auf ihre Thiolantwort unter Schwermetallstress verglichen (Kap. 4.12.). Teilweise stammten die Pflanzen aus axenischen Laborkulturen, so daß standardisierte Ausgangsbedingungen gegeben waren.

2.9. Untersuchungen zur Nutzung der spezifischen biochemischen Reaktionen als Indikator für Belastung und ökotoxikologisches Gefährdungspotential auf Grundlage von Monitoringstudien

Die unter 4.3 und 4.11 erhaltenen Daten wurden in Hinblick auf die Nutzung einer Thiolpeptidsynthese als Biomarker von Schwermetallbelastungen in Moosen ausgewertet.

2.10. Studien zur saisonalen Varianz der Schwermetall- und PAK-Akkumulation und physiologischen Reaktion

Die Schwermetallgehalte der Freilandproben wurden in Hinblick auf eine saisonale Varianz der Akkumulation ausgewertet (Kap. 4. 16.).

Die Organika-Belastung der Freilandmoose wurde untersucht.

Umfangreiche Studien der Pflanzen als Akkumulator für organische Verbindungen erfolgte nicht. Daher können auch keine befriedigenden Aussagen zur saisonalen Varianz gegeben werden.
2.11. Ergänzende Untersuchungen

Zusätzlich zu den im Projekt beantragten Untersuchungen wurden die 15N/14N-Isotopenverhältnisse in Freilandpflanzen gemessen (Kap. 4.9.)

2.12. Einfluß kurzfristiger Wetterereignisse auf den Thiolpeptidgehalt der Freilandpflanzen.

Zur Interpretation auffälliger Schwankungen im Thiolpeptidgehalt der Moospflanzen wurden die aktuellen Temperaturen, Niederschläge und Sonnenschein für den Tag vor und während der Probenahme ausgewertet (Kap. 4.17.).
3. Material und Methoden

3.1. Standorte der Freilanduntersuchungen

Für Dauerbeprobungen wurden drei Standorte im Saalkreis (Sachsen-Anhalt) ausgewählt, von denen Standort 1 im Umkreis von ca. 200 m dreimal beprobt wurde.

3.1.1. Hohenthurm

Lage: ca. 10 km westlich von Halle, ca. 1 km außerhalb der Ortschaft Hohenthurm auf einem Hügel mit Kiefernbestand. Große Bestände an Scleropodium purum.

Hohenthurm 1: unterhalb eines Kiefernbestandes direkt am Waldrand. Am Weg zur Kuppe des Hügels.

Hohenthurm 2: ca. 10 m von Hohenthurm 1 entfernt, offener Standort in der Nähe einzeln stehender Kiefern

Hohenthurm 3: ca. 100 m von Hohenthurm 1 und Hohenthurm 3 entfernt auf der Kuppe des Hügels, in der Nähe einzeln stehender Kiefern.

Abb. 1: Standort Hohenthurm
3.1.2. **Petersberg**

Der Standort Petersberg liegt ca. 500 m östlich vom Petersberg, auf einer Lichtung ohne Baumbestand, jedoch mit im Frühjahr/Sommer hoher Krautschicht.

Abb. 2: Standort Petersberg

3.1.3. **Salzmünde**

Der Standort Salzmünde liegt ca. 1 km außerhalb von der Ortschaft Salzmünde, auf einer Kuppe in einem landwirtschaftlich genutzten Gebiet ohne Baumbestand, jedoch mit z.T. hoher Krautschicht, die Proben wurden an der Wand eines Betonschachtes entnommen.

Abb. 3: Standort Salzmünde

Alle Proben wurden in Plastiktüten innerhalb kürzester Zeit ins Labor transportiert und umgehend bei -80 °C eingefroren.
3.2. Pflanzenmaterial für die Laborversuche

Die Laborversuche wurden zum großen Teil mit dem aquatischen Moos *Fontinalis antipyretica* durchgeführt, da dieses Moos besser an die für die Versuche benötigte Laborkultur angepaßt ist.

Die Probenahme von *F. antipyretica* erfolgte hauptsächlich in der Wipper (östliches Harzgebiet), ca. 1km außerhalb von Wippra (Harz). Dieser Standort ist durch eine relativ hohe Fließgeschwindigkeit bei einer Wassertiefe von ca. 30 - 50 cm und direkter Sonneneinstrahlung charakterisiert. Die Breite des Flußbettes beträgt an diesen Stellen ca. 4 - 6m. Weiteres Pflanzenmaterial wurde aus der Helbe entnommen.

Die terrestrischen Moose wurden an verschiedenen Standorten Sachsen-Anhalts und Niedersachsens gesammelt (s. Anhang).

3.3. Aufbewahrung der Proben

Die Proben für die Schwermetallanalytik wurden bis zur Gewichtskonstanz getrocknet. Bis zur Homogenisierung durch Mörsern erfolgte die Aufbewahrung im Dunkeln bei Raumtemperatur. Für die Analytik thiolhaltiger Verbindungen wurden die Proben bei -80 °C bis zur Extraktion aufbewahrt. Das Einfrieren bereits gemörserter Proben war für eine quantitative Analytik für wenige Stunden möglich. Die sauren Extrakte konnten nicht eingefroren werden.

3.4. Vorbereitung der Pflanzen für Laborversuche

Das für die Laborversuche verwendete Pflanzenmaterial von *F. antipyretica* wurde mehrmals mit einfachdestilliertem H2O gewaschen und in 2 - 3 cm lange Abschnitte unterteilt. Die terrestrischen Moose wurden ohne weitere Vorbehandlung für die Versuche eingesetzt. Es wurden nur junge, voll beblätterte Pflanzenteile verwendet. Um die biologische Variabilität der Proben gering zu halten, wurde das Pflanzenmaterial zu einer Mischprobe vereinigt und für die Versuchsansätze entsprechende Teilmengen entnommen.

3.5. Bestimmung des intra- und extrazellulär gebundenen Cadmiums in *F. antipyretica*

Laboruntersuchungen zur Biosorption (Oberflächen- bzw. Zellwandadsorption) von Cd erfolgten über Austausch des Cd²⁺ durch Ni²⁺ (BROWN und WELLS, 1988). Etwa 1,0 – 1,5 g Pflanzenmaterial wurden nach Inkubation in 100 mL Medium (mit 100 μM Cd) 2mal mit einfachdestilliertem H2O (je 100 mL) gewaschen. Im folgenden wurden Waschungen mit 20 mM NiCl₂ durchgeführt (je 50 mL, 30 min auf einem Schüttler, ca. 100 U/min). Der Anteil des oberflächen- bzw. zellwandgebundenen Cd wurde aus den Cd-Gehalten der zum Waschen verwendeten NiCl₂-Lösungen berechnet. Im Anschluß wurde das Moos bei 80 °C getrocknet, gemörsert (Porzellanmörser, mit HNO₃ (ca. 20 %ig, suprapur) gespült) und
für die Schwermetallanalytik aufgeschlossen. Die Menge an intrazellulär aufgenommenem Cd wurde aus dem Rest-Cd-Gehalt der Pflanzen bestimmt.

3.6. Vorbereitung des Pflanzenmaterials für die Schwermetallanalytik
Das Pflanzenmaterial wurde ohne Waschen direkt für die Analysen eingesetzt, über Nacht bei 80°C getrocknet und anschließend im Porzellanmörser homogenisiert.

Für den mikrowellengestützten Aufschluß (Fa. CEM, MDS 2100) wurden 40 - 50 mg getrocknetes und gemörbertes Pflanzenmaterial in die Aufschlußgefäße (Teflon: Lined Digestion Vessels, Fa. CEM) eingewogen und mit je 2 mL H₂O₂ (30 %ig, suprapur) und 4 mL HNO₃ (65 %ig, suprapur) versetzt. Die physikalischen Parameter des Aufschlusses sind in Abb. 4 dargestellt.

Abb. 4: Physikalische Parameter des Aufschlusses mittels Mikrowelle (Fa. CEM, MDS 2100).

<table>
<thead>
<tr>
<th>Stufe</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druck [psi]</td>
<td>19</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Zeit [min]</td>
<td>5.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Dauer [min]</td>
<td>3.00</td>
<td>15.00</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Pro Aufschlußdurchgang wurde eine Referenzprobe (BCR 61, *Platismatium riparioides*, Wassermoos) und eine Blankprobe ohne Pflanzenmaterial mitgeführt. Im Anschluß wurden die Proben mit destilliertem H₂O auf ein Volumen von 30 mL aufgefüllt.

3.7. Analytik der Schwermetallgehalte
Die Messungen der Gehalte an Cd, Pb, Zn, und Cu der Proben erfolgten am UFZ Umweltforschungszentrum Leipzig-Halle, Sektion Gewässerforschung, Magdeburg (Dr. K. Friese) und der Sektion Analytik (Dr. Wennrich). Die Analytik wurde am ICP-MS (ELAN 5000, Fa. Perkin Elmer, Sciex) durchgeführt. Wiederfindung und Richtigkeit der Daten wurden anhand des Referenzmaterials SRM 1643c (Wasser) und BCR 61 (*Platismatium riparioides*, Wassermoos) abgesichert. Die Kalibrierungen erfolgten mittels Multielement-Standardlösungen (Fa. Merck) im Bereich von 1 - 100 µg/L. Zur Korrektur von Matrixeffekten, auftretenden Interferenzen und 'drift correction' wurde ¹⁰⁹Rh als interner Standard eingesetzt. Durch Mitführen eines Blindwertes pro Aufschlußdurchgang konnten auftretende Kontaminationen erfaßt und berücksichtigt werden. Die Nachweisgrenzen lagen bei 0,2 µg/L (Cd), 2,0 µg/L (Pb), 10 µg/L (Zn) und 2,0 µg/L (Cu).

3.8. Bestimmung des Trockengewichtes
Da durch Witterungseinflüsse die Moose unterschiedliche Wassergehalte aufwiesen, wurde für jede Probe aus dem Freiland das Trockengewicht bestimmt, um insbesondere für die physiologischen
Parameter einheitliche Bezugsgrößen zu haben. Hierzu wurde das Pflanzenmaterial bis zur Gewichtskonstanz bei 80 °C getrocknet und der Wasserverlust aus der Differenz des Frisch- und Trockengewichts bestimmt. Für die Laborversuche mit *F. antipyretica* erfolgte keine Umrechnung auf Frischgewicht, da der Wassergehalt dieser Pflanzen mit 85 % konstant war.

3.9. **Induktion thiolhaltiger Verbindungen im Laborversuch**

Zur Induktion der Synthese thiolhaltiger Verbindungen im Laborversuch wurde 1 g FG des Pflanzenmaterials pro 100 mL Knop-Medium eingesetzt. Die Zugabe der Schwermetalle zum Medium erfolgte als zweiwertige Chloridsalze. Aus dem Freiland entnommenes Pflanzenmaterial wurde 2 Tage in Medium ohne Schwermetallzusatz vorkultiviert. Während der Versuchsduer erfolgte die Proben in Erlenmeyerkolben auf einem Schüttler bei 125 U/min inkubiert. Die Probenahme erfolgte jeweils zur gleichen Tageszeit.

Tab. 1.: Kulturmedium nach Knop (SCHOPFER, 1986), 1 : 10 verdünnt.

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(NO₃)₂ x 4 H₂O</td>
<td>0,033</td>
</tr>
<tr>
<td>KCl</td>
<td>0,012</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0,0083</td>
</tr>
<tr>
<td>KNO₃</td>
<td>0,0083</td>
</tr>
<tr>
<td>MgSO₄ x 7 H₂O</td>
<td>0,025</td>
</tr>
<tr>
<td>FeCl₃ gesättigte Lösung</td>
<td>ca. 25 µL</td>
</tr>
</tbody>
</table>

Der pH-Wert betrug während der Kultivierung 6,5 - 7,0.

3.10. **Extraktion thiolhaltiger Peptide**

Für das Screening unterschiedlicher Moospezies auf das Vorkommen von PCs wurde die Methode nach GRILL et al. (1991) eingesetzt. Aus den somit erhaltenen Extraktions konnte durch einen enzymatischen GSH-Reduktase Test (Kap. 4.5.2.) auch der GSH-Gehalt sowie γ-EC und Cys mittels HPLC bestimmt werden (Kap. 3.12.).

Es wurden pro Messung, in Abhängigkeit von der Homogenität des Pflanzenmaterials, mindestens 100 bis 200 mg FG eingesetzt. Geringere Mengen führten aufgrund der biologischen Variabilität zu einer höheren Streuung der Meßergebnisse. Das Pflanzenmaterial wurde in flüssigem N₂ gemörsernd und mit 1 N NaOH mit 1 mg/mL NaBH₄ (Tab. 3) versetzt. Nach 15minütiger Inkubation bei Raumtemperatur wurden die Proben 10 min bei 20 000 g zentrifugiert. Das Verhältnis von Pflanzenmaterial (FG) zur Extraktionslösung wurde entsprechend Tab. 2 variiert.
Tab. 2.: Extraktionsbedingungen für unterschiedliche thiolhaltige Verbindungen.

<table>
<thead>
<tr>
<th>Methode</th>
<th>Einwaage [mg FG]: NaOH (mit NaBH₄) [µL]</th>
<th>Verbindung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1:1</td>
<td>PCs</td>
</tr>
<tr>
<td>2.</td>
<td>1:4</td>
<td>GSH</td>
</tr>
<tr>
<td>3.</td>
<td>1:3</td>
<td>Cys und γ-EC</td>
</tr>
</tbody>
</table>

Durch Erhöhung des Extraktionsvolumens wurden die Extrakte verdünnt und gleichzeitig die Wiederfindung verbessert. Wurden mehrere Substanzen aus einem Extrakt bestimmt, sind die Bedingungen in den jeweiligen Versuchen angegeben.

Durch Zugabe von 3,6 N HCl zum Überstand (120 µL HCl/500 µL Extrakt) wurden Proteine ausgefällt und der pH-Wert unter 2,0 gesenkt, wodurch S-gebundene Schwermetalle dissoziierten. Nach 15minütiger Inkubation auf Eis und anschließender Zentrifugation (4 °C, 20 000 g) wurde ein klarer Überstand erhalten, der für die weiteren Analysen verwendet wurde. Unter diesen Bedingungen konnte GSH nur als Gesamt-GSH in der reduzierten Form bestimmt werden.

3.11. Analytik von Phytochelatinen

Bei dieser Methode muß allerdings berücksichtigt werden, daß sie nicht nur für thiolhaltige Verbindungen spezifisch ist, wie wir erstmalig zeigen konnten (vergl. Kap. 4.6.)

![Chemical Diagram]

5,5'-Dithiobis(2-nitrobenzoësäure) (DTNB) 5-Thio-2-nitrobenzoësäure (TNB)

Abb. 5: Reaktion von DTNB mit Thiolien unter Freisetzung von TNB (nach ANDERSON, 1989).
HPLC-Bedingungen:

Säule
Mobile Phase
 A
 B
Gradient
Fluß

Nachsäulenderivatisierung:

DTNB
Fluß
Reaktionsschleife
Detektion

Die DTNB-Konzentration, der Fluss sowie die Länge der Reaktionsschleife wurden zugunsten eines hohen Peakfläche/Peakbreite Verhältnisses optimiert.

Die Verwendbarkeit der Methode wurde anhand von Pflanzenmaterial mit bekannter PC-Synthese, wie Tomatenzellantkulturen überprüft.

3.12. **Trennung von γ-EC, Cys und GSH durch HPLC und Nachsäulenderivatisierung mit DTNB**

Diese Methode ist einfach und vergleichsweise schnell, führt aber aufgrund des niedrigen pH-Wertes bei großem Probenumfang zu Schädigung der HPLC-Säule. Es wurde daher eine weitere Methode zur Bestimmung von GSH, Cys und γ-EC optimiert (Kap. 3.13.).

HPLC-Bedingungen:

Säule
Mobile Phase

C-18 (Si 100, Serva) 5 µm, 4,6 x 240 mm
H₂O pH 1,8 mit TFA
3.13. Bestimmung von GSH, Cys und γ-EC durch Derivatisierung mit Monobrombiman

Die Bestimmung des GSH-, Cys- und γ-EC-Gehaltes der Freilandproben erfolgte über HPLC-Analysen nach Derivatisierung mit Monobrombiman (STROHM et al., 1995). Für die Extraktion wurden ca. 50 mg des in flüssigem N₂ gemörberten Pflanzenmaterials in 1,5 mL 0,1 N HCl mit 80 mg PVP (SCHUPP, 1991) eingewogen und anschließend 15 min bei 4 °C und 20 000 g zentrifugiert. Die Bestimmung der Verbindungen erfolgte aus den Überständen.

Gesamt-GSH, Cys und γ-EC

<table>
<thead>
<tr>
<th>Extrakt</th>
<th>120 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHES-Puffer</td>
<td>0,2 M, pH 9,3</td>
</tr>
<tr>
<td>DTT</td>
<td>6,0 mM in H₂O</td>
</tr>
<tr>
<td>1 Stunde gekühlt</td>
<td></td>
</tr>
</tbody>
</table>

Derivatisierung mit Monobrombiman:

<table>
<thead>
<tr>
<th>Monobrombiman</th>
<th>30 mM in Methanol</th>
<th>10 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min Raumtemperatur, dunkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essigsäure</td>
<td>5%ig</td>
<td>250 µL</td>
</tr>
<tr>
<td>Zentrifugation, 15 min, 4 °C, 20 000 g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HPLC-Bedingungen:

<table>
<thead>
<tr>
<th>Säule</th>
<th>C-18, (Lichrosphere 60 RP Select B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Phase A</td>
<td>10 % Methanol /0,25% Eisessig in H₂O (v/v) pH 4,3, mit 10 N NaOH eingestellt</td>
</tr>
<tr>
<td>Mobile Phase B</td>
<td>90 % Methanol /0,25% Eisessig in H₂O (v/v) pH 3,9 mit 0,1 N NaOH eingestellt</td>
</tr>
<tr>
<td>Gradient</td>
<td>4 - 18 % B in A in 20,0 min; 20,0 - 20,5 min auf 100 % B, 20,5 - 28,5 min 100 % B, 28,5 - 29,0 min auf 0 % B, 29,0 - 35,0 min 0 % B</td>
</tr>
<tr>
<td>Fluß</td>
<td>1 mL/min</td>
</tr>
<tr>
<td>Fluoreszenzdetektion</td>
<td>Anregung 420 nm/ Detektion 520 nm</td>
</tr>
</tbody>
</table>

Die Quantifizierung erfolgte anhand von Eichkurven im Bereich von 5,0 - 50,0 µg/mL GSH.
Bei dieser Methode wird GSH als Gesamt-GSH erfaßt. Die Bestimmung des oxidierten GSH kann in einem parallelen Derivatisierungs-Schritt erfolgen.

3.14. **Bestimmung des Gesamtthiolgehaltes**

Die Bestimmung des GSTH-Gehaltes erfolgte aus den in Kap. 3.10. beschriebenen Extrakten über die Farbreaktion mit DTNB (Kap. 3.11.). Die Messung erfolgte nach 5 min bei 410 nm photometrisch gegen einen Blindwert ohne Probe mit 100 µL H₂O. Anhand einer Eichkurve im Bereich von 5 - 200 µg/mL wurden die GSTH-Gehalte der Proben ermittelt.

Testansatz:

<table>
<thead>
<tr>
<th>Probe</th>
<th>100 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTNB</td>
<td>300 µM in KH₂PO₄ (50 mM, pH 8,0)</td>
</tr>
</tbody>
</table>

3.15. **Analytik organischer Verbindungen**

Persistente organische Schadstoffe (POPs) in der Atmosphäre akkumulieren in der Vegetation, wobei die Fremdstoffgehalte als integrale Maße für die mittleren Konzentrationswerte in der Luft betrachtet werden können. Neben Nadeln von Fichten und Kiefern sowie Blättern von Laubbäumen, Sträuchern oder Nutzpflanzen werden Moose als passive Bioakkumulatoren für POPs und Schwermetalle verwendet.

Für die Analytik der POPs sind wir Herrn Dr. K.-D. Wenzel, Sektion Chemische Ökotoxikologie des UFZ Leipzig-Halle, zu Dank verpflichtet.
3.16. Bestimmung der natürlichen 15N/14N-Isotopenverhältnisse und 15N-Aufnahme unter Cd-Belastung

Die Moospflanzen unterschiedlicher Standorte wurden getrocknet und gemahlen. Im homogenen Pflanzenpulver wurden die 15N/14N Ratios (δ^{15}N-Werte) mit einem Isotopenmassenspektrometer (Delta C, Finnigan MAT) in Kombination mit einem Elementaranalysator (EA-IRMS) direkt oder nach Umsetzung des Stickstoffs zu (NH$_4$)$_2$SO$_4$ (Mikrokjeldahltechnik) bestimmt. Die Standardabweichungen der massenspektrometrischen Isotopenanalyse waren kleiner als 0,2 δ-Promille (Standard: Reinluft).

$$\delta^{15}N = \frac{\text{Ratio}_{\text{Probe}}}{\text{Ratio}_{\text{Standard}}} - 1 \times 1000 \ [\%]$$

Zur Untersuchung des Einflusses von Cd auf den Stickstoffmetabolismus von Fontinalis antipyretica wurden ca. 2 g Pflanzenmaterial mit 200 ml Knop-Medium bei 10 °C für 2-4 Tage vorkultiviert. Nach Umsetzen auf Knop-Nährösung mit K15NO$_3$ (50 bzw. 95at.-%) wurde mit Cd exponiert und das Moos zu verschiedenen Zeitpunkten geerntet. Zur Bestimmung des 15N-Einbaues in Aminosäuren und Proteine wurden 500 mg Moos aufgearbeitet und der Stickstoff nach Umsetzung zu (NH$_4$)$_2$SO$_4$ (Kjeldahltechnik) emissionsspektrometrisch (NOI-7PC) vermessen.

3.17. Untersuchungen zum Einfluß von Umweltparametern auf die Thiolpeptidsynthese in Fontinalis antipyretica

3.17.1. Einfluß der Schwefeleinnährung

Erste Untersuchungen zum Einfluß der Schwefeleinnährung auf die Thiolpeptidsynthese wurden im Laborversuch über 14 Tage durchgeführt, wobei Moos verschiedenen Sulfat- und Cd-Konzentrationen ausgesetzt wurde. Vor Beginn der Versuchsreihe wurde das Pflanzenmaterial 3 Tage in einer Knop-Lösung mit 100 μM Sulfat, ohne Cd und einen weiteren Tag in Medium ohne Sulfat/Cd inkubiert. Dann wurden folgende Reihen angesetzt: 0 μM SO$_4$/0 μM Cd, 0 μM SO$_4$/200 μM Cd, 500 μM SO$_4$/0 μM Cd, 500 μM SO$_4$/200 μM Cd im Nährmedium.

Es wurde der Sulfatgehalt im Moos und im Medium gemessen. Weiterhin erfolgte die Bestimmung des Thiolgehaltes mittels Bimanderivatisierung (Kap.3.13.).

3.17.2. Einfluß der Schwefeleinnährung nach S-Mangelbedingungen

Fontinalis antipyretica wurde 38 Tage in Knop-Medium ohne Sulfat inkubiert, um den Sulfatgehalt im Moos zu senken. Dann wurden folgende Versuchsreihen angesetzt: 0 μM Sulfat/0 μM Cd, 0 μM Sulfat/100 μM Cd, 500 μM Sulfat/0 μM Cd, 500 μM Sulfat/100 μM Cd.

Es wurden die Sulfatgehalte in Moos und Medium gemessen. Weiterhin erfolgte die Bestimmung des Thiolgehaltes mittels Bimanderivatisierung (Kap. 3.13.).
3.17.3. Bestimmung von Sulfat

3.18. Identifikation unbekannter Verbindungen aus Polytrichales

In den terrestrischen Moosen Polytrichum formosum und Atrichum undulatum wurden mittels HPLC und Nachsäulenderivatisierung durch DTNB Substanzen nachgewiesen, die unter den gegebenen Elutions- und Derivatisierungsbedingungen zunächst für PCs gehalten wurden (Kap. 4.6.) Nachfolgende identifizierende Analysentechniken (MS, NMR) konnten diese Vermutung nicht bestätigen und erforderten eine weitere Strukturaufklärung.

3.18.1. Massenspektrometrie

Zur Klärung der chemischen Identität und der Molmassen der fraktionierten Verbindungen wurden LC-MS Untersuchungen durchgeführt (Finigan MAT GmbH, TSQ 7000). Es wurde mit einem isokratischen Gradienten von 10 % ACN eluier. Die Probenschleife hatte ein Volumen von 50 µL. Mit einer Fraktion von Atrichum undulatum, die vergleichbare Retentionszeiten zu der gesammelten Fraktion von Polytrichum formosum aufwies, wurde ebenfalls eine LC-MS durchgeführt. Da in Atrichum undulatum eine höhere Konzentration vorlag, wurde zusätzlich eine Tandem-MS mit einem Fragment (m/z-Verhältnis 210,9) der Fraktion durchgeführt.

3.18.2. NMR

Die HPLC-NMR-Analyse zur Identifizierung des Peaks 8 wurde mit einem BRUKER DRX 500 SPEKTROMETER bei 500,13 MHz durchgeführt. Mit einer MERCK HITACHI LICHROGRAPH L-6200A PUMPE wurde ein Gradient von 5 - 25 % ACN (0,1 % TFA) erzeugt. Das ¹H Spektrum wurde bei 12000 Hz mit einer Anregungsdauer von 1,36 sec und einer Relaxationsverzögerung von 1,80 sec aufgenommen. Zur Unterdrückung unerwünschter Signale von ACN und Restwasser im Gradienten wurde eine Standard BRUKER Pulssequenz durchgeführt. Danach wurde die Rauschunterdrückung von ACN auf 2,0 ppm eingestellt. Es wurden 120 µL eingespritzt.
4. Ergebnisse und Diskussion

4.1. Biologische Variabilität der Schwermetallgehalte am natürlichen Standort

Zur Überprüfung der biologischen Variabilität der Schwermetallgehalte in Scleropodium purum an einem größeren Standort wurden am Standort Hohenthurm an den meisten Terminen 3 Proben in einem Gebiet von ca. 50 x 200 m entnommen. Die Ergebnisse sind in Tab. 3 zusammengestellt.

Tab. 3: Mittelwerte [µg/g TG] der Dreifachbeprobung des Standortes Hohenthurm, n=3.

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
<th>Cu</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>0,35</td>
<td>7,40</td>
<td>69,64</td>
<td>9,07</td>
<td>2,398</td>
</tr>
<tr>
<td>SD</td>
<td>0,09</td>
<td>1,29</td>
<td>14,84</td>
<td>1,99</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>25,56</td>
<td>17,37</td>
<td>21,31</td>
<td>21,96</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,32</td>
<td>6,09</td>
<td>76,61</td>
<td>10,83</td>
<td>7,498</td>
</tr>
<tr>
<td>SD</td>
<td>0,08</td>
<td>0,17</td>
<td>36,17</td>
<td>1,38</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>25,55</td>
<td>2,83</td>
<td>47,22</td>
<td>12,74</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,29</td>
<td>8,02</td>
<td>59,38</td>
<td>12,18</td>
<td>2,698</td>
</tr>
<tr>
<td>SD</td>
<td>0,11</td>
<td>1,88</td>
<td>20,90</td>
<td>0,97</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>36,61</td>
<td>23,39</td>
<td>30,12</td>
<td>7,94</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,31</td>
<td>8,94</td>
<td>47,71</td>
<td>8,79</td>
<td>13,798</td>
</tr>
<tr>
<td>SD</td>
<td>0,06</td>
<td>2,40</td>
<td>9,41</td>
<td>3,19</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>20,09</td>
<td>26,87</td>
<td>19,72</td>
<td>36,31</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,26</td>
<td>5,43</td>
<td>300,01</td>
<td>6,75</td>
<td>12,898</td>
</tr>
<tr>
<td>SD</td>
<td>0,02</td>
<td>1,48</td>
<td>357,64</td>
<td>1,03</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>6,70</td>
<td>27,19</td>
<td>119,21</td>
<td>15,30</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,45</td>
<td>8,37</td>
<td>66,05</td>
<td>12,13</td>
<td>7,998</td>
</tr>
<tr>
<td>SD</td>
<td>0,15</td>
<td>4,65</td>
<td>24,73</td>
<td>2,54</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>32,64</td>
<td>55,55</td>
<td>37,44</td>
<td>20,93</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,32</td>
<td>6,58</td>
<td>132,40</td>
<td>10,39</td>
<td>16,1298</td>
</tr>
<tr>
<td>SD</td>
<td>0,00</td>
<td>1,06</td>
<td>6,60</td>
<td>2,31</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>1,55</td>
<td>16,17</td>
<td>4,99</td>
<td>22,23</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,31</td>
<td>5,58</td>
<td>417,47</td>
<td>9,76</td>
<td>14,199</td>
</tr>
<tr>
<td>SD</td>
<td>0,09</td>
<td>0,43</td>
<td>272,06</td>
<td>2,24</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>28,04</td>
<td>7,62</td>
<td>65,17</td>
<td>22,98</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,31</td>
<td>5,74</td>
<td>59,15</td>
<td>9,88</td>
<td>28,299</td>
</tr>
<tr>
<td>SD</td>
<td>0,07</td>
<td>1,13</td>
<td>8,72</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>24,26</td>
<td>19,75</td>
<td>14,75</td>
<td>3,25</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,23</td>
<td>4,88</td>
<td>51,98</td>
<td>9,70</td>
<td>30,399</td>
</tr>
<tr>
<td>SD</td>
<td>0,03</td>
<td>0,75</td>
<td>0,65</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>12,86</td>
<td>15,30</td>
<td>1,25</td>
<td>7,08</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,19</td>
<td>5,03</td>
<td>53,47</td>
<td>9,26</td>
<td>26,499</td>
</tr>
<tr>
<td>SD</td>
<td>0,02</td>
<td>2,31</td>
<td>10,99</td>
<td>2,45</td>
<td></td>
</tr>
<tr>
<td>SD %</td>
<td>9,32</td>
<td>38,35</td>
<td>20,56</td>
<td>26,43</td>
<td></td>
</tr>
</tbody>
</table>
Für Cd schwankte die Streuung zwischen 38,8 und 1,6 % (n=3), für Pb lagen diese Werte zwischen 55,6 und 2,8 %. Die höchsten Streuungen wurden für Zn mit 19,2 % gemessen, der niedrigste Wert lag hier bei 1,25 %. Die Cu-Gehalte streuten zwischen 36,3 % und 7,1 %.

Gleichzeitig wurde eine Dreifachbeprobung des einzelnen Standortes Hohenthurm 1 vorgenommen (Tab. 4.). Auch hier lag die Streuung im Bereich der weiter auseinander liegenden Standorte. Die Streuung der Zn-Gehalte war ebenfalls höher als die der anderen Metalle.

Tab. 4: Mittelwerte [µg/g TG] der Dreifachbeprobung des Standortes Hohenthurm 1 am 28.2.98, n=3.

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,17</td>
<td>5,21</td>
<td>33,5</td>
<td>6,2</td>
<td></td>
</tr>
<tr>
<td>0,28</td>
<td>6,56</td>
<td>57,0</td>
<td>10,3</td>
<td></td>
</tr>
<tr>
<td>0,41</td>
<td>12,1</td>
<td>105,6</td>
<td>16,9</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,29</td>
<td>7,96</td>
<td>65,4</td>
<td>11,1</td>
</tr>
<tr>
<td>SD</td>
<td>0,10</td>
<td>2,98</td>
<td>30,0</td>
<td>4,4</td>
</tr>
<tr>
<td>SD %</td>
<td>33,3</td>
<td>37,5</td>
<td>45,9</td>
<td>39,6</td>
</tr>
</tbody>
</table>

4.2. Biosorption und intrazelluläre Aufnahme von Cd (Laborversuche)

Die Biosorption (extrazelluläre Aufnahme) von Cd wurde zunächst am Wassermoos *F. antipyretica* untersucht. In einem 10tägigen Versuch unter 100 µM Cd (entsprechend 1,12 mg/100 mL) wurde in *F. antipyretica* der Anteil des extra- und intrazellulär gebundenen Cd durch Waschen des Pflanzenmaterials mit NiCl₂ bestimmt. Im folgenden wird als "extrazellulär" die Summe der durch Ni austauschbaren Cd-Menge und als "intrazellulär" der im Pflanzenmaterial verbleibende Rest-Cd-Gehalt benannt. Die Wiederfindung des Gesamt-Cd wurde aus der Summe des Cd der Waschflüssigkeiten, des Pflanzenmaterials und des Mediums ermittelt. Dieser Wert schwankte zwischen 100,1 und 120,8 %. In der für 10 Tage in Cd-freiem Medium kultivierten Kontrolle war weder "extra"- noch "intrazelluläres" Cd nachweisbar.

Der Anteil des "extrazellulär" gebundenen Cd am Gesamt-Cd des Mediums nahm in 10 Tagen von 71,2 auf 48,8 % ab (Abb. 6). Vom 3. - 7. Tag lag dieser Wert bei ca. 58 %. Der Anteil an "intrazellulärem" Cd nahm von 23,2 auf 49,3 % des Gesamt-Cd bis zum 9. Tag zu (Abb. 7). Gleichzeitig sank der Cd-Gehalt des Mediums von 17,9 auf 6,8 % des Gesamt-Cd. Die Berechnung der Menge an "extrazellulär" gebundenem Cd pro mg TG ergab über den gesamten Zeitraum einen Mittelwert von 3,75 ± 0,65 µg/mg TG. Im Vorversuch betrug nach 5tägiger Inkubation in 100 µM Cd die Menge an "extrazellulärem" Cd 4,1 ± 0,49 µg/mg TG.

Die pro mg TG "intrazellulär" aufgenommene Cd-Menge lag im Mittel bei 2,38 ± 0,72 µg/mg TG. Die Gesamtmengen an aufgenommenem Cd ("intra"- + "extrazellulär") betrug im Mittel 6,13 ± 1,1 µg/mg TG. Diese Werte korrelierten mit der Einwaage an Pflanzenmaterial (Abb. 8).
Abb. 6: Wiederfindung an "extrazellulärem" Cd in *F. antipyretica* als % der im Medium enthaltenen Cd-Menge über einen Zeitraum von 10 Tagen, n = 1.

Abb. 7: Wiederfindung an "intrazellulärem" Cd in *F. antipyretica* als % der im Medium enthaltenen Cd-Menge über einen Zeitraum von 10 Tagen, n = 1.

Abb. 8: Korrelationsdiagramm der pro mg Pflanzenmaterial (*F. antipyretica*) aufgenommenen Cd-Menge ("intra"+"extrazellulär") und der Einwaage an Pflanzenmaterial, n = 1, r = 0,9195, *** p = 0,001.
Abb. 9: Cd-Aufnahme über 10 Tage in *F. antipyretica* (1 μmol = 11,2 μg).

Abb. 10: Cd-Aufnahme über 5 Tage in *Polytrichum formosum* bei Exposition mit 100μM Cd

Bei *P. formosum* waren ebenfalls bereits am 1. Tag ca. 60 % des gesamten Cd des Mediums an die Oberfläche adsorbiert, wogegen der intrazelluläre Anteil ca. 5% betrug (Abb.10). Im Laufe der Inkubationszeit nahm sowohl der intrazelluläre als auch der extrazelluläre Cd-Gehalt des Mooses kontinuierlich zu.

4.3. Schwermetallgehalte der Freilandproben

![Cd-Gehalte der Freilandproben](image.png)

Abb. 11: Cd-Gehalte der Freilandproben (*S. purum*) am Standort Hohenthurm 1, A97=August 1997 usw.; S97, O97, D97, J98 nicht gemessen.

Abb. 15: Cd-Gehalte der Freilandproben am Standort Petersberg, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Abb. 16: Pb-Gehalte der Freilandproben am Standort Hohenturm 1, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Abb. 17: Pb-Gehalte der Freilandproben am Standort Hohenturm 2, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Abb. 18: Pb-Gehalte der Freilandproben am Standort Hohenthurm 3, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Abb. 21: Zn-Gehalte der Freilandproben am Standort Hohenthurm 1, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Abb. 26: Cu-Gehalte der Freilandproben am Standort Hohenturm 1, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.
Abb. 27: Cu-Gehalte der Freilandproben am Standort Hohenthurm 2, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Abb. 28: Cu-Gehalte der Freilandproben am Standort Hohenthurm 3, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Abb. 29: Cu-Gehalte der Freilandproben am Standort Salzmünde, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.
Abb. 30: Cu-Gehalte der Freilandproben am Standort Petersberg, A97=August 1997 usw.; S97, O97, D97, J99 nicht gemessen.

Die Jahresmittel der Schwermetallgehalte der Moosproben der einzelnen Standorte sind in Abb.31 dargestellt. Signifikante Unterschiede der Standorte in der Belastung mit Cd, Pb, Zn oder Cu konnten nicht festgestellt werden, da die Werte hohe Standardabweichungen aufweisen. Insbesondere für Zn wurden Abweichungen im Laufe des Untersuchungszeitraums von > 100 % gemessen. Lediglich der Standort Petersberg war vergleichsweise hoch mit den Metallen Cd, Pb und Zn belastet.

4.4. Organische Verbindungen in Freilandmoosen

Für die Belastung mit organischen Verbindungen konnten deutliche Unterschiede zwischen den Standorten Hohenturm 1-3 festgestellt werden (Tab. 5). Insbesondere für den Standort Hohenturm 3 wurden vergleichsweise hohe Belastungen mit PAHs gemessen. Diese ersten Untersuchungen erlauben keine eindeutige Erklärung. Möglich ist, daß die etwas höhere und exponierte Lage dieses Standortes hierbei eine Rolle spielt. Im Gegensatz zu Hohenturm 1 und Hohenturm 2 ist dieser Standort ca. 100 m entfernt auf der Kuppe eines Hügels gelegen. Aufgrund des geringeren Baumbestandes könnte es hier zu einem höheren Eintrag über die Luft kommen.

Tab. 5: Chlororganika und PAHs in Moosen der Standorte Hohenturm (1, 2, 3) und Salzmünde [ng/g TG].

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Hohenturm 1</th>
<th>Hohenturm 2</th>
<th>Hohenturm 3</th>
<th>Salzmünde</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HCH</td>
<td>3,49</td>
<td>4,86</td>
<td>5,57</td>
<td>2,34</td>
</tr>
<tr>
<td>β-HCH</td>
<td>3,91</td>
<td>1,20</td>
<td>5,56</td>
<td>4,18</td>
</tr>
<tr>
<td>γ-HCH</td>
<td>0,45</td>
<td>0,98</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>δ-HCH</td>
<td>2,97</td>
<td>n.n.</td>
<td>n.n.</td>
<td>0,65</td>
</tr>
<tr>
<td>ε-HCH</td>
<td>6,15</td>
<td>19,6</td>
<td>6,85</td>
<td>7,95</td>
</tr>
<tr>
<td>DDT</td>
<td>3,69</td>
<td>n.n.</td>
<td>1,53</td>
<td>0,45</td>
</tr>
<tr>
<td>DDE</td>
<td>0,93</td>
<td>0,72</td>
<td>n.n.</td>
<td>0,17</td>
</tr>
<tr>
<td>DDD</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>TCB</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>HCB</td>
<td>0,06</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>PCB 28</td>
<td>0,37</td>
<td>n.n.</td>
<td>0,40</td>
<td>n.n.</td>
</tr>
<tr>
<td>PCB 52</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>PCB 101</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>0,11</td>
</tr>
<tr>
<td>PCB 138</td>
<td>1,77</td>
<td>2,09</td>
<td>2,85</td>
<td>1,54</td>
</tr>
<tr>
<td>PCB 153</td>
<td>2,09</td>
<td>0,84</td>
<td>2,19</td>
<td>1,22</td>
</tr>
<tr>
<td>PCB 180</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>Phenanthren</td>
<td>66,1</td>
<td>86,0</td>
<td>111</td>
<td>72,3</td>
</tr>
<tr>
<td>Anthracen</td>
<td>4,29</td>
<td>3,58</td>
<td>9,70</td>
<td>5,22</td>
</tr>
</tbody>
</table>
4.5. Erarbeitung hoch sensitiver Methoden zum Nachweis thiolhaltiger Verbindungen in Moosproben

Da die für den Nachweis von PCs eingesetzte Methode mittels HPLC und Online-Nachsäulenderivatisierung mit DTNB (Kap. 3.12.) keine Trennung von GSH und γ-EC unter mäßig sauren Bedingungen (pH 3,0) erlaubt, war es notwendig, weitere Methoden zu optimieren.

4.5.1. Derivatisierung mit Monobrombiman

Eine Möglichkeit zur Trennung von GSH und γ-EC ist die Extraktion der Proben mit 0,1 N HCl und anschließender Derivatisierung mit Monobrombiman (STROHM et al., 1991). Diese Methode wurde für die Moosproben optimiert und für die Analyse der PC-Vorstufen aus terrestrischen Moosen eingesetzt. Durch die Reduktion des Extraktionsvolumens von 1,5 auf 1,0 mL konnte die Konzentration der Verbindungen im Extrakt erhöht werden und somit γ-EC, das nur in geringen Mengen vorkommt, besser nachgewiesen werden.

Abb. 32: HPLC-Chromatogramm nach Derivatisierung der Standardsubstanzen 1 = Cys; 2 = γ-EC, 3 = GSH mit Monobrombiman

4.5.2. Enzymatische Bestimmung des GSH-Gehaltes

Für große Probemengen, bei denen lediglich Gesamt-GSH bestimmt werden sollte, wurde der enzymatische Test nach ANDERSON, 1989 eingesetzt. Diese Bestimmung ist schneller und weniger aufwendig als die GSH-Bestimmung mittels HPLC.

Um zu gewährleisten, daß die unterschiedlichen Nachweismethoden keinen Einfluß auf die Ergebnisse haben, war es notwendig, unterschiedliche Extraktionsbedingungen zu vergleichen.
Neben den Extraktionen mit NaOH (mit 1mg/mL NaBH₄) und HCl wurde auch eine Extraktion mit Sulfosalicylsäure durchgeführt.

Tab. 6: Mengen an extrahierbarem GSH bei Verwendung unterschiedlicher Extraktionsmittel, Verhältnis von Extraktionslösung zu Einwaage je 4 : 1, [µg/g FG], n = 3.

<table>
<thead>
<tr>
<th></th>
<th>1 N NaOH</th>
<th>SSA (5 % w/v)</th>
<th>HCl (0,1 N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederfindung</td>
<td>98,5 ± 5,6</td>
<td>80,7 ± 7,1</td>
<td>87,6 ± 4,2</td>
</tr>
</tbody>
</table>

4.5.3. Bestimmung thiolhaltiger Verbindungen durch Kapillarelektrophorese

Für die "on-column"-Derivatisierung" wurde im Anschluß an die Probe eine definierte Menge NEM injiziert. Durch die schnellere Migration des NEM gegenüber den Peptiden kommt es zur Derivatisierung der Peptide innerhalb der Kapillare.

Abb. 33: Elektropherogramm thiolhaltiger Standardverbindungen nach Trennung durch Kapillarzonenelektrophorese, je 250 µg/mL.

4.6. Problematik der Analyse von Phytochelatinen durch Nachsäulenderivatisierung mit DTNB

In den Versuchen wurden unterschiedliche Methoden zu Bestimmung von PCs, GSH und deren Vorstufen eingesetzt. Für den Nachweis eventuell vorkommender PCs wurde die Methode nach GRILL et al., 1991 (Kap. 3.12.) verwendet, da diese Methode als einzige den Nachweis von PCs und GSH (γ-EC), als auch die Bestimmung der Gesamthiole (GSTH) aus einem Extrakt erlaubt. PCs waren in allen untersuchten terrestrischen und aquatischen Moos-Spezies nicht nachweisbar.

Messungen der terrestrischen Moose Polytrichum formosum und Atrichum undulatum ergaben Peaks in den HPLC Profilen, die bereits in nicht belasteten Proben aus dem Freiland detektiert werden konnten (Abb. 34).

![HPLC-Chromatogramm mit Nachsäulenderivatisierung mit DTNB von P. formosum, unbelastete Probe](image)

Abb. 34: HPLC-Chromatogramm mit Nachsäulenderivatisierung mit DTNB von *P. formosum*, unbelastete Probe

Auffallend war bei allen Untersuchungen unter Cd-Belastung (100 µM), daß es am 3. Tag zu einer deutlichen Zunahme der Peaks 1, 2 und 3 kam (nicht dargestellt). Dieser Befund war in mehreren Versuchsreihen reproduzierbar.

Eine Standardaddition von Thiolstandards ergab entsprechende Retentionszeiten, die nur gering von denen der Substanzen aus *P. formosum* abwichen (Abb. 35). Geringfügige Änderungen der
Retentionszeiten zwischen einzelnen HPLC-Messungen sind von der Analyse von Tomatenzellekulturen bekannt (nicht dargestellt).

Abb. 35: HPLC-Chromatogramm eines Cd-belasteten Extraktes von *Polytrichum formosum* (dünne Linie) im Vergleich zu Thiolstandards (starke Linie) unter gleichen analytischen Bedingungen wie Abb. 34 (Peak 1-3, vgl. Text)

Die Reinigung und Charakterisierung des Peak 3 (Abb. 35) mittels HPLC-MS und NMR ergab, daß diese Verbindung kein PC ist (BERLICH et al., 2000, in Vorbereitung). Die Untersuchungen zur Strukturaufklärung deuten darauf hin, daß es sich hierbei um einen Vertreter der Coumarylglykoside handelt, deren Vorkommen in Moosen beschrieben wurde (JUNG et al., 1994)

Abb. 36: Strukturformel der isolierten Coumarinverbindung aus *Polytrichum formosum* und *Atrichum undulatum* (JUNG et al., 1994). R = Disaccharid
Der Nachweis von thiolhaltigen Verbindungen durch HPLC mit Nachsäulendervatisierung mit DTNB kann daher nicht als spezifisch für diese Verbindungsklasse erachtet werden. Diese Ergebnisse sind bisher nicht aus der Literatur bekannt und belegen, daß die Identifizierung von PCs mit dieser Methode ohne weitere Charakterisierung der isolierten Einzelsubstanzen äußerst kritisch ist.

4.7. Laboruntersuchungen zur Induktion thiolhaltiger Verbindungen

4.7.1. Glutathion

Abb. 37: GSH-Gehalte in F. antipyretica während 10tägiger Inkubation in Medium mit 100 µM Cd, n=3.

Autoren jedoch nicht identifiziert. Aufgrund der Befunde an *F. antipyretica* und weiteren aquatischen und terrestrischen Moosen (einschließlich *Rhychoestegium riparioide*, Kap. 4.13.) ist vermutlich ein wesentlicher Anteil der von JACKSON et al. (1991) mit diesem Peak nachgewiesenen thiolhaltigen Verbindungen auf GSH zurückzuführen und nicht auf PCs.

Die Erhöhung des GSH-Pools in *F. antipyretica* bis zum 10fachen der Kontrolle bei fehlender PC-Synthese läßt die Hypothese zu, daß in Moosen GSH möglicherweise als direkter Chelator für Schwermetalle fungiert und diese in der Zelle entgiftet.

Ein weiterer Anstieg des GSH-Gehaltes war auch zu beobachten, wenn nach 3tägiger Inkubation das Cd aus dem Medium entfernt wurde (BRUNS et al., 2000b). Dies kann auf die Depotwirkung der Zellwand (Kap. 4.2.) zurückgeführt werden, wodurch trotz eines Cd-freien Mediums noch ausreichend Cd von

4.7.2. Gesamtthiol-Gehalt (GSTH)

Der GSTH-Gehalt war ebenfalls von der Cd-Konzentration abhängig (Abb. 38). Der beschriebene bimodale Verlauf des GSTH-Anstiegs war unter unterschiedlichen Cd-Konzentrationen zu beobachten. Über 10 Tage betrug der mittlere GSTH-Gehalt der Kontrollen 141,7 ± 34,6 µg/g FG. Unter 50 µM Cd wurde die maximale Zunahme mit 150,6 µg/g FG gegenüber der Kontrolle am 6. Tag erreicht. Unter 100 µM Cd betrug diese am 10. Tag 281,7 µg/g FG. 25 µM Cd führten, außer am 3. Tag, zu keiner signifikanten Erhöhung des GSTH-Pools.

![Graphik](image)

Abb. 38: Gesamtthiolgehalte in *F. antipyretica* während 10tägiger Inkubation in Medium mit 100 µM Cd, n=3, Angaben als GSH-Äquivalente.

Der GSTH-Gehalt lag um den Faktor 1,5 - 2,2 über dem Gehalt an GSH (auf Grundlage der GSH-Äquivalente). Diese Mengen an Restthiolen können weder auf den Gehalt an Cys, γ-EC noch auf die Synthese von PCs zurückgeführt werden, da die Summe dieser Verbindungen unter Cd-Einfluß lediglich 20 - 25 µg/g FG (GSH-Äquivalente) beträgt.

Bei Messungen des GSH-Gehaltes mit den hier verwendeten Methoden, muß allerdings berücksichtigt werden, daß auch pflanzliche Sekundärstoffe, wie z.B. Coumarinverbindungen mit DTNB reagieren können (vergl. Kap. 4.6.).

4.7.3. Cystein und γ-EC

Während 10 Tagen unter 100 μM Cd stiegen die Gehalte an Cys und γ-EC ebenfalls an (Abb. 39, GSH nicht dargestellt). Der Cys-Gehalt nahm bis zum 3. Tag von 1,4 μg/g FG auf 14,1 μg/g FG zu. Im folgenden schwankte dieser um einen Mittelwert von 13,5 ± 1,0 μg/g FG. Auch γ-EC war während dieses Versuches in allen Proben nachweisbar. Der Gehalt dieses Peptides stieg kontinuierlich bis zum 9. Tag von 0,45 μg/g FG auf 6,7 μg/g FG und fiel dann am 10. Tag leicht ab.

![Diagramm](image)

AAbb. 39: Cys und γ-EC-Gehalte in *F. antipyretica* während 10tägiger Inkubation in Medium mit 100 μM Cd, n=3, Angaben als GSH-Äquivalente.

Das Fehlen bzw. die sehr geringen Mengen an γ-EC in *F. antipyretica* könnten auf einen starken

4.8. Einfluß von Cd auf den Stickstoffmetabolismus von *F. antipyretica*

Zur Untersuchung des Einflusses von Cd auf den Stickstoffmetabolismus von Moosen wurden zunächst 15N-Tracerversuche ausgehend von K^{15}NO$_3$ (50 At.-% 15N) und einer Belastung von 100 μM im Nährmedium durchgeführt.

Der Gesamtstickstoffgehalt des Mooses liegt über den gesamten Versuchszeitraum hinweg bei Werten zwischen 3-3,9 % (Tab. 7). Er verändert sich nicht durch Cd-Streß. Zwei Stunden nach Versuchsbeginn ist die 15N-Häufigkeit in der Nichtproteinfraktion (NPN) und der Proteinfraktion (PN) beider Versuchsansätze nahezu gleich. Nach zwei Tagen wird der Einfluß von Cd anhand der verringerten Tracerstickstoffkorporation in die N-Fraktionen deutlich. Die 15N-Häufigkeit beträgt unter Einfluß von 100 μM Cd nur 50 % der Häufigkeit der Kontrolle.
Tab. 7: 15N-Häufigkeiten (at.-% exc.) in *F. antipyretica* während der Inkubation in Medium mit 100 μM Cd sowie in den Kontrollen.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Gesamtstickstoff</th>
<th>NPN-Fraktion</th>
<th>P-Fraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[% N]</td>
<td>[15N at.-%exc.]</td>
<td>[15N at.-%exc.]</td>
</tr>
<tr>
<td>K 2 h</td>
<td>3,86</td>
<td>0,002</td>
<td>0,011</td>
</tr>
<tr>
<td>K 2 d</td>
<td>3,04</td>
<td>0,040</td>
<td>0,057</td>
</tr>
<tr>
<td>Cd 2 h</td>
<td>3,50</td>
<td>0,006</td>
<td>0,024</td>
</tr>
<tr>
<td>Cd 2 d</td>
<td>3,66</td>
<td>0,020</td>
<td>0,033</td>
</tr>
</tbody>
</table>

Aufgrund der relativ geringen 15N-Anreicherungen der Moospflanzen bei den Versuchen mit 50 At.-% wurden im folgenden die 15N-Häufigkeiten des K15NO$_3$ auf 95 At.-% und die Schwermetallkonzentration auf 200 μM Cd erhöht.

In Abb. 40 ist der zeitliche Verlauf der 15N-Inkorporation in die Nichtprotein-Stickstofffraktion (NPN-Fraktion), die im wesentlichen die Aminosäuren enthält und die Proteinfraktion der Moose bei Cd-Belastung im Vergleich zu unbehandelten Kontrollen darstellt.

Abb. 40: Inkorporation von 15N in *F. antipyretica* bei 10tägiger Belastung mit Cd

A...Kontrolle, B...200 μM Cd
Dabei wird deutlich, dass unter Schwermetallstress eine signifikante Hemmung des 15N-Einbaus in die pflanzlichen N-Fraktionen auftritt. Während nach fünf Tagen bei den Kontrollpflanzen die 15N-Häufigkeiten in der NPN-(Precursor-)Fraktion und der Proteinfraktion nahezu ausgeglichen sind, ist unter Cd-Einfluß auch nach 10 Tagen noch eine Inhibierung der Proteinsynthese nachweisbar. Insgesamt findet man nach dieser Zeit unter Cd-Stress eine 15N-Inkorporation von nur 6% in die NPN-Fraktion und 3% in die Proteinfraktion im Vergleich zu den unbehandelten Kontrollpflanzen.

Abb. 41 zeigt den Einbau des Tracerstickstoffs in F. antipyretica nach fünftägiger Belastung mit Cd verschiedener Konzentration. Es ist eine konzentrationsabhängige Verringerung der Inkorporation des markierten N in beide Fraktionen zu erkennen. Auch die Hemmung der Protein-Biosynthese erweist sich von der Cd-Konzentration des Mediums abhängig. Während sich die Häufigkeit von 15N in NPN- und P-Fraktion bis zu 50 μM Cd nicht unterscheidet, ist der Tracereinbau in der Protein-Fraktion bei höheren Konzentrationen deutlich geringer.

Abb. 41: Einbau von 15N in F. antipyretica nach fünftägiger Belastung mit Cd verschiedener Konzentration (0-400 μM Cd)

4.9. Natürliche Variationen der stabilen Stickstoffisotope in terrestrischen Freilandmoosen

An vier unterschiedlichen Standorten der Region Hohenturm-Salzmünde wurden an Laubmoosen (Scleropodium) im Vergleich zu einem Referenzstandort am Stechlinsee (nahe Menz) die natürlichen 15N/14N-Isotopenverhältnisse bestimmt (Tab. 8).

Da Laubmoose Nährstoffe und Wasser überwiegend aus atmosphärischen Quellen nutzen, erscheinen sie geeignet, anthropogene Stickstoffeinträge über die Änderung ihrer natürlichen Stickstoffisopenverhältnisse 15N/14N ratios, δ^{15}N-Werte) anzuzeigen (JUNG, et. al., 1997; HOFMANN et al., 1997).
Tab. 8: 15N/14N ratios (δ^{15}N-Werte) von Scleropodium unterschiedlicher Standorte

<table>
<thead>
<tr>
<th>Standort</th>
<th>Salzmünde</th>
<th>Hohenturm I</th>
<th>Hohenturm II</th>
<th>Hohenturm III</th>
<th>Referenzstandort Menz Mittel von 5 Flächen (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15N/14N [‰]</td>
<td>Pr 1 Pr 2</td>
<td>Pr 1 Pr 2</td>
<td>Pr 1 Pr 2</td>
<td>Pr 1 Pr 2</td>
<td>-8,35</td>
</tr>
<tr>
<td>±s</td>
<td>0,15</td>
<td>0,01</td>
<td>0,06</td>
<td>0,03</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Pr = Probe

Im Ergebnis der Untersuchungen kann festgestellt werden:

- Die δ^{15}N-Werte der unterschiedlichen Standorte stimmen innerhalb der Probenahmen gut überein.

- Signifikante Unterschiede ergeben sich sowohl zwischen den regionalen Standorten als auch zwischen diesen und den relativ unbelaßten Referenzstandorten am Stechlinsee (Menz), welche auf unterschiedliche N-Belastungen (Einträge) zurückzuführen sind.

Mehr positive 15N/14N ratios (δ-Werte) sind im wesentlichen das Ergebnis von Belastungen mit oxidierten N-Verbindungen aus Verbrennungsprozessen (industrielle Quellen, Straßenverkehr).

Die Untersuchungen zeigen, daß Scleropodium im Hinblick auf die Analyse seiner Stickstoffisotopen-Verhältnisse (15N/14N ratios, δ^{15}N-Werte) als Bioindikationssystem anthropogener N-Belastungen geeignet ist. Eine Identifikation atmosphärischer Stickstoffquellen ist möglich.

4.10. Einfluß von Umweltfaktoren (Schwefelernährung) auf die Synthese thiolhaltiger Verbindungen

Die Laboruntersuchungen zur Induktion thiolhaltiger Verbindungen wurden auch in Bezug auf die Schwefelernährung durchgeführt, da GSH in den Mooszellen aus Cys und γ-EC synthetisiert wird und Cys wiederum ein Produkt der Sulfatassimilation darstellt. Als besonders geeignet für diese Untersuchungen erwies sich das Wassermoos F. antipyretica, da es an ein wässriges Außenmedium angepaßt ist und auch unter natürlichen Bedingungen die Nährstoffaufnahme hieraus erfolgt.

Der Einfluß des Schwefelangebotes auf die Toxizität von Cd wurde bereits bei Triticum aestivum (P.J. MCMAHON et. al, 1998) und Hordeum vulgare (Y. CHEN et. al, 1997) untersucht. Deutliche Effekte in Bezug auf Vitalität und Wachstum der Pflanzen zeigten sich hier bereits bei Sulfat-

Deshalb wurden die folgenden Untersuchungen zur Aktivierung des S-Metabolismus bei Cd-Stress mit Nährmedium ohne Sulfat durchgeführt.

In Abb. 42 und 43 sind Thiol- und Sulfatgehalt in Fontinalis antipyretica dargestellt, wobei das Moos in Knop-Lösung ohne Sulfat und mit/ohne Cd inkubiert wurde. Im Medium wurde über den gesamten Zeitraum kein Sulfat nachgewiesen.

Unter Cd-Belastung (Abb. 42 B) kommt es zur Erhöhung des Glutathion-, aber auch des Cystein-, γ-Glutamylcystein- und GSSG-Spiegels. Diese Neusynthese der Thiole ist mit einem Verbrauch von Sulfat im Moos gekoppelt (Abb. 43). Der Sulfatgehalt in am Standort gesammelten Fontinalis antipyretica-Pflanze liegt zwischen 3 und 4,5 μmol/g FM. Diese Menge ist ausreichend, um bei einer Cd-Belastung Glutathion zu synthetisieren, ohne daß Sulfat aus dem Nährmedium aufgenommen werden muss. Nach 10tägiger Inkubation mit 200 μM Cd liegt der Sulfatgehalt im Moos noch bei 0,4-1 μmol/g FM (Abb. 43).
Abb. 42: Gehalt an Thiolen in *Fontinalis antipyretica* mit unterschiedlichem Sulfatangebot im Nährmedium

A...0 µM Cd/0 µM Sulfat
B...200 µM Cd/0 µM Sulfat

Abb. 43: Gehalt an Sulfat in *Fontinalis antipyretica* mit unterschiedlichem Sulfatangebot im Nährmedium

Um eine Aktivierung des Schwefelstoffwechsels deutlicher zu machen, wurde das Moos an Sulfat verarmt und dann mit Cd exponiert. In einem Zeitraum von 38 Tagen sinkt der Sulfatgehalt im Moos von 3,1 auf 0,77 µmol/g FM, ein Viertel der Ausgangskonzentration (Abb. 44). Auch die GSH-Menge in den Zellen nimmt ab, von 0,28 auf 0,15 µmol/g FM am 10. Tag (Abb. 45), jedoch war nach dem 10. Tag keine weitere signifikante Abnahme festzustellen. Um eine Reaktion des Schwefelstoffwechsels auszulösen, wurde nun Cd und/oder Sulfat zugegeben.
Erfolgt die Gabe von Sulfat, wird der Sulfatpool in den Zellen wieder aufgefüllt (Abb. 46). Er steigt bei unbelastetem Moos innerhalb von 1 Tag auf 2,9 µmol/g FM (n=3) an und erreicht damit den Ausgangsgehalt an Sulfat. Auch der GSH-Spiegel erhöht sich wieder, ein Maximum wird nach 1 Tag erreicht (0,433 µmol/g FM, n=3) (Abb. 47). Im weiteren Verlauf sinkt er auf 0,19 µmol/g FM ab (22 Tage).

Wird das Moos zusätzlich mit Cd belastet (Abb. 46), steigt der Sulfatgehalt bis zum 2. Tag auf 3,44 µmol/g FM an, sinkt dann jedoch auf 1,15 µmol/g FM ab. Das geht einher mit einer kontinuierlichen Neusynthese von GSH auf 0,337 µmol/g FM am 1. Tag bzw. 1,9 µmol/g FM am 22. Tag (Abb. 46). Dies zeigt einerseits eine verstärkte Aufnahme von Sulfat nach Mangelerkrankungen zur Auffüllung des zellulären Pools - Sulfat wird auch bei der Aminosäure- und Proteinbiosynthese benötigt. Andererseits wird bei Cd-Stress die Sulfatassimilation zur GSH-Synthese in hohem Maße aktiviert. Nach einem Tag ist der GSH-Gehalt der belasteten Probe ca. doppelt so hoch wie bei der Kontrolle (ohne Cd/mit Sulfat), nach 22 Tagen sogar 10fach höher.

Wird das Pflanzenmaterial weiter ohne Sulfat belassen, sinkt der Sulfatgehalt bei der unbelasteten Probe auf 0,25 µmol/g FM ab (22 Tage, insgesamt 60 Tage Sulftamangel) (Abb. 46). Auch der GSH-Spiegel nimmt nun deutlich ab, er beträgt zum Versuchsende 0,027 µmol/g FM (Abb. 47).

Bei belastetem Moos (Abb. 46) sinkt der Sulfatgehalt stärker ab, da die Pflanzen auf den Cd-Stress, trotz des niedrigen Sulfatspiegels, mit einer verstärkten Synthese von GSH reagieren (Abb. 47). Der Schwefelstoffwechsel wird auch hier aktiviert. Da aber nicht so viel Sulfat zur Verfügung steht, steigt der GSH-Gehalt nur bis zum 3. Tag (0,45 µmol/g FM, das 4,5fache der Kontrolle – ohne Cd/Sulfat), um dann auf 0,14 µmol/g FM abzusinken (22. Tag) (Abb. 47). Dies entspricht den Werten in unbelaisten Moos (nach 1d bei 10 °C). Die Sulfattmenge vermindert sich in dieser Zeit auf einen minimalen Wert von 0,07 µmol/g FM (Abb. 46). Da nicht mehr genügend Sulfat für die GSH-Synthese zur Verfügung steht, kann Cd nicht mehr in genügendem Umfang detoxifiziert werden.

Dies unterstreicht die wichtige Rolle des Sulfats für eine verstärkte Assimilation als Voraussetzung für eine erhöhte GSH-Biosynthese bei Cd-Exposition.

Abb. 44: Sulfat-Spiegel in *Fontinalis antipyretica* während Inkubation in Knop-Medium ohne Sulfat

Abb. 45: GSH-Spiegel in *Fontinalis antipyretica* während Inkubation in Knop-Medium ohne Sulfat

4.11. Thiolgehalte in Freilandmoosen

4.11.1. GSH-Gehalt

Abb. 48: GSH-Gehalte der Freilandproben am Standort Hohenthurm 1, F98=Februar 1998 usw.; J98 und M98 nicht gemessen; n=3.

Insgesamt lagen die durchschnittlichen GSH-Gehalte der Standorte ähnlich: von 317,1 μg/g TG ± 246,8 (P) bis 421,8 μg/g TG ± 409,9 (Hohenthurm 1), wobei die Streuungen bis zu 100% betrug (s. Anhang).

4.11.2. γ-EC-Gehalt

Abb. 53: γ-EC-Gehalte der Freilandproben am Standort Hohenthurm 1, F98=Februar 1998 usw.; J98 und M98 nicht gemessen; S98, O98 und N98 nicht nachgewiesen; n=3.

Abb. 54: γ-EC-Gehalte der Freilandproben am Standort Hohenthurm 2, F98=Februar 1998 usw.; J98 und M98 nicht gemessen; O98 und F99 nicht nachgewiesen; n=3.

Inwieweit dies auf eine erhöhte GSH-Synthese zurückzuführen ist bleibt offen, da γ-EC wesentlich empfindlicher gegen Zersetzung während der Probenextraktion ist als GSH, wodurch zum Teil auch die hohen Standardabweichungen zu erklären sind. In Laboruntersuchungen an F. antipyretica (Kap. 4.7.3) zeigte sich, daß es zumindest bei diesem Moos zu einer Zunahme des γ-EC-Gehaltes unter erhöhter GSH-Synthese kommt. Eine Korrelation der γ-EC-Gehalte zu den GSH-Gehalten der Proben war nicht festzustellen. Die höchsten mittleren γ-EC-Gehalte wies das Moos des Standortes Hohenthurm 2 mit 18,2 μg/g TG ± 18,4 und die niedrigsten das Moos vom Standort Salzmünde mit 11,1 μg/g TG ± 6,1 auf.

4.11.3. Cystein-Gehalt

Abb. 58: Cys-Gehalte der Freilandproben am Standort Hohenthurm 1, F98=Februar 1998 usw.; J98 und M98 nicht gemessen; n=3.

Abb. 61: Cys-Gehalte der Freilandproben am Standort Petersberg, F98=Februar 1998 usw.; n=3.

Die mittleren Cys-Gehalte der Freilandpflanzen lagen mit 7,0 μg/g TG ± 3,0 (Hohenturm 3) bis maximal 8,6 μg/g TG ± 8,1 (Hohenturm 1) ca. 30-50 % unter dem Gehalt an γ–EC. Diese Beobachtung steht im Widerspruch zu den Ergebnissen am aquatischen Moos *F. antipyretica* (BRUNS, 1997), bei dem im Laborversuch der γ–EC-Gehalt deutlich unter dem Cys-Gehalt lag. Eine Erklärung hierfür ist schwierig. Vermutlich handelt es sich um artspezifische Unterschiede. Signifikante saisonale Schwankungen des Cys-Gehaltes waren bei den Freilandproben nicht zu beobachten. Ebenso konnte keine Korrelation zu den GSH-Gehalten festgestellt werden.

4.12. **Interspezifische Vergleiche der biochemischen Reaktion auf Cd**

Unterschiedliche Moosarten wurden im Labor auf ihre physiologisch/biochemische Reaktion auf Cd-Belastung untersucht.

Die Messungen erfolgten wie in Kap. 4.5.2. beschrieben. Aufgrund der Vielzahl von Arten war es nicht möglich, alle Spezies am selben Standort zu sammeln und zur gleichen Jahreszeit zu untersuchen.

Für einen Vergleich der "Thiolantwort" unterschiedlicher Arten auf Cd wurden lediglich die Arten *Sclerothrium purum*, *Pleurozium schreberi*, *Hypnum cupressiforme* und *Rhytidiadelphus squarrosum* der Ordnung Hypnales herangezogen. Diese wurden zu selben Zeit am selben Standort (Nähe Hannover, Niedersachsen) gesammelt und im Labor unter den gleichen Bedingungen kultiviert.

Tab. 9: GSH-Gehalte in Moosarten bei Probenahme vom gleichen Standort sowie die Änderung des GSH-Gehaltes unter Einfluß von Cd. GSH [μg/g FG]

<table>
<thead>
<tr>
<th>Moosart</th>
<th>Ordnung</th>
<th>Kontrolle</th>
<th>100 μM Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 Tage</td>
<td>4 Tage</td>
</tr>
<tr>
<td>Sclerothrium purum</td>
<td>Hypnales</td>
<td>243,2</td>
<td>261,6</td>
</tr>
<tr>
<td>Pleurozium schreberi</td>
<td>Hypnales</td>
<td>98,3</td>
<td>101,9</td>
</tr>
<tr>
<td>Hypnum cupressiforme</td>
<td>Hypnales</td>
<td>71,8</td>
<td>57,9</td>
</tr>
<tr>
<td>Rhytidiadelphus squarrosum</td>
<td>Hypnales</td>
<td>222,7</td>
<td>252,8</td>
</tr>
</tbody>
</table>

4.13. Korrelation von Schwermetallgehalten als Summenparameter und physiologische Reaktion ('Thiolantwort')

Es wurde in weiteren Versuchen überprüft, ob es auch bei anderen terrestrischen und aquatischen Moosarten unter Cd zu einer Zunahme des GSH-Gehaltes kommt. Ebenso wurden die Arten auf Vorkommen und Induktion von PCs untersucht.

Tab. 10 zeigt die GSH-Gehalte verschiedener Moosarten während 2, 4 und 10 Tagen in Medium mit 100 μM Cd sowie die entsprechenden Kontrollen.

Tab. 10: GSH-Gehalt unterschiedlicher Moosarten während 2, 4 und 10 Tagen in Medium mit 100 μM Cd sowie die entsprechenden Kontrollen. Die Werte sind Mittelwerte aus 2 Messungen; * nicht gemessen; ** Pflanzenmaterial abgestorben; a = Verhältnis von Pflanzenmaterial zu Extraktionslösung 1 : 4, b = Pflanzenmaterial aus axenischer Laborkultur, c = 5 μM Cd im Inkubationsmedium. Systematische Einordnung nach FRAHM und FREY, 1987.

<table>
<thead>
<tr>
<th>Moosart</th>
<th>Ordnung</th>
<th>Kontrolle 2 Tage</th>
<th>Kontrolle 4 Tage</th>
<th>Kontrolle 10 Tage</th>
<th>100 μM Cd 2 Tage</th>
<th>100 μM Cd 4 Tage</th>
<th>100 μM Cd 10 Tage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bartramia pomiformis³</td>
<td>Bartramiales</td>
<td>16,6 *</td>
<td>37,3</td>
<td></td>
<td>25,4</td>
<td>71,1</td>
<td></td>
</tr>
<tr>
<td>2. Brachythecium rutabulum</td>
<td>Hypnales</td>
<td>70,1 45,6</td>
<td>54,6</td>
<td></td>
<td>157,5</td>
<td>223,1</td>
<td></td>
</tr>
<tr>
<td>3. Coscinodon crisbrosus</td>
<td>Grimmiales</td>
<td>31,7 39,2</td>
<td>25,1</td>
<td></td>
<td>57,0</td>
<td>97,7</td>
<td></td>
</tr>
<tr>
<td>4. Dicranum scoparium</td>
<td>Dicranales</td>
<td>4,1 6,6</td>
<td>7,8</td>
<td></td>
<td>8,0</td>
<td>15,4</td>
<td>10,6</td>
</tr>
<tr>
<td>5. Homalia trichomanoides³</td>
<td>Neckerales</td>
<td>51,2 *</td>
<td>85,7</td>
<td></td>
<td>131,9</td>
<td>220,0</td>
<td></td>
</tr>
<tr>
<td>6. Hypnum cupressiforme</td>
<td>Hypnales</td>
<td>71,8 57,9</td>
<td>50,3</td>
<td></td>
<td>64,1</td>
<td>134,1</td>
<td></td>
</tr>
<tr>
<td>7. Leptobryum pyriforme</td>
<td>Bryales</td>
<td>23,2 24,1</td>
<td>18,6</td>
<td></td>
<td>59,6</td>
<td>50,8</td>
<td></td>
</tr>
<tr>
<td>8. Marchantia polymorpha</td>
<td>Marchantiales</td>
<td>6,7 7,4</td>
<td>2,7</td>
<td></td>
<td>5,2</td>
<td>8,2</td>
<td>2,7</td>
</tr>
<tr>
<td>9. Mnium hornum</td>
<td>Bryales</td>
<td>60,1 30,9</td>
<td>82,4</td>
<td></td>
<td>97,1</td>
<td>182,0</td>
<td></td>
</tr>
<tr>
<td>10. Mnium undulatum</td>
<td>Bryales</td>
<td>13,8 21,1</td>
<td>19,0</td>
<td></td>
<td>43,4</td>
<td>148,9</td>
<td></td>
</tr>
<tr>
<td>11. Pellia epiphylla</td>
<td>Metzgeriales</td>
<td>78,9 70,5</td>
<td>96,3</td>
<td></td>
<td>72,8</td>
<td>63,3</td>
<td></td>
</tr>
<tr>
<td>12. Physcomitrella patens³</td>
<td>Funariales</td>
<td>12,8 20,6 **</td>
<td>25,5</td>
<td>26,6</td>
<td>81,4</td>
<td>125,5</td>
<td></td>
</tr>
<tr>
<td>Zelkultur</td>
<td></td>
<td>43,5 *</td>
<td>25,5</td>
<td></td>
<td>81,4</td>
<td>125,5</td>
<td></td>
</tr>
<tr>
<td>13. Pleurozium schreberi</td>
<td>Hypnales</td>
<td>98,3 101,9</td>
<td>97,3</td>
<td></td>
<td>145,1</td>
<td>335,5</td>
<td></td>
</tr>
<tr>
<td>14. Polytrichum formosum</td>
<td>Polytrichales</td>
<td>72,6 95,2</td>
<td>95,9</td>
<td></td>
<td>44,9</td>
<td>99,4</td>
<td>103,7</td>
</tr>
<tr>
<td>Nr.</td>
<td>Art</td>
<td>Klasse</td>
<td>16,8</td>
<td>14,5</td>
<td>20,9</td>
<td></td>
<td>61,9</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>15</td>
<td>Polytrichum piliferum</td>
<td>Polytrichales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Rhynchostegium riparioides</td>
<td>Hypnales</td>
<td>15,2</td>
<td>16,1</td>
<td>21,7</td>
<td></td>
<td>39,9</td>
</tr>
<tr>
<td>17</td>
<td>Rhytididelphus squarrosus</td>
<td>Hypnales</td>
<td>222,7</td>
<td>252,8</td>
<td>208,4</td>
<td></td>
<td>201,7</td>
</tr>
<tr>
<td>18</td>
<td>Scleropodium purum</td>
<td>Hypnales</td>
<td>243,2</td>
<td>261,6</td>
<td>136,6</td>
<td></td>
<td>305,9</td>
</tr>
<tr>
<td>19</td>
<td>Sphagnum fallax</td>
<td>Sphagnales</td>
<td>11,0</td>
<td>5,8</td>
<td>11,8</td>
<td></td>
<td>33,2</td>
</tr>
</tbody>
</table>

PCs konnten in keiner der Arten nachgewiesen werden. Vermutlich spielt zumindest bei Laubmoosen die Synthese von PCs bei der Entgiftung von Schwermetallen keine bedeutende Rolle.

4.15. Nutzen der spezifischen biochemischen Reaktionen als Indikator für Belastung und ökotoxikologisches Gefährdungspotential

Phytochelatine waren in den untersuchten Moosen weder in der Langzeitbeprobung der natürlichen Standorte in Sachsen-Anhalt noch bei dem Vergleich unterschiedlicher Moosspezies nachweisbar. Da dieser in höheren Pflanzen spezifische Indikator für Schwermetallaufnahme fehlte, wurden die Vorstufen der PCs GSH, Cys und γ-EC in Hinblick auf ihre Nutzung als potentieller Biomarker für Schwermetallbelastungen untersucht.

Spiegel der Moose unter Freilandbedingungen vermutlich so stark, daß durch Schwermetalle hervorgerufene distinkte Veränderungen nicht mehr nachgewiesen werden können.

Eine Nutzung des GSH in terrestrischen Moosen als Biomarker für Schwermetallbelastungen an natürlichen Standorten ist nicht möglich. Ebenso ergaben die Gehalte an den GSH-Präkursoren Cys und γ-EC keine Möglichkeit, anhand ihrer Quantität in den Pflanzen auf eine Schwermetallelposition zu schließen.

4.16. Saisonnale Varianz der Schwermetall-Akkumulation

Saissonale Schwankungen der Schwermetallgehalte der Moosproben aus dem Freiland konnten nicht festgestellt werden. Lediglich an einigen Probenahmeterminen wurden deutlich erhöhte Werte gemessen. Diese waren für Standort Hohenturm 1 September 98 Cd und Cu, August 98 Zn; für Hohenturm 2 Juli 98 Cd und Pb, Januar 99 Zn; für Hohenturm 3 Dezember 98 Cd und September 98 Pb; für Salzmünde Juli 98 Cd und Januar 99 Zn; für Petersberg Oktober und November 98 Zn. Auch wenn die höheren Belastungen vorwiegend in der Zeit von Juli bis Januar auftraten, kann noch nicht auf einen saisonalen Einfluß der Belastung geschlossen werden.

Für das höher entwickelte Moos *Polytrichum formosum* ist eine Abnahme der Schwermetallkonzentration während der Wachstumsphase beschrieben (MARKERT und WECKERT, 1989), die als Verdünnungseffekt durch Biomassezuwachs diskutiert wird. Inwieweit dies auch für die hier erhaltenen Befunde eine Rolle spielt, bleibt offen.

4.17. Einfluß kurzfristiger Wetterereignisse auf den Thiolpeptidgehalt der Freilandpflanzen

Die Ergebnisse der Messungen zum Gehalt thiolhaltiger Verbindungen in Freilandmoosen (Kap. 4.11) wurden den Klimadaten der Probenahmezeiträume gegenübergestellt. Es wurden die Daten des Probenahmetages sowie die der zwei Tage zuvor (Anhang, Tab. 16) in die Auswertung einbezogen. Eine Korrelation zu der mittleren Tagestemperatur, Niederschlägen oder Sonnenscheindauer konnte nicht festgestellt werden. Die Ergebnisse sind nicht grafisch dargestellt.

Es ist daher davon auszugehen, daß am natürlichen Standort, der GSH-Gehalt weniger durch die Temperatur oder kurzfristige Temperaturänderungen beeinflußt wird. Auch die Sonnenscheindauer, die über die Photosyntheseaktivität der Pflanzen oder die Verursachung von UV-induziertem oxidativem Stress einen Einfluß auf die Synthese von thiolhaltigen Verbindungen haben könnte, zeigte keinen Effekt. Die Jahreszeit und somit eine hohe Komplexität von Parametern scheint in diesem Zusammenhang einen wesentlich deutlicheren Einfluß zu haben.
5. Zusammenfassung

Im Projekt wurden Untersuchungen zur Akkumulation von Schwermetallen in Moosen sowie die physiologisch-biochemischen Reaktion dieser Pflanzen auf die Umweltbelastung durchgeführt.

Objekte für Freiland-Untersuchungen waren terrestrische Moose (vorwiegend Scleropodium purum), die an verschiedenen Standorten Sachsen-Anhalts gesammelt wurden. Die Studien wurden durch Laborversuche ergänzt, wobei insbesondere das Wassermoos Fontinalis antipyretica als Modellorganismus für Experimente zur biochemischen Schwermetallstreßantwort diente.

Die Untersuchungen am Moos-Objekt waren auf Veränderungen im Gehalt thiolhaltiger Verbindungen und auf die Bestimmung von $^{15}\text{N}/^{14}\text{N}$-Isotopenverhältnissen beschränkt. Das Anliegen war, Aussagen darüber zu erhalten, ob diese spezielle Streßantwort Rückschlüsse auf die Schwermetallbelastung dieser Pflanzen im Sinne eines Biomonitoring ermöglichen könnte.

- **Analytische Entwicklungsarbeiten**

Die Studien zur physiologischen Metall-Streßreaktion waren auf Veränderungen im Gehalt thiolhaltiger Peptide orientiert und erforderten Trenn- und Nachweisverfahren mit hoher Leistung und Empfindlichkeit.

- Die Derivatisierung der thiolhaltigen Verbindungen durch Monobrombiman zur HPLC-Bestimmung von fluoreszenzmarkiertem GSH, γ-EC und Cystein wurde optimiert und konnte für die Routineanalytik der Freilandproben erfolgreich eingesetzt werden.

- Unter Nutzung einer "on-column" Derivatisierung thiolhaltiger Peptide mit N-ethyImaleimid (NEM) wurde ein kapillarelektrophoretisches Verfahren entwickelt. Gegenüber der HPLC konnte die Analysenzeit verkürzt und die Probenmenge verkleinert werden.

- **Laborversuche**

Die Laborversuche dienten der Bewertung von Schwermetall-Akkumulationsdaten und biochemischer Reaktion im Gehalt an Thiolpeptiden für die Nutzung im Biomonitoring. In der Mehrzahl der Versuche wurde Cadmium eingesetzt.
- Cd²⁺-Ionen werden offensichtlich durch *Fontinalis antipyretica* und *Polytrichum formosum* zunächst an die Zellwand gebunden und von dort aus kontinuierlich in die Zellen aufgenommen. Innerhalb der ersten 48 Stunden erfolgt hierbei die Einstellung eines Gleichgewichtes zur Cd-Konzentration im Medium.

 Die Chelatisierung von Schwermetallen durch GSH zur Detoxifizierung oder als Transportform dieser Metalle in der Zelle könnte die schnelle und hohe GSH-Synthese in Moosen erklären. Dazu wird gegenwärtig in der Arbeitsgruppe intensiv gearbeitet.

- Die Laboruntersuchungen belegen nachdrücklich die Richtigkeit des ursprünglich formulierten Arbeitsansatzes des Projektes. Der Thiolstoffwechsel von Moosen ist sehr different zu anderen pflanzlichen Systemen. Dies äußert sich deutlich in der Stressreaktion auf Schwermetalle im Schwefelmetabolismus.

- **Bearbeitung von Freilandproben**

- Da im Freilandmoos im Gegensatz zum Laborversuch nur geringe Mengen an Schwermetallen auf die Pflanzen wirken, ist davon auszugehen, daß hier andere Faktoren den Pool an GSH stärker beeinflussen als die aufgenommenen Schwermetalle. Eine Wirkung des GSH als Biomarker für Schwermetallbelastungen an natürlichen Standorten ist daher nicht möglich.

- Für die Belastung mit organismen Verbindungen konnten deutliche Unterschiede für einige Standorte ermittelt werden, mit zum Teil hoher Belastung an polyaromatischen Kohlenwasserstoffen.

- An vier unterschiedlichen Standorten der Region Hohenturm-Salzmünde werden an Landmoosen (Scleropodium) im Vergleich zu einem Referenzstandort am Stechlinsee die natürlichen 15N/14N-Isotopenverhältnisse bestimmt. Signifikante Unterschiede, ergaben sich zwischen den regionalen Standorten, die auf unterschiedliche N-Belastungen (Einträge) schließen lassen.

Scleropodium ist im Hinblick auf die Analyse seiner Stickstoffisotopen-Verhältnisse als Bioindikationssystem anthropogener N-Belastungen geeignet. Eine Identifikation atmosphärischer Stickstoffquellen ist möglich und sollte als spezifische Streßantwort in Moosen zur Induktion von Schadstoffbelastungen in Ökosystemen genutzt werden.

Die bioindikative Nutzung der Thiolpeptid-Streßantwort auf Umweltbelastung am Standort ist nicht geeignet. Hoffnungsvoll erscheint die Nutzung der natürlichen 15/14N-Isotopenverhältnisse der Moospflanze zur Indikation von Schadstoffbelastungen (N-Eintrag) am Standort.
6. Literatur

7. ANHANG
Tab. 4: GSTH- (GSH-Äquivalente) und GSH-Gehalte in *F. antipyretica* während 10tägiger Inkubation in Cd-haltigem Medium (100 µM), n = 3, [µg/g FG].

<table>
<thead>
<tr>
<th>Tag</th>
<th>GSTH Kontrolle</th>
<th>100 µM Cd</th>
<th>GSH Kontrolle</th>
<th>100 µM Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>127,1 7,7</td>
<td>149,9 21,6</td>
<td>51,4 8,2</td>
<td>47,4 3,7</td>
</tr>
<tr>
<td>2</td>
<td>135,1 5,3</td>
<td>202,2 5,2</td>
<td>42,5 3,6</td>
<td>83,4 9,3</td>
</tr>
<tr>
<td>3</td>
<td>138,6 12,7</td>
<td>240,1 9,7</td>
<td>33,7 3,3</td>
<td>103,1 7,0</td>
</tr>
<tr>
<td>4</td>
<td>132,9 8,1</td>
<td>282,7 9,6</td>
<td>37,6 4,7</td>
<td>122,0 17,9</td>
</tr>
<tr>
<td>5</td>
<td>127,3 12,8</td>
<td>314,2 16,5</td>
<td>37,5 4,3</td>
<td>190,7 11,9</td>
</tr>
<tr>
<td>6</td>
<td>114,1 6,1</td>
<td>257,9 2,9</td>
<td>31,1 4,9</td>
<td>145,1 6,4</td>
</tr>
<tr>
<td>7</td>
<td>142,5 33,5</td>
<td>300,2 29,3</td>
<td>14,9 3,7</td>
<td>139,4 16,8</td>
</tr>
<tr>
<td>8</td>
<td>135,7 31,7</td>
<td>305,7 23,7</td>
<td>27,8 1,4</td>
<td>178,3 5,4</td>
</tr>
<tr>
<td>9</td>
<td>155,7 8,2</td>
<td>352,8 8,8</td>
<td>47,0 2,4</td>
<td>232,3 16,8</td>
</tr>
<tr>
<td>10</td>
<td>140,6 5,3</td>
<td>401,8 23,6</td>
<td>51,6 2,4</td>
<td>218,6 11,4</td>
</tr>
</tbody>
</table>

Tab. 5: Gehalte an Cys, γ-Glu-Cys und GSH in *F. antipyretica* während 10tägiger Inkubation in Cd-haltigem Medium (100 µM), n = 3, [µg/g FG].

<table>
<thead>
<tr>
<th>Tag</th>
<th>Cys</th>
<th>γ-EC</th>
<th>GSH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>SD</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>K</td>
<td>1,35</td>
<td>0,27</td>
<td>0,45</td>
</tr>
<tr>
<td>1</td>
<td>5,94</td>
<td>0,53</td>
<td>0,83</td>
</tr>
<tr>
<td>2</td>
<td>12,40</td>
<td>2,13</td>
<td>1,43</td>
</tr>
<tr>
<td>3</td>
<td>14,12</td>
<td>3,88</td>
<td>1,89</td>
</tr>
<tr>
<td>4</td>
<td>13,07</td>
<td>1,22</td>
<td>2,78</td>
</tr>
<tr>
<td>5</td>
<td>14,22</td>
<td>1,16</td>
<td>3,96</td>
</tr>
<tr>
<td>6</td>
<td>13,05</td>
<td>1,61</td>
<td>5,11</td>
</tr>
<tr>
<td>7</td>
<td>15,55</td>
<td>1,01</td>
<td>6,19</td>
</tr>
<tr>
<td>8</td>
<td>12,85</td>
<td>0,46</td>
<td>6,36</td>
</tr>
<tr>
<td>9</td>
<td>13,23</td>
<td>0,65</td>
<td>6,66</td>
</tr>
<tr>
<td>10</td>
<td>12,01</td>
<td>1,61</td>
<td>5,94</td>
</tr>
</tbody>
</table>
Tab. 6: Inkorporation von 15N in Fontinalis nach Belastung mit 200 μM Cd, n=5

<table>
<thead>
<tr>
<th>Probe [d]</th>
<th>Kontrolle NPN-Fraktion $[^{15}$N at.-% exc.]</th>
<th>P-Fraktion $[^{15}$N at.-% exc.]</th>
<th>200 μM Cd NPN-Fraktion $[^{15}$N at.-% exc.]</th>
<th>P-Fraktion $[^{15}$N at.-% exc.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,261</td>
<td>0,0723</td>
<td>0,0281</td>
<td>0,0069</td>
</tr>
<tr>
<td>2</td>
<td>0,249</td>
<td>0,097</td>
<td>0,043</td>
<td>0,019</td>
</tr>
<tr>
<td>5</td>
<td>0,564</td>
<td>0,44</td>
<td>0,063</td>
<td>0,029</td>
</tr>
<tr>
<td>10</td>
<td>1,13</td>
<td>1,15</td>
<td>0,068</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Standardabweichung:

<table>
<thead>
<tr>
<th>Probe [d]</th>
<th>Kontrolle NPN-Fraktion</th>
<th>P-Fraktion</th>
<th>200 μM Cd NPN-Fraktion</th>
<th>P-Fraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0006</td>
<td>0,0003</td>
<td>0,00011</td>
<td>0,00002</td>
</tr>
<tr>
<td>2</td>
<td>0,0007</td>
<td>0,0003</td>
<td>0,00011</td>
<td>0,00008</td>
</tr>
<tr>
<td>5</td>
<td>0,0006</td>
<td>0,0013</td>
<td>0,00057</td>
<td>0,00010</td>
</tr>
<tr>
<td>10</td>
<td>0,0023</td>
<td>0,0015</td>
<td>0,00029</td>
<td>0,00026</td>
</tr>
</tbody>
</table>

Tab. 7: Inkorporation von 15N in Fontinalis nach Belastung Cd verschiedener Konzentration, n=5

<table>
<thead>
<tr>
<th>Probe</th>
<th>NPN-Fraktion $[^{15}$N at.-% exc.]</th>
<th>P-Fraktion $[^{15}$N at.-% exc.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>0,995</td>
<td>0,884</td>
</tr>
<tr>
<td>25 μM Cd</td>
<td>0,458</td>
<td>0,491</td>
</tr>
<tr>
<td>50 μM Cd</td>
<td>0,355</td>
<td>0,337</td>
</tr>
<tr>
<td>100 μM Cd</td>
<td>0,212</td>
<td>0,147</td>
</tr>
<tr>
<td>400 μM Cd</td>
<td>0,183</td>
<td>0,068</td>
</tr>
</tbody>
</table>

Standardabweichung:

<table>
<thead>
<tr>
<th>Probe</th>
<th>NPN-Fraktion $[^{15}$N at.-% exc.]</th>
<th>P-Fraktion $[^{15}$N at.-% exc.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>0,0016</td>
<td>0,0054</td>
</tr>
<tr>
<td>25 μM Cd</td>
<td>0,0018</td>
<td>0,0011</td>
</tr>
<tr>
<td>50 μM Cd</td>
<td>0,0012</td>
<td>0,0007</td>
</tr>
<tr>
<td>100 μM Cd</td>
<td>0,0009</td>
<td>0,0009</td>
</tr>
<tr>
<td>400 μM Cd</td>
<td>0,0009</td>
<td>0,0006</td>
</tr>
</tbody>
</table>
Tab. 8: Thiolpeptidgehalte in *F. antipyretica* ohne Zugabe von Cd [μmol/g FM]

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Cys</th>
<th>γ-EC</th>
<th>GSH</th>
<th>GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>0,025</td>
<td>0</td>
<td>0,197</td>
<td>0,028</td>
</tr>
<tr>
<td>0,5 h</td>
<td>0,022</td>
<td>0,0025</td>
<td>0,171</td>
<td>0,051</td>
</tr>
<tr>
<td>1 h</td>
<td>0,024</td>
<td>0,0035</td>
<td>0,262</td>
<td>0,059</td>
</tr>
<tr>
<td>1,5 h</td>
<td>0,022</td>
<td>0,0066</td>
<td>0,273</td>
<td>0,054</td>
</tr>
<tr>
<td>2 h</td>
<td>0,016</td>
<td>0,0026</td>
<td>0,142</td>
<td>0,052</td>
</tr>
<tr>
<td>4 h</td>
<td>0,014</td>
<td>0,0067</td>
<td>0,207</td>
<td>0,057</td>
</tr>
<tr>
<td>6 h</td>
<td>0,021</td>
<td>0,0023</td>
<td>0,213</td>
<td>0,096</td>
</tr>
<tr>
<td>8 h</td>
<td>0,015</td>
<td>0,0088</td>
<td>0,214</td>
<td>0,058</td>
</tr>
<tr>
<td>12 h</td>
<td>0,017</td>
<td>0,0061</td>
<td>0,234</td>
<td>0,077</td>
</tr>
<tr>
<td>1 d</td>
<td>0,02</td>
<td>0,0078</td>
<td>0,217</td>
<td>0,078</td>
</tr>
<tr>
<td>2 d</td>
<td>0,018</td>
<td>0,0066</td>
<td>0,171</td>
<td>0,067</td>
</tr>
<tr>
<td>6 d</td>
<td>0,017</td>
<td>0,0067</td>
<td>0,164</td>
<td>0,089</td>
</tr>
<tr>
<td>10 d</td>
<td>0,016</td>
<td>0,0045</td>
<td>0,109</td>
<td>0,066</td>
</tr>
<tr>
<td>14 d</td>
<td>0,02</td>
<td>0,007</td>
<td>0,188</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Tab. 9: Thiolpeptidgehalte in *F. antipyretica* nach Zugabe von 200 μM Cd [μmol/g FM]

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Cys</th>
<th>γ-EC</th>
<th>GSH</th>
<th>GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>0,025</td>
<td>0</td>
<td>0,197</td>
<td>0,028</td>
</tr>
<tr>
<td>0,5 h</td>
<td>0,016</td>
<td>0</td>
<td>0,125</td>
<td>0,037</td>
</tr>
<tr>
<td>1 h</td>
<td>0,015</td>
<td>0</td>
<td>0,146</td>
<td>0,032</td>
</tr>
<tr>
<td>1,5 h</td>
<td>0,014</td>
<td>0</td>
<td>0,214</td>
<td>0,052</td>
</tr>
<tr>
<td>2 h</td>
<td>0,012</td>
<td>0</td>
<td>0,148</td>
<td>0,056</td>
</tr>
<tr>
<td>4 h</td>
<td>0,017</td>
<td>0</td>
<td>0,214</td>
<td>0,045</td>
</tr>
<tr>
<td>6 h</td>
<td>0,023</td>
<td>0</td>
<td>0,187</td>
<td>0,061</td>
</tr>
<tr>
<td>8 h</td>
<td>0,034</td>
<td>0</td>
<td>0,21</td>
<td>0,083</td>
</tr>
<tr>
<td>12 h</td>
<td>0,059</td>
<td>0,008</td>
<td>0,294</td>
<td>0,102</td>
</tr>
<tr>
<td>1 d</td>
<td>0,183</td>
<td>0,019</td>
<td>0,471</td>
<td>0,136</td>
</tr>
<tr>
<td>2 d</td>
<td>0,32</td>
<td>0,05</td>
<td>0,746</td>
<td>0,283</td>
</tr>
<tr>
<td>6 d</td>
<td>0,297</td>
<td>0,186</td>
<td>0,942</td>
<td>0,258</td>
</tr>
<tr>
<td>10 d</td>
<td>0,451</td>
<td>0,282</td>
<td>1,16</td>
<td>0,303</td>
</tr>
<tr>
<td>14 d</td>
<td>0,406</td>
<td>0,278</td>
<td>0,838</td>
<td>0,212</td>
</tr>
</tbody>
</table>
Tab. 10: Sulfatgehalte in *F. antipyretica* \(\text{[\mu mol/g FM]}\)

<table>
<thead>
<tr>
<th>Zeit</th>
<th>0 (\mu\text{M Cd/0 (\mu\text{M Sulfat}})</th>
<th>200 (\mu\text{M Cd/0 (\mu\text{M Sulfat}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>4,05</td>
<td>3,7</td>
</tr>
<tr>
<td>0,5 h</td>
<td>4,76</td>
<td>4,43</td>
</tr>
<tr>
<td>1 h</td>
<td>5,22</td>
<td>3,66</td>
</tr>
<tr>
<td>1,5 h</td>
<td>5,92</td>
<td>6,93</td>
</tr>
<tr>
<td>2 h</td>
<td>5,43</td>
<td>3,83</td>
</tr>
<tr>
<td>4 h</td>
<td>4,73</td>
<td>3,28</td>
</tr>
<tr>
<td>6 h</td>
<td>4,41</td>
<td>2,97</td>
</tr>
<tr>
<td>8 h</td>
<td>3,89</td>
<td>3,41</td>
</tr>
<tr>
<td>12 h</td>
<td>4,45</td>
<td>2,76</td>
</tr>
<tr>
<td>1 d</td>
<td>5,29</td>
<td>2,18</td>
</tr>
<tr>
<td>2 d</td>
<td>5,21</td>
<td>2,0</td>
</tr>
<tr>
<td>5 d</td>
<td>4,58</td>
<td>1,46</td>
</tr>
<tr>
<td>10 d</td>
<td>3,78</td>
<td>0,42</td>
</tr>
<tr>
<td>14 d</td>
<td>3,77</td>
<td>0,34</td>
</tr>
</tbody>
</table>

Tab. 11: Sulfat und GSH-Gehalte in *F. antipyretica* während Inkubation in Medium ohne Sulfat

<table>
<thead>
<tr>
<th>Zeit [Tage]</th>
<th>Sulfat [\mu mol/g FM]</th>
<th>GSH [\mu mol/g FM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,10</td>
<td>0,341</td>
</tr>
<tr>
<td>10</td>
<td>2,35</td>
<td>0,193</td>
</tr>
<tr>
<td>17</td>
<td>2,16</td>
<td>0,220</td>
</tr>
<tr>
<td>24</td>
<td>1,53</td>
<td>0,186</td>
</tr>
<tr>
<td>31</td>
<td>0,86</td>
<td>0,209</td>
</tr>
<tr>
<td>38</td>
<td>0,77</td>
<td>0,144</td>
</tr>
</tbody>
</table>
Tab. 12: Sulfat- und GSH-Gehalte in *F. antipyretica* während Inkubation in Medium mit unterschiedlichen Cd und/oder Sulfat-Konzentrationen

<table>
<thead>
<tr>
<th>Zeit</th>
<th>µM</th>
<th>0 Cd/0 SO₄</th>
<th>100 Cd/0 SO₄</th>
<th>0 Cd/ 500 SO₄</th>
<th>100 Cd/500 SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>0,35</td>
<td>0,64</td>
<td>0,78</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>0,5 h</td>
<td>0,5</td>
<td>0,48</td>
<td>0,9</td>
<td>1,06</td>
<td></td>
</tr>
<tr>
<td>2 h</td>
<td>0,57</td>
<td>0,32</td>
<td>1,3</td>
<td>1,09</td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>0,71</td>
<td>0,4</td>
<td>1,11</td>
<td>1,82</td>
<td></td>
</tr>
<tr>
<td>1 d</td>
<td>0,26</td>
<td>0,27</td>
<td>2,88</td>
<td>2,15</td>
<td></td>
</tr>
<tr>
<td>2 d</td>
<td>0,85</td>
<td>0,39</td>
<td>2,35</td>
<td>3,44</td>
<td></td>
</tr>
<tr>
<td>3 d</td>
<td>0,57</td>
<td>0,18</td>
<td>2,18</td>
<td>2,91</td>
<td></td>
</tr>
<tr>
<td>6 d</td>
<td>0,74</td>
<td>0,17</td>
<td>2,21</td>
<td>2,68</td>
<td></td>
</tr>
<tr>
<td>10 d</td>
<td>0,68</td>
<td>0,09</td>
<td>2,17</td>
<td>2,31</td>
<td></td>
</tr>
<tr>
<td>22 d</td>
<td>0,25</td>
<td>0,07</td>
<td>3,33</td>
<td>1,15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeit</th>
<th>µM</th>
<th>0 Cd/0 SO₄</th>
<th>100 Cd/0 SO₄</th>
<th>0 Cd/ 500 SO₄</th>
<th>100 Cd/500 SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>0,11</td>
<td>0,19</td>
<td>0,16</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>0,5 h</td>
<td>0,29</td>
<td>0,16</td>
<td>0,19</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>2 h</td>
<td>0,16</td>
<td>0,15</td>
<td>0,3</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>0,15</td>
<td>0,16</td>
<td>0,21</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>1 d</td>
<td>0,1</td>
<td>0,18</td>
<td>0,43</td>
<td>0,76</td>
<td></td>
</tr>
<tr>
<td>2 d</td>
<td>0,09</td>
<td>0,43</td>
<td>0,37</td>
<td>1,09</td>
<td></td>
</tr>
<tr>
<td>3 d</td>
<td>0,09</td>
<td>0,45</td>
<td>0,4</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>6 d</td>
<td>0,05</td>
<td>0,38</td>
<td>0,3</td>
<td>1,74</td>
<td></td>
</tr>
<tr>
<td>10 d</td>
<td>0,05</td>
<td>0,32</td>
<td>0,25</td>
<td>1,74</td>
<td></td>
</tr>
<tr>
<td>22 d</td>
<td>0,03</td>
<td>0,14</td>
<td>0,19</td>
<td>1,9</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 13: Gehalte thiolhaltiger Verbindungen in Freilandproben von *Scleropodium purum* am Standort Hohenthurm 1 (H1) und Hohenthurm 2 (H2), n = 3

<table>
<thead>
<tr>
<th>Standort</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monat</td>
<td>µg/g TG</td>
<td>SD</td>
</tr>
<tr>
<td>GSH</td>
<td>γ-EC</td>
<td>Cys</td>
</tr>
<tr>
<td>J98</td>
<td>624,4</td>
<td>19,3</td>
</tr>
<tr>
<td>F98</td>
<td>240,2</td>
<td>16,0</td>
</tr>
<tr>
<td>M98</td>
<td>129,9</td>
<td>7,8</td>
</tr>
<tr>
<td>A98</td>
<td>165,2</td>
<td>34,3</td>
</tr>
<tr>
<td>M98</td>
<td>360,7</td>
<td>25,0</td>
</tr>
<tr>
<td>J98</td>
<td>118,1</td>
<td>13,4</td>
</tr>
<tr>
<td>A98</td>
<td>645,3</td>
<td>8,9</td>
</tr>
<tr>
<td>S98</td>
<td>712,0</td>
<td>9,9</td>
</tr>
<tr>
<td>D98</td>
<td>1032,3</td>
<td>14,7</td>
</tr>
<tr>
<td>N98</td>
<td>553,8</td>
<td>9,8</td>
</tr>
<tr>
<td>D98</td>
<td>435,3</td>
<td>12,9</td>
</tr>
<tr>
<td>J99</td>
<td>712,9</td>
<td>16,4</td>
</tr>
<tr>
<td>F99</td>
<td>216,5</td>
<td>9,1</td>
</tr>
<tr>
<td>M99</td>
<td>426,9</td>
<td>9,6</td>
</tr>
<tr>
<td>A99</td>
<td>278,1</td>
<td>13,8</td>
</tr>
<tr>
<td>M99</td>
<td>302,1</td>
<td>7,5</td>
</tr>
<tr>
<td>J99</td>
<td>185,5</td>
<td>9,5</td>
</tr>
<tr>
<td>J99</td>
<td>196,3</td>
<td>9,2</td>
</tr>
</tbody>
</table>
Tab. 14: Gehalte thiolhaltiger Verbindungen in Freilandproben von *Scleropodium purum* am Standort Hohenthurm (H3) und Petersberg (P), n = 3

<table>
<thead>
<tr>
<th>Standort</th>
<th>H3</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monat</td>
<td>µg/g TG</td>
<td>SD</td>
</tr>
<tr>
<td>J98</td>
<td>237.9</td>
<td>14.7</td>
</tr>
<tr>
<td>F98</td>
<td>151.9</td>
<td>8.9</td>
</tr>
<tr>
<td>M98</td>
<td>456.1</td>
<td>19.0</td>
</tr>
<tr>
<td>J98</td>
<td>255.9</td>
<td>23.3</td>
</tr>
<tr>
<td>J98</td>
<td>86.4</td>
<td>8.2</td>
</tr>
<tr>
<td>A98</td>
<td>624.3</td>
<td>11.3</td>
</tr>
<tr>
<td>S98</td>
<td>163.8</td>
<td>11.3</td>
</tr>
<tr>
<td>O98</td>
<td>716.6</td>
<td>10.9</td>
</tr>
<tr>
<td>N98</td>
<td>708.5</td>
<td>21.2</td>
</tr>
<tr>
<td>D98</td>
<td>689.2</td>
<td>28.1</td>
</tr>
<tr>
<td>J99</td>
<td>360.1</td>
<td>14.5</td>
</tr>
<tr>
<td>F99</td>
<td>456.8</td>
<td>11.8</td>
</tr>
<tr>
<td>M99</td>
<td>259.0</td>
<td>4.7</td>
</tr>
<tr>
<td>A99</td>
<td>294.5</td>
<td>6.7</td>
</tr>
<tr>
<td>J99</td>
<td>315.2</td>
<td>9.3</td>
</tr>
<tr>
<td>J99</td>
<td>273.7</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Tab. 15: Gehalte thiolhaltiger Verbindungen in Freilandmoosen am Standort Salzmünde (S), n = 3

<table>
<thead>
<tr>
<th>Standort</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monat</td>
<td>µg/g TG</td>
</tr>
<tr>
<td>J98</td>
<td>385.1</td>
</tr>
<tr>
<td>F98</td>
<td>878.8</td>
</tr>
<tr>
<td>M98</td>
<td>309.3</td>
</tr>
<tr>
<td>A98</td>
<td>75.1</td>
</tr>
<tr>
<td>M99</td>
<td>91.1</td>
</tr>
<tr>
<td>J98</td>
<td>118.5</td>
</tr>
<tr>
<td>A98</td>
<td>250.5</td>
</tr>
<tr>
<td>S98</td>
<td>101.5</td>
</tr>
<tr>
<td>N98</td>
<td>617.1</td>
</tr>
<tr>
<td>D98</td>
<td>260.3</td>
</tr>
<tr>
<td>J99</td>
<td>523.7</td>
</tr>
<tr>
<td>F99</td>
<td>155.8</td>
</tr>
<tr>
<td>M99</td>
<td>368.2</td>
</tr>
<tr>
<td>A99</td>
<td>428.6</td>
</tr>
<tr>
<td>M99</td>
<td>J99</td>
</tr>
<tr>
<td>Datum</td>
<td>Temperatur [°C]</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>04-Jan-98</td>
<td>6,9</td>
</tr>
<tr>
<td>05-Jan-98</td>
<td>7,1</td>
</tr>
<tr>
<td>06-Jan-98</td>
<td>4,5</td>
</tr>
<tr>
<td>08-Feb-98</td>
<td>2,8</td>
</tr>
<tr>
<td>09-Feb-98</td>
<td>4,3</td>
</tr>
<tr>
<td>10-Feb-98</td>
<td>4,8</td>
</tr>
<tr>
<td>28-Feb-98</td>
<td>3,5</td>
</tr>
<tr>
<td>01-Mrz-98</td>
<td>2</td>
</tr>
<tr>
<td>02-Mrz-98</td>
<td>6,2</td>
</tr>
<tr>
<td>05-Apr-98</td>
<td>11,6</td>
</tr>
<tr>
<td>06-Apr-98</td>
<td>9,7</td>
</tr>
<tr>
<td>07-Apr-98</td>
<td>9,1</td>
</tr>
<tr>
<td>02-Mai-98</td>
<td>14,8</td>
</tr>
<tr>
<td>03-Mai-98</td>
<td>11,6</td>
</tr>
<tr>
<td>04-Mai-98</td>
<td>9</td>
</tr>
<tr>
<td>31-Mai-98</td>
<td>18,3</td>
</tr>
<tr>
<td>01-Jun-98</td>
<td>13,2</td>
</tr>
<tr>
<td>02-Jun-98</td>
<td>17,4</td>
</tr>
<tr>
<td>11-Jul-98</td>
<td>15,8</td>
</tr>
<tr>
<td>12-Jul-98</td>
<td>16,2</td>
</tr>
<tr>
<td>13-Jul-98</td>
<td>17,4</td>
</tr>
<tr>
<td>10-Aug-98</td>
<td>21</td>
</tr>
<tr>
<td>11-Aug-98</td>
<td>26,7</td>
</tr>
<tr>
<td>12-Aug-98</td>
<td>23,6</td>
</tr>
<tr>
<td>05-Sep-98</td>
<td>15,4</td>
</tr>
<tr>
<td>06-Sep-98</td>
<td>15,4</td>
</tr>
<tr>
<td>07-Sep-98</td>
<td>17,1</td>
</tr>
<tr>
<td>09-Okt-98</td>
<td>10</td>
</tr>
<tr>
<td>10-Okt-98</td>
<td>11,1</td>
</tr>
<tr>
<td>11-Okt-98</td>
<td>11</td>
</tr>
<tr>
<td>09-Nov-98</td>
<td>8,9</td>
</tr>
<tr>
<td>10-Nov-98</td>
<td>9,2</td>
</tr>
<tr>
<td>11-Nov-98</td>
<td>5,2</td>
</tr>
<tr>
<td>14-Dec-98</td>
<td>6,4</td>
</tr>
<tr>
<td>15-Dec-98</td>
<td>8,6</td>
</tr>
<tr>
<td>16-Dec-98</td>
<td>6</td>
</tr>
<tr>
<td>12-Jan-99</td>
<td>-1</td>
</tr>
<tr>
<td>13-Jan-99</td>
<td>0,6</td>
</tr>
<tr>
<td>14-Jan-99</td>
<td>3,3</td>
</tr>
<tr>
<td>26-Feb-99</td>
<td>4,4</td>
</tr>
<tr>
<td>27-Feb-99</td>
<td>8</td>
</tr>
<tr>
<td>28-Feb-99</td>
<td>6,2</td>
</tr>
<tr>
<td>28-Mrz-99</td>
<td>4,8</td>
</tr>
<tr>
<td>29-Mrz-99</td>
<td>6,7</td>
</tr>
<tr>
<td>30-Mrz-99</td>
<td>9,2</td>
</tr>
<tr>
<td>24-Apr-99</td>
<td>13</td>
</tr>
<tr>
<td>25-Apr-99</td>
<td>12,8</td>
</tr>
<tr>
<td>26-Apr-99</td>
<td>12,5</td>
</tr>
</tbody>
</table>