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1 Introduction

There is a widely held belief that individual short-term optimization is at odds with long-

term sustainability of an ecological-economic system. In this paper, we want to take a

fresh look at this position. We show that for typical ecosystems and under plausible and

standard assumptions about individual decision making, short-term optimization leads to

sustainable outcomes. In particular, in order to explain the sustainable use of ecosystems,

it is not necessary to assume preferences for sustainability – or any special concern for the

distant future – on the part of the decision maker; it suffices to assume that the decision

maker is risk averse.

The ecological-economic system under study here is grazing in semi-arid rangelands.

Semi-arid regions cover two thirds of the Earth’s land surface. They are characterized

by low and highly variable precipitation. Their utilization in livestock farming provides

the livelihood for a large part of the local populations. But semi-arid ecosystems are

extremely sensitive: over-utilization and non-adapted grazing strategies lead to environ-

mental problems such as desertification.

Grazing in semi-arid rangelands is a prime object of study for ecological economics, as

the ecological and economic systems are tightly coupled (e.g. Beukes et al. 2002, Heady

1999, Janssen et al. 2004, Perrings 1997, Perrings and Walker 1997, 2004, Westoby et

al. 1989). The grass biomass is directly used as forage for livestock, which is the main

source of income; and the grazing pressure from livestock farming directly influences the

ecological dynamics. The crucial link is the grazing management.

The ecological dynamics, and thus, a farmer’s income, essentially depend on the low

and highly variable rainfall. The choice of a properly adapted grazing management

strategy is crucial in two respects: first, to maintain the rangeland system as an income

base, that is, to prevent desertification; and second, to smooth out income fluctuations,

in particular, to avoid high losses in the face of droughts.

Assuming that the farmer is non-satiated in income and risk averse, we analyze the

choice of a grazing management strategy from two perspectives. On the one hand, we

determine the farmer’s short-term optimal grazing management strategy. We show that

a risk averse farmer chooses a strategy in order to obtain ‘insurance’ from the ecosystem

(Baumgärtner and Quaas 2005). That is, the optimal strategy reduces income variability
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at the expense of yielding less mean income than possible.

On the other hand, we analyze the long-term ecological and economic impact of differ-

ent strategies. We conclude that the more risk averse a farmer is, the more conservative

and the more sustainable is his short-term optimal grazing management strategy. In

short, in the context of grazing in semi-arid regions, risk aversion implies sustainability.

The literature on grazing management under uncertainty mainly analyzes the choice of

a stocking rate of livestock, as this is the most important aspect of rangeland management

(e.g. Hein and Weikard 2004, Karp and Pope 1984, McArthur and Dillon 1971, Perrings

1997, Rodriguez and Taylor 1988, Torell et al. 1991, Westoby et al. 1989). The innovative

analytical approach taken here is to consider the choice of a grazing management strategy,

which is a rule about the stocking rate to apply in any given year depending on the

rainfall in that year. This is inspired by empirical observations in Southern Africa. Rule-

based grazing management has the twofold advantage that a farmer has to make a choice

(concerning the rule) only once, and yet, keeps a certain flexibility and scope for adaptive

management (concerning the stocking rate). The flexibility thus obtained is the decisive

advantage of choosing a constant rule over choosing a constant stocking rate.

The paper is organized as follows. In Section 2, we discuss grazing management in

semi-arid rangelands in more detail and describe one particular ‘good practice’-example:

the Gamis Farm, Namibia. In Section 3, we develop a dynamic and stochastic ecological-

economic model, which captures the essential aspects and principles of grazing manage-

ment in semi-arid rangelands, and features the key aspect of the Gamis-strategy. Our

results are presented in Section 4, with all derivations and proofs given in the Appendix.

Section 5 concludes.

2 Grazing management in semi-arid rangelands: The

Gamis Farm, Namibia

The ecological dynamics of semi-arid regions are essentially driven by low and highly vari-

able precipitation (Behnke et al. 1993, Sullivan and Rhode 2002, Westoby et al. 1989).1

1Another important driver of ecological dynamics in semi-arid rangelands is the stochastic occurrence

of fire (Janssen et al. 2004, Perrings and Walker 1997, 2004). In our case, fire plays only a minor role,
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Sustainable economic use of these ecosystems requires an adequate adaption to this en-

vironment. The only sensible economic use, which is indeed predominant (Mendelsohn

et al. 2002), is by extensive livestock grazing. For this purpose, sophisticated grazing

management strategies have been developed. For example, the ‘opportunistic’ grazing

management strategy (e.g. Beukes et al. 2002: 238) simply matches the herd size with

available forage in every year. This is done by de-stocking when there is little forage

in the dry years, and restocking when more forage is available in years with sufficient

rainfall.

One example of a more sophisticated and particularly successful management system

has been employed for forty years at the Gamis Farm, Namibia (Müller et al. 2004,

Stephan et al. 1996, 1998a, 1998b). The Gamis Farm is located 250 km southwest of

Windhoek in Namibia (2405′S 1630′E) close to the Naukluft mountains at an altitude of

1,250 m. The climate of this arid region is characterized by low mean annual precipitation

(177 mm/y) and high variability (variation coefficient: 56 percent). The vegetation type

is dwarf shrub savanna (Giess 1998); the grass layer is dominated by the perennial grasses

Stipagrostis uniplumis, Eragrostis nindensis and Triraphis ramosissima (Maurer 1995).

Karakul sheep (race Swakara) are bred on an area of 30,000 hectares. The primary

source of revenue is from the sale of lamb pelts. Additionally, the wool of the sheep is sold.

In good years, up to 3,000 sheep are kept on the farm. An adaptive grazing management

strategy is employed to cope with the variability in forage. The basis of the strategy is

a rotational grazing scheme: the pasture land is divided into 98 paddocks, each of which

is grazed for a short period (about 14 days) until the palatable biomass on that paddock

is used up completely, and then is rested for a minimum of two months. This system

puts high pressure on the vegetation for a short time to prevent selective grazing (Heady

1999). While such a rotational grazing scheme is fairly standard throughout semi-arid

regions, the farmer on the Gamis Farm has introduced an additional resting: in years

with sufficient precipitation one third of the paddocks are given a rest during the growth

period (September - May). In years with insufficient rainfall this rest period is reduced

or completely omitted. Once a year, at the end of the rainy season (April), the farmer

determines – based on actual rainfall and available forage – how many paddocks will be

but the stochasticity of rainfall is crucial (Müller et al. 2004).
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rested and, thus, how many lambs can be reared. This strategy is a particular example of

what has been called ‘rotational resting’ (Heady 1970, 1999, Stuth and Maraschin 2000;

Quirk 2002).

The grazing management system employed at the Gamis Farm has been successful

over decades, both in ecological and economic terms. It, therefore, represents a model

for commercial farming in semi-arid rangelands.

3 The model

Our analysis is based on an integrated dynamic and stochastic ecological-economic model,

which captures essential aspects and principles of grazing management in semi-arid re-

gions. It represents a non-equilibrium dynamic ecosystem, which is driven by stochastic

precipitation, and a risk averse farmer, who rationally chooses a grazing management

strategy under uncertainty.

3.1 Precipitation

Uncertainty is introduced into the model by the stochasticity of rainfall, which is assumed

to be an independent and identically distributed (iid) random variable. For semi-arid ar-

eas, a log-normal distribution of rainfall r(t) is an adequate description (Sandford 1982).2

The log-normal distribution, with probability density function f(r) (Equation A.17), is

determined by the mean µr and standard deviation σr of precipitation. Here, we measure

precipitation in terms of ‘ecologically effective rain events’, i.e. the number of rain events

during rainy season with a sufficient amount of rainfall to be ecologically productive

(Müller et al. 2004).

3.2 Grazing management strategies

The farm is divided into a number I ∈ IN of identical paddocks, numbered by i ∈

{1, . . . , I}. In modeling grazing management strategies, we focus on the aspect of addi-

tional resting during the growth period, which is the innovative element in the Gamis

2While the distribution of rainfall r(t) is exogenous, all other random variables in the model follow

an induced distribution.
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grazing system. The strategy is applied in each year, after observing the actual rainfall

at the end of the rainy season. Its key feature is that in dry years all paddocks are

used, while in years with sufficient rainfall a pre-specified fraction of paddocks is rested.

Whether resting takes place, and to what extent, are the defining elements of what we

call the farmer’s grazing management strategy:

Definition 1

A grazing management strategy (α, r) is a rule of how many paddocks are not grazed in

a particular year given the actual rainfall in that year, where α ∈ [0, 1] is the fraction of

paddocks rested if rainfall exceeds the threshold value r ∈ [0,∞).3

Thus, when deciding on the grazing management strategy, the farmer decides on two

variables: the rain threshold r and the fraction α of rested paddocks. While the rule is

constant (i.e. α =const., r =const.) its application may yield a different stocking with

livestock in any given year depending on actual rainfall in that year. Note that the

‘opportunistic’ strategy (e.g. Beukes et al. 2002: 238) is the special case without resting,

i.e. α = 0.

3.3 Ecosystem dynamics

Both the stochastic rainfall and grazing pressure are major determinants of the ecolog-

ical dynamics. Following Stephan et al. (1998a), we consider two quantities to describe

the state of the vegetation in each paddock i at time t: the green biomass Gi(t) and

the reserve biomass Ri(t) of a representative grass species,4 both of which are random

variables, since they depend on the random variable rainfall. The green biomass captures

all photosynthetic (‘green’) parts of the plants, while the reserve biomass captures the

non-photosynthetic reserve organs (‘brown’ parts) of the plants below or above ground

(Noy-Meir 1982). The green biomass grows during the growing season in each year and

dies almost completely in the course of the dry season. The amount Gi(t) of green biomass

available on paddock i in year t after the end of the growing season depends on rainfall

3We assume that the number I of paddocks is so large that we can treat α as a real number.

4We assume that a rotational grazing scheme is employed, such that selective grazing is completely

prevented, i.e. there is no competitive disadvantage for more palatable grasses (see e.g. Beukes et al.

2002). Hence, we consider a single, representative species of grass.
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r(t) in the current year, on the reserve biomass Ri(t) on that paddock, and on a growth

parameter wG:

Gi(t) = wG · r(t) ·Ri(t). (1)

As the green biomass in the current year does not directly depend on the green biomass

in past years, it is a flow variable rather than a stock.

In contrast, the reserve biomass Ri(t) on paddock i in year t is a stock variable. That

is, the reserve biomass parts of the grass survive several years (‘perennial grass’). Thereby,

the dynamics of the vegetation is not only influenced by the current precipitation, but also

depends on the precipitation of preceding years (O’Connor and Everson 1998). Growth

of the reserve biomass from the current year to the next one is

Ri(t+1)−Ri(t) = −d ·Ri(t) ·
(

1 +
Ri(t)

K

)
+wR · (1− c ·xi) ·Gi(t) ·

(
1− Ri(t)

K

)
, (2)

where d is a constant death rate of the reserve biomass, and wR is a growth parameter. A

density dependence of reserve biomass growth is captured by the factors containing the

capacity limits K: The higher the reserve biomass on paddock i, the slower it grows. The

status variable xi captures the impact of grazing on the reserve biomass of paddock i. If

paddock i is grazed in the current year, we set xi = 1, if it is rested, we set xi = 0. The

parameter c (with 0 ≤ c ≤ 1) describes the amount by which reserve biomass growth is

reduced due to grazing pressure. For simplicity, we assume that the initial (t = 1) stock

of reserve biomass of all paddocks is equal,

Ri(1) = R for all i = 1, . . . , I. (3)

3.4 Livestock and income

As for the dynamics of livestock, the herd size S(t) at time t is given by5

S(t) =
I∑

i=1

xi ·Gi(t), (4)

i.e. the herd size is limited by total available forage, which equals the green biomass

Gi of all grazed paddocks i with xi = 1. Here, we assume that the farmer can (and

5We normalize the units of green biomass in such a way that one unit of green biomass equals the

need of one livestock unit per year.
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will) adapt the herd size to the available forage and to his chosen grazing management

strategy without any cost or benefit. That is, de-stocking does not generate revenue, and

re-stocking is possible at no cost.6

The herd size S(t) determines the farmer’s income y(t). We assume that the quantity

of marketable products from livestock is identical to the herd size S(t) at time t.7 The

farmer sells his products on a world market at a given price p, which is constant over

time. Thus, the farmer’s income y(t) is

y(t) = p · S(t). (5)

Since the herd size S(t) is a random variable, income y(t) is a random variable, too. In

order to simplify the notation in the subsequent analysis, we normalize the product price

to

p ≡ (wG · I ·R)−1. (6)

This means, from now on, we measure product value in units of total forage per unit of

precipitation.

Given the actual rainfall r in the first grazing period, the initial reserve biomass

(Equation 3) and a grazing management rule (α, r), the herd size S ≡ S(1) is determined

by Equation (4). Inserting Equation (1) and using Assumption (3), as well as standard-

ization (6), the farmer’s income y ≡ y(1) at the end of the first grazing period is given

by Equation (5) as

y =
1

I

I∑
i=1

xi · r = r ·

 1 if r ≤ r

1− α if r > r
. (7)

Given the probability density distribution f(r) of rainfall, the mean µy(α, r) and the

6Assuming costs of de- and restocking would not fundamentally alter our results, but potentially

re-enforce our central result (Result 3 below).

7That is, the quantity of marketable products is proportional to the herd’s biomass and units are

normalized in an appropriate way.
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standard deviation σy(α, r) of income are (see Appendix A.1)

µy(α, r) = µr − α

∞∫
r

r f(r) dr (8)

σy(α, r) =

√√√√√σ2
r + 2αµr

∞∫
r

r f(r) dr − α2

 ∞∫
r

r f(r) dr

2

− α (2− α)

∞∫
r

r2 f(r) dr,

(9)

where µr and σr are the mean and the standard deviation of rainfall.

The model, as it has been specified so far,8 implies that a conservative strategy has a

positive long-term impact on reserve biomass and, thus, on future income. In addition,

there is a positive immediate effect of resting on income, which has not been captured so

far. Income losses in the face of drought are smaller with resting than under a strategy

without resting, since forage is available on rested paddocks. This effect will be captured

indirectly by Assumption 1 below.

3.5 Farmer’s choice of grazing management strategy

We assume that the farmer’s utility only depends on income y, and that he is a non-

satiated and risk averse expected utility maximizer. Let

U =
T∑

t=1

Et [v(y(t))]

(1 + δ)t−1
(10)

be his von Neumann-Morgenstern expected utility function, where δ is the discount rate,

the Bernoulli utility function v(·) is a strictly concave function of income y, and Et is

the expectancy operator at time t. In particular, we will employ a utility function with

constant relative risk aversion,

v(y) =
y1−ρ − 1

1− ρ
, (11)

where ρ > 0 is the constant parameter which measures the degree of relative risk aversion

(Mas-Colell et al. 1995: 194).

8That is, Equations (1) – (7) plus the assumption that rainfall r(t) is an iid random variable which

follows a log-normal distribution.
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The farmer will choose the grazing management strategy which maximizes his von

Neumann-Morgenstern expected utility function (10). In order to analyze this choice,

the basic idea is to regard the choice of a grazing management strategy as the choice

of a ‘lottery’ (Baumgärtner and Quaas 2005). Each possible lottery is characterized

by the probability distribution of pay-off, where the pay-off is given by the farmer’s

income y(t) ∈ IR+, and the (log-normal) probability distribution is characterized by

the mean income µy(t) and the standard deviation σy(t) of income. Given the ecological

dynamics, both the mean income and the standard deviation solely depend on the grazing

management strategy applied. Thus, choosing a grazing management strategy implies

choosing a particular distribution of income.

We assume that the farmer initially, i.e. at t = 0 prior to the first grazing period,

chooses a grazing management strategy (α, r), which is then applied in all subsequent

years. This is a simple form of adaptive management. However, it is more sophisticated

than the ‘opportunistic’ strategy. Thereby, when choosing the strategy, the farmer does

not know which amount of rainfall will actually occur, but he knows the probability

distribution of rainfall and he has full knowledge of the ecosystem. As a result, he knows

the probability distribution of his income for any possible grazing management strategy.

Formally, the farmer’s decision problem is

max
(α,r)

T∑
t=1

Et [v(y(t))]

(1 + δ)t−1
s.t. (1), (2), (3), (4), (5). (12)

In order to focus on short-term optimization, we consider the extreme case of a farmer

with a planning horizon of T = 1. This means that prior to the first grazing period, the

farmer chooses the grazing management strategy which maximizes his expected utility

for this period only. Hence, the farmer’s decision problem (12) reduces to optimizing

the first-period expected utility. Concerning the probability distribution of income, we

assume the following.

Assumption 1

The farmer’s income is log-normally distributed with mean µy(α, r) as given by (8) and

standard deviation σy(α, r) as given by (9).

That is, we replace the probability density function of the farmer’s income (7) by a log-

normal distribution with the same mean and standard deviation. The reason is twofold.
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Figure 1: A set of indifference curves of the risk averse farmer in the mean-standard

deviation space for log-normally distributed incomes and constant relative risk aversion

ρ = 1.

(i) The log-normal distribution is analytically convenient, as it allows us to completely

specify the problem in terms of mean µy and standard deviation σy, and to derive ana-

lytical results. (ii) It is an elegant and simple way of including short-term positive effects

of resting on income because the occurrence of very low incomes, under the probability

distribution of income as given by Assumption 1, is less likely if resting is applied than if

no resting takes place (see Appendix A.1).

Using Assumption 1, the farmer’s expected utility for T = 1 can be calculated from

Equation (10) with the specification (11) of the Bernoulli utility function v(y). It is given

by the following explicit expression (see Appendix A.2):

E
[
y1−ρ − 1

1− ρ

]
=
µ1−ρ

y

(
1 + σ2

y/µ
2
y

)−ρ (1−ρ)/2 − 1

1− ρ
. (13)

The indifference curves of the farmer’s utility function U can be drawn in the mean –

standard deviation space. Figure 1 shows such a set of indifference curves for a given

degree ρ of relative risk aversion. The indifference curves are increasing and convex if the

standard deviation is sufficiently small compared to the mean, i.e. for (µy/σy)
2 > 1 + ρ

(see Appendix A.3). The slope of the indifference curves is increasing in the degree of

relative risk aversion ρ (see Appendix A.3). In particular, the indifference curves are

horizontal lines for risk-neutral farmers, i.e. for ρ = 0.

11



With Assumption 1, the farmer’s optimization problem is (using a monotonic trans-

formation of utility function 13)

max
(α,r)

µy(
1 + σ2

y/µ
2
y

)ρ/2
s.t. (8) and (9). (14)

4 Results

The analysis proceeds in three steps (Results 1, 2 and 3 below): First, we analyze the

short-term optimization of the farmer. By choosing a grazing management strategy

(α, r) ∈ [0, 1] × [0,∞), the farmer determines the mean and the standard deviation

(µy, σy) = (µy(α, r), σy(α, r)) of his income at the end of the first grazing period. Thereby,

the farmer faces a trade-off between strategies which yield a high mean income at a high

standard deviation, and strategies which yield a low mean income at a low standard

deviation. The farmer in our model does not consider the distant future at all. This

is for the sake of analytical clarity: intertemporal effects of the grazing management

strategies on the ecosystem dynamics are not taken into consideration in the farmer’s

decision.

Second, we analyze the long-term consequences of different grazing management

strategies on the ecological-economic system. In particular, we study how the intertem-

poral development of the mean reserve biomass and the mean income depend on the

strategy.

Finally, we put the two parts of the analysis together and derive conclusions about how

the long-term sustainability of the short-term optimal strategy depends on the farmer’s

degree of risk aversion.

4.1 Feasible strategies and income possibility set

To start with, we define the income possibility set as the set of all mean incomes and

standard deviations of income (µy(α, r), σy(α, r)) ∈ (0,∞)× [0,∞), which are attainable

in the first grazing period by applying a feasible management rule (α, r) ∈ [0, 1]× [0,∞).

These are given by Equations (8) and (9). Figure 2 shows the income possibility set for

particular parameter values.

The figure provides one important observation: there exist inefficient strategies, i.e.
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Figure 2: The set of all means µy and standard deviations σy of the farmer’s income y,

each point denoting a separate strategy, as well as the income possibility frontier (thick

line). Parameter values are µr = 1.2 and σr = 0.7.

feasible strategies that yield the same mean income, but with a higher standard deviation

(or: the same standard deviation, but with a lower mean) than others. These strategies

can be excluded from the set of strategies from which the optimum is chosen by a risk

averse and non-satiated decision maker. In the following, we thus focus on the efficient

strategies, which generate the income possibility frontier (Figure 2, thick line):

Definition 2

The income possibility frontier is the set of expected values µy and standard deviations

σy of income for which the following conditions hold:

1. (µy, σy) is in the income possibility set, i.e. it is feasible.

2. There is no (µ′y, σ
′
y) 6= (µy, σy) in the income possibility set with µ′y ≥ µy and

σ′y ≤ σy.

The question at this point is, ‘What are the grazing management strategies (α, r) that

generate the income possibility frontier?’ We call these strategies efficient.

Lemma 1

The set of efficient strategies has the following properties.
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α∗(r)

r
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1086420
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0.4
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Figure 3: The set of feasible strategies is given by the whole area α ∈ [0, 1], r ∈ [0,∞).

The set of efficient strategies for parameters µr = 1.2 and σr = 0.7 is the curve.

• Each point on the income possibility frontier is generated by exactly one (efficient)

strategy.

• There exists Ω ⊆ [0,∞), such that the set of efficient strategies is given by (α∗(r), r)

with

α∗(r) =

∞∫
r

r (r − r) f(r) dr

∞∫
r

r (r − r/2) f(r) dr

for all r ∈ Ω. (15)

• α∗(r) has the following properties:

α∗(0) = 1, lim
r→∞

α∗(r) = 0, and
dα∗(r)

dr
< 0 for all r ∈ Ω.

Proof: see Appendix A.4.

Figure 3 illustrates the lemma. Whereas the set of feasible strategies is the two-

dimensional area bounded by r = 0, α = 0, α = 1, the set of efficient strategies, as given

by Equation (15), is a one-dimensional curve. Thus, the efficient strategies are described

by only one parameter, r, while the other parameter α is determined by α = α∗(r)

(Equation 15). The curve α∗(r) is downward sloping: With a higher rain threshold r, i.e.
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if resting only takes place in years with higher precipitation, the efficient share α∗(r) of

rested paddocks is smaller. In other words, for efficient strategies, a higher rain threshold

r does not only mean that the condition for resting is less likely to be fulfilled, but also

that a smaller share α∗ of paddocks is rested if resting takes place. Hence, if an efficient

strategy is characterized by a smaller r, we call it more conservative.

Knowledge of the efficient strategies allows us to characterize the income possibility

frontier, and to establish a relationship between efficient grazing management strategies

and the resulting means and standard deviations of income.

Lemma 2

The farmer’s expected income in the first grazing period, µy(α, r) (Equation 8), is in-

creasing in r for all efficient strategies:

d µy(α
∗(r), r)

dr
> 0 for all r ∈ Ω.

The extreme strategies, r = 0 and r → ∞, lead to expected incomes of µy(α
∗(0), 0) = 0

and lim
r→∞

µy(α
∗(r), r) = µr.

Proof: see Appendix A.5.

For all efficient strategies a higher rain threshold r for resting, i.e. a less conservative

strategy, implies a higher mean income. Whereas no resting, r = 0 (opportunistic strat-

egy), leads to the maximum possible mean income of µr, the opposite extreme strategy,

r → ∞ (no grazing at all), leads to the minimum possible income of zero. Overall,

a change in the grazing management strategy affects both, the mean income and the

standard deviation of income.

Lemma 3

The income possibility frontier has the following properties:

• The income possibility frontier has two corners:

– The southwest corner is at σy = 0 and µy = 0. At this point, the income

possibility frontier is increasing with slope µr/σr.

– The northeast corner is at σy = σr and µy = µr. At this point, the income

possibility frontier has a maximum and its slope is zero.
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Figure 4: The optimum for a risk averse farmer (ρ = 5.5, denoted by ∗) and a risk-neutral

farmer (ρ = 0, denoted by +).

• In between the two corners, the income possibility frontier is increasing and located

above the straight line from one corner to the other. It is S-shaped, i.e. from

southwest to northeast there is first a convex segment and then a concave segment.

Proof: see Appendix A.6.

Figure 2 illustrates the lemma. The property, that the income possibility frontier is

increasing, suggests that resting acts like an insurance for the farmer. This means, by

choosing a more conservative grazing management strategy, the farmer can decrease his

risk (standard deviation) of income, but only at the price of a decreased mean income.

Thus, there is an insurance value associated with choosing a more conservative strategy

(Baumgärtner and Quaas 2005).

4.2 Optimal strategy in the short-run

The optimal strategy results from both the farmer’s preferences (Figure 1) and the income

possibility frontier (Figure 2). It is determined by the mean µ∗y and the standard devi-

ation σ∗y , at which the indifference curve is tangential to the income possibility frontier

(Figure 4). It turns out that the optimal strategy is uniquely determined.
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Figure 5: The rain threshold r∗ of the optimal strategy as a function of the farmer’s

degree of risk aversion ρ. Parameter values are the same as in Figure 2.

Lemma 4

(i) If (µr/σr)
2 > 1 + ρ, the optimum (µ∗y, σ

∗
y) is unique.9

(ii) For ρ > 0, the optimum is an interior solution with 0 < µ∗y < µr and 0 < σ∗y < σr.

For ρ = 0, the optimum is a corner solution with µ∗y = µr and σ∗y = σr.

Proof: see Appendix A.7.

The optimal strategy crucially depends on the degree of risk aversion. In the particular

case of a risk-neutral farmer (ρ = 0), the strategy that yields the maximum mean,

irrespective of the standard deviation associated with it, is chosen. The optimal grazing

management strategy of such a risk-neutral farmer is the strategy without resting, i.e.

with r = ∞ (and, therefore, α = 0). That is, he employs an opportunistic strategy.

If the farmer is risk averse, he faces a trade-off between expected income and variability

of the income, because strategies that yield a higher mean income also display a higher

variability of income. This leads to the following result, which is illustrated in Figures 4

and 5.

Result 1

A unique interior solution (α∗(r∗), r∗) to the farmer’s decision problem (14), if it exists

9This is a sufficient condition which is quite restrictive. A unique optimum exists for a much larger

range of parameter values.
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(see Lemma 4), has the following properties:

(i) The more risk averse the farmer, the smaller are the mean µ∗y and the standard

deviation σ∗y of his income.

(ii) The more risk averse the farmer, the more conservative is his grazing management

strategy:

dr∗

dρ
< 0. (16)

Proof: see Appendix A.8.

4.3 Intertemporal impact of grazing management strategies

To study the intertemporal ecological and economic impact of the grazing management

strategy chosen on the basis of short-term optimization (Problem 14), we assume that the

farmer continues to apply this strategy in every subsequent period. Under this assump-

tion, we compute the resulting probability distribution of income and reserve biomass over

several decades in the future.10 This calculation covers all efficient strategies (α∗(r), r).

The results of the numerical computation are shown in Figure 6, which enables the com-

parison of the long-term impacts, both in ecological and economic terms, of the different

strategies that are efficient in the short-run. Their interpretation leads to the following

result.

Result 2

For parameter values which characterize typical semi-arid rangelands (i.e. wG, wR, µr

are small and c, σr are large) the long-term ecological impact is as stated in (i), and the

long-term economic impact is as stated in (ii):

(i) The more conservative the strategy, i.e. the lower r, the higher the mean reserve

biomass µR(t) in the future,

d µR(t)

dr
< 0 for all t > 1 and r ∈ Ω.

10The numerical details of the computation are described in Müller et al. (2004).
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Figure 6: Relation between the grazing management strategy (given by the rain threshold

r) and future mean reserve biomass µR(t > 0) (in units of initial reserve biomass), as

well as future mean income µy(t > 0) for different strategies on the income possibility

frontier. Parameter values are µr = 1.2, σr = 0.7, I · K = 8000, d = 0.15, wG = 1.2,

wR = 0.2, c = 0.5, I ·R = 2400.

(ii) For high rain thresholds r ≥ r̂, the following holds: The more conservative the

strategy, i.e. the lower r, the higher the mean income in the long-term future for

t > t̂,

d µy(t)

dr
< 0 for all t > t̂ and r ≥ r̂.

Proof: see Appendix A.9.

Result 2 states that the slope of the curves in Figure 6 is negative throughout, as far

as reserve biomass is concerned; and is negative for high r ≥ r̂ and t > t̂, as far as income

is concerned. The smaller the rain threshold r in this domain, i.e. the more conservative

the strategy, the higher are the mean reserve biomass and the mean income in future

years, if the same strategy is applied over the whole period. This effect is in line with

intuition for reserve biomass: the more conservative the strategy, the better is the state

of the rangeland in the future.

As far as income is concerned, the argument is less straightforward. In particular,

the mean income in the first period is increasing in r (Lemma 2). A less conservative

strategy yields a higher mean income in this period, since more livestock is kept on the

rangeland. This holds for several periods in the near future (cf. the line for t = 10 in
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Figure 6b). However, in the long run (for t ≥ t̂ ≈ 40), the strong grazing pressure on

the pasture leads to reduced reserve biomass growth and less forage production in the

long-term future, compared to a more conservative strategy. As a result, mean income is

smaller. This can be seen in Figure 6b: the curves are downward-sloping for sufficiently

high t ≥ t̂ and sufficiently high r.11

The result states that the relationships between the strategy and the long-term impact

on the mean reserve biomass and mean income, depend on the parameters. As shown

in Appendix A.9 the assertions are true if the growth rates of the green and reserve

biomass are low, the impact of grazing on the growth of the reserve biomass is high, and

rainfall is low and highly variable. This is just the range of parameter values which is

adequate for semi-arid rangelands, because these are fragile ecosystems which are highly

susceptible to degradation if grazing pressure is high. For very robust ecosystems or very

low stochasticity of rainfall, however, the result is not valid.

For small rain thresholds r < r̂, a more conservative strategy (i.e. a smaller r) leads

to a lower mean income, not only in the first period (Lemma 2), but also in the future.

In this domain of strategies, resting is already so high that the future gains in reserve

biomass from additional resting do not outweigh the losses from lower stocking.

Overall, the more conservative the strategy, i.e. the lower r, the higher the mean

reserve biomass and mean income in the long-term. In that sense, more conservative

strategies are more sustainable; whereby we understand sustainability, for the sake of

this analysis, in the following way.

Definition 3

A strategy A is called more sustainable than another strategy B, if and only if there

exists some point in time t′ such that for all t > t′ both the expected income and the

expected reserve biomass under strategy A are higher than under B.

In the framework of our model, this definition captures essential aspects of what has

been called ‘strong sustainability’ (Pearce et al. 1990, Neumayer 2003).12 It comprises an

11As can be seen in the figure, this effect becomes stronger in the long-term future: the curves are

steeper for higher t.

12The notion of sustainability, while expressing an idea which seems obvious and clear at first glance,

is notoriously difficult to define in an operational way. As a result, there are a multitude of different
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ecological as well as an economic dimension, with mean reserve biomass as an ecological

indicator and mean income as an economic indicator. It expresses the aspect of long-term

conservation of an ecological-economic system in the following sense. If we compare two

strategies, A and B, where A is more sustainable than B, then both the reserve biomass

and the income are better conserved until time t > t′ under A than under B. That is,

both have declined less on average between the first period and period t under A than

under B.13

Combining Results 1 and 2, we can now make a statement about the relation between

the farmer’s short-term optimization and its long-term implications. From Result 1,

we know that the more risk averse a farmer is, the more conservative is his short-term

optimal strategy. From Result 2, we know that a more conservative strategy is also more

sustainable. This leads to the following result.

Result 3

The more risk averse the farmer, the more sustainable is his short-term optimal grazing

management strategy.

Result 3 sheds new light on the question ‘How can one explain that people do behave

in a sustainable way?’ For, Result 3 suggests the following potential explanation. That

a farmer A manages an ecosystem in a more sustainable manner than another farmer B,

may be explained simply by a higher risk aversion of farmer A. In particular, it is not

necessary to assume that farmer A has any kind of stronger preferences for future income

or sustainability than farmer B.

definitions of ‘sustainability’, which reveal different aspects and, at bottom, fundamentally different

understandings of the term. See e.g. Klauer (1999), Neumayer (2003)and Pezzey (1992) for a detailed

discussion.

13Furthermore, as far as the income criterion is concerned, Definition 3 includes an aspect of intertem-

poral efficiency. The formal criterion employed in Definition 3 is essentially the overtaking criterion

introduced by Koopmans (1965) and von Weizsäcker (1965), which can be seen as an attempt to define

intertemporal efficiency without making recourse to a discount rate.
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5 Conclusions

We have developed an integrated dynamic and stochastic ecological-economic model of

grazing management in semi-arid rangelands. Within this, we have analyzed the choice

of grazing management strategies of a risk averse farmer, and the long-term ecological

and economic impact of different strategies. We have shown that the more risk averse

a farmer is, the more conservative and sustainable is the short-term optimal strategy,

although the distant future is neglected in his optimization.

A more conservative use of the ecosystem generates less expected income in the present

than a less conservative use, but has benefits in two respects: First, it may be regarded as

an investment in ecosystem quality, which enables higher future incomes from ecosystem

use. This is the common understanding of the purpose of a conservative ecosystem

management. We have shown that there is a second benefit, in so far as a conservative use

of the rangeland reduces the variability of present income. In other words, conservative

ecosystem management provides insurance.

In our model the description of the farmer’s decision focuses on the second aspect. It

turns out that, in the face of uncertainty, higher risk aversion is sufficient to induce the

farmer to employ a more conservative and, thus, more sustainable ecosystem management.

However, one should not conclude from our analysis that risk aversion is sufficient to

ensure a sustainable development in semi-arid areas. This issue requires a variety of

further considerations.

In this analysis, we have focused on the environmental risk resulting from the uncer-

tainty of rainfall. Other forms of risk, e.g. uncertainty concerning property-rights, or the

stability of social and economic relations in general, might generate a tendency in the

opposite direction, and promote a less conservative and less sustainable management of

the ecosystem. Hence, in the face of different uncertainties, the net effect is not clear and

has to be analyzed in detail.

Additional sources of income (say from tourism) or the availability of financial services

(such as savings, credits, or commercial insurance), constitute possibilities for hedging

income risk. For farmers, all these are substitutes for obtaining ‘insurance’ by conservative

ecosystem management and, thus, may induce farmers to choose less conservative and

less sustainable grazing management strategies. This becomes relevant as farmers in
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semi-arid regions are more and more embedded in world trade and have better access to

global commodity and financial markets.

Our analysis was aimed at the specific context of grazing management in semi-arid

rangelands. This system is characterized by a strong interrelation between ecology and

economic use, which drives the results. While this is a very specific ecological-economic

system, the underlying principles and mechanisms of ecosystem functioning and economic

management are fairly general. Hence, we believe that there are similar types of econom-

ically used ecosystems, e.g. fisheries or other agro-ecosystems, to which our results should

essentially carry over.

A Appendix

A.1 Probability distribution of income

The rainfall r is log-normally distributed, i.e. the probability density function is

f(r) =
1

r
√

2πs2
r

exp

(
−(ln r −mr)

2

2s2
r

)
. (A.17)

The two parameters mr and sr can be expressed in terms of the mean µr and standard

deviation σr, mr = lnµr − 1
2
ln (1 + σ2

r/µ
2
r) and s2

r = ln (1 + σ2
r/µ

2
r).

The probability density function (pdf) of income (Equation 7) is

f̃(y) =


f(y) if y ≤ (1− α) r

f(y) + 1
1−α

f
(

y
1−α

)
if (1− α) r < y < r

1
1−α

f
(

y
1−α

)
if r ≤ y

. (A.18)

Note that in the case without resting, i.e. α = 0 or r = ∞, the distribution of income

equals the distribution of rainfall, f̃(y) = f(y).

Proof: If rainfall is low, r ≤ r, income equals rainfall, y = r. If rainfall is high, resting

is applied and income is y = (1−α) r. Hence, an income y ∈ [y, y+dy], where y ≤ (1−α) r,

arises with probability f(y) dy. An income y ∈ [y, y+dy], where (1−α) r < y < r, arises

if r ∈ [y, y + dy] or if r ∈ [ y
1−α

, y+dy
1−α

], i.e. with probability f(y) dy + f
(

y
1−α

)
dy

1−α
. An

even higher income y ∈ [y, y + dy], where y > r, arises only if r ∈ [ y
1−α

, y+dy
1−α

], i.e. with

probability f
(

y
1−α

)
dy

1−α
. 2
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The expected value of the first year’s income, Equation (7), is

µy(α, r) =

∞∫
0

y f(r) dr =

r∫
0

r f(r) dr + (1− α)

∞∫
r

r f(r) dr = µr − α

∞∫
r

r f(r) dr.

The variance is

σ2
y(α, r) =

∞∫
0

(y − µy)
2 f(r) dr = −µ2

y +

r∫
0

r2 f(r) dr + (1− α)2

∞∫
r

r2 f(r) dr

= σ2
r + 2αµr

∞∫
r

r f(r) dr − α2

 ∞∫
r

r f(r) dr

2

− α (2− α)

∞∫
r

r2 f(r) dr.

To illustrate how Assumption 1 introduces (small) immediate positive effects of resting

on income, consider Figure 7. The blue line depicts the probability density function (A.18)

log-normal pdf
pdf (A.18)

income y
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b
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r(1− α) r

Figure 7: The probability density function (A.18) and the log-normal probability density

function with the same mean and standard deviation.

of income for a strategy (α, r) with resting, the black line the log-normal pdf with the

same mean and standard deviation. For small incomes y ≤ (1 − α) r, the pdf (A.18) of

income equals the log-normal distribution of rainfall (A.17). Hence, for small incomes the

pdf (A.18) of income resulting from a strategy with resting is equal to the pdf resulting

from the strategy without resting, which is (A.17).

This is different for the log-normal distribution of income from Assumption 1, i.e.

the black line in Figure 7. Here, a range of very small incomes exists, for which the
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log-normal distribution of income resulting from a strategy with resting is below the pdf

resulting from the strategy without resting. The reason is that both the mean and the

standard deviation are the same for the pdf (A.18) and the log-normal distribution of

income, but the jump of the pdf (A.18) at y = (1−α) r is smoothed out by the log-normal

distribution.

Hence, very low incomes are less likely under the log-normal distribution of income

corresponding to strategy (α, r) than under a strategy without resting. This is the reason

why replacing the pdf (A.18) of income by the log-normal distribution is a convenient

way of including short-term positive income-effects of resting in the model.

A.2 Expected utility function

With the specification (11) of the farmer’s Bernoulli utility function v(y), and Assump-

tion 1 we get (using the notation my = lnµy− 1
2
ln
(
1 + σ2

y/µ
2
y

)
and s2

y = ln
(
1 + σ2

y/µ
2
y

)
):

E [v(y)] =

∞∫
0

y1−ρ − 1

1− ρ

1

y
√

2πs2
y)

exp

(
−(ln y −my)

2

2s2
y

)
dy

z=ln y
=

1

1− ρ

 1√
2πs2

y

∞∫
−∞

exp ((1− ρ) z) exp

(
−(z −my)

2

2s2
y

)
dz − 1


=

exp
(
(1− ρ)

(
my + 1−ρ

2
s2

y

))
− 1

1− ρ
=
µ1−ρ

y

(
1 + σ2

y/µ
2
y

)−ρ (1−ρ)/2 − 1

1− ρ
.

A simple monotonic transformation leads to the equivalent expected utility function

U =
µy(

1 + σ2
y/µ

2
y

)ρ/2
.

A.3 Properties of the indifference curves

Each indifference curve intersects the µy-axis at σy = 0. The point of intersection, µ0, is

the certainty equivalent of all lotteries on that indifference curve. Hence, the indifference

curve is the set of all (µy, σy) ∈ IR+ × IR+ for which

µy(
1 + σ2

y/µ
2
y

)ρ/2
= µ0. (A.19)

25



The slope of the indifference curve is obtained by differentiating Equation (A.19) with

respect to σy (considering µy as a function of σy) and rearranging:

dµy

dσy

=
ρ σy µy

(1 + ρ)σ2
y + µ2

y

> 0. (A.20)

The curvature is obtained by differentiating this equation with respect to σy, inserting

dµy/dσy again and rearranging

d2µy

dσ2
y

=
d

dσy

dµy

dσy

=
ρ µy (µ2

y − (1 + ρ)σ2
y)(σ

2
y + µ2

y)(
(1 + ρ)σ2

y + µ2
y

)3 , (A.21)

which is positive, if and only if µ2
y > (1+ρ)σ2

y . Furthermore, the slope of the indifference

curves increases with rising risk aversion,

d

dρ

dµy

dσy

=
σy µy

(
σ2

y + µ2
y

)(
(1 + ρ)σ2

y + µ2
y

)2 > 0.

A.4 Proof of Lemma 1

To find the efficient strategies, we first determine the strategies which minimize the

standard deviation of income given the mean income. Out of these strategies those are

efficient which maximize the mean income for a given standard deviation. Each point

on the income possibility frontier is generated by exactly one efficient strategy, since the

solution of the corresponding minimization problem is unique.

Equivalent to minimizing the standard deviation, we minimize the variance for a given

mean income,

min
α,r

σ2
y s.t. µy ≥ µ̄y, α ∈ [0, 1], r ∈ [0,∞). (A.22)

For more convenient notation, we use the abbreviations

R1(r) =

∞∫
r

r f(r) dr and R2(r) =

∞∫
r

r2 f(r) dr. (A.23)

The Lagrangian for the minimization problem (A.22) is

L = σ2
y(α, r) + λ [µy(α, r)− µ̄y]

= σ2
r + 2αµr R1(r)− α2R2

1(r)− α (2− α)R2(r) + λ [µr − αR1(r)− µ̄y] .
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The first order conditions are

∂L
∂r

= 0 ⇔ α r f(r) [−2 (µr − αR1(r)) + (2− α) r] = − λα r f(r) (A.24)

∂L
∂α

= 0 ⇔ 2 (µr − αR1(r))R1(r)− 2 (1− α)R2(r) = − λ [−R1(r)] . (A.25)

Dividing (A.24) by (A.25) and rearranging leads to

R1(r) (2− α) r = 2 (1− α)R2(r) ⇔ α∗(r) =
R2(r)− r R1(r)

R2(r)− 1
2
r R1(r)

.

Re-inserting (A.23) leads to (15), which is the unique solution of the first order conditions.

σy(α
∗(r), r) is the minimum, since σy(α, r) is maximum at the corners α = 1 (with ρ > 0),

or ρ = 0 (with α < 1): For α = 1, we have ∂ σ2
y(1, r)/∂α = 2 (µr − R1(r))R1(r) > 0,

i.e. if α is decreased from α = 1, the variance decreases. For the r = 0, we have

lim
r→0

∂ σ2
y(α, r)/∂r = lim

r→0
α r f(r) [−2µr (1− α)] ↗ 0, i.e. if r is increased from r = 0, the

variance decreases.

Equation (15) determines the set of strategies, which generate the minimum standard

deviation for any given mean income. This set may include strategies for which a higher

mean income is attainable with the same standard deviation. These are excluded in the

set of efficient strategies, which is determined by α∗(r, r), where r is chosen from the

appropriate subset Ω ⊆ [0,∞) of feasible rain thresholds.14

Turning to the properties of α∗(r), for r = 0 the numerator and denominator of (15)

are equal, hence α∗(0) = 1. For r → ∞, we have, using L’Hospital’s rule repeatedly,

lim
r→∞

α∗(r) = 0. Numerical computations for a wide range of parameters (µr, σr) resulted

in qualitatively the same curves α∗(r) as shown in Figure 3.

A.5 Proof of Lemma 2

Inserting equation (15) and (A.23) into (8) and differentiating with respect to r yields:

d µy(α
∗(r), r)

dr
= −dα

∗(r)

r
R1(r) + α∗(r) r f(r)

=
2R2

1(r)R2(r)

(2R2(r)− r R1(r))2
+ α∗2(r) r f(r) > 0.

For r → 0, we have lim
r→0

R1(r) = µr and lim
r→0

R2(r) = σ2
2 + µ2

r, and α∗(0) = 1. Inserting

into equations (8) and (9) yields lim
r→0

µy(α
∗(r), r) = 0 and lim

r→0
σy(α

∗(r), r) = 0.

14In the example shown in Figure 2, however, we have Ω = [0,∞).
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For r →∞, we have lim
r→∞

R1(r) = 0 and lim
r→∞

R2(r) = 0, and lim
r→∞

α∗(r) = 0. Inserting

into equations (8) and (9) yields lim
r→∞

µy(α
∗(r), r) = µr and lim

r→∞
σy(α

∗(r), r) = σr.

A.6 Proof of Lemma 3

As shown in Appendix A.5, lim
r→∞

µy(α
∗(r), r) = µr and lim

r→∞
σy(α

∗(r), r) = σr. This is the

northeast corner of the income possibility frontier, since µy = µr is the maximum possible

mean income (cf. Lemma 2).

The slope of the income possibility frontier is

dµipf
y

dσy

=
dµy(α

∗(r), r)/dr

dσy(α∗(r), r)/dr
= 2σy(α

∗(r), r)
dµy(α

∗(r), r)/dr

dσ2
y(α

∗(r), r)/dr
.

Differentiating σ2
y(α

∗(r), r) = −µ2
y +

∞∫
0

r2 f(r) dr − α∗(r) (2 − α∗(r))R2(r) with respect

to r and inserting the expressions for dα∗(r)/dr and µ2
y(α

∗(r), r)/dr leads with some

rearrangement to dσ2
y(α

∗(r), r)/dr = [−2µy + r (2− α∗(r))] dµy/dr. Thus, we have

dµipf
y

dσy

=
2σy(α

∗(r), r)

−2µy(α∗(r), r) + r (2− α∗(r))
. (A.26)

In particular for r →∞, the slope of the income possibility frontier is

lim
r→∞

dµipf
y

dσy

= lim
r→∞

2σy(α
∗(r), r)

−2µy(α∗(r), r) + r (2− α∗(r))
= lim

r→∞

2σr

−2µr + 2 r
= 0.

For r → 0 both the mean income µy(α
∗(r, r) and the standard deviation of income

σy(α
∗(r, r) vanish (cf. Appendix A.5). Since both cannot be negative, this is the southwest

corner of the income possibility frontier. At this point, the slope of the income possibility

frontier is

lim
r→0

dµipf
y

dσy

= lim
r→0

µy(α
∗(r, r))

σy(α∗(r), r)
= lim

r→0

(1− α∗(r))µr√
σ2

r (1− α∗(r))2
=
µr

σr

.

For r = 0, and any given α, we have

µy(α, 0) = µr − αR1(0) = (1− α)µr

σ2
y(α, 0) = σ2

r + 2αµr R1(0)− α2R2
1(0)− α (2− α)R2(0) = (1− α)2 σ2

r ,

i.e. the straight line between (µy, σy) = (0, 0) (α = 1) and (µy, σy) = (µr, σr) (α = 0)

is always within the income possibility set. Since for r = 0 the standard deviation is
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Figure 8: σy(α
∗(r), r) and µy(α

∗(r), r) computed for parameters (µr, σr) = (φ · ξ, ξ). ξ

varies between 0.1 and 7.1 in steps of 1, ξ = 7.1 being the curve on top in each case. φ is

0.5 for Figure 8 on the top left, 1 on the top right, and 2 and 8 on the bottom left and

right, respectively. Details about the procedure in the text.

maximum for given mean income (cf. Appendix A.6), the income possibility frontier is

located above this straight line.

To show numerically that the income possibility frontier may be divided into two

domains – the convex domain for small σy and the concave domain for large σy –, we

computed σy(α
∗(r), r) and µy(α

∗(r), r) for parameters (µr, σr) = (φ · ξ, ξ), where ξ varies

between 0.1 and 7.1 in steps of 1 and φ ∈ {0.5, 1, 2, 8}.15 In order to get the data points

equally distributed in the σy-µy-space, we calculated them for r = ψ · (ξ+0.5), ψ varying

between 0.01 and 20 in steps of 0.2. The results, which provide evidence for the assertion

of the lemma, are shown in Figure 8. Note that the left borders of the respective income

possibility sets are shown, whereas the income possibility frontiers are the upper parts of

these curves. That is, the income possibility frontier has a jump, where the left border of

the income possibility set is inwardly curved to the right (e.g. the curves at the bottom

15The idea is to scan the parameter space by varying µr and σr along straight lines with different slope

through the origin of the (µr, σr)-space.
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right of Figure 8).

A.7 Proof of Lemma 4

To prove part (i), we show that (a) the optimal indifference curve is convex over the

whole range σy ∈ [0, σr], and (b) the optimum is within the concave domain of the

income possibility frontier.

Ad (a). Rearranging Equation (A.19) yields the following expression for the optimal

indifference curve (where µ∗0 is the certainty equivalent for the optimum)(
σy

µy

)2

=

(
µy

µ∗0

)2/ρ

− 1. (A.27)

Inserting in the condition for the convexity of the indifference curve yields(
µy

σy

)2

> 1 + ρ ⇔ µy

µ∗0
<

(
2 + ρ

1 + ρ

)2/ρ

. (A.28)

By assumption, this condition is fulfilled for µy = µr on the indifference curve which

intersects (µr, σr), i.e. which is below the optimal one. Since µy ≤ µr for all efficient

strategies, this condition is fulfilled for all µy on the optimal indifference curve.

Ad (b). The minimum slope of the income possibility frontier in the convex domain

(i.e. at the southwest border) is µr/σr (Lemma 3). The slope of the indifference curve at

the optimum (µ∗y, σ
∗
y), however, is smaller,

1+ρ <

(
µr

σr

)2

<
µr

σr

µ∗y
σ∗y

⇒ ρ

1 + (1 + ρ)
σ∗y

2

µ∗y
2

<
µr

σr

µ∗y
σ∗y

⇔
ρ σ∗y µ

∗
y

µ∗y
2 + (1 + ρ)σ∗y

2
<
µr

σr

,

where the inequality µr/σr < µ∗y/σ
∗
y holds as a consequence of Lemma 3, and the expres-

sion on the left hand side of the last inequality is the slope of the indifference curve at

the optimum (cf. Equation A.20). Hence, the optimum cannot be in the convex domain

of the income possibility frontier.

Ad (ii). For ρ = 0, the indifference curves are horizontal lines. Hence, the maximum of

the income possibility frontier, which is at the corner (µy, σy) = (µr, σr), is the optimum.

For ρ > 0 corner solutions are excluded. At the corner (µy, σy) = (µr, σr) the slope

of the income possibility frontier is zero (Lemma 3), whereas the indifference curves have

a positive slope, provided ρ > 0. At the corner (µy, σy) = (0, 0), the income possibility

frontier is increasing with a slope µr/σr (Lemma 3), but the slope of the indifference

curves is zero for σr = 0 (cf. Appendix A.3).
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A.8 Proof of Result 1

We have shown that the unique optimum is in the concave domain of the income pos-

sibility frontier (Appendix A.7), and that the slope of the farmer’s indifference curves

increases with ρ (Appendix A.3). Thus, the optimal mean income µ∗y decreases if ρ in-

creases. Since for efficient strategies the mean µ∗y is increasing in r, the rain threshold r∗

of the optimal strategy decreases if ρ increases.

A.9 Proof of Result 2

The aim of this section is to show in a sensitivity analysis how the qualitative results shown

in Figure 6 and stated in Result 2 depend on the parameters of the model. The sensitivity

analysis was performed using a Monte Carlo approach, repeating the computations with

multiple randomly selected parameter sets. We focussed on three parameters, namely

the growth parameter of green biomass wG, the influence c of grazing on the growth of

reserve biomass, and the standard deviation σr of rainfall. The other parameters either

affect the outcomes in the same direction as the selected parameters (this is the case for

the growth parameter of the reserve biomass wR and the expected value of rainfall µr),

or in the inverse direction (this is the case for the death rate of the reserve biomass d).16

Hence their variation enables no further insights.

A sample size of N = 20 parameter sets was created according to the Latin Hypercube

sampling method (Saltelli et al. 2000).17 The three parameters were assumed to be

independent uniformly distributed, with 0 ≤ wG ≤ 5, 0 ≤ σr ≤ 2.4 and 0 ≤ c ≤ 1, the

upper bounds for wG and σr are guesses which proved to be suitable. The respective

simulation results were compared to the results shown in Figure 6. The following types

of long-term dynamics of mean reserve biomass and mean income (distinct from those

stated in Result 2) were found:18

16For the two parameters K and R, no substancial influence is to be expected: they just rescale the

problem.

17This method, by stratifying the parameter space into N strata, ensures that each parameter has all

proportions of its distribution represented in the sample parameter sets.

18To illustrate them, additional calculations were done, where one parameter was chosen differently

from the original parameter set of Figure 6 in each case.
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(i) If the growth parameter of the green biomass wG is very low, i.e. if wG ·wR < d, the

reserve biomass is not able to persist at all. Keeping livestock is not possible, independent

of the chosen grazing management strategy.
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Figure 9: Parameter values are as in Figure 6, except for c = 0.9.

(ii) If the impact c of grazing on the growth of the reserve biomass is very high,

the mean reserve biomass declines to zero in finite time, unless the grazing management

strategy is very conservative. This is illustrated in Figure 9, where we have chosen c = 0.9.
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Figure 10: Parameter values are as in Figure 6, except for wG = 4.

(iii) If the growth parameter of the green biomass is very high or the impact of grazing

on the growth of the reserve biomass is very low, the future mean income is the higher

the less conservative the strategy is, i.e. resting is not required to preserve the ecosystem.

This is illustrated in Figure 10 for a very high growth rate of the biomass, wG = 4.

Qualitatively the same outcome arises for very low c (see also Müller et al. 2004).
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Figure 11: Parameter values are as in Figure 6, except for σr = 0.05.

(iv) If the standard deviation of rainfall σr is very small, resting is almost deterministic:

for r > µr, resting will take place in hardly any year, such that µR and µy are independent

of the strategy. For r < µr, resting will take place in almost every year, i.e. the share α∗(r)

of rested paddocks determines the outcome, as illustrated in Figure 11 for σr = 0.05.
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