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Abstract:  

Economic theory suggests that with a pollution externality and learning spillovers related to 

renewable energy technologies, the optimal climate policy mix includes an emissions policy and 

an output subsidy to the learning industry. Instead of output subsidies, feed-in tariffs are often 

implemented in addition to emissions policies. This paper reveals that this policy mix may 

theoretically provide for a first-best outcome as well. However, its efficient design may be 

cumbersome for regulators. An emissions tax must be below the Pigovian level and differentiate 

between fossil fuels. Moreover, both tax and feed-in tariff must be adapted continuously. 

 

Keywords: Emissions tax, feed-in tariffs, policy mix, spillovers, learning by doing 

JEL Codes: D62, Q48, Q54, Q58 

3 



1 Introduction 

Government strategies to cope with greenhouse gas emissions from energy generation are based 

on a policy mix in many countries. On the one hand, regulators implement market-based policies 

such as permit trading schemes or taxes to price greenhouse gas emissions. On the other hand, 

support schemes have been implemented to promote renewable energy sources and an 

alternative to fossil-fueled electricity generation. The most common approach has been the so-

called feed-in tariff (Madlener and Stagl 2005). Operators of renewable energy plants are paid a 

fixed price – or an output subsidy – per unit of electricity produced, which is independent of the 

electricity price. Unlike conventional subsidies, this fixed price is not funded by the government 

but by a uniform add-on to the electricity price. Thus, electricity consumers pay eventually for 

renewable energy support. Feed-in tariffs have a remarkable track record throughout Europe 

(Menanteau et al. 2003). Installed capacity of renewable energy plants has experienced two-digit 

annual growth rates in countries such as Germany, Denmark and Spain. However, it has 

remained out of focus whether feed-in tariffs interact with emission policies existing in parallel. 

Can emissions still be reduced at least cost under market-based emissions policies if feed-in tariffs 

are in place in addition? 

Theoretical literature suggests that a combination of emissions policies and policies for 

technology support can be justified in the presence of two types of market failures: a pollution 

externality and spillovers related to technological learning-by-doing (for an overview see 

Lehmann 2008). Learning-by-doing implies that the unit cost of a product decreases as its 

cumulative production increases (Argote and Epple 1990). Learning-by-doing has resulted in 

remarkable cost decreases for renewable energy technologies (see, e.g., Isoard and Soria 2001; 

Junginger et al. 2005; Neij 1997; 1999; Söderholm and Klaassen 2007). However, learning-by-

doing also generates spillovers to other market participants than the one adopting the technology 

(Arrow 1962). Spillovers may occur, for example, due to personnel movements and 

communication between firms, participation in meetings and conferences or “reverse 

engineering” (Argote and Epple 1990). Thereby, competitors may benefit from experiences made 

during the adoption process without incurring learning costs themselves and without 

compensating the adopter. Thus, the learning firm cannot appropriate the entire social benefits of 

learning-by-doing, and will invest too little in the learning process from an economic point of 

view. Empirical studies have confirmed spillovers of learning-by-doing in the manufacturing 

sector in general (Argote and Epple 1990; Irwin and Klenow 1994; Lieberman 1984; Lloyd 1979) 

as well as in the renewable energy industry (Hansen et al. 2003; Junginger et al. 2005; Neij 1999).  
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Two studies provide an in-depth analysis of the combination of emissions policies and policies 

supporting renewables. Fischer and Newell (2008) assume a partial equilibrium model of the 

energy sector with fossil-fueled energy generators and operators of renewable energy installations. 

The renewable operators experience learning-by-doing. Fischer and Newell show that an 

emissions price imposed on fossil-fueled generators and an output subsidy to renewable energy 

generators achieves a first-best outcome. Bläsi and Requate (2007) adopt a more differentiated 

model of an energy sector with free entry. They distinguish between fossil-fueled generators, 

operators of renewable energy plants and producers of renewable energy technologies. They find 

that an optimal policy mix includes an emissions policy as well as an output subsidy and an entry 

premium for producers (not operators) of renewable energy technologies. When discussing the 

policy mix, both studies assume a subsidy paid in addition to the market price (of electricity or 

the renewable technology). Thus, they do not incorporate the efficiency effects of a feed-in tariff 

paid irrespectively of the market price. Moreover, they do not consider distortions arising from 

the add-on which funds the feed-in tariff.  

It is therefore the aim of this paper to take these characteristics of instrument design into account 

and to provide a more applied analysis of the policy. For this purpose, the model used by Fischer 

and Newell (2008) is advanced. Their assumption of a simple output subsidy is substituted by 

that of a feed-in tariff with more complex characteristics. Thus, the paper evaluates the efficiency 

of an emissions policy combined with a revenue-neutral feed-in tariff rather than with a pure 

output subsidy. It is assumed that the emissions price is fixed – as under an emission tax but 

unlike under emissions trading schemes. The paper argues that a revenue-neutral feed-in tariff 

can be interpreted as an output tax for the fossil-fueled energy generators. It is therefore one of 

main results of the paper that the optimal emissions tax is below the marginal damage, i.e. below 

the Pigovian level of taxation. What is more, the emissions tax has to be differentiated between 

fossil-fueled generators with different emission factors. Low-emission generators should pay a 

lower emissions price. In addition, the optimal tax level in the presence of a feed-in tariff depends 

on the maturity and the number of adopters of renewable energy technologies as well as the share 

of renewable energy sources in electricity generation. The optimal output subsidy is similarly 

determined by the maturity and the number of adopters of renewable energy technologies, but 

also on the electricity price. Consequently, policy makers are obliged to adapt both policies 

continuously as the corresponding variables change. 

The paper is structures as follows. Section two introduces the model. Section three highlights the 

conditions of the social optimum. Section four outlines the optimal regulatory approach. Section 

five analyses the combination of an emissions tax with a feed-in tariff. Section six concludes. 
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2 Model 

The analysis is based on a stylized partial equilibrium model of the electricity sector as it is found 

in Fischer and Newell (2008). The electricity sector encompasses two subsectors. One sector uses 

fossil fuels to generate electricity and produces emissions of carbon dioxide. The other sector 

employs renewable energy sources, such as wind or solar, which are carbon-free. Both sectors are 

perfectly competitive and produce an identical output, electricity. Any electricity generated from 

renewable energy sources substitutes marginal fossil-fuel production.1 

The model has two periods. Electricity generation, consumption and emission occur in both 

periods. Firms take the electricity price as given not only in the first period but also in the second 

period. Moreover, they are assumed to have perfect foresight regarding the price in period two. 

There is discounting at rate δ  between periods, but not within each period. Social and private 

discounting rates are assumed to be identical. 

The fossil-fuel sector may choose between a technology using a carbon-intensive fossil fuel x , 

e.g. coal, and a technology using a low-carbon fuel , such as natural gas. The former technology 

supplies base-load while the latter is the marginal technology producing peak-load electricity. The 

total output of electricity produced in the emitting sector in period t  is . Emissions 

with each technology i  are assumed to be fixed at rate 

y

ttt yxf +=

iμ . This assumption reflects that fuel 

switching is the major means to reduce emissions in the emitting sector. Other measures, such as 

improvements in generation efficiency or carbon capture and sequestration, are of minor 

importance at the moment because they have limited emission reduction potentials or are in very 

early stages of technological development. Total emissions from the emitting sector in period t  

are . Production costs  of each technology in each period are assumed to be 

increasing in output and strictly convex, i.e.  and . 

tytxt yxE μ+μ= t
iC

0>′tiC 0C >′′ t
i

The renewable sector consists of  identical firms, each of which produces an electricity output 

 in period t .

n

tq 2 The production costs are given as in Bläsi and Requate (2005; 2007). Production 

                                                 

1 This model abstracts from nuclear and hydro as important further energy sources currently used. However, these 

sources are carbon-free and employed to generate base load electricity. Their output can be assumed to be fixed in 

the presence of emission policies and support schemes for renewable energy sources. Thus, integrating them into the 

model would not change the analytical results. 

2 The number of firms in the renewable sector is assumed to be constant in this model. Bläsi and Requate (2005; 

2007) allow for firm entry and show that with learning-by-doing spillovers an additional policy is necessary to attain a 
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cost in period one is ( )1
1 qG . Production cost in period two is a function of output in period two 

and the total level of learning (or experience)  in period one, i.e. L ( )L,qG 2
2 .3 Total learning 

depends on the output of the firm under consideration (private learning) and the output of all 

other identical firms in the sector (learning spillovers): ( ) 11 q1 nqL −ρ+= . The spillover rate ρ  

indicates to which extent a firm can benefit from the experience made by other firms. Production 

costs in each period are increasing and convex in output, i.e.  and . Production 

cost in period two is declining and convex in learning:  and . Learning also 

reduces marginal production cost in period two, i.e. . Moreover, production cost in 

period two is assumed to be convex overall, which requires that . 

Subscripts  and  denote partial derivatives with respect to the subscripted variable. Notably, 

as in Fischer and Newell (2008), learning-by-doing is assumed for the relatively immature 

renewable energy technologies but not for the relatively mature fossil-fuel technologies.

0>t
qt

G

02 <LG

02
2
<LqG

0>

2
−q

t
qq tt

G

02 >LLG

22
2qLLGG ( )22

2
>LqG 0

tq L

4 

Total output of the electricity sector in period t  is the sum of electricity generated in the fossil-

fuel sector and the renewables sector: Q tt nqtf += . In equilibrium, electricity output equals 

                                                                                                                                                         
socially optimal outcome. When deciding about market entry, firms do not consider that their entry produces a 

benefit to other market participants in terms of learning by doing. Market entry will be suboptimal in the absence of 

regulation and needs to be stimulated by an entry premium. 

3 In reality, the renewables sector exhibits a vertical industry structure consisting of producers and operators. 

Producers supply renewable energy technology to operators. Operators use this technology to generate electricity. 

Learning-by-doing effects are more likely to be realized by the producers. In this case, however, the extent of 

learning-by-doing depends on the number of technology units produced rather than on the amount of electricity 

produced by them. For this analysis, it is assumed however that a higher production of electricity from renewables 

brings about a higher production of renewable energy technologies. That is, operators have to install more units of a 

technology to produce a higher level of electricity (instead of replacing a smaller unit by a unit with more capacity). 

In this sense, learning-by-doing in technology production may indeed depend on the amount of electricity generated. 

For a model differentiating between producers and operators of renewable energy technologies see Bläsi and 

Requate (2005; 2007). 

4 Learning-by-doing effects (and related spillovers) in the fossil-fuel sector are neglected because they are relatively 

less important and would unnecessarily complicate the analysis. In fact, such enhanced analysis would reveal that an 

additional policy is needed to promote learning-by-doing in the presence of spillovers in the fossil-fuel sector. Such 

policy may be required in particular once new promising but immature technologies – such as carbon capture and 

sequestration – are to be adopted in the fossil fuel sector. 
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electricity demand. The inverse demand function can then be given by , where  is 

the market price for electricity in period . This function is downward sloping, i.e. . 

( )ttt QPp =

tP

tp

0t ( ) <′ tQ

Carbon dioxide emitted by the fossil-fuel sector in period t  produces damage to society, which 

depends on the overall level of emissions: ( )tt ED . Damage is assumed to be increasing and 

convex in emissions, i.e.  and 0>′tD 0≥′′tD . 

Social welfare W  over the two periods under consideration is given by: 

  ( ) ( ) ( ( ) ( )111
1

1
1

1
1

0
1

1

EDqnGyCxCdQQPW yx

Q

−−−= ∫ )−

( 2y        (1) ( ) ( ) ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−−δ+ ∫ 222

22
2

2

0
2

2

EDL,qnGCxCdQQP yx

Q

Thus, social welfare computes as the sum of consumer surplus and firm profits net of production 

costs with coal, natural gas and renewable energy sources and environmental damage from 

emissions in the first-period and the same values discounted for period two. 

3 The Social Optimum 

The social planner maximizes welfare with respect to electricity generation from coal, natural gas 

and renewable energy sources in both periods, , and . The resulting first-order conditions 

are: 

tx ty tq

         (2) ( ) ( ) xx )E(DxCQP μ′+′= 111
1

11

         (3) ( ) ( ) xx )E(DxCQP μ′+′= 222
2

22

         (4) ( ) ( ) yy )E(DyCQP μ′+′= 111
1

11

         (5) ( ) ( ) yy )E(DyCQP μ′+′= 222
2

22

 ( ) ( ) ( ) ( ) ( )[ ]12
2

2
2

1
1

11 1
−ρ+δ+= nL,qGL,qGqGQP LLq      (6) 

          (7) ( ) ( L,qGQP q 2
2

22 2
= )

These equations represent the conditions for a socially optimal allocation of resources. 

Conditions (2) to (5) require that the emitting fossil-fuel sector generate electricity from coal and 

natural gas in period one and two until the sum of marginal production cost and marginal 

environmental damage of either technology equals the willingness to pay for another unit of 
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electricity (represented by the market price). Thus, when deciding about its output, the fossil-fuel 

sector should consider the private and social costs of its electricity generation. Condition (6) 

implies that firms in the renewable sector should produce electricity in period one until the 

marginal willingness to pay equals the sum of marginal production costs in period one and the 

discounted marginal reduction of production costs in period two due to learning experienced by 

all firms in period one. Thus, when deciding about their output in period one, firms in the 

renewable sector should not only consider learning at the private level but also learning spillovers. 

Finally, condition (7) highlights that firms in the renewable sector should produce electricity in 

period two until their marginal production costs equals the marginal willingness to pay. 

4 Emissions Tax and Output Subsidy: The Optimal Policy Mix 

In the presence of two externalities – environmental pollution and learning spillovers – two 

policies are necessary to attain socially optimal levels of output by the fossil-fuel and renewable 

sectors in a decentralized economy: a tax on emissions and a subsidy to output of the renewables 

sector. This argument is also brought forward by Bläsi and Requate (2007) and Fischer and 

Newell (2008). 

Given the emitting fossil-fuel sector is subject to a tax per unit of emissions at rate , it faces the 

following maximization problem: 

tτ

 ( ) ( ) ( ) ( )1111
1

1
1

111 yxyCxCyxpmax yxyx
F

y,x tt

μ+μτ−−−+=π  

  ( ) ( ) ( ) ( )[ ]2222
2

2
2

222 yxyCxCyxp yxyx μ+μτ−−−+δ+     (8) 

Superscript F  denotes the fossil-fuel sector. The resulting first-order conditions for optimal 

electricity generation from coal and natural gas in period one and two are: 

          (9) xx )x(Cp μτ+′= 11
1

1

          (10) xx )x(Cp μτ+′= 22
2

2

yy )y(Cp μτ+′= 11
1

1          (11) 

yy )y(Cp μτ+′= 22
2

2          (12) 

Conditions (9) and (10) can be interpreted as the inverse supply curves for electricity from the 

fossil-fuel sector. It will produce electricity from coal and natural gas until the sum of marginal 

production costs and marginal emissions costs with either technology is equal to the market price 

of electricity. As in Fischer and Newell (2008, 146), an interior solution is assumed, i.e. no fuel is 
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completely driven out of the market. In the absence of an emissions policy, an increased 

electricity supply from renewable energy sources reduces the electricity production from coal and 

natural gas according to the respective supply curves. An increase in the stringency of the 

emissions policy will result in a larger reduction of production from the emission-intensive coal 

generation than from the low-emission natural gas generation. 

Firms in the non-emitting renewables sector receive a subsidy  per unit of output to foster 

learning-by-doing. Thus, they get remuneration per unit of output which consists of a variable 

component (the electricity price) and a fixed component (the output subsidy). Their 

maximization problem writes as follows: 

s

 ( ) ( ) ( ) ( )[ ]L,qGqspqGqspmax R

qt
2

2
2221

1
111 −+δ+−+=π     (13) 

Superscript R  denotes the renewable sector. Note that, by assumption, firms only consider the 

effect of private learning on production costs in period two but not that of learning spillovers to 

other firms, i.e.  at the private level (Bläsi and Requate 2005, 8). The resulting first-order 

conditions for firms in the renewables sector are: 
1qL =

         (14) ( ) ( )L,qGspqG Lq 2
2

111
1

1
δ−+=

          (15) ( ) 222
2

2
spL,qGq +=

Condition (12) implies that firms produce electricity from renewable energy sources in period one 

until the marginal production cost in period one is equal to the marginal benefits of production 

to the firm. These include the market price for electricity, the output subsidy and the discounted 

reduction of production cost in period two which can be appropriated by the firm (note that 

term  is overall positive). In period two, there are no learning effects by assumption. 

Thus, firms produce until marginal production cost in period two equal the sum of the electricity 

price and the output subsidy (condition (13)). 

( L,qGL 2
2δ− )

)

The optimal policy levels can be obtained by comparing the first-order conditions for maximum 

social welfare with those for maximum firm profits. Equating conditions (2) and (4) with 

conditions (9) and (11) yields the optimal emissions tax rate in period one: 

           (16) ( 111 ED′=τ

The optimal tax rate has to be set equal to marginal damage from emission, i.e. at the Pigovian 

level. Similarly, equating conditions (3) and (5) with conditions (10) and (12) gives the optimal 

emission tax rate in period two: 
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           (17) ( 222 ED′=τ )

)

Given that marginal environmental damages from emission are constant, the tax rate has to be 

set uniformly over time. Equating conditions (6) and (14) gives the optimal output subsidy to 

electricity produced in the renewables sector: 

         (18) ( ) ( 12
2

1 −ρδ−= nL,qGs L

Thus, the subsidy equals the gains from learning not considered by the firms in the renewable 

sector. This means in turn that if learning is purely private, an output subsidy in period one 

cannot be justified on efficiency grounds. Comparing conditions (7) and (15) reveals that no 

subsidy to the output of the renewable sector is needed in period two, i.e. . This is 

straightforward since no learning and, consequently, no learning spillovers are assumed to occur 

in the model in period two. 

02 =s

5 Emissions Tax and Feed-in Tariff 

The design of feed-in tariffs typically deviates from that of a traditional subsidy modelled in 

section 5. Producers of electricity receive a fixed feed-in tariff 1σ  per unit of electricity produced 

in period one irrespective of the electricity price.5 This is in contrast to the analysis in the 

previous section where an output subsidy was paid to renewable electricity generators in addition 

to the electricity price. The feed-in tariff includes an implicit subsidy which amounts to the 

difference between the feed-in tariff and the electricity price. Unlike traditional output subsidies, 

this implicit subsidy is not exogenously funded by the government – or general tax revenues. 

Instead, grid operators buying renewable electricity are allowed to spread the difference between 

the feed-in tariffs paid and the electricity price across all electricity customers. This results in a 

uniform add-on  to the electricity price in period one. Thus, within the partial-equilibrium 

model of the electricity market, the feed-in tariff is revenue-neutral. Revenues from raising the 

add-on always have to equal the expenditures on tariffs paid for electricity from renewable energy 

sources net of the prevailing electricity price, i.e. 

1ϕ

( ) 1111 nqQ 1p−= σϕ . Thus, the add-on to the 

electricity price computes as the difference of the feed-in tariff and the electricity price times the 

share of renewable electricity in total electricity supply:  

( )
1

1
111 Q

nqp−= σϕ           (19) 

                                                 

5 Recall that since no learning occurs in period two, no promotion of renewable electricity is required in period two. 
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In a competitive market, electricity producers are assumed to take this add-on as given (similarly 

to an output tax). However, the add-on only affects production choices of fossil-fuel generators. 

This is because renewable generators benefits from the obligation of grid operators to purchase 

renewable electricity preferentially. This implies that any reductions in demand for electricity 

resulting from a price increase induced by the add-on have to be borne by fossil-fuel generators 

only. In period two, electricity from renewable energy sources is assumed to compete with 

electricity from fossil-fuels at the market price. 

The profit maximization problem for firms in the fossil-fuel sector can then be rewritten: 

 ( ) ( ) ( ) ( ) ( )1111111
1

1
1

111 yxyxyCxCyxpmax yxyx
F

y,x tt

μ+μτ−+ϕ−−−+=π  

( ) ( ) ( ) ( )[ ]2222
2

2
2

222 yxyCxCyxp yxyx μ+μτ−−−+δ+     (20) 

The resulting first-order conditions for optimal electricity generation from coal and natural gas in 

both periods are: 

         (21) xx )x(Cp μτ+ϕ+′= 111
1

1

          (22) xx )x(Cp μτ+′= 22
2

2

yy )y(Cp μτ+ϕ+′= 111
1

1         (23) 

yy )y(Cp μτ+′= 22
2

2          (24) 

Thus, when deciding about its output in period one, the fossil-fuel sector now produces until the 

sum of marginal production costs, the add-on per unit of output produced and the emission 

costs per unit of output equal the market price of electricity (conditions (21) and (23)). 

Conditions (22) and (24) for optimal output in period two are identical to those derived above. 

The profit maximization problem for firms in the renewables sector is: 

( ) ( )[ ]L,qGqpqGqmax R

qt
2

2
221

1
11 −δ+−σ=π       (25) 

The corresponding first-order conditions for optimal output in the renewables sector are: 

         (26) ( ) ( )L,qGqG Lq 2
2

11
1

1
δ−σ=

          (27) ( ) 22
2

2
pL,qGq =

In period one, firms in the renewables sector produce until their marginal costs of electricity 

generation equal the sum of the feed-in tariff and the discounted reduction in production costs in 
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period two due to private learning. Optimal production in period two is only determined by the 

market price of electricity. 

Comparing the above first-order conditions with those providing optimal social welfare reveals 

the optimal policy design. Comparing conditions (21) to (24) with conditions (2) to (5) gives the 

optimal set of taxes: 

 
x

x D
μ
ϕ

−′=τ 1
11           (28) 

 
y

y D
μ
ϕ

−′=τ 1
11           (29) 

           (30) 22 D′=τ

The optimal emissions tax in period two is again a Pigovian tax since no additional policy affects 

the behaviour of the fossil-fuel sector in that period. However, the optimal emissions tax rate in 

period one is below the marginal damage of emissions. What is more, it has to differentiate 

between fossil fuels. Emissions from electricity generation with an emission-intensive fuel (coal) 

have to be taxed at a higher rate than emissions from combusting a low-emission fuel (natural 

gas). The explanation is as follows: The add-on to the electricity price results in a reduction of 

electricity consumption and production. Consequently, emissions from electricity generation are 

reduced as well. This implies that the emissions tax that is required to attain the optimal level 

must be lower than in the absence of the add-on. Emission taxation has to be differentiated 

because the add-on reduces electricity output from fossil fuels irrespectively of the emissions 

related to different types of fuels. It incorporates a higher implicit emissions tax, iμϕ1 , on low-

emission fuels than on emission-intensive fuels. Consequently, the optimal emissions tax in the 

presence of the add-on has to be lower for the low-emission fuel than for the emission-intensive 

fuel. This result implies that any emissions tax imposed uniformly on all fuels (even if it is 

reduced below the marginal damage from emissions) in the presence of the add-on will bring 

about inefficiency in the fossil-fuel sector in period one. Electricity generation from the low-

emission fuel will be below the optimal level, while that from emission-intensive fuels will be 

higher than optimal. 

The optimal feed-in tariff in period one can be derived by equating conditions (26) and (6): 

        (31) ( ) ( 1,2
2

11 −−= nLqGp L ρδσ )

The optimal feed-in tariff has to be set equal to the sum of the market price for electricity and the 

discounted marginal gains from period-one learning spillovers in period two. The market price of 
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electricity is a function of a variety of variables that are exogenous to the partial equilibrium 

model, such as the prices of crude oil and coal. Variations in these exogenous variables require 

adaptations of the feed-in tariff. A fixed feed-in tariff that is set with respect to the current 

electricity price may therefore bring about an inefficient level of output in the renewable sector. 

If the electricity price increases (decreases), electricity generation from renewable energy sources 

will be too low (high). Equation (31) also reveals that if renewable technologies differ with 

respect to marginal gains from learning in period two in absolute terms, , and/or the 

spillover rate,  , or the number of adopting firms, 

( L,qGL 2
2 )

ρ 1−n , a differentiation of feed-in tariffs can 

be justified on efficiency grounds. 

Substituting equation (31) into (28) using (19), the optimal tax rate can be rewritten: 

 
( ) ( )[ ]

x

L

x
Q
nqnLqG

D
μ

ρδ
τ 1

1
2

2

11

1, −
−′=        (32) 

The optimal tax rate in period one for fossil-fueled electricity generators with low emissions, y1τ , 

writes accordingly. Equation (32) reveals that the optimal tax rate has to be reduced as renewable 

energy technologies become more mature, i.e. the marginal cost reduction effect of learning 

declines. It also demonstrates that the optimal tax rate decreases as the number of adopters 

increases, i.e. the total level of spillovers from learning-by-doing becomes more important. 

Moreover, the optimal tax rate also decreases as the share of renewable energies in total electricity 

supply increases. In contrast to the optimal feed-in tariff, however, the tax rate does not depend 

on the electricity price. A price increase results in a higher feed-in tariff and in a lower add-on. 

Both effects cancel out. These findings imply that regulators do not only have to choose a tax 

which is below the Pigovian level and differentiated according to the emissions rate. They also 

have to adapt the emissions tax rate continuously as the maturity and the number of adopters of 

renewable energy technologies and the market share of renewable energy sources increases. 

6 Conclusion 

The implementation of a revenue-neutral feed-in tariff to promote electricity from renewable 

energy sources deteriorates the efficiency properties of a Pigovian emissions tax. Energy 

producers using fossil fuels will abate too much. This distortion will be worse for low-emitting 

generators than for high-emitting ones. The optimal level of the tax is therefore below the 

Pigovian one. The tax has to be differentiated with respect to the emissions rate of each 

generator. Low-emission generators should pay a lower tax rate. Apart from the emissions rate, 

the optimal tax level depends on the maturity and the number of adopters of renewable energy 
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technologies and the share of renewable energy sources in the electricity market. This implies that 

the tax rate has to be adapted continuously as these variables change. Likewise the optimal feed-

in tariff has to be modified continuously – as the maturity and the number of adopters of 

renewable energy technologies increases and as the electricity price varies. However, these 

requirements may pose a formidable challenge for regulators. Typically, changes of 

environmental policies cannot be realized ad hoc but rather have to be approved in tedious 

political process. If policy makers aim at implementing efficient environmental policies that are 

easy to administer, they should choose a relatively simple policy mix of an emissions policy and 

an output subsidy for renewable energy technologies. However, a final judgement on the 

efficiency of this policy mix would also have to consider possible distortions in a general 

equilibrium model. These may arise from taxes which are raised to fund the output subsidy. 

Several research questions remain unanswered in this paper and may provide avenues for further 

research. First of all, the paper has analyzed the policy mix from the perspective of the first-best. 

It may be worthwhile to analyze whether a policy mix of an emissions tax and a feed-in tariff 

does better than a single emissions tax in the presence of two market failures – even though the 

policy mix is not designed optimally. These would help to reveal whether implementing a feed-in 

tariff nevertheless increases efficiency although it does not attain a first-best solution. Moreover, 

the paper assumed a fixed emissions price. However, given an emissions trading scheme, the 

emissions price may vary. Feed-in tariffs are likely to result in a rising market share of renewable 

energy sources in the electricity market and the substitution of fossil fuels for electricity 

generation. Consequently, less emission permits are demanded by the electricity sector and the 

permit price decreases. Other participants of the emissions trading scheme may benefit from 

lower permit prices and increase their emissions. These distortions may raise overall costs of 

emission abatement and should also be considered in the evaluation of the policy mix. 

15 



16 

References 

Argote, L., and Epple, D. (1990). "Learning curves in manufacturing." Science, 247(4945), 920-
924. 

Arrow, K. (1962). "The economic implications of learning by doing." Review of Economic 
Studies, 29, 155-173. 

Bläsi, A., and Requate, T. (2005). "Learning-by-Doing with Spillovers in Competitive Industries, 
Free Entry, and Regulatory Policy." CAU Economics Working Paper 2005-09, Christian-
Albrechts-Universität Kiel, Kiel. 

Bläsi, A., and Requate, T. (2007). "Subsidies for Wind Power: Surfing down the Learning Curve?" 
CAU Economic Working Paper 2007-28, Christian-Albrechts-Universität Kiel, Kiel. 

Fischer, C., and Newell, R. G. (2008). "Environmental and Technology Policies for Climate 
Change Mitigation." Journal of Environmental Economics and Management, 55(2), 142-
162. 

Hansen, J. D., Jensen, C., and Madsen, E. S. (2003). "The establishment of the Danish windmill 
industry - was it worthwhile?" Review of World Economics, 139(2), 324-347. 

Irwin, D., and Klenow, P. (1994). "Learning-by-doing spillovers in the semiconductor industry." 
Journal of Political Economy, 102, 1200-1227. 

Isoard, S., and Soria, A. (2001). "Technical Change Dynamics: Evidence from the Emerging 
Renewable Energy Technologies." Energy Economics, 23, 619-636. 

Junginger, M., Faaij, A., and Turkenburg, W. (2005). "Global experience curves for wind farms." 
Energy Policy, 33, 133-150. 

Lehmann, P. (2008). "Using a Policy Mix for Pollution Control - A Review of Economic 
Literature." UFZ Discussion Paper 4/2008, Helmholtz-Centre for Environmental 
Research - UFZ, Leipzig. 

Lieberman, J. B. (1984). "The Learning Curve and Pricing in the Chemical Processing Industries." 
RAND Journal of Economics, 15, 213-228. 

Lloyd, R. A. (1979). "Experience Curve Analysis." Applied Economics, 11(2), 221-234. 

Madlener, R., and Stagl, S. (2005). "Sustainability-guided promotion of renewable electricity 
generation." Ecological Economics, 53, 147-167. 

Menanteau, P., Finon, D., and Lamy, M.-L. (2003). "Prices versus quantities: choosing policies 
for promoting the development of renewable energy." Energy Policy, 31, 799-812. 

Neij, L. (1997). "Use of experience curves to analyse the prospects for diffusion and adoption of 
renewable energy technology." Energy Policy, 25(13), 1099. 

Neij, L. (1999). "Cost dynamics of wind power." Energy, 24(5), 375-389. 

Söderholm, P., and Klaassen, G. (2007). "Wind Power in Europe: A Simultaneous Innovation 
Diffusion Model." Environmental and Resource Economics, 36(2), 163-190. 

 

 


	10 2009 Lehmann_Climate Policies_Deckblatt
	10 2009 Lehmann_Climate Policies.pdf
	1 Introduction
	2 Model
	3 The Social Optimum
	4 Emissions Tax and Output Subsidy: The Optimal Policy Mix
	5 Emissions Tax and Feed-in Tariff
	6 Conclusion




