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Abstract:

In the context of climate change, large-scale vegetation restoration
projects have significantly altered hydrological processes. However,
existing studies have primarily focused on the impact of the “Grain for
Green” programme (GGP) on hydrological dynamics in arid areas, largely
neglecting humid regions. To help close this gap, we simulated
streamflow and sediments yield in the Three Gorges Reservoir Area
(TGRA), an important ecological zone in China, using the SWAT+ model.
We differentiated the effects of the GGP and climate change on
streamflow and sediment yield in different hydrological periods. The
results show that sediment yield responds more intensely to variations in
vegetation composition compared to water yield. From 2000 to 2020,
reforestation has significantly reduced annual sediment yield by an
average of 802.6 kg/ha. Climate change was identified as the main driver
of the changes in runoff and sediment yield. Furthermore, the effects of
reforestation exhibit seasonality, with runoff increasing during the dry
season and sediment yield decreasing during the flood season. The GGP
also reduces runoff and sediment yield extremes and promotes the
stability of the water-sediment relationship. In addition, projections of
future climate scenarios from 2025 to 2050 indicate an upward trend in
total runoff and a downward trend in soil retention. This study provides
insights into the impacts of the GGP and climate change on hydrological
processes in humid regions and offers guidance for future development
pathways.
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Runoff and sediment dynamics induced by the “Grain for Green”

programme: a case study in the Three Gorges Reservoir Area, China

Abstract: In the context of climate change, large-scale vegetation restoration projects
have significantly altered hydrological processes. However, existing studies have
primarily focused on the impact of the “Grain for Green” programme (GGP) on
hydrological dynamics in arid areas, largely neglecting humid regions. To help close
this gap, we simulated streamflow and sediments yield in the Three Gorges Reservoir
Area (TGRA), an important ecological zone in China, using the SWAT+ model. We
differentiated the effects of the GGP and climate change on streamflow and sediment
yield in different hydrological periods. The results show that sediment yield responds
more intensely to variations in vegetation composition compared to water yield. From
2000 to 2020, reforestation has significantly reduced annual sediment yield by an
average of 802.6 kg/ha. Climate change was identified as the main driver of the changes
in runoff and sediment yield. Furthermore, the effects of reforestation exhibit
seasonality, with runoff increasing during the dry season and sediment yield decreasing
during the flood season. The GGP also reduces runoff and sediment yield extremes and
promotes the stability of the water-sediment relationship. In addition, projections of
future climate scenarios from 2025 to 2050 indicate an upward trend in total runoff and
a downward trend in soil retention. This study provides insights into the impacts of the
GGP and climate change on hydrological processes in humid regions and offers

guidance for future development pathways.
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1. Introduction

Large-scale vegetation restoration measures are increasingly being implemented
worldwide to mitigate global warming and extreme weather events (Lewis et al., 2019;
Cai et al., 2020). In China, extensive “grain-for-green” and grazing exclusion practices
have been implemented over the past 20 years (Wu et al., 2023). Specifically, the
“Grain for Green” programme (GGP) was carried out in two phases, i.e., from 1999 to
2013 and from 2014 to 2019 (NFGA, 2020). The program aimed to prevent soil erosion,
mitigate flooding, store carbon, and improve livelihoods by increasing forest and
grassland cover on cultivated slopes and converting cropland, barren hills, and
wasteland to forests (Bryan et al., 2018). Under such large-scale vegetation restoration
measures, hydrological processes experience significant changes. For example, the
GGP has been confirmed to increase precipitation and reduce sediment yield in China’s
Loess Plateau (Bai et al., 2024; Jian et al., 2015). Therefore, planning for future changes
under these ecological restoration policies requires a comprehensive understanding of
possible hydrological effects.

At the watershed scale, hydrological research is primarily concerned with the
effects of vegetation changes on hydrological processes such as runoff generation and
sediment transport (Wang et al., 2021). Numerous studies have addressed the effects of

vegetation restoration measures on hydrological processes (such as precipitation, soil
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moisture and evapotranspiration), particularly in arid and semi-arid regions such as
China’s Loess Plateau (Bai et al., 2024; Zhou et al., 2024a). However, most previous
studies were limited to arid and semi-arid regions, and comprehensive assessments of
the hydrological impacts of the GGP in humid areas such as the Yangtze River Basin
remain relatively scarce. The Three Gorges Reservoir Area (TGRA) serves as an
important ecological barrier zone in the Yangtze River Basin. Located upstream of the
Three Gorges Dam, it has crucial influences on the ecological conditions and
hydrological stability necessary for the reservoir’s normal operation. With its unique
ecological location and function, the TGRA is a suitable study area.

In the past two decades, dam construction and ecological policies have
considerably altered the landscape pattern in the TGRA. Wang et al. (2019) found that
reforestation reduced total runoff and total phosphorus delivery in certain sub-
watersheds in the TGRA, revealing the spatial effects of reforestation. Soil erosion is
commonly triggered by precipitation events, has also been highlighted in the Yangtze
River basin because reduced sediment yield is vital for ensuring the operation of the
Three Gorges Dam (Li and Wang, 2024; Zhou et al., 2009). Xu et al. (2020) evaluated
the effect of three major ecological programs on ecological rehabilitation in the TGRA,
and concluded that the GGP effectively controlled soil erosion over an area of 2196
km?. Although previous studies have provided basic knowledge of the hydrological
impacts of the GGP in the TGRA, systematic analysis of seasonal variations remains
limited. Driven by climate factors (Hattermann et al., 2015; Hagemann et al., 2013) and
human activities (McFarlane et al., 2012), hydrological processes exhibit distinct
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seasonal characteristics. Thus, assessing the seasonal effects of reforestation policies
on key hydrological processes in the TGRA is necessary, but only few studies have
assessed the seasonal effects of the GGP in the TGRA thus far.

Many studies have examined hydrological responses to climate or land use change
using observation data (Yifru et al., 2021; Daneshi et al., 2021) and hydrological model
simulations (Derepasko et al., 2023; Liu et al., 2010). Specifically, hydrological
responses have been quantified using distributed hydrological models, such as the
SWAT model (Arnold et al., 2012), VIC model (Liang et al., 1996), HSPF model (Duda
et al., 2012), and SWMM model (Lowe, 2010). In particular, SWAT+, the updated
version of SWAT (Bieger et al., 2017), features enhanced capacity for addressing the
specific complexities of the TGRA. As the watershed outlet of the upper Yangtze River,
the TGRA exhibits a steep, heterogeneous terrain and has undergone significant
conversion of sloping cropland to forest. The advanced spatial discretization of
landscape units to hydrologic response units in SWAT+ uniquely captures these
topographic variations and land-use transitions. Meanwhile, its refined algorithms for
land management scheduling are critical for simulating the influences of reforestation
(Wallington and Cai, 2023). Furthermore, the various global implementations of
SWAT+ (Nkwasa et al., 2020; Leone et al., 2024; Castellanos-Osorio et al., 2023) have
proven the flexibility and effectiveness of the model in simulating hydrology-related
processes under changing environmental conditions (Bieger et al., 2017).

This study quantified the responses of hydrological processes and sediment yield
to reforestation and climate change in the TGRA using the SWAT+ model. The primary
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objectives were to: (1) simulate water yield and sediment yield in the TGRA over the
past 20 years; (2) assess the effects of reforestation and climate change on water yield
and sediment yield during different hydrological periods; and (3) predict future changes
in water yield and soil retention under different climate scenarios and land-use
development patterns. These findings will provide a basis for assessing the hydrological
impact of reforestation measures and policies in humid regions, further improving

environmental protection and addressing future climate change risks.

2. Materials and methods

2.1. Study area and research framework

Located between 28°28° — 31°44°N and 105°49° — 111°39’E (Fig. 1), the TGRA
lies at the intersection of Hubei province and Chongqing city in China and extends
along the main stream of the Yangtze River. In this study, the land surface from the
Zhutuo section of the main stream of the Yangtze River to the Three Gorges Dam was
taken as the study area, covering approximately 64, 000 km? (Chen et al., 2019). Under
the submergence induced by the Three Gorges Dam and the implementation of
reforestation policies, land-use patterns in the TGRA have changed significantly. From
2000 to 2013, the area of reforestation in the upstream regions, including the TGRA,
covered 13990 km? (NFGA, 2020). From 2014 to 2019, the area of reforestation in the
TGRA and upstream of Hubei and Chongging covered approximately 4352 km? (NFGA,
2020). In the implementation of shelterbelt construction projects in the TGRA, the

highest priority is to protect water and soil conservation banks. The construction area
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covers about 47 counties in Hubei province and Chongqging city

(https://www.forestry.gov.cn/main/4862/20201209/114128738802192.html). A

protection system comprising reservoir, soil and water conservation, as well as sand
and silt control has been established along the bank and mountain system of the

reservoir, with the main stream of the Yangtze River serving as the primary axis.

75°E 9N°E 105° E 120° E 135°E

) (3) - (b).

& { 4;”) (©)

£ { ‘ b
10° N{REEE L ¢
71 !

 e—
Lav
I

Fig. 1. (a) Geographical location of the TGRA, (b) subbasins of the TGRA, and (c) point stations

of CNO5.1.

The research framework consists of four parts (Fig. 2). Firstly, we selected water
yield and sediment yield indicators for the SWAT+ model simulations. There two
hydrological processes were selected considering their direct interactions with climate
change and vegetation composition. Secondly, to quantify the impacts of reforestation
and climate change during different hydrological periods, we designed various
scenarios for comparison and analysis. Here we define June, July, August, and
September as the flood season, December, January, February, and March as the dry
season, and the other months as the normal season. In addition, the impacts of the GGP
on streamflow and sediment extremes were also explored. Third, to acknowledge
strategies for adjusting land development in the face of future climate, we modeled

three land-use development patterns using the Patch-generating Land Use Simulation
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(PLUS) model, and simulated future water yield and sediment retention under two
Shared Socioeconomic Pathways (SSP245 and SSP585). Finally, by analyzing the
simulation results and comparing with other research, we reveal and discuss the effect

mechanism of the GGP and climate change.

@ ' Meteorological data Y Step 1 Model setup and calibration

A@f»  Landusedata E i
E 4 a Hydrological data SWAT-+ model 1 Wa;m up perim_:l (1998-1999) !
% ' Soil data and DEM I+ Calibration period (2000-2009) :
é . L - & Validation period (2010-2020) |
r— CMIP 6 : :

Step 2 Scenario setting and comparison

5 Climate change Reference
GGP scenario Sonars e

L )

Sediment yield /= Water yield

Reveal seasonal difference

Step 4 Reveal GGP
effect mechanism on

WY and SR in
different seasons

Fig. 2. Research framework (some illustrations are downloaded from https://ian.umces.edu/media-

library/ ). Note: WY is water yield, and SR is soil retention.

2.2. Data

The SWAT+ model was driven and validated using meteorological data,
topographic data, land use/cover data, soil data, and hydrological observations (Table
1). Meteorological data were obtained from the CNO05.1 gridded dataset (Wu and Gao,
2013), which provides daily precipitation, maximum and minimum temperature,

sunshine hours, wind speed, and relative humidity at a spatial resolution of 0.25°. To
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better reflect the spatial heterogeneity of the climate in the TGRA, we selected data
covering the period 1961-2020 from 108 grid points of the CNO05.1 dataset that overlap
with the TGRA. In addition, daily climate projections (precipitation and temperature)
from three CMIP6 models were used for future scenario analysis. The projection data

were downloaded from the ESGF data portal (https://esgf-node.llnl.gov/) and covers

the period from 2000 to 2050. Land use/cover data for the years 2000, 2010, and 2020
with a spatial resolution of 1 km were obtained from the Resource and Environment

Science and Data Center of China (http://www.resdc.cn ). To ensure matching with the

SWAT+ model land use database, the original land use classes were reclassified into 7
types, namely cultivated land, forests, grassland, shrubland, waterbody, built-up land,
and unused land. Soil data with a spatial resolution of 1 km were retrieved from the
Harmonized World Soil Database. DEM data with a 30 m spatial resolution were used
to delineate watershed boundaries, define stream networks, and derive slope and
elevation information. The SWAT+ model was calibrated and validated using
streamflow and sediment data. Monthly observations of streamflow from 2000 to 2020
were collected from four hydrological stations in the TGRA, namely Yichang, Beibei,
Cuntan, and Wanxian. However, sediment yield data were available only for Yichang
station from 2006 to 2020. These data were collected from the Yangtze River Water
Resources Commission and Qin et al. (2020).

Additionally, remote sensing-based vegetation indicators were used for analyzing
vegetation dynamics. Monthly Leaf Area Index (LAI) data covering the period 2000—
2020 were obtained from the GLASS LAI MODIS dataset at a resolution of 0.05°,

8
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162  while Normalized Difference Vegetation Index (NDVI) data for the same period were

163  derived from a 250 m resolution dataset compiled by Gao Jixi (2024).

164  Table 1 Primary data used in this study

Data Type Source Use Rez(;lutl
Daily precipitation, average /maximum/minimum
temperature, sunshine hours, average wind speed, and CNOS.Ingtazsgtl g\))\/u and Input data of 0.25°
relative humidity from 1961 to 2020 i the SWAT+
Soil data The Harmonized World model. 1 km
Soil Database CNOS.1 data
. from 1961 to
Land use/cover data in 2000, 2010 and 2020 http://www.resdc.cn 2014 was used 1 km
DEM data http://www.resdc.cn as th? 30m
evaluation
Daily precipitation, maximum/minimum temperature of https://esgf- data of
CNRM-CM6-1, NorESM2-LM, and INM_CM5_0 node.llnl.gov/search/cmip GCMs. 0.25°
model from 2000 to 2050 6/
Monthly observed streamflow data from 2000 to 2020 . Model
. o . . The Yangtze River Water o 3
of Yichang, Beibei, Cuntan and Wanxian hydrological o calibration m’/s,
. y . Resources Commission
stations. Monthly observed sediment yield data of and Qin et al. (2020) data tons
Yichang station from 2006 to 2020 )
Monthly LAI data from 2000 to 2020 GLASS LAI MODIS data Change 0.05°
set analysis of )
NDVI from 2000 to 2020 Gao Jixi (2024) ecohydrologic 250 m
al elements
165
166  2.3. SWAT+ model
167  2.3.1 Model description
168 The SWAT model is a physically-based, semi-distributed hydrological model

169  developed to quantify the effects of land management practices in large, complex

170  watersheds with diverse soils, land use, and management conditions over long periods

171 (Arnold et al., 2012). With these advantages, the model has been used in many studies

172 to assess hydrological processes (Janji¢ and Tadi¢, 2023; Brighenti et al., 2019; Shi et

173 al., 2011; Xiong et al., 2019; Francesconi et al., 2016; Uniyal et al., 2023). SWAT+ is

174  an updated version of SWAT that is based on the same equations but offers greater

175  flexibility in the configuration of model processes (Bieger et al., 2017; Noori and Kalin,

176  2016). Regarding the model setup, we used the new open-source QGIS interface for

http://mc.manuscriptcentral.com/PiPG
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SWAT+. This interface is based on the concept of hydrologic response units (HRUs)
and landscape units (LSUs) as smaller-scale subdivisions of the sub-basins, to separate
upland and floodplain processes are separated (Bieger et al., 2017). In SWAT+, the
different elements of a watershed, e.g., LSUs, HRUs, aquifers, ponds and reservoirs,
inlets, point sources, and channels, are defined as spatial objects. The user can define
hydrologic interactions between different spatial objects to represent the physical

characteristics of a watershed as realistically as possible (Bieger et al., 2019).

2.3.2 Water yield and soil conservation calculation

The SWAT+ model defines total water provisioning supply as the water that leaves
sub-basins and flows into a river within a time step (Arnold et al., 2012). The water

balance equation used in the SWAT+ model is as follows (Noori and Kalin, 2016):

t
(1)
SW,=5SW, + z (Raay—Qsurf — E¢ — Wseep — Qgw)

=1

where SW, and SW, are the final and initial water contents (mm), # is the time (days),
Rg4qy is the amount of precipitation on day i. Qsyrris the surface runoft on day i (mm),
E, is the amount of evapotranspiration on day i (mm), Wgeep is the amount of
percolation and bypass flow exiting the soil profile bottom on day i (mm), and Qg is
the amount of return flow on day i (mm).

We estimated the supply of soil under conservation measures based on the modified
universal soil loss equation in the sediment erosion section of the SWAT+ model (Zhou
et al., 2024b; Wang et al., 2022). The C,g. and P,g. factors of the formula were set

to 1, which represents the condition of bare soil without any vegetation or conservation

10
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measures (Zhou et al., 2024b; Wang et al., 2022). This adjustment allows the estimation
of potential soil erosion (SED,) in the absence of protective factors. On this basis, the
amount of soil conserved through ecological protection and land use practices can be
quantified by comparing this SED,, with the actual soil erosion (SED,) under existing
land use and management. In this study, sediment yield and soil conservation under
past scenarios were estimated and future predictions were made. The formula for the
calculation formula is as follows:

SC = SED, — SED
P ¢ 2

0.56
= 118X (qurf X Qpeak X areahru) X Kysie

X LSusle X CFRG(l - Cusle X Pusle)

where SC, SED,,, and SED, refer to soil conservation (t), potential soil erosion (t),
and actual soil erosion (t), respectively. Qsurf, qpeak and areap,, are surface
runoff (mm/ha), peak runoff rate (m?3/s), and HRU area (ha), respectively. K, is the
soil erodibility factor; C,ge is the vegetation and management factor; P, is the
factor of soil and water conservation measures; LS, is the slope length and slope

gradient factor; and CFRG is the roughness coefficient.

2.3.3 Model setup and calibration

Based on the imported stream network data downloaded from OpenStreetMap and
DEM data, the TGRA was divided into 21 LSUs and 524 HRUs in the QGIS interface.
As this study focused on the regional scale assessment of the impact of land use change
on water yield and sediment yield, the watershed was not divided into a large number

of small watersheds, and this approach can be considered reasonable because the
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simulation accuracy was high. In the SWAT+ editor, the spin-up period was set as
1998-1999, the hydrological calibration period as 2000-2010, and the validation period
as 2010-2020. As sediment data before 2006 were lacking, the sediment calibration
period was set as 2006—2012 and the validation period was 2013—-2020. The simulation
results of the SWAT+ model were calibrated and evaluated using the SWAT+ Toolbox

(https://celray.github.io/SWATPlusToolbox/). The Calibration and Sensitivity Iterative

(CALSI) algorithm is a tool in the SWAT+ Toolbox designed for model parameter
calibration and sensitivity analysis. CALSI combines parameter optimization and
sensitivity analysis to improve model accuracy and ensure reasonable parameter
settings. In this study, the goodness of fit of the SWAT+ model was evaluated using
the Nash-Sutcliffe efficiency (NS), coefficient of determination (R?), and percentage
bias (PBIAS). The formula of NS, R?, and PBIAS are as follows (Nash and Sutcliffe,

1970; Xu et al., 2011):

" —0.)?
NS =1— %:li:l (Qm 95)1 (3)
Zizl (Qm,i - Qm)z
_ 92
21— [Z?zl(Qm,i —Qm) (Qs; — Qs)] 4)
S Qmi—Qm)? Zp, (Qsi— Qs)?

Y (Qm— Qo) (5)

n
i=1 Qm,l

PBIAS = 100% X

where Q,, is the measured volume (the unit of outflow is m3/s and the unit of sediment
yield is tons), Qg is the simulated volume, and i and » represent the sample number

and total sample size, respectively.
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2.4. Quantifying relationships of runoff and sediment yield extremes

Referencing Yin et al. (2023), extreme streamflow and extreme sediment yield
were defined as values exceeding the 95" percentile during a year to reflect extremely
high streamflow or sediment yield characteristics. On this basis, we calculated the
sediment rating curve to reveal the variation in extreme runoff and sediment
relationships after the implementation of the GGP. We characterized relationships
between extreme runoff and sediment according to power-law sediment rating curves,
which can be expressed as follows (Gao et al., 2024):

§ = CsQ = aQ®** (6)
where, S is the daily sediment yield (t), Cs is the daily sediment concentration (kg/m?),
Q is the daily streamflow (m?), and @ and b are the sediment rating coefficient and
exponent (dimensionless), respectively. a represents an index of erosion severity. High
values of a indicate intensively weathered materials, which can easily be transported.
The exponent b represents the river’s erosive power, with large values indicating a

strong increase in erosive power even with a small increase in discharge.

2.5. Projected climate change scenarios

The Coupled Model Intercomparison Project (CMIP) provides shared climate
simulation data covering the next 50 to 100 years as a foundation for global climate
research (Cook et al., 2020). We selected 14 global climate models (GCMs) from the
CMIP6 dataset that displayed (Table S2). These models were selected because their

good simulation performance for the Yangtze River Basin has been confirmed (Zhu et

13

http://mc.manuscriptcentral.com/PiPG



oNOYTULT D WN =

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Progress in Physical Geography

al., 2021; Thrasher et al., 2022). Two emission scenarios, SSP245 (+4.5 W/m2; medium
forcing middle-of-the-road pathway) and SSP585 (+8.5 W/m2; high-end forcing
pathway) (Cook et al., 2020), were selected to represent medium and high-end radiative
forcing pathways, respectively.

To address the inconsistent spatial resolutions of CMIP6 GCM outputs, we adopted
a statistical downscaling approach based on the CN05.1 gridded observation dataset.
The statistical downscaling procedure involved two steps: (1) bias correction through
probability density function matching between GCM simulations and CNOS.1
observational data over the historical period; and (2) spatial interpolation via bilinear
methods. In this manner, systematic errors can be reduced while preserving climate
trends projected by the original GCMs. Given that the CMIP6 historical simulations
end in 2014 data of and scenarios begin in 2015, the evaluation period was set as 1961—
2014 and the future projection period as 2025-2050.

To evaluate the performance of the downscaled GCMs, the performance of
different GCMs was evaluated on the basis of the spatial correlation coefficient (R),
root mean square error (RMSE), and ratio of spatial standard deviations (Taylor, 2001).
As shown in Fig. S4, most GCMs exhibited strong agreement with observations for
temperature variables, with R exceeding 0.95 and RMSE values below 2%. In contrast,
precipitation showed greater inter-model variability, with RMSE values ranging from
4% to 6%. Therefore, based on the results of comparison result with CN05.1, CNRM-
CM6-1, NorESM2-LM, and INM_CMS5_0 were selected as the best performing models
to serve as climate input data for SWAT+ from 2025 to 2050.
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2.6. Projected land use patterns

To explore the long-term impacts of land use change on hydrological processes in
the TGRA, we developed three future land use scenarios based on regional policy
directions and previous studies (Huang et al., 2022). The simulation process is
described in further details in the Supplementary Information. In recent years, the
TGRA has received major ecological restoration efforts, such as large-scale
reforestation and the Three Gorges Project. Meanwhile, urban expansion has
significantly altered the landscape of this area. Considering the need for balancing
environmental sustainability and socioeconomic growth, three contrasting development
scenarios were constructed to represent potential future trajectories (2025-2050). The
ecological scenario emphasizes environmental protection and landscape optimization,
prioritizing forest coverage while controlling urban expansion. It aims to optimize
landscape patterns by adjusting the proportions of various landscape types. The
economic scenario focuses on urban development, but the expansion of construction
land is moderated to half the rate observed during the period from 2000 to 2020. The
eco-economic scenario integrates both ecological and economic considerations, aiming
for a compromise that supports both conservation goals and development needs. The
land transition matrices under the three scenarios were set by following the prediction
made by Huang et al. (2022) in the TGRA (Table S1). These scenarios provide a
framework for assessing the potential effects of policy-driven land use decisions on
water yield and sediment retention in the TGRA under changing conditions. Future land

use scenarios were simulated using the PLUS model (Liang et al., 2021), and the
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simulation results (Fig. S2) were input to the SWAT+ model. To ensure simulation
accuracy, we simulated the land use in 2020 and compared the simulation results with
the actual land use data of 2020 (Fig. S3). The comparison yielded an overall kappa

coefficient of 0.77, which meets the accuracy requirements.

2.7. Scenario design

In the TGRA, reforestation was implemented on sloped cropland with a gradient
greater than 15°. Therefore, areas with sloped cropland above 15° that were converted
to forest and grassland during 2000-2020 were identified as reforestation zones using
ArcGIS. We designed four scenarios to analyze the impact of reforestation and climate
change from 2000 to 2020 (Table 2).
® S1: areference scenario without changes in land use and climate. Data of land use

in 2000 and climate from 1990 to 2000 were used as input to the SWAT+ Editor.
® S2: except for reforestation zones, other land use types remain unchanged with

reference to 2000. An updated land use dataset with reforestation zones and climate
data from 1990 to 2000 was input to the SWAT+ Editor.
® S3:land use in 2020 and climate data from 1990 to 2020 were used as input to the

SWAT+ Editor, reflecting both land use change and climate change.
® S4: land use in 2000 and climate data from 2000 to 2020 were used as input to the

SWAT+ Editor.

The impact of the reforestation policy can be quantified subtracting S1 from S2

(S2-S1). The total effect of land use changes can be quantified by subtracting S1 from
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S3 (S3-S1). The effect of climate can be quantified by subtracting S1 from S4 (S4-S1).
The future scenarios were simulated in a pairwise manner combining by setting

three land use development patterns and two climate change scenarios:

® Fl, F3, and F5: simulation results of land use under three scenarios and SSP245
were set as input data for the SWAT+ Editor.

® F2, F4, and F6: simulation results of land use under three scenarios and SSP585

were set as input data for the SWAT+ Editor.

Table 2 Scenarios designed in this study

Scenarios Land use data Climate data
S1 2000 1990-2000
3 Other land types of 2000 combined with the reforestation 1990-2000

zones

S3 2020 1990-2000
S4 2000 2000-2020
F1 Ecological pattern SSP245
F2 Ecological pattern SSP585
F3 Economy pattern SSP245
F4 Economy pattern SSP585
F5 Eco-economy pattern SSP245
F6 Eco-economy pattern SSP585

3. Results

3.1. Hydrological Calibration

We simulated water yield and sediment yield using the SWAT+ editor and the tool
showed good performance after calibration. We conducted a global sensitivity analysis
using the Latin Hypercube Sampling (LHS) combined with the One-Factor-at-a-Time
(OAT) method embedded in the SWAT+ Toolbox. Ten key parameters related to
hydrological and sediment processes were evaluated, including those controlling runoff
generation, soil moisture dynamics, and erosion potential (Table 3). The most sensitive

parameters were found to be ALPHA, CANMX, USLE P, and AWC, with sensitivity
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indices of 0.28, 0.18, 0.17, and 0.16, respectively. In particular, we calibrated four
parameters, CANMX, ESCO, USLE P, and USLE K, after which NS result increased
by 0.02 to 0.10 and PBIAS decreased by 10 to 20 (Table S3). CANMX, representing
the maximum canopy water storage, was calibrated within a range of 0-20 mm to
account for the interception effect of vegetation on runoff (Li et al., 2021). ESCO, the
soil evaporation compensation factor, was adjusted between 0.2 and 0.5 to reflect soil
evaporation dynamics under varying soil moisture conditions. USLE P, the support
practice factor, was set to 0.7 to represent the average level of soil conservation
measures in the region, while USLE K, the soil erodibility factor, was set to 0.4 to
capture the typical erodibility characteristics of soils. The parameter calibration
afforded satisfactory model performance in simulating both water yield and sediment

yield.

Table 3 Sensitivity analysis results of hydrological and sediment-related parameters used in the
SWAT+ Toolbox

Parameters Abs min Abs max Group Sensitivity
ALPHA 0 1 aqu 0.28
CANMX 0 100 hru 0.18
USLE P 0 1 hru 0.17

AWC 0 1 sol 0.16
SOL k 0 1 sol 0.11
CN2 35 95 hru 0.10
USLE k 0 0.65 sol 0.09
SURLAG 0.05 24 bsn 0.05
REVAPMN 0 50 aqu 0.05
CHN -0.01 0.3 rte 0.02

After the calibration and validation of the model for monthly streamflow with
several simulations, the SWAT+ exhibited an R? range of 0.92-0.94 for the four
hydrological stations during the calibration period. The NS coefficient ranged between
0.8 and 0.89, and the absolute PBIAS value ranged from 3.01 to 16.4 (Table 4 and Fig.

S5). With NSE, R? values greater than 0.8 and the absolute value of PBIAS less than
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10, the calibration model results can be considered “very good”. Although the values
of R%, NS, and PBIAS were lower in the validation period than in the calibration period,
the results can be considered “good” based on the assessment criteria of Chen et al.
(2022). The simulation results for monthly sediment yield were not as good as those for
streamflow, but they can still be considered satisfactory because they showed R? values
of 0.57 and 0.54, and NS values of 0.54 and 0.44 in the calibration and validation
periods, respectively. As shown in Fig. S6, the simulated sediment yield is consistent
with the measured sediment yield for low peaks, but the peak sediment yield could not
be captured. This can be explained by the model not considering flood-plain erosion
during peak flow conditions when simulating sediment yields (Nepal et al., 2023).
Compared with SWAT, SWAT+ offers significantly higher accuracy, for simulating
runoff, with there are higher R? and NS, and lower absolute PBIAS values, as shown in
Fig. S5, S6, and Table S4. Nevertheless, the simulation results remain comparable for

sediment yield. Therefore, SWAT+ was selected for all subsequent analyses in this

study.
Table 4 Validation and calibration results of simulated runoff
Period Station R? NS |PBIAS]
Yichang 0.94 0.84 12.02
Calibration Beibei 0.92 0.89 3.01
Cuntan 0.94 0.82 16.4
Wanxian 0.93 0.80 16.4
Yichang 0.87 0.67 12.1
Validation Beibei 0.92 0.88 0.89
Cuntan 0.93 0.74 9.75
Wanxian 0.89 0.74 15.27

3.2. Spatio-temporal dynamics of streamflow and sediments in the TGRA

Before conducting the simulations under the different scenarios, we analyzed the

spatio-temporal dynamics of streamflow and sediment yield in the TGRA for the period
19
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2000-2020. The sediment and water yields exhibited more significant variations on an
intra-annual scale, with higher values predominantly concentrated in July, August, and
September (Fig. 3a). On average, streamflow increased by 2959 million m*y, 1426
million m?/y, and 239 million m*/y during the flood, normal, and dry seasons (Fig. 3b).
Moreover, sediment yield tended to increase particularly especially during the flood

season, with an average of 1.77 million tons per year.

(a) Annual (b) Different seasons
4000 Tooos
— 6000 F 4000
£ 3500 4 £ =
- I Y E | emhA A N
2 g — ., 530001 R
g 3000 7 1234 5f\41?!|1[7h 8 90101112 ;
< 22000
5 2500 4
g
7]

? )
; =]
‘q 12004
5 800 4 o [ w\““ %
¢.O 12345 LEI 7 IS 9 101112 2 R — N U RS SSNTEI e
= onth R T A e (I, ey S e, Vet
= 600 4 S800eey | \/ N\ _A---f--\7
5 T | S
E 400 - 2
g S 400
“ 200 4 7 S P W Mthds-Shaie "B s
4 .—Q-.q,:t__ — ./‘\__ a
:-—£-— e, £ T, . A e e e
0 ———————— o " r ; y
20002002 20042006 2008 2010201220142016 2018 2020 2000 2005 2010 2015 2020

Fig. 3. Temporal changes of (a) annual streamflow and sediment yield, (b) streamflow and
sediment yield in different seasons from 2000 to 2020. Pink represents the flood season, blue

represents the normal season and green represents the dry season.

To visualize spatial differences in hydrological components, we selected annual
average water yield and sediment yield during different hydrological periods (Fig. 4).
The most pronounced seasonal difference were observed in sub-basing along the main
stream of the Yangtze River, such as sub-basins 4, 5, 6, 7, and 8. In sub-basins far away
from the main stream, the differences in water yield and sediment yield were not

pronounced between the flood and dry seasons, with water yield around 1000 m?/s and
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sediment yield below 10 million tons. In addition, the spatial distribution of water yield

and sediment yield showed a trend of gradually increase from the west to the east of the

TGRA.
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Fig. 4. Annual average water yield and sediment yield during different seasons.

3.3. Impacts of GGP and climate change on water and sediment yield

3.3.1 Water and sediment yield variations among vegetation types

We analyzed cropland, forest, grassland, and shrubland to compare streamflow

and sediment yield among different vegetation types. As shown in Fig. 5, variations in

streamflow and sediment yield exhibit seasonal differences, with the largest most

variation during the flood season and minimal variation differences in the dry season.

Forests were the largest contribute to water yield in the dry season, while grasslands

and shrublands dominated during the wet season. Under climate and land-use change

scenarios, water yield increased compared to the SI1 scenario, with the highest

difference of 10 mm. In the reforestation scenario, all vegetation types exhibited
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increased water yield compared to the S1 scenario, with forests showing the largest
increase at nearly 3 mm. In the normal and dry seasons, climate change induced
increases in water yield across all vegetation types. Differences in sediment yield
among vegetation types were more pronounced than differences in water yield. In all
scenarios, farmland exhibited the highest sediment yield. Under the reforestation
scenario, sediment yield from cropland and forest decreased. Similarly, sediment yield
decreased under the climate and land use change scenarios as well. Overall, sediment
yield showed more significant variations than water yield, highlighting the stronger

influence of vegetation composition on sediment dynamics during the flood season.

40water yieldimm
35

40water yield/mm 45 water yield/mm
35 40

35 %

(d1

)

ub%aﬁ
& "y P
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Swater yield/mm
4
) §§

R,
Sl
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Fig. 5. Annual average water yield (mm) and sediment yield (kg/ha) across of various vegetation
types during different seasons. (a) S1, (b) S2, (c) S3, and (d) S4. Number 1 represents the water
yield and number 2 represents the sediment yield. The heatmap was plotted through

https://www.bioinformatics.com.cn, an online platform for data analysis and visualization

Based on the results obtained under the abovementioned scenarios, we also
quantified and assessed the impacts of the GGP and climate change on water and
sediment yield (Table 5). The GGP had more pronounced effects on sediment yield
than on water yield, reducing annual average sediment yield by 802.6 kg/ha. Although
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runoff showed a slight increase, the simulated annual sediment yield decreased because
of the reduction of sloped farmland. Increased canopy interception reduces infiltration
and may slightly enhance surface runoff, but the improved vegetation cover stabilizes
the soil, thereby leading to a substantial reduction in sediment yield (Bunel et al., 2025).
In contrast, other land changes such as conversions between built-up and cultivated land
increased the sediment yield by 761.2 kg/ha. On the whole, land use change resulted in
a reduction of average annual sediment yield by 41.5 kg/ha. Climate change
significantly reduced water yield and sediment yield. Under the combined impact of
land use changes and climate change, sediment yield and streamflow decreased by

20,024 kg/ha and 5479 m?/s, respectively, compared to the reference scenario.

Table 5 The influence of different factors on runoff and sediment

Influencing factors Annual average Annual average sediment yield
runoff (m3/s) ( kg/ha )
GGP +25 -802.6
Total land use changes +20,810 —41.5
Other land use changes (deduct GGP +20,785 +761.2
effect)
Climate change —26,290 —19,982
Climate and land use change —5479 —20,024

3.3.2 Seasonal difference and impacts on the relationship between extreme runoff and
sediment yield

The impacts of different factors on water yield and sediment yield exhibit spatial
variations across different sub-basins (Figs. 6 and 7). The GGP had a negative effect on
sediment during the flood season and a positive influence on runoff during the dry
season. In sub-basin 7, the flow outlet of the TGRA, runoff increased by 28.5 m?/s. In
sub-basins 5 and 7, reforestation primarily reduced sediment yield during the flood and

normal seasons. The reduction in sediment yield induced caused by reforestation
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intensified from the west to the east. Reforestation had a weaker effect on runoff
compared to the total land use change, with the effect concentrated in sub-basins along
the main stream of the Yangtze River, particularly in sub-basins 4, 5, 6, 7, and 8. Land
use changes increased sediment yield, but the GGP had a stronger influence, leading to
an overall reduction in sediment yield. During the flood season, the sediment yield of
sub-basins decreased in the eastern TGRA. In contrast, land use changes during the dry
season led to an increase in sediment yield, concentrated in the eastern TGRA, with an
upward trend from the west to the east. Climate change had a stronger influence on
runoff and sediment yield than land use changes, especially during the flood season.

Climate change exhibited the strongest negative effect in sub-basins 5, 7, and 16 during

the flood season. The reduction in runoff was smaller during the normal and dry seasons.

Reductions in sediment yield induced by climate change coincided with the spatial
distribution of sediments.

Overall, climate change is the dominant factor affecting runoff and sediment yield,
exerting stronger effects than land use changes. It shows negative effects in the eastern
TGRA but positive effects in the western. The GGP has more significant seasonal
effects on sediment yield than on runoff, mainly reducing sediment yield during the
flood and normal seasons, although the effects are weaker smaller than those of total

land use changes.
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we selected sub-basin 2 for further analysis. This sub-basin features which has the
largest area of reforestation, covering 41% of the area. In particular, extreme
precipitation was accompanied by extreme sediment yield during the summer months
(Fig. 8a and b). Compared to the reforestation scenario, the non-reforestation scenario
showed an increase in parameter a, from 0.03 to 0.64, and a decrease in parameter b,
from 3.45 to 2.85, indicating larger soil erodibility and sediment source availability
(Yin et al., 2023). This implies a larger amount of sediments and higher susceptibility
of soil to erosion. Conversely, under the reforestation scenario, increased vegetation
cover will reduce the likelihood of extreme water yield and soil erosion by precipitation,
thus supporting more stable water-sediment relationships (Wang et al., 2016). As
shown in the box plot in Fig. 8¢, runoff and sediment yield extremes definitely showed
prominent downward trends under the reforestation scenario. Therefore, reforestation

promotes the stability of the water-sediment relationship.
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Fig. 8. Impacts of the GGP on extreme streamflow and sediment yield (sub-basin 90 was taken as

an example because it has the largest area of land conversion from farmland to forest is the most in

this basin). (a) Daily streamflow and extreme streamflow, (b) daily sediment yield and extreme

sediment, (c) and (d) the relationships of streamflow and sediment yield extremes of S1 and S2, and

(e) box plot of daily streamflow and sediment yield extremes of S1 and S2.

3.4. Projected water yield and soil conservation under future scenarios

We used soil retention and water yield as indicators for future scenarios. The

prediction results under future climate scenarios and land-use patterns indicate that

water yield and soil retention vary along different directions (Fig. 9). Although water

yield and soil retention did not exhibit significant trends, water yield is projected to
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increase from 12.96% to 19.3% from 2025 to 2050 compared to the past period (2000—
2023). While soil retention is projected to decline from 17.85% to 22.63%. Climate
change has a stronger influence on runoff than on land use. Under the changing climate,
the variation in runoff under each pattern is minor, with a difference of less than 1%.
However, their variations are significant between climate scenarios. The differences in
runoff and soil retention between SSP245 and SSP585 are approximately 6% and 4%,
respectively. Eekhout and Vente (2020) employed various soil erosion models to
simulate the amount of soil erosion in the Mediterranean region under future climate
change scenarios. The results, also obtained using the MUSLE soil erosion module in

SWAT, also indicated that soil loss would significantly increase in the future.
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Fig. 9. Predictions of water yield and sediment yield under different scenarios. (a) ecological land
use pattern, (b) eco-economic use pattern, (c¢) economic land use pattern. The shades represent one
standard deviation among models
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4. Discussion

4.1. Effect mechanisms of GGP on runoff and sediment yield

Although many studies literature reports have confirmed that vegetation
restoration affects eco-hydrological processes, no consensus has been reached on
whether the overall impact is positive or negative (Tianjiao et al., 2023; Wang et al.,
2023). In this study, vegetation restoration showed positive effects in the TGRA, in
agreement with Xu et al. (2020). In the past twenty years, the area of forests in the
TGRA has significantly increased, and the forest coverage rate has reached 58.49%
(Fig. 10), leading to significant increases in LAI and NDVI (p<0.05). Given that the
TGRA has a humid climate, reforestation does not pose the same threat to soil moisture
or water resources as it does in arid or semi-arid areas (Sun et al., 2006; Jian et al.,
2015). Previous research revealed a significant negative correlation between vegetation
changes and water resources, with runoff and runoff coefficients increasing
significantly as forests and grasslands are converted to cropland (Wang et al., 2021;
Chen et al., 2020). However, in humid and large watersheds with complex topography,
vegetation changes have a smaller effect on water yield (Wang et al., 2021). Factors
influencing water yield include precipitation, vegetation structure, topography, and
evapotranspiration (Rockstrom et al., 2023; Li et al., 2015). On steep slopes, natural
vegetation with complex structures can reduce surface runoff and significantly increase
baseflow and low flow volume (Sidle et al., 2017; Molina et al., 2012). In comparison,

planted forests have a smaller impact on runoff generation, although baseflow it can
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still increase. In the TGRA, reforested land primarily consists of planted forests that
were converted from cropland, and their influence on surface runoff is thus relatively
small.

Regarding soil retention, reforestation in the TGRA has significantly reduced
sediment yield, surpassing the sediment increases associated with other land
transformations, such as urban construction. This reflects the positive effect of the GGP
on soil retention in the TGRA (Huang et al., 2023). Compared to runoff, vegetation
restoration has a more pronounced effect of reducing sediment yield, especially in
humid regions. Increased in vegetation cover can weaken raindrop impact during heavy
rainfall, thus effectively preventing soil erosion (Bai et al., 2024; Luo et al., 2021).
Additionally, vegetation restoration can improve soil aggregate stability, enhance soil
physical and chemical properties, and increase soil permeability, which improve soil
resistance to erosion (Zhu et al., 2018). Consequently, surface runoff and sediment loss
are reduced. In addition, the effects on sediment yield also vary according to the
vegetation type. Studies have shown that the complex vertical structure of vegetation,
including tree canopies, shrubs, herbaceous layers, litter, and root systems, can directly
or indirectly influence runoff and sediment generation by altering hydrological
processes and rainfall redistribution patterns (Li et al., 2015). Vegetation with well-
developed root systems help improve soil physical properties, enhance soil
permeability, and reduce surface runoff. The stabilizing and binding effects of roots
play a critical role in soil retention (Sun et al., 2014; Bai et al., 2024; Wang et al., 2019).
Furthermore, slope is an important topographic factor affecting soil erosion. Runoff
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velocity is higher on steep slopes, increasing the susceptibility of soil to erosion,. Gebre
et al. (2024) confirmed that the occurrence of there was widespread soil loss and high
sediment yield on cultivated land dominated by moderate, steep, and very steep slopes
with little vegetation and barren areas. Therefore, the soil conservation effect of
vegetation restoration is more significant on sloping cropland. In the TGRA, the GPP
has primarily been implemented in sloping cropland, where steep cropland is
transformed into planted forests. Therefore, the comprehensive effects of slope, soil,
root system, and vegetation significantly reduces the risk of soil erosion (Zhang et al.,
2015; Bai et al., 2024).

Additionally, climate change plays a dominant role in the dynamics of runoff and
sediment yield. Over the past few decades, the intensity of the East Asian monsoon has
gradually weakened, leading to decreased precipitation and consequently reduced
runoff and sediment generation in the TGRA (Zhao et al., 2023). Previous studies have
shown that climate change has had a significant impact on runoff and sediment yield in
the TGRA (Zhang et al., 2017). Although human activities are also major contributing
factors, the declines in water yield and sediment yield in the TGRA are primarily driven
by the reduction in precipitation. This is in agreement with Wang and Sun (2021), who
reported that although human activities are the primary driver of the decline in actual
sediment yield in the Yellow River, changes in precipitation and rising temperatures

have also played a determinable role over the past few decades.
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4.2. Seasonal characteristics during different hydrological periods

The effects of the reforestation policy in the TGRA on the hydrological processes
exhibit significant differences across various hydrological periods, highlighting its
seasonal characteristics (Fig. 10). During the flood season, rainfall is the primary driver
of runoff, soil erosion, and nutrient loss (Liu et al., 2014). During heavy rainfall,
raindrops have a stronger impact on the topsoil, intensifying water and soil erosion.
During the flood season, rainfall exhibits a certain correlation with the reduction of
runoff and sediment yield. The particularly notable role of reforestation in the TGRA
in reducing sediment yield during the flood season can be explained by two main
reasons. First, increased rainfall during the flood season leads to greater runoff and
sediment flow; second, the interception by forest vegetation on runoff is relatively
weaker during the flood season compared to the dry season. Wang et al. (2019) pointed
out that the large water volume and high runoff velocity during the flood season limit
the effectiveness of vegetation interception. Wang and Sun (2021) also found that the
proportion of runoff reduction is smaller than that of sediment transport in the Yellow
River Basin. In addition, extreme flood and sedimentation events are more likely to
occur during the summer. In this regard, revegetation measures can substantially
mitigate the extremes and possible peaks in a power function form, as confirmed by
Yin et al. (2023).

In contrast, the reduction in sediment yield due to reforestation is smaller during
the dry season and the effect of increased runoff becomes more apparent. The changes

in vegetation types induced by the reforestation policy in the TGRA primarily enhance
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runoff during the dry season. This finding is similar to that of Wang et al. (2019), who
reported increased low flow during the dry season under the background of returning
farmland to forests. The SWAT+ model simulations showed increases in canopy
evaporation and transpiration by 21 mm/a during the dry season after the
implementation of the GGP, with precipitation at 111 mm/a. Green water represents the
rainfall that infiltrates the soil or is intercepted by vegetation and is subsequently
returned to the atmosphere through evapotranspiration processes (Song et al., 2025).
This increase in green water effectively enhances the precipitation to some extent,
providing a localized supplement to rainfall. Xie et al. (2024) revealed that reforestation
in China’s croplands contributed to a precipitation increase of approximately 74.9
billion m3/a. When cropland is converted to forests, the amount of vegetation
transpiration or green water increases, promoting precipitation, which in turn enhances
runoff during the dry season.

In summary, the GGP has distinct effects on sediment yield and water yield in the
flood and dry seasons, although its influence on water yield is relatively limited
compared to sediment yield. Wei et al. (2022) confirmed that under the scenario of
cropland being converted to forests, variations in sediment yield are more prominent
that those of water yield, particularly in high water years and the rainy season. During
the flood season, reforestation in the TGRA mainly functions by reducing sediment loss.
In contrast, during the dry season, it contributes more significantly to increasing runoff
and regulating water resources. Therefore, the contribution of reforestation policies to
hydrological processes in the TGRA is dynamic, and this aspect should be fully
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considered in future management and planning.

Flood season
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Fig. 10. Effects of the GPP on water yield and soil conservation during cropped hillslopes in
different water periods (Wang et al., 2021). Notes: Green on the land use map indicates forests while
yellow indicates cropland. On the right side, RD is the root depth, SED is sediment, and ETp is plant
transpiration. Three sub-basins with severe transformation from cropped hillslopes to forests from
2000 to 2020 are presented. Three lines of LAI and NDVI are displayed, with the top, middle bottom
lines represent the flood, normal, and dry season, respectively.

4.3. Limitations and Future Works

This research has several limitations, which are listed as follows. First, the
simulated value of low streamflow is not as accurate as that of high streamflow. Taking
Yichang station as an example, the average measured runoff in the dry season was
20,000 m3/s, while the simulated value was less than 10,000 m3/s. Nevertheless, the
simulation result is accurate for the flood and normal seasons, with high NS and R?
values. It is noteworthy that this study aimed to analyze differences among scenarios

and the same model parameters were applied under different scenarios. Therefore, the
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model limitation on low streamflow values will not affect the comparative analysis.

Second, reforestation can not only influence water yield and sediment yields but
also water quality and evapotranspiration. This study only discussed and analyzed two
hydrology-related processes, not fully taking other processes into consideration. In the
SWAT+ model, users can add land use management schedules to simulate the process
of crop growth and pollutant transport. In future research, crop growth and pollutant
transport processes can be simulated to fully capture differences in various factors
under multiple scenarios.

Third, complex interactions exist between hydrological processes and vegetation
processes. Although the SWAT+ model has high applicability in watershed-scale
hydrological simulation, it simplifies real-world processes. The model cannot fully
simulate some specific ecological processes, such as the complex interactions between
vegetation dynamics, carbon and nitrogen cycles, and water cycles. The simulation of
these processes is strongly affected by classification of land use data. In this study, the
land use data classification used in the SWAT+ model was limited to broad categories
such as cropland, forest, grassland, and shrubland. We assumed that the current level
of land use detail is sufficient to meet the simulation accuracy required for the purpose
of the study, and our calibration results also support this assumption. Nevertheless,
refining the land use classification—such as by distinguishing between coniferous,
deciduous, and broadleaf forests, or between rice and maize croplands—would allow
for more accurate representation of vegetation-specific hydrological processes in future
works.
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5. Conclusions

The Three Gorges Reservoir Area is an important ecological protection zone in the
Yangtze River Basin of China. This study utilized the SWAT+ model to simulate the
water yield and sediment yield in the TGRA from 2000 to 2020 and assess the impacts
of reforestation and climate change under various scenarios. Climatic factors were
found to be the primary drivers of changes in water yield and sediment yield, with land
use changes such as the reforestation policy also having a certain impact on runoff and
a strong reducing effect on sediment yield. Moreover, the responses of water yield and
sediment yield to the GGP exhibited seasonal characteristic. Reforestation had the most
significant impact on increasing runoff during the dry season, while it mainly reduced
sediment yield during the flood and normal seasons, especially in sub-basins in the
eastern part of the TGRA. Based on the simulation results of past scenarios, we
predicted runoff and soil retention from 2025 to 2050 under the SSP245 and SSP585
scenarios. Under the changing climate background, the predictions showed an upward
trend of total runoff, and a downward trend of soil retention. To handle this situation,
the local government can modify the direction of land use development and relevant
ecological restoration policies. Thus, the simulation results under the three future land
use development models can help provide references for policy adjustments.
Furthermore, we suggest that in the future, the local government should consider
ecological, and economic aspects as well as the well-being of residents, and effectively
carry out reforestation to ensure the livelihoods of the residents. This study provides

insights into the impact of the GGP and climate change on hydrological processes in
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humid regions and offers guidance for future development pathways.
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Text S1.

The Patch-generating Land Use Simulation (PLUS) model, enhances the spatial-
temporal dynamics and prediction of land use changes by integrating spatial factors
with geographic cell dynamics. It combines existing transformation and pattern analysis
strategies and introduces the Land Expansion Analysis Strategy (LEAS), which avoids
exponential growth in transformation types while retaining the ability to analyze land
use changes. LEAS method employs a random forest algorithm to assess land use
expansion and driving factors, predicting land use development probabilities. The
PLUS model also includes a unique CA model based on random patch seeds,
incorporating both "top-down" and "bottom-up" mechanisms to simulate dynamic land
use changes. The combination of PLUS and the multi-objective optimization algorithm
can enhance the robustness of the model (Li et al., 2022). For more details on the model,
see the work of Liang et al. (2021).

The Kappa coefficient is integrated into the PLUS model, are used to assess the
accuracy of simulation results. It effectively reflects the degree of consistency between
the simulated outputs and actual observations. Generally, a Kappa value greater than
0.8 indicates that the simulation results are highly reliable. The Kappa coefficient is
calculated using the following formula:

Ki—-K; !
1-K, (1)
where K, is the observed agreement (equivalent to the overall accuracy), and K, is
the expected agreement by chance, computed from the marginal probabilities of each

class in the confusion matrix.

LEAS was used to identify the driving factors and spatial distribution patterns of
land use changes. The scientific selection of driving factors is essential for accurate
land cover simulation. Considering that land cover change is influenced by a
combination of topographic, environmental, and socioeconomic factors, twelve driving
factors were selected in this study based on data availability, spatial heterogeneity, and
inter-factor correlation. The selection was informed by previous study and the
characteristics of the study area. These factors include elevation, slope, precipitation
(2020 year), and temperature (2020 year) to represent natural environmental conditions;
GDP (2020) and population density (2020) to capture socioeconomic influences; and
Euclidean distances to major roads, secondary roads, tertiary roads, county centers,
railways, and water bodies to reflect spatial accessibility. All distance variables were
calculated using the Euclidean distance tool in GIS, and road network data were
obtained from OpenStreetMap (Fig.S1).

Kappa =
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Table S1. Future land use scenario area transfer matrix (%)
Pattern Types Shrubland | Grassland Cullglzgted Waterbody Blll;g;lup U& llllscfd Forests
Shrubland 94.45 0.15 0.35 0 0 0 5.05
Grassland 5 94.68 0.32 0 0 0 0
C“llzrvlzted 0.5 0.05 96.95 0 0 0 25
Ecological pattern| Waterbody 0 0 0 98 0 2 0
Built-up land 0 0 0 0 100 0 0
Unused land 1.69 0.01 2 5 45 44.17 2.13
Forests 0.21 1.03 0.72 0 0 0 98.04
Shrubland 98.49 0.15 0.35 0 0.8 0.14 0.07
Grassland 0 99.64 0.32 0 0 0.04 0
Cultivated 0 0 98.88 0 0.5 0.62 0
Eco-economy land
pattern Waterbody 0 0 0 100 0 0 0
Built-up land 0 0 0 0 100 0 0
Unused land 0 0 0 0 70 30 0
Forests 0.21 1.03 0.72 0 2.6 0.88 94.56
Shrubland 93.95 0.15 0.35 0 0.5 0 5.05
Grassland 5 94.68 0.32 0 0 0 0
Cultivated | 5 0.05 96.45 0 0.5 0 25
land
Economy pattern | yaterbody 0 0 0 98 0 2 0
Built-up land 0 0 0 100 0 0
Unused land 1.69 0.01 2 5 65 24.17 2.13
Forests 0.21 1.03 0.72 0 1.7 0 96.34
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Fig. S2. Land use in 2000, 2020, simulated land use of 2020 and the projected land use map
in 2035 simulated by the PLUS model
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Table S2. 14 CMIP6 modes and selection scenarios used in this study
Number GCMS Historical SSP245 SSP585
1 ACCESS-ESM1-5 R N N
2 BCC-ESM1 R N N
3 HadGEM3-GC31-LL v N N
4 INM-CM4-8 v Y Y
5 INM-CM35-0 v N N
6 IPSL-CM6A-LR v N N
7 GFDL-CM4 v N N
8 NorESM2-LM v N N
9 CNRM-ESM2-1 y Y Y
10 CNRM-CM6-1 R N N
11 MPI-ESM1-2-HR Y N N
12 MRI-ESM2-0 v N N
13 IPSL-CM6A-LR v Y Y
14 MIROC6 v v v
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GFDL-CM4

00000

INM_CM4_8
INM_CM5_0
IPSC_CMBA_LR
MIROC6
MPI_ESM1_2_HR
MRI_ESM2_0

Table S3. Comparison of simulation results before and after calibration

ACCESS_ESM1_5

HadGEM3_GC31_LL

Variables Before calibration After calibration
Station NS [PBIAS] NS |[PBIAS]
Yichang 0.75 29.1 0.84 12.02
Beibei 0.87 24 0.89 3.01
Flow_out (m?s) Cuntan 0.72 32.7 0.82 16.4
Wanxian 0.70 32.7 0.80 16.4
Sediment (tons) Yichang 0.45 34.1 0.54 20.5
Table S4. Comparison of runoff simulation results with SWAT model
SWAT SWAT+
Period Station R? NS [PBIAS| R? NS [PBIAS|
Yichang 0.87 0.78 17.3 0.94 0.84 12.02
Calibration Beibei 077 0.74 13.4 0.92 0.89 3.01
Cuntan 0.87 0.73 19.7 0.94 0.82 16.4
Wanxian 0.82 0.72 15.5 0.93 0.80 16.4
Yichang 0.80 0.64 17.4 0.87 0.67 12.1
Validation Beibei 074 0.71 12.6 0.92 0.88 -0.89
Cuntan 0.83  0.63 18.8 0.93 0.74 9.75
Wanxian 0.77  0.61 22.2 0.89 0.74 15.27
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