

This is the preprint of the contribution published as:

Jessen, M.-T., Roeder, A., Roscher, C. (2025):

Intensity and timing of land use influence annual increment in growth rings of *Galium mollugo* in temperate grasslands

Ann. Bot. **136** (7), 1485 - 1496

The publisher's version is available at:

<https://doi.org/10.1093/aob/mcaf158>

1 **Type of article:** Original Article

2

3 **Title: Intensity and timing of land use influence annual increment in growth rings of**

4 ***Galium mollugo* in temperate grasslands**

5

6 Maria-Theresa Jessen^{*1,2}, Anna Roeder^{1,2}, Christiane Roscher^{1,2}

7

8 ¹ Department of Physiological Diversity, Helmholtz Centre for Environmental Research – UFZ,

9 Permoserstraße 15, D-04318 Leipzig, Germany

10 ² German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), Puschstraße

11 4, D-04103 Leipzig, Germany

12

13 **Running title:** Variation in annual growth rings of *Galium mollugo*

14

15 **Contact information:** maria-theresa.jessen@idiv.de

16 **Abstract**

17 **Background and Aims:** Current grassland management including fertilization, mowing and
18 livestock grazing, substantially influences plant communities, however it is not fully understood
19 how management can affect plant growth at the individual level. Most herbaceous
20 dicotyledonous plant species form distinct annual rings in the xylem that reveal age but their
21 annual width may also respond to changes in environmental conditions. Further is unclear at
22 what scale, from the local plot level to the regional level, such secondary growth varies most.

23 **Methods:** Using cross sections of the oldest well-preserved detectable part of the rhizome of
24 *Galium mollugo* agg., we determined the response of secondary growth to the intensity, timing,
25 and type of grassland management for 1220 individuals across 60 populations in three different
26 regions in Germany. In addition, we used environmental variables to examine the effects of
27 climatic, soil, and diversity-related characteristics on ring width variation.

28 **Key Results:** The age of the studied *G. mollugo* individuals ranged between one and 17 years
29 (average age six years). Secondary growth varied most among individuals within sites and only
30 slightly among sites within regions and among regions, indicating a strong influence of local
31 plant-plant interactions. Increasing overall management and land-use intensity decreased
32 secondary growth while a late start of annual land use increased it. In addition, summer soil
33 moisture was positively related while neighbour species richness was negatively related to
34 secondary growth.

35 **Conclusions:** Our results indicate that annual secondary growth of a widespread herbaceous
36 grassland species is sensitive to timing and intensity of land use and season water regimes. The
37 results imply that trends of increasing land-use intensity along with prolonged summer heat
38 waves will further hamper growth of *G. mollugo* which may translate to reduced performance
39 and subsequently affect the overall plant community.

40

41 **Keywords:** climate, *Galium mollugo*, grassland, growth ring, land use intensity, management

42 timing, secondary growth, xylem

43 **Introduction**

44 Grasslands are globally an important biome, which occupies more than one third of the
45 terrestrial surface and provides many ecosystem functions and services (Bengtsson *et al.*, 2019).
46 In Central Europe, most grassland originated as a result of human management. Traditional
47 low-intense agricultural practices like grazing of domestic animals or haymaking have created
48 plant communities, which belong to the most diverse ecosystems in Europe (Hejcman *et al.*,
49 2013). However, land-use change involving homogenization, abandonment and/or
50 intensification has caused a notable decrease in grassland diversity, especially in the second
51 half of the last century (Poschlod and WallisDeVries, 2002, Jandt *et al.*, 2022). Land-use
52 intensification of grasslands includes higher fertilizer input, more frequent cuts in meadows or
53 increased livestock densities in pastures. Changes in grassland management can affect plant
54 demography and species coexistence due to altered resource competition (Hautier *et al.*, 2009,
55 Socher *et al.*, 2013). Fertilization generally increases biomass production and vegetation
56 density and intensifies competition for light (Hautier *et al.*, 2009, Socher *et al.*, 2012). Both,
57 grazing and mowing can be seen as disturbances affecting vegetation structure, the occurrence
58 and distribution of gaps and the availability of resources such as light and nutrients. Livestock
59 grazing involves processes such as trampling, selective foraging and deposition of excreta by
60 grazing animals and creates more heterogeneous swards, while mowing is a non-selective, more
61 uniform process of biomass removal which can lead to homogenization of the vegetation (Tälle
62 *et al.*, 2016).

63 Temperate grasslands are facing growing seasons characterized by much warmer temperatures
64 as well as increased spring and reduced summer precipitation (Hari *et al.*, 2020, IPCC, 2021,
65 *Regionaler Klimaatlas Deutschland*, 2022). While the severe impacts of prolonged droughts,
66 increased temperatures and more extreme climate events on plant productivity in grasslands has
67 been shown in various studies (e.g. Ciais *et al.*, 2005, Korell *et al.*, 2024), it is not well

68 understood how climate change affect the growth dynamics of individual species under natural
69 conditions.

70 One rather hidden aspect of plant growth is the formation of rings in the xylem of perennial
71 herbaceous dicotyledonous grassland species. It is well known from dendroecology that xylem
72 growth responds sensitively to variation in environmental conditions, i.e. poor growth
73 conditions may be reflected by narrow annual growth rings, while better growth conditions are
74 related to wider rings (Fritts, 1966). So far, only few studies attempted to explain differences
75 in growth ring width in perennial dicotyledonous forb species among plant individuals within
76 or between populations or fluctuations of ring widths among years (e.g. Dietz and Fattorini,
77 2002, Dietz and von Arx, 2005, von Arx *et al.*, 2006). In grassland species, this secondary
78 growth, which can be derived from stem sections, has been found to respond to fertilization and
79 clipping in an experimental context (Dee and Palmer, 2016, Dee and Palmer, 2019), but the
80 effects of “real-world” anthropogenic land use on secondary growth are still unknown. Another
81 important aspect in relation to land use is the timing of its application. Since growth ring
82 formation starts with the main increment early in the growing season (Dietz and Ullmann, 1997,
83 von Arx and Dietz, 2005), land-use activities in spring may have a greater impact on secondary
84 growth than those implemented later in the year. However, the effects of timing in land use on
85 ring width have not yet been studied.

86 Regarding the effects of climatic variables, it is already known that there can be a correlation
87 between ring width and temperature in cold-limited grassland ecosystems (Liu and Zhang,
88 2010, Doležal *et al.*, 2020, Rai *et al.*, 2024). However, this relationship might be different in
89 temperate ecosystems, where the formation of growth rings may be under stronger control of
90 water availability, as the xylem formation can be water dependent (von Arx *et al.*, 2012, Olano
91 *et al.*, 2013). The impact of climate on ring width also likely depends on other site- or even
92 microsite-specific conditions (Dietz *et al.*, 2004, Klimešová *et al.*, 2013, Doležal *et al.*, 2020).
93 In general, not much is known about variation in secondary growth in response to

94 environmental conditions at different spatial resolutions. Some studies have found little
95 variation across different geographic regions (Dietz and von Arx, 2005, Bär *et al.*, 2008)
96 pointing to the importance of site-specific conditions determined by soil (e.g., soil texture,
97 nutrients or acidity) or vegetation characteristics such as species richness. These factors
98 influence resource availability and consequently plant-plant interactions such as competition
99 which can alter annual ring growth (Dee and Palmer, 2016, Dee and Palmer, 2019). Even
100 though some aspects influencing secondary growth are known, its potential has not been fully
101 explored in ecological studies.

102 In the present study, we selected the widespread forb species *Galium mollugo* agg. to investigate
103 the annual rings in the rhizome of 1220 individuals. The individuals originated from 60
104 populations from grassland areas in three different regions of Germany with different land-use
105 types, intensities and times of application (*Biodiversity Exploratories*) (Fischer *et al.*, 2010).
106 We also assessed effects of site-level climatic, edaphic and diversity-related variables on
107 secondary growth variation. We asked 1) Does secondary growth of *G. mollugo* respond to
108 different land-use types and varying land-use intensity and timing between years? 2) Does
109 secondary growth of *G. mollugo* respond to between-year and site variation in spring and
110 summer precipitation and/or temperature? 3) Do additional local site and/or microsite
111 characteristics such as soil or diversity-related variables determine secondary growth in *G.*
112 *mollugo*?

113

114 **Methods**

115

116 *Study species*

117 *Galium mollugo* agg. (Rubiaceae) is a widely distributed perennial grassland forb. It reproduces
118 both sexually and vegetatively and is, because of its tall stature (30-100 cm; Jäger *et al.*, 2013),
119 highly competitive with other meadow forb species (Mersereau and DiTommaso, 2003).

120 Originating from a bulbous cotyledonar node young individuals produce adventitious roots
121 which form plants with a clumpy growth, while well-developed plants may also grow with
122 longer belowground rhizomes (Mörchen, 1965). Compared to other forbs in temperate
123 grasslands, individuals are relatively long-lived and growth rings are mostly clearly
124 distinguishable (Roeder *et al.*, 2017), which makes the species particularly suitable for the
125 analysis of secondary growth. Across Germany *G. mollugo* agg. has different subspecies
126 (Bundesamt für Naturschutz, 2022). According to the results of a recent study about genetic
127 diversity across multiple temperate grassland species (Durka *et al.*, 2025), *Galium album* Mill.
128 (*G. mollugo* ssp. *album*) is the much more common species, but *G. mollugo* s. str. is also found
129 almost everywhere in Germany. Both species show smooth transitions in their expression of
130 morphological characteristics used for their identification (Krendl, 1967) . We did not further
131 determine the subspecies and therefore refer to *G. mollugo* L. agg.

132

133 *Field sites and experimental design*

134 The study was conducted in the so-called *Biodiversity Exploratories* (Fischer *et al.*, 2010). They
135 are implemented in three different regions in Germany: *Schorfheide-Chorin* region (an
136 UNESCO biosphere reserve embedded in a young glacial landscape in the lowlands of north-
137 eastern Germany), the *Hainich-Dün* region (located in the National Park Hainich with
138 surroundings in the hilly areas of Central Germany on calcareous bedrock), and *Schwäbische*
139 *Alb* region (an UNESCO biosphere reserve in the low mountain area of south-western Germany
140 on calcareous bedrock). The regions represent different landscape types and reflect a gradient
141 with rising altitude, increasing precipitation and slightly decreasing annual mean temperatures
142 from north-east to south-west Germany (Fig. 1A). Fifty grassland study plots within each region
143 were established along local land-use gradients, where mean and range of land-use intensities
144 were comparable among regions (Fischer *et al.*, 2010, Blüthgen *et al.*, 2012) and are typical for
145 managed grasslands in Central Europe. They are managed by mowing or grazing, or a

146 combination of both. Grazing involves different livestock types, mostly cattle or sheep, and less
147 often horses (Vogt *et al.*, 2019). Land-use intensity was assessed yearly by gathering
148 information from farmers to create a land-use intensity (LUI) index with the aim to reduce the
149 complexity of three land-use components, i.e. mowing, grazing and fertilization, into a single
150 dimension (Blüthgen *et al.*, 2012). The grazing part of the land-use index accounts for different
151 livestock types by converting the grazing animals to livestock units (depending on type and age
152 of the grazing species) and the duration of grazing (= number of livestock units per days and
153 ha^{-1}). The mowing part of the land-use index quantifies the frequency of mowing (and
154 mulching) as intensity (= number of cuts per year), which varies between no mowing and the
155 maximum of four cuts per year, while one or two cuts per year are more typical (Vogt *et al.*,
156 2019). Fertilization includes the use of different fertilizer types such as mineral fertilizer,
157 farmyard manure or slurry. In most cases manuring is done in early spring at the beginning of
158 the growing season (between late February and mid-April) and can be expected to influence the
159 current year's growth. However, in some cases, manuring is done later in spring (until June), in
160 autumn to early winter (between September and December) or several times per year. The
161 fertilizer component of the land-use index also incorporates that nutrients are not immediately
162 available from all manure types, but could also be later released for example from farmyard
163 manure. In this case, the nitrogen input from manuring enters the fertilizer intensity of the next
164 (two) growing season in the fertilization index (Vogt *et al.*, 2019). For each study site and year,
165 the compound land-use intensity (LUI) was quantified as a continuous variable using the
166 following equation,

$$167 \quad LUI = \frac{G_p}{G_g} + \frac{M_p}{M_g} + \frac{F_p}{F_g}$$

168 where G_p is grazing intensity, M_p is mowing intensity and F_p is fertilization intensity on a study
169 plot p for a given year. The three components are divided by the global mean (across all regions
170 and years) of the respective component (G_g , M_g and F_g , respectively), and the square-root of the

171 summed standardized components was extracted, according to Blüthgen *et al.* (2012).
172 Information on mowing, grazing and fertilization was obtained from land owners (Vogt *et al.*,
173 2019), and calculations were done using the LUI calculation tool (Ostrowski *et al.*, 2020)
174 implemented in BExIS (<http://doi.org/10.17616/R32P9Q>). Values of each component were
175 used to quantify fertilization, mowing and grazing intensity, respectively (Supplementary
176 Information Fig. S1A-D). We also calculated the intensity of management (MI) as square-
177 rooted sum of standardized mowing and grazing (Supplementary Information Fig. S1E). In
178 addition, we had data on the timing of land use per plot per year (i.e. the month, when first or
179 the last mowing or grazing was done in a year) (Ayasse *et al.*, 2022), which we used in the
180 statistical analysis as ordinal variable. Typical time for first mowing or grazing is May or June,
181 but it also varies among sites and years (Supplementary Information Fig. S2).

182

183 *Sampling, growth ring analyses and set-up of time series*

184 Vegetation records from all grassland study plots of the *Biodiversity Exploratories* (Bolliger *et*
185 *al.*, 2020) were screened to choose the study plots for sampling of *G. mollugo* with the aim to
186 equally represent the regions of the *Biodiversity Exploratories* and to cover different grassland
187 management types and land-use intensities within each region. Due to the lower occurrence of
188 *G. mollugo* we sampled only ten plots in the region *Schorfheide-Chorin*, while in the *Hainich-*
189 *Diin* region and *Schwäbische Alb* region, samples were collected on 26 and 25 grassland plots,
190 respectively. On each grassland plot with a total size of 50 × 50 m, a strip of 50 × 2 m on the
191 eastern side of the plot was available for sampling. Sampling was conducted between 2017 and
192 2019 in summer or early autumn (July to September) when the growth ring of the current year
193 is formed and the vegetation is well developed to easily identify species. On each plot, 20
194 individuals were sampled along a transect with a minimum distance of one meter to each other
195 taking the individual growing with the clumpy part closest to the sampling point. First, we
196 identified all neighbouring species rooting within a minimum distance of 10 cm to the clumpy

197 part of the focal individual to get an estimate of local species richness and composition.
198 Afterwards, we carefully excavated the focal individual with a weeding trowel or small shovel
199 and transported the plants in sealed plastic bags to the laboratory. There, we cleaned the samples
200 from soil with tap water. A segment of the oldest stem portion (5-15 cm long; dependent on the
201 growth of the individual) comprising the part with the cotyledon node if available (see Fig. 1B
202 for a typical specimen) was excised from each plant and placed in plastic tubes with 70%
203 ethanol. Later, the samples were cut using a microtome (Microtome type GSL1; Gärtner and
204 Schweingruber, 2013). In cases, where the oldest part of the specimen could not be clearly
205 assigned, especially when several rhizomes grew from the cotyledon node, cuts were made at
206 different parts. Microtome sections were put on a slide into a drop of a glycerol-water mixture
207 (1:1) and covered with a cover glass. Ring width was measured directly under the microscope
208 (Axio-Scope A1 Microscope, Carl Zeiss Microscopy GmbH, Jena, Germany, equipped with a
209 microscopic camera, Axiocam 105 colour; Carl Zeiss Microscopy GmbH, Jena, Germany) and
210 analysed with the built-in measuring function of the microscope software (ZEN 2, blue edition,
211 Carl Zeiss Microscopy GmbH, 2014). Images of the microsections were taken for
212 documentation (Fig. 1C). If necessary, a polarized light filter was used to facilitate ring
213 visibility and measure annual radial growth.
214 The age of the individuals was assessed by counting the number of annual rings. In total, 1219
215 individuals of *G. mollugo* were analyzed (500 individuals in *Schwäbische Alb* region, 519
216 individuals in *Hainich-Dün* region as measurements were not possible for one individual due
217 to low ring distinctness, and 200 individuals in *Schorfheide-Chorin* region) (Roeder and
218 Roscher, 2024). Due to low sample depth in the early years and the beginning of land-use and
219 climate data availability starting in 2008, we decided to truncate our time series from 2008 to
220 the respective year of sampling (i.e., 2017, 2018, or 2019) for the analyses of annual secondary
221 growth.
222

223 *Plot-level soil, climate and diversity-related data*

224 Plot-level information on soil, climate and plant diversity was derived from the publicly
225 available data of the *Biodiversity Exploratories*. Climate data were collected from weather
226 stations located on each plot that record observations every ten minutes (Hänsel *et al.*, 2024).
227 Here, we used air temperature measured 2 m above the ground, soil temperature measured 10
228 cm below the surface, soil moisture measured 10 cm below the surface, and precipitation based
229 on RADOLAN (Weigl, 2017). For the statistical analyses, we calculated mean values for spring
230 (March to May) and summer (June to August) for soil moisture, soil and air temperature, or the
231 summed the values for precipitation across the respective months. Soil data were collected in
232 repeated soil sampling campaigns. Here, we used C_{org}:N ratio (Schöning, 2023), soil pH
233 (measured in CaCl₂) (Schöning, 2024) and clay and sand content (Schöning *et al.*, 2021) from
234 soil cores of the upper 10 cm of the soil horizon. For species richness as diversity measure at
235 plot level, we used species surveys conducted within a 4 x 4 m subplot of each plot yearly in
236 spring (Bolliger *et al.*, 2020). For species richness in close proximity to the harvested *G.*
237 *mollugo* individuals, we assessed species numbers recorded around the individual (see above)
238 (Roscher and Roeder, 2024). For an overview of all variables see Table S1 in the Supplementary
239 Information.

240

241 *Statistical analysis*

242 All statistical analyses were conducted with the statistical software R (version 4.2.2; R Core
243 Team, 2022). The data were structured in a long format so that each ring width measurement
244 was associated with the respective year of the ring.
245 To assess variation in plant age, mean ring width and to detect possible correlations of ring
246 width series within regions, within plots and within individuals (i.e. first order autocorrelation),
247 we used the function RwlInfo from the *detrendeR* package (Campelo, 2012). This function can
248 calculate the age, the ring width, the correlation between series of a given data set based on a

249 master series which is derived from all series in the data set and the first order autocorrelation
250 (i.e., testing if there is a temporal dependency between ring width of two consecutive years) of
251 each series. For the determination of age and mean ring width we used the entire data set with
252 1219 individuals, for the determination of inter series and first order autocorrelation we had to
253 exclude 17 one-year-old individuals, because calculation of correlations was not possible. We
254 double checked the output from the *RwlInfo* function by re-calculating all variables by hand.
255 We tested for an effect of region on plant age, mean ring width, inter series and first order
256 autocorrelation using mixed-effects models with plot as random effect to account for statistical
257 dependencies of individuals collected on the same plot (i.e. the same population) using the *lme4*
258 package (Bates *et al.*, 2015). We tested for differences between the regions using post-hoc
259 Tukey's test from the *emmeans* package (Lenth, 2022).

260 To assess the effects of different land-use types and intensities, as well as the effects of land-
261 use timing on secondary growth, we applied generalized additive mixed models (GAMM) using
262 the packages *mgcv* (Wood, 2011) and *nlme* (Pinheiro and Bates, 2000). GAMMs allow to model
263 both linear and nonlinear effects, which is useful when dealing with plant age because of
264 nonlinear ontogenetic effects (Olano *et al.*, 2013). Fixed effects assuming a linear relationship
265 were the overall land-use intensity, management intensity and the single components grazing,
266 fertilization and mowing intensities of the year when the growth ring was formed as well as the
267 timing (month) of the first management activity (i.e. grazing or mowing) in the respective year
268 as ordinal variable. The components grazing, fertilization and mowing intensities were log-
269 transformed after adding 1 (there were many zeros in the data), because of their non-normal
270 distribution. We also lagged all variables by one year to test for potentially delayed effects on
271 secondary growth (data not shown). The random effects in all models were sample (i.e.
272 individual from which the ring widths were measured) nested in plot nested in region to account
273 for the hierarchical design of the sampling. In addition, to account for temporal dependency,
274 since the ring width and land-use data were time series data, we added a temporal

275 autocorrelation structure of order 1 with the grouping factor sample nested in plot nested in
276 region (Zuur *et al.*, 2009). To meet the assumptions of heteroscedasticity and normality of errors
277 ring width was log-transformed. Prior to fitting the land-use variables we entered plant age at
278 the ring level (i.e. the age of the individual, when the ring was formed) as a smoothed fixed
279 effect modelled with a penalized cubic regression spline to account for a potential, nonlinear
280 age-related effect on secondary growth and validated this by checking against the null model.
281 We set $k = 5$ in the smoothing term to prevent the smoothing term from overfitting due to a
282 skewed age distribution (i.e. limited number of individuals older than ten) (Wood, 2017). All
283 models were fitted using maximum likelihood and were evaluated on a comparison of AIC and
284 log likelihoods ratios. To provide the coefficients of determination showing the variance
285 explained by fixed and random effects in the models we used the *MuMIn* package (Barton,
286 2024). We used the same approach to test for effects of climatic variables on secondary growth.
287 Fixed effects tested against the model with only age as a smoothed fixed effect were air and
288 soil temperature, soil moisture and precipitation separately for spring (March to May) and
289 summer (June to August). We exclusively tested for an effect of climate variables in spring and
290 summer since these represent conditions during the active growing season. Previous growth
291 ring analyses have also found these seasons to be most influential (Olano *et al.*, 2013). To also
292 test for effects of diversity-related and soil variables on secondary growth we ran further models
293 with the same random effects using neighbour species richness (i.e. number of species in close
294 proximity to the harvested individual) and plot species richness (from a 4 x 4 m area), as well
295 as soil carbon to nitrogen ratio (Corg:N), clay and sand content and pH as explanatory variables.
296 Neighbour species richness and plot species richness were log-transformed.
297 In a final step we started with the best performing (based on AIC) model of the previously
298 mentioned models and added explanatory variables which had no correlation issue
299 (Supplementary Information Fig. S3) in a stepwise manner always checking for significant
300 improvement of the model, based on change in loglikelihood values, p-values and AICs, with

301 the previous best model (forward model selection). The resulting final model had the same
302 random effect and temporal autocorrelation structure as described above. Fixed effects in the
303 final model were plant age modelled as a smoothed term, timing of the first land use, summer
304 air and soil temperature and moisture, spring soil temperature and neighbour species richness
305 (log-transformed) (Table 1). The final model was fitted using restricted maximum likelihood,
306 as this is more conservative against overfitting than maximum likelihood in a GAMM context
307 (Wood, 2017). Significance of the parametric and the smoothed terms in the final model was
308 assessed with the summary function.

309 To understand the importance of environmental conditions of contrasting spatial resolution (i.e.,
310 hierarchical levels of the experiment; region, plot, individual plant) for secondary growth we
311 estimated the variance explained by the random factors using the *rptR* package and *rpt* function
312 with 1000 bootstrap iterations and 1000 permutations from the final model coded according to
313 the model framework of *lme4* (Stoffel *et al.*, 2017). This function calculates the repeatability *R*,
314 which can explain variance in data, as variance among group means over the combined group
315 and residual variance (Stoffel *et al.*, 2017).

316

317 **Results**

318

319 *Characteristics of regional chronologies*

320 On average, individuals in the *Schwäbische Alb* were 5.9 (± 0.1 s.e) years old, in the *Hainich-*
321 *Dün* 6.4 (± 0.1) years old, and in the *Schorfheide-Chorin* 5.4 (± 0.2) years old (Fig. 2A,
322 Supplementary Information Table S2). The oldest individual across the experimental regions
323 was sampled in the *Hainich-Dün* region at 17 years of age. Individuals in the *Schwäbische Alb*
324 region had a mean ring width of 199.87 (± 2.89) μm , in the *Hainich-Dün* region a mean ring
325 width of 183.81 (± 3.20) μm and in the *Schorfheide-Chorin* region a mean ring width of 216.56
326 (± 6.96) μm (Fig. 2B, Supplementary Information Table S2). The mean correlation among the

327 chronologies of individuals from the same plot and region was low: 0.29 (\pm 0.02) for
328 *Schwäbische Alb* and *Hainich-Dün* and 0.32 (\pm 0.04) for *Schorfheide-Chorin* (Fig. 3A,
329 Supplementary Information Table S2). In addition, the mean first order autocorrelation for
330 individuals of each plot and region was low: -0.09 (\pm 0.01) for *Schwäbische Alb*, -0.06 (\pm 0.01)
331 for *Hainich-Dün* and -0.10 (\pm 0.02) for *Schorfheide-Chorin* (Fig. 3B, Supplementary
332 Information Table S2), expressing high interannual variation of radial growth independent from
333 growth ring width of the previous year. Mean ring width from individuals in *Hainich-Dün* was
334 significantly smaller than from individuals in *Schorfheide-Chorin* (Tukey HSD test: $p = 0.011$).
335 None of the other characteristics measured differed significantly between the three regions.
336

337 *Effects of land-use type, intensity, and timing on annual growth ring width*
338 Plant age at the year of growth ring formation was nonlinearly associated with secondary
339 growth (Table 2, Supplementary Information Fig. S4). After accounting for variation dependent
340 on plant age, overall land-use intensity and management intensity were negatively associated
341 with secondary growth, while of the single land-use types only grazing negatively affected
342 secondary growth (Supplementary Information Table S3). Regarding the timing of land use,
343 the timing of the first land use (mowing or grazing) in the year had a significant effect on
344 secondary growth (Table 2). The later in the year the first land use occurred, the wider the
345 annual growth rings became (Fig. 4A). Land use in the previous year did not affect secondary
346 growth in the following year (analyses not shown).
347

348 *Effects of plot-level climate, soil and diversity-related variables on annual growth ring width*
349 Modelling of plot-level climate variables resulted in spring air temperature and summer
350 precipitation as well as spring and summer soil moisture being positively associated with
351 secondary growth, while spring precipitation and soil temperature and summer air and soil
352 temperature were negatively associated with secondary growth (Supplementary Information

353 Table S3). Modelling of diversity-related variables revealed that neighbour species richness as
354 well as plot-level species richness had a significant negative association with ring width
355 (Supplementary Information Table S3). None of the soil variables included in the modelling
356 process had a significant effect (Supplementary Information Table S3).

357 In the final model nonlinearly modelled plant age, timing of the first land use, spring and
358 summer soil temperature, summer air temperature and soil moisture as well as neighbour level
359 species richness significantly improved the model (Table 1). However, only nonlinearly
360 modelled plant age, timing of the first land use and neighbour level species richness remained
361 significant on a predictor level (Fig. 4, Table 2). Variation partitioning of the random effects in
362 the full model showed that only little of the variance expressed as the repeatability R (see
363 Methods) in secondary growth was explained by region ($R = 0.017$) and plot ($R = 0.06$) whereas
364 the individual sample, i.e., the *G. mollugo* individuals from which secondary growth was
365 measured, explained more variation ($R = 0.243$) (Supplementary Information Fig. S5).

366

367 **Discussion**

368 Variation in secondary growth of herbaceous plant species is increasingly used as a valuable
369 “archive” to deduce plant responses to temporal or spatial changes in growth conditions,
370 particularly in terms of climate (Liu and Zhang, 2010, Shi *et al.*, 2016, Dee and Stambaugh,
371 2019, Doležal *et al.*, 2020). Investigating time series of ring width in *G. mollugo* across
372 managed grasslands in three different regions in Germany, we have found that overall land-use
373 and management intensity negatively affected secondary growth and that secondary growth
374 positively responded to first land-use application happening late in the year. The negative
375 response of ring width to land use was mainly driven by grazing. Furthermore, neighbour and
376 plot-level species richness had a negative relation to secondary growth. This highlights that
377 variation in secondary growth can also be attributed to the intensity and timing of land use and
378 to environmental conditions other than climate. Still, water availability, here precipitation in

379 summer and soil moisture in spring and summer, did additionally increase secondary growth,
380 whereas higher air and soil temperatures in summer decreased secondary growth. We also show
381 that the variation in ring width is greatest within plots (i.e., among individuals of the same
382 population), in contrasts to differences among regions or different study plots within regions.

383

384 *Land-use intensity and timing of application related to ring width*

385 We found that when the first management activity (i.e., grazing or mowing) was later in the
386 year, this was associated with wider rings of the same year. Since the formation of growth rings
387 is restricted to the active growing season a time bound effect of land management is plausible.

388 Management that disturbs the shoot by removing photosynthetically active plant parts interrupts
389 the transport of resources for plant growth and makes it necessary to invest primarily in the re-
390 growth of the above-ground structures. This is important as ring width is strongly linked to the
391 emergence of the shoot and was shown to be largest when the shoot has reached maximum size
392 and assimilated carbon is allocated to root growth (Dee *et al.*, 2018). Consequently,
393 management happening before the shoot is well developed will have a detrimental effect on
394 secondary growth, while later management creates a longer period of disturbance free growth.

395 We found no evidence of a carryover effect from late management to ring width of the next
396 year (data not shown), underpinning the within year effect of land management on secondary
397 growth. This shows that timing of grassland management is not only important to aboveground
398 plants parts (Vermeire *et al.*, 2023), but also to the otherwise hidden aspect of secondary growth
399 which can feed back to plant fitness and performance (Strock and Lynch, 2020).

400 Overall land-use and management intensity as well as grazing intensity were negatively
401 associated with secondary growth. Furthermore, land-use intensity and management intensity,
402 were equally important for ring width (Supplementary Information Table S3). The grasslands
403 we examined in our study include pure pasture and meadows, but often both management types
404 are combined. Therefore, our results suggest that both types of disturbance through land

405 management (i.e., grazing and mowing), which is included in both variables, is driving the
406 reduction of ring width. Again, this can be linked to the removal of the photosynthetically active
407 aboveground plant parts hampering the resource supply needed for secondary growth and
408 consequently leading to narrower rings. In addition, *Galium* has been observed to thrive well
409 in unmanaged grasslands (Pavlu *et al.*, 2007) suggesting that it may benefit from its relative tall
410 stature in undisturbed conditions. It remains to be tested if other perennial grassland forb species
411 also exhibit intensity- and time-dependent management responses of secondary growth.
412 Nonetheless our species-specific results suggest that low-intensity land use starting later in the
413 growing season supports secondary growth.

414

415 *Climate conditions related to ring width*

416 We also found that summer precipitation and spring and summer soil moisture were positively
417 associated with annual ring width, while summer air and spring and summer soil temperature
418 were negatively associated with secondary growth. In agreement with our findings, various
419 studies have already reported on positive effects of summer precipitation on ring width, as well
420 as region and species-specific negative effects of temperature (e.g. Liu and Zhang, 2010, Shi *et*
421 *al.*, 2016, Dee and Stambaugh, 2019, Doležal *et al.*, 2022). Studying four temperate grassland
422 forb species, Doležal *et al.* (2022) have shown that the climate control of secondary growth can
423 also vary among species. The shallow-rooting forbs (*Lychnis viscaria* Borkh., *Thymus*
424 *pulegioides* L.) showed a positive response to higher summer precipitation resulting in wider
425 rings width, while their secondary growth was negatively affected from high summer
426 temperatures. From a physiological perspective sufficient water availability as indicated by
427 levels of precipitation and soil moisture allow herbaceous plants to be more competitive in
428 terms of growth because of increased hydraulic efficiency in the xylem (von Arx *et al.*, 2012,
429 Dong *et al.*, 2022). The combination of little precipitation in concert with high temperatures
430 reduces grassland productivity and vitality due to heat stress, increased evapotranspiration and

431 water shortage leading to unfavorable growing conditions (De Boeck *et al.*, 2016, De Boeck *et*
432 *al.*, 2008, Obermeier *et al.*, 2018, Kowalski *et al.*, 2024). Our study supports previous studies
433 that such conditions translate to secondary growth and highlights another aspect of the critical
434 nature of climate change with heat waves and drought events predicted for Central Europe (Hari
435 *et al.*, 2020, IPCC, 2021, Regionaler Klimaatlas Deutschland, 2022). In addition, there is
436 evidence that secondary growth and aboveground biomass production, as well as phenology
437 timing, are linked (Doležal *et al.*, 2018, Dee *et al.*, 2018), which may suggest a possible
438 cascading effect of climate on various aspects of plant growth and performance.

439

440 *Importance of species richness at the local site scale*

441 Considering vegetation characteristics at different spatial resolutions around the studied
442 individuals we found a negative relationship between ring width and neighbour species richness
443 and plot-level species richness. If the main mode of action of higher local richness is increased
444 competition for resources, plants growing in species-rich surroundings might produce narrower
445 growth rings, because they may invest more in aboveground than belowground structures to
446 reduce light competition (Goldberg *et al.*, 2017). In the *Biodiversity Exploratories*, as in other
447 agriculturally managed grasslands, species richness declines with increasing productivity at the
448 community level (Socher *et al.*, 2012), which could point to intensified competition for
449 belowground resources additionally hampering secondary growth. Furthermore, we cannot
450 exclude that fast-growing large *Galium* individuals with wide rings simply occupied more space
451 in their close vicinity and thus were associated with lower species richness at the local level.
452 Our finding that most differences in secondary growth of *G. mollugo* occur between individuals
453 from the same plot, rather than between plots or regions, underscores the importance of
454 microsite conditions on ring width in this species. Similar findings about the importance of
455 local plant-plant interactions on ring width have been shown in forest trees responding to stand
456 density (Ahmed *et al.*, 2024). For a deeper understanding of the influential drivers of ring width,

457 it would be necessary to closely examine growth conditions both above and below ground in
458 close proximity to plant individuals. This could include traits related to resource competition of
459 neighbouring plants or nutrient or water availability in the root growth zone. In summary, our
460 results imply that anthropogenic land use with its global trend of intensification and climate
461 change with higher temperatures and reduced precipitation during the growing season can be
462 critical aspects for secondary growth in herbaceous plants. It remains to be tested to what extent
463 the effects on secondary growth caused by global change are transferred to the performance of
464 individual plants and how different species respond to these drivers to assess to what extent
465 entire plant communities might be affected.

466

467 **Supplementary data**

468 Supplementary data are available and consist of the following

469 **Table S1:** Overview of all modelled variables

470 **Table S2:** Descriptive statistics of the *G. mollugo* samples

471 **Table S3:** Log likelihood ratios and AICs of the generalized additive mixed models testing
472 effects of land-use intensity and timing, climate, soil and diversity-related variables

473 **Figure S1:** Histograms showing the distribution of the intensity of the three different land use
474 types, the combined land use intensity and the management intensity

475 **Figure S2:** Bargraph of the timing of the first land management activity

476 **Figure S3:** Correlation plot showing correlation values between all modelled variables

477 **Figure S4:** Bootstrap estimates variances of the different spatial resolutions

478

479

480

481

482

483

484 **Literature cited**

485

486 Ahmed S, Hilmers T, Uhl E, *et al.* 2024. Neighborhood competition modulates the link
487 between crown structure and tree ring variability in monospecific and mixed forest
488 stands. *Forest Ecology and Management*, 560. doi: 10.1016/j.foreco.2024.121839

489 Ayasse M, Fischer M, Weisser W, *et al.* 2022. *Land use in grasslands: raw data of yearly*
490 *owner interviews*. Version 49. Biodiversity Exploratories Information System. Dataset
491 ID= 26487.

492 Bär A, Pape R, Bräuning A, Löffler J. 2008. Growth-ring variations of dwarf shrubs reflect
493 regional climate signals in alpine environments rather than topoclimatic differences.
494 *Journal of Biogeography*, 35: 625-636. doi: 10.1111/j.1365-2699.2007.01804.x

495 Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using
496 lme4. *Journal of Statistical Software*, 67: 1-48. doi: 10.18637/jss.v067.i01

497 Barton K. 2024. *MuMIn: Multi-Model Inference*. R package version 1.48.4. <https://CRAN.R-project.org/package=MuMIn>.

498

499 Bengtsson J, Bullock JM, Ego B, *et al.* 2019. Grasslands—more important for ecosystem
500 services than you might think. *Ecosphere*, 10: e02582. doi: 10.1002/ecs2.2582

501 Blüthgen N, Dormann CF, Prati D, *et al.* 2012. A quantitative index of land-use intensity in
502 grasslands: Integrating mowing, grazing and fertilization. *Basic and Applied Ecology*,
503 13: 207-220. doi: 10.1016/j.baee.2012.04.001

504 Bolliger R, Prati D, Fischer M, Hölzel N. 2020. *Vegetation Records for Grassland EPs, 2008*
505 - 2019

506 Version 2. Biodiversity Exploratories Information System. Dataset ID= 26106.
<https://www.bexis.uni-jena.de/deddm/data>Showdata/26106?version=2>

507 Bundesamt für Naturschutz. 2022. *FloraWeb*.
<https://www.floraweb.de/xsql/taxoquery.xsql?taxname=galium+mollugo&submit.x=0&submit.y=0&max-rows=10&skip-rows=0> (08.04.2022).

508

509

510 Campelo F. 2012. *detrendeR: Start the detrendeR Graphical User Interface (GUI)*. R package
511 version 1.0.4. <https://CRAN.R-project.org/package=detrendeR>.

512 Ciais P, Reichstein M, Viovy N, *et al.* 2005. Europe-wide reduction in primary productivity
513 caused by the heat and drought in 2003. *Nature*, 437: 529-33. doi:
514 10.1038/nature03972

515 De Boeck HJ, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E. 2016. Simulated heat waves
516 affected alpine grassland only in combination with drought. *New Phytologist*, 209:
517 531-41. doi: 10.1111/nph.13601

518 De Boeck HJ, Lemmens CMHM, Zavalloni C, *et al.* 2008. Biomass production in
519 experimental grasslands of different species richness during three years of climate
520 warming. *Biogeosciences*, 5: 585–594. doi: 10.5194/bg-5-585-2008

521 Dee JR, Adams HD, Palmer MW. 2018. Belowground annual ring growth coordinates with
522 aboveground phenology and timing of carbon storage in two tallgrass prairie forb
523 species. *American Journal of Botany*, 105: 1975-1985. doi: 10.1002/ajb2.1198

524 Dee JR, Palmer MW. 2016. Application of herb chronology: Annual fertilization and climate
525 reveal annual ring signatures within the roots of US tallgrass prairie plants. *Botany*,
526 94: 277-288. doi: 10.1139/cjb-2015-0217

527 Dee JR, Palmer MW. 2019. Utility of herbaceous annual rings as markers of plant response to
528 disturbance: A case study using roots of a common milkweed species of the US
529 tallgrass prairie. *Tree-Ring Research*, 75: 14-24. doi: 10.3959/1536-1098-75.1.14

530 Dee JR, Stambaugh MC. 2019. A new approach towards climate monitoring in Rocky
531 Mountain alpine plant communities: A case study using herb-chronology and
532 *Penstemon whippleanus*. *Arctic, Antarctic, and Alpine Research*, 51: 84-95. doi:
533 10.1080/15230430.2019.1585173

534 Dietz H, Fattorini M. 2002. Comparative analysis of growth rings in perennial forbs grown in
535 an Alpine restoration experiment. *Annals of Botany*, 90: 663-8. doi:
536 10.1093/aob/mcf247

537 Dietz H, Ullmann I. 1997. Age-determination of dicotyledonous herbaceous perennials by
538 means of annual rings: Exception or rule? *Annals of Botany*, 80: 377-379. doi:
539 10.1006/anbo.1997.0423

540 Dietz H, von Arx G. 2005. Climatic fluctuation causes large-scale synchronous variation in
541 radial root increments of perennial forbs. *Ecology*, 86: 327-333. doi: 10.1890/04-0801

542 Dietz H, von Arx G, Dietz S. 2004. Growth increment patterns in the roots of two alpine forbs
543 growing in the center and at the periphery of a snowbank. *Arctic, Antarctic, and*
544 *Alpine Research*, 36: 591-597. doi: 10.1657/1523-
545 0430(2004)036[0591:Gipitr]2.0.Co;2

546 Doležal J, Altman J, Jandová V, *et al.* 2022. Climate warming and extended droughts drive
547 establishment and growth dynamics in temperate grassland plants. *Agricultural and*
548 *Forest Meteorology*, 313. doi: 10.1016/j.agrformet.2021.108762

549 Doležal J, Dvorsky M, Börner A, Wild J, Schweingruber FH. 2018. *Anatomy, Age and*
550 *Ecology of High Mountain Plants in Ladakh, the Western Himalaya* Cham: Springer.

551 Doležal J, Jandová V, Macek M, *et al.* 2020. Climate warming drives Himalayan alpine plant
552 growth and recruitment dynamics. *Journal of Ecology*, 109: 179-190. doi:
553 10.1111/1365-2745.13459

554 Dong Y, Li Z, Keyimu M, *et al.* 2022. A comparative analysis of the hydraulic strategies of
555 non-native and native perennial forbs in arid and semiarid areas of China. *Forests*, 13.
556 doi: 10.3390/f13020193

557 Durka W, Michalski SG, Höfner J, *et al.* 2025. Assessment of genetic diversity among seed
558 transfer zones for multiple grassland plant species across Germany. *Basic and Applied*
559 *Ecology*, 84: 50-60. doi: 10.1016/j.baae.2024.11.004

560 Fischer M, Bossdorf O, Gockel S, *et al.* 2010. Implementing large-scale and long-term
561 functional biodiversity research: The Biodiversity Exploratories. *Basic and Applied*
562 *Ecology*, 11: 473-485. doi: 10.1016/j.baae.2010.07.009

563 Fritts HC. 1966. Growth-rings of trees: their correlation with climate. *Science*, 157: 973 - 979.
564 doi: 10.1126/science.154.3752.973

565 Gärtner H, Schweingruber FH. 2013. *Microscopic Preparation Techniques for Plant Stem*
566 *Analysis*. Remagen-Oberwinter: Verlag Dr. Kessel.

567 Goldberg DE, Martina JP, Elgersma KJ, Currie WS. 2017. Plant size and competitive
568 dynamics along nutrient gradients. *The American Naturalist*, 190: 229-243. doi:
569 10.1086/692438

570 Hänsel F, Forteva S, Wöllauer S, Nauss T. 2024. *Open Climate Data of the Exploratories*
571 *Project*. Version 6. Biodiversity Exploratories Information System. Dataset ID=
572 24766. <https://www.bexis.uni-jena.de/ddm/data>Showdata/24766?version=6>

573 Hari V, Rakovec O, Markonis Y, Hanel M, Kumar R. 2020. Increased future occurrences of
574 the exceptional 2018-2019 Central European drought under global warming. *Scientific*
575 *Reports*, 10: 12207. doi: 10.1038/s41598-020-68872-9

576 Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss
577 after eutrophication. *Science*, 324: 636-8. doi: 10.1126/science.1169640

578 Hejcmán M, Hejcmánová P, Pavlů V, Beneš J. 2013. Origin and history of grasslands in
579 Central Europe - a review. *Grass and Forage Science*, 68: 345-363. doi:
580 10.1111/gfs.12066

581 IPCC. 2021. *Climate Change 2021: The Physical Science Basis. Contribution of Working*
582 *Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate*
583 *Change*. doi:

584 Jäger EJ, Müller F, Ritz CM, Welk E, Wesche K. 2013. *Rothmaler Exkursionsflora von*
 585 *Deutschland Gefäßpflanzen: Atlasband*: Springer Spektrum Berlin, Heidelberg.

586 Jandt U, Bruelheide H, Jansen F, *et al*. 2022. More losses than gains during one century of
 587 plant biodiversity change in Germany. *Nature*, 611: 512-518. doi: 10.1038/s41586-
 588 022-05320-w

589 Klimešová J, Doležal J, Št'astná P. 2013. Growth of the alpine herb *Rumex alpinus* over two
 590 decades: effect of climate fluctuations and local conditions. *Plant Ecology*, 214: 1071-
 591 1084. doi: 10.1007/s11258-013-0232-8

592 Korell L, Andrzejak M, Berger S, *et al*. 2024. Land use modulates resistance of grasslands
 593 against future climate and inter-annual climate variability in a large field experiment.
 594 *Global Change Biology*, 30: e17418. doi: 10.1111/gcb.17418

595 Kowalski K, Senf C, Okujeni A, Hostert P. 2024. Large-scale remote sensing analysis reveals
 596 an increasing coupling of grassland vitality to atmospheric water demand. *Global*
 597 *Change Biology*, 30: e17315. doi: 10.1111/gcb.17315

598 Krendl F. 1967. Cytotaxonomie der Galium mollugo-Gruppe in Mitteleuropa (Zur Phylogenie
 599 der Gattung Galium, VIII.). *Österreichische Botanische Zeitschrift*, 114: 508-549.

600 Lenth RV. 2022. *emmeans: Estimated Marginal Means, aka Least-Squares Means*. R
 601 package, version 1.8.2. <https://CRAN.R-project.org/package=emmeans>.

602 Liu Y-B, Zhang Q-B. 2010. Effect of climate on the growth of annual rings in the main roots
 603 of perennial forbs in an Inner Mongolian semi-arid grassland, China. *Journal of*
 604 *Vegetation Science*, 21: 899-907. doi: 10.1111/j.1654-1103.2010.01199.x

605 Mersereau D, DiTommaso A. 2003. The biology of Canadian weeds. 121. *Galium mollugo* L.
 606 *Canadian Journal of Plant Science*, 83: 453-466. doi: 10.4141/P01-152

607 Mörchen G. 1965. Wuchsformen einheimischer Rubiaceen. *Hercynia*, 2: 352-370. doi:
 608 10.25673/93633

609 Obermeier WA, Lehnert LW, Ivanov MA, Luterbacher J, Bendix J. 2018. Reduced summer
 610 aboveground productivity in temperate C3 grasslands under future climate regimes.
 611 *Earth's Future*, 6: 716-729. doi: 10.1029/2018ef000833

612 Olano JM, Almería I, Eugenio M, von Arx G, Tjoelker M. 2013. Under pressure: how a
 613 Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy
 614 in response to temperature and water constraints. *Functional Ecology*, 27: 1295-1303.
 615 doi: 10.1111/1365-2435.12144

616 Ostrowski A, Lorenzen K, Petzold E, Schindler S. 2020. *Land use intensity index (LUI)*
 617 *calculation tool of the Biodiversity Exploratories project for grassland survey data*
 618 *from three different regions in Germany since 2006, BEXIS 2 module*. Version v2.0.0.
 619 doi: 10.5281/zenodo.3865579

620 Pavlu V, Hejcmán M, Pavlu L, Gaisler J. 2007. Restoration of grazing management and its
 621 effect on vegetation in an upland grassland. *Applied Vegetation Science*, 10: 375-382.
 622 doi: 10.1111/j.1654-109X.2007.tb00436.x

623 Pinheiro JC, Bates D. 2000. *Mixed-Effects Models in S and S-PLUS*. NY: Springer New York.

624 Poschlod P, WallisDeVries MF. 2002. The historical and socioeconomic perspective of
 625 calcareous grasslands - lessons from the distant and recent past. *Biological*
 626 *Conservation*, 104: 361-376. doi: 10.1016/S0006-3207(01)00201-4

627 R Core Team. 2022. *R: A language and environment for statistical computing*. Version 4.2.2.

628 Rai S, Breme N, Jandova V, *et al*. 2024. Growth dynamics and climate sensitivities in alpine
 629 cushion plants: insights from *Silene acaulis* in the Swiss Alps. *Alpine Botany*. doi:
 630 10.1007/s00035-024-00318-8

631 Regionaler Klimaatlas Deutschland. 2022. *Regionaler Klimaatlas Deutschland*.
 632 <https://www.regionaler-klimaatlas.de/klimaatlas/2071-2100/jahr/durchschnittliche-temperatur/sachsen-anhalt/mittlereanderung.html> (21.06.2022).

634 Roeder A, Roscher C. 2024. *Age and stem anatomical traits of Galium mollugo (collected*
635 *between 2017-2019)*. Version 11. Biodiversity Exploratories Information System.
636 Dataset ID= 31543. doi: 10.71615/bexis.31543-11

637 Roeder A, Schweingruber FH, Fischer M, Roscher C. 2017. Growth ring analysis of multiple
638 dicotyledonous herb species—A novel community-wide approach. *Basic and Applied*
639 *Ecology*, 21: 23-33. doi: 10.1016/j.baae.2017.05.001

640 Roscher C, Roeder A. 2024. *Vegetation records (neighboring species) around focal*
641 *individuals of four common forb species collected for analyses of age and stem*
642 *anatomical traits in the grassland EP's (collected between 2017-2019)*. Version 6.
643 Biodiversity Exploratories Information System. Dataset ID= 31362.
644 <https://www.bexis.uni-jena.de>

645 Schöning I. 2023. *Soil carbon and nitrogen concentrations - soil sampling campaign 2017, all*
646 *experimental plots (EPs), 0-10 cm*. Version 14. Biodiversity Exploratories Information
647 System. Dataset ID= 23846. <https://www.bexis.uni-jena.de/ddm/data>Showdata/23846?version=14>

649 Schöning I. 2024. *Soil pH - soil sampling campaign 2011, all experimental plots (EPs), 0-10*
650 *cm*. Version 9. Biodiversity Exploratories Information System. Dataset ID= 14447.
651 <https://www.bexis.uni-jena.de/ddm/data>Showdata/14447?version=9>

652 Schöning I, Solly E, Klötzing T, Trumbore S, Schrumpf M. 2021. *MinSoil 2011 - Soil Texture*
653 Version 10. Biodiversity Exploratories Information System. Dataset ID= 14686.
654 <https://www.bexis.uni-jena.de/ddm/data>Showdata/14686?version=10>

655 Shi S, Li Z, Wang H, *et al.* 2016. Roots of forbs sense climate fluctuations in the semi-arid
656 Loess Plateau: Herb-chronology based analysis. *Scientific Reports*, 6: 28435. doi:
657 10.1038/srep28435

658 Socher SA, Prati D, Boch S, *et al.* 2013. Interacting effects of fertilization, mowing and
659 grazing on plant species diversity of 1500 grasslands in Germany differ between
660 regions. *Basic and Applied Ecology*, 14: 126-136. doi: 10.1016/j.baae.2012.12.003

661 Socher SA, Prati D, Boch S, *et al.* 2012. Direct and productivity-mediated indirect effects of
662 fertilization, mowing and grazing on grassland species richness. *Journal of Ecology*,
663 100: 1391-1399. doi: 10.1111/j.1365-2745.2012.02020.x

664 Stoffel MA, Nakagawa S, Schielzeth H. 2017. rptR: repeatability estimation and variance
665 decomposition by generalized linear mixed-effects models. *Methods in Ecology and*
666 *Evolution*, 8: 1639-1644. doi: 10.1111/2041-210x.12797

667 Strock CF, Lynch JP. 2020. Root secondary growth: an unexplored component of soil
668 resource acquisition. *Annals of Botany*, 126: 205-218. doi: 10.1093/aob/mcaa068

669 Tälle M, Deák B, Poschlod P, Valkó O, Westerberg L, Milberg P. 2016. Grazing vs. mowing:
670 A meta-analysis of biodiversity benefits for grassland management. *Agriculture,*
671 *Ecosystems & Environment*, 222: 200-212. doi: 10.1016/j.agee.2016.02.008

672 Vermeire LT, Waterman RC, Reinhart KO, Rinella MJ. 2023. Grazing intensity and
673 seasonality manipulate invasive annual grasses and native vegetation. *Rangeland*
674 *Ecology & Management*, 90: 308-313. doi: 10.1016/j.rama.2023.04.001

675 Vogt J, Klaus VH, Both S, *et al.* 2019. Eleven years' data of grassland management in
676 Germany. *Biodivers Data J*, 7: e36387. doi: 10.3897/BDJ.7.e36387

677 von Arx G, Archer SR, Hughes MK. 2012. Long-term functional plasticity in plant hydraulic
678 architecture in response to supplemental moisture. *Annals of Botany*, 109: 1091-100.
679 doi: 10.1093/aob/mcs030

680 von Arx G, Dietz H. 2005. Automated image analysis of annual rings in the roots of perennial
681 forbs. *International Journal of Plant Sciences*, 166: 723-732. doi: 10.1086/431230

682 von Arx G, Edwards PJ, Dietz H. 2006. Evidence for life history changes in high-altitude
683 populations of three perennial forbs. *Ecology*, 87: 665-74. doi: 10.1890/05-1041

684 Weigl E. 2017. *RADOLAN: Radar Online Adjustment Radar based quantitative precipitation*
685 *estimation products*. doi:
686 Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood
687 estimation of semiparametric generalized linear models. *Journal of the Royal*
688 *Statistical Society (B)*, 73: 3-36. doi: 10.1111/j.1467-9868.2010.00749.x
689 Wood SN. 2017. *Generalized Additive Models - An Introduction with R*.2 ed. New York:
690 CRC/Taylor&Francis.
691 Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. *Mixed effects models and*
692 *extensions in ecology with R*. New York: Springer
693

694
695 **Funding**
696 The work was supported by the DFG Priority Program 1374 "Biodiversity Exploratories"
697 (RO2397/9).
698

699 **Data availability statement**
700 The data is available in the Biodiversity Exploratories Information System (BEXIS;
701 <https://www.bexit.uni-jena.de/ddm/publicsearch/> and <https://www.bexit.uni-jena.de/tcd/PublicClimateData/Index>, id no. of the used data sets: 14686, 14447, 23846, 24766,
702 26106 (all public available), 26478 (not publicly available), 31362 and 31543, which both will
703 be made public upon publication of the manuscript.
704

705
706 **Author contributions**
707 C.R. and A.R. planned the study and performed the field and laboratory work, A.R. analysed
708 the microsections. M.T.J. analysed the data and wrote the manuscript with substantial support
709 from C.R.
710

711 **Acknowledgments**
712 We thank Hans Schönewolf and Katharina Franke for support during field work, and Gabriele
713 Rada (iDiv) for designing Figure 1. We thank the managers of the three Exploratories, Kirsten

714 Reichel-Jung, Iris Steitz, Sandra Weithmann, Florian Staub, Juliane Vogt and Miriam Teuscher
715 and all former managers for their work in maintaining the plot and project infrastructure;
716 Christiane Fischer and Jule Mangels for giving support through the central office, Michael
717 Owonibi and Andreas Ostrowski for managing the central data base, and Markus Fischer,
718 Eduard Linsenmair, Dominik Hessenmöller, Daniel Prati, Ingo Schöning, François Buscot,
719 Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting
720 up the Biodiversity Exploratories project. We thank the administration of the Hainich national
721 park, the UNESCO Biosphere Reserve Swabian Alb and the UNESCO Biosphere Reserve
722 Schorfheide-Chorin as well as all land owners for the excellent collaboration. Field work
723 permits were issued by the responsible state environmental offices of Baden-Württemberg,
724 Thüringen, and Brandenburg.

725

726 **Figure captions**

727

728 **Figure 1:** A) Location and characteristics of the three study regions, B) excavated *G. mollugo*
729 individual, and C) exemplary microscopic images of stem cross sections of *G. mollugo* showing
730 three different individuals with different rings width and age; demarcation of annual rings is
731 marked with red horizontal lines along the examined radii. Source of the map shown in (A):
732 picoStudio/stock.adobe.com.

733

734

735

736

737

738

739

740

741 **Figure 2.** Descriptive statistics computed with RwlInfo separated by region (ALB =
 742 *Schwäbische Alb*, HAI = *Hainich-Dün*, SCH = *Schorfheide-Chorin*). A) Age calculated as
 743 number of growth rings counted. B) Mean growth ring width. All values are means ($\pm 1 \text{ SE}$)
 744 across all samples per region. The numbers show the sample size per region. The asterisks
 745 shows significant differences ($p < 0.05$) between regions tested with Tukey's test. If no asterisk
 746 is shown there is no significant difference. One sampled individual in *Hainich-Diin* had no ring
 747 width measured and was therefore deleted from the data set.

748

749

750

751

752

753 **Figure 3.** Descriptive statistics computed with RwlInfo separated by region (ALB =
 754 *Schwäbische Alb*, HAI = *Hainich-Dün*, SCH = *Schorfheide-Chorin*). A) Correlation of ring
 755 widths with the ring width of the master chronology (calculated from the mean ring width per
 756 year from all individuals per plot as the master chronology per plot) B) Mean first order
 757 autocorrelation calculated as the correlation between the current and the previous ring width.
 758 All values are means (± 1 SE) across all samples per plot and region. The numbers show the
 759 plot sample size per region. Note that the numbers differ from the numbers in Fig. 1 because of
 760 individual level and plot level calculations. There is no statistically significant difference
 761 between any of the measurements per region.

762

763

764

765 **Figure 4.** Log-transformed mean ring width in relation to A) first application time of land-use
 766 (the numbers are modelled ordinaly) ($R^2_m = 0.03$, $R^2_c = 0.52$), B) log transformed neighbour
 767 species richness ($R^2_m = 0.02$, $R^2_c = 0.52$). The blue lines represent a significant regression line
 768 derived from fits to the model with age. The data shown represent the years 2009-2019.

769

770

771

772

773

774

775

776

777 **Table 1.** Results of the stepwise forward modelling process resulting in the final model. All
 778 models had the response variable log transformed ring width, the random effect sample nested
 779 in plot nested in region and the temporal autocorrelation structure of order 1 with the grouping
 780 factor sample nested in plot nested in region. The base model included plant age modelled as a
 781 smoothed term to allow for non-linear ontogenetic effects of age. Model performance was
 782 evaluated based on a combination of delta loglikelihood values, significant p-values and AICs.
 783 ^a log transformed data. Significant effects ($P < 0.05$) are printed in bold, marginally significant
 784 effects ($P < 0.1$) are printed in italic.

Step	Term added	ΔLogLik	P	AIC
0	Base model with plant age	-	-	8595.05
1	First land-use application	113.35	<0.001	8302.29
2	Summer soil temperature	49.11	<0.001	8175.82
3	Spring soil temperature	18.88	<0.001	8117.36
4	Summer air temperature	4.67	<0.001	8090.93
5	Summer soil moisture	2.91	<i>0.06</i>	8089.41
6	Neighbour species richness ^a	0.0	0.016	8085.59

785

786

787 **Table 2.** Results of the final generalized additive mixed model combining the fixed factors
 788 which were significant after stepwise forward modelling starting with the best performing
 789 (based on AIC) model of the single factor models (Table S3 in Supplementary Information).
 790 Age was added using a smoothing term to account for a nonlinear ontogenetic effect. The
 791 response variable was log transformed ring width, random effects of the final model were
 792 sample nested in plot nested in region and a temporal autocorrelation structure of order 1 with
 793 the grouping factor sample nested in plot nested in region. The upper part of the table presents
 794 the parametric model results with estimates, standard error (SE) and t-value. The lower part of
 795 the table presents the results of the smoothed term with estimated degrees of freedom (edf),
 796 reference degrees of freedom (Ref. df) and F-value. ^a log transformed data. Significant effects
 797 ($P < 0.05$) are printed in bold, marginally significant effects ($P < 0.1$) are printed in italic.

Across regions				
	Estimate	SE	t-value	P
Intercept	5.012	0.173	29.055	<0.001
First land-use application	0.016	0.005	3.524	<0.001
Summer soil temperature	0.001	0.007	0.192	0.848
Spring soil temperature	0.001	0.004	0.126	0.900
Summer air temperature	0.005	0.008	0.587	0.587
Summer soil moisture	0.002	0.001	1.517	0.055
Neighbour species richness ^a	-0.080	0.032	-2.843	0.013
	edf	Ref. df	F	P
s(Age)	7.094	7.904	92.88	<0.001

798

799

800

801