This is the accepted manuscript version of the contribution published as:

Lange-Enyedi, N.T., Tóth, E., **Abbaszade, G.**, Németh, P., Garvie, L.A.J., Wolf, J., Neumann-Schaal, M., Khayer, B., Sipos, G., Makk, J. (2025): *Pseudogemmobacter sonorensis* sp. nov., a new alphaproteobacterium isolated from the slime flux of a tree (*Populus fremontii*) in the Sonoran Desert (Arizona, USA) *Int. J. Syst. Evol. Microbiol.* **75** (7), art. 006859

The publisher's version is available at:

https://doi.org/10.1099/ijsem.0.006859

- 1 Pseudogemmobacter sonorensis sp. nov., a new alphaproteobacterium isolated from the
- 2 slime flux of a tree (*Populus fremontii*) in the Sonoran Desert (Arizona, USA)
- 4 Nóra Tünde Lange-Enyedi^{1,2}, Erika Tóth^{1,3}, Gorkhmaz Abbaszade^{1,4}, Péter Németh^{5,6},
- 5 Laurence A. J. Garvie⁷, Jacqueline Wolf⁸, Meina Neumann-Schaal⁸, Bernadett Khayer⁹,
- 6 György Sipos², Judit Makk¹
- 8 ¹Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter
- 9 stny, 1/C H-1117 Budapest, Hungary
- 10 ²Functional Genomics and Bioinformatics Group, Faculty of Forestry, University of Sopron,
- 11 Bajcsy-Zsilinszky út 4, H-9400, Sopron, Hungary
- 12 ³Health Promotion and Education Research Team, Hungarian
- 13 Academy of Sciences, Budapest, Hungary
- ⁴Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research –
- 15 UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- 16 ⁵Institute for Geological and Geochemical Research, HUN-REN Research Centre for
- 17 Astronomy and Earth Sciences, Budaörsi út 45 H-1112 Budapest, Hungary
- 18 ⁶Research Institute of Biomolecular and Chemical Engineering, Nanolab, University of
- 19 Pannonia, Egyetem út 10 H-8200 Veszprém, Hungary
- ⁷School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road,
- 21 Tempe, AZ 85287-6004, USA
- 22 ⁸Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures,
- 23 Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
- 24 ⁹Department of Public Health Laboratory and Methodology, National Center Public Health
- 25 and Pharmacy, Albert Flórián út 2-6 H-1097 Budapest, Hungary

26	
27	Correspondence: Judit Makk, Tel.: +36-1-381-2177, Fax.: +36-1-381-2178, e-mail:
28	makk.judit@ttk.elte.hu
29	
30	Running title: Pseudogemmobacter sonorensis sp. nov.
31	
32	The subject category for the Contents list: New Taxa - Pseudomonadota
33	
34	Keywords: Pseudogemmobacter; Populus fremontii; slime flux, Sonoran Desert
35	
36	Depositories: The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene
37	sequence of strain PA1-206B ^T is OP709268. The whole-genome shotgun project of the strain
38	PA1-206B ^T has been deposited at DDBJ/ENA/GenBank under the accession
39	JBEFZE000000000. The version described in this paper is JBEFZE010000000.
40	
41	Bacteria; Pseudomonadota; Alphaproteobacteria; Rhodobacterales; Paracoccaceae
42	
43	Abstract
44	
45	The Gram-stain negative, aerobic, non-motile, non-spore-forming, irregular rod-shaped
46	bacterial strain, PA1-206B ^T was isolated from tree wound exudate of the <i>Populus fremontii</i>
47	trunk in the Sonoran Desert (USA), and its taxonomic position was investigated by a
48	polyphasic approach. Strain PA1-206B ^T grows optimally at 28-30 °C and pH 6 to 10 without
49	NaCl. Based on 16S rRNA gene sequence analysis, this isolate showed only 95.9 % sequence

similarity to the type strain of Pseudogemmobacter hezensis and similarity of 93.9-95.4 % to

the other species of the genera Pseudogemmobacter, Falsigemmobacter, Rhodobacter, Neotabrizicola Paracoccus, Xinfangfangia, Fuscovulum, Pseudotabrizicola, and Tabrizicola. The major isoprenoid quinone of the strain was ubiquinone Q-10. The predominant fatty acids 5%) were $C_{18:1} \omega 7c$, $C_{16:0}$ and 11-methyl- $C_{18:1}$ ω 7c. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, and two unidentified phospholipids were present. The assembled draft genome of strain PA1-206B^T had 115 contigs with a total length of 4.5 Mb and a G+C content of 67.4 mol%. The overall genome-related indices (ANI <80.4 %, AAI <70.6 %, dDDH <21.6 %) with respect to close relatives were below the corresponding threshold to demarcate bacterial species and nearly reached the genus level but the whole genome-based taxonomic approaches rejected the description of a new genus. Strain PA1-206B^T (=DSM 115559^T =NCAIM B.02680^T) is suggested as the type strain of a novel species of the genus Pseudogemmobacter, for which the name Pseudogemmobacter sonorensis sp. nov. is proposed.

64

65

51

52

53

54

55

56

57

58

59

60

61

62

63

Introduction

66

67

68

69

70

71

72

73

74

75

The family *Paracoccaceae* (illegitimate synonym "Rhodobacteraceae") belonging to the order *Rhodobacterales*, class *Alphaproteobacteria* within the *Pseudomonadota*, comprises 78 taxa with validly published names at the time of writing (see List of Prokaryotic Names with Standing in Nomenclature; https://lpsn.dsmz.de/family/paracoccaceae). The taxonomical lineage of the family was revised numerous times recently [1–3]. The family demonstrates adaptability to a wide range of environmental conditions, reflecting their diverse ecological roles and metabolic capabilities, and the members of the family have been found in various marine and non-marine environments, including seawater, marine animal tissues, seaweeds, soil, rhizosphere, activated sludge, and a soda lake [4–10]. Among the described species,

Sinorhodobacter populi and Pseudogemmobacter hezensis have been described from the wound exudates of Populus trees [1, 11]. In this study, a novel species of this family is described based on a polyphasic characterization for a bacterial strain, PA1-206B^T, isolated from a tree (Populus fremontii) wound in the Sonoran Desert.

Strain PA1-206B^T was isolated from a slime flux collected from mineralized tree wounds of *P. fremontii* in south central Arizona along the Verde River around 33°44′33.60″N, 111°39′33.97″W [12]. *Populus fremontii* is a native tree found in the southwestern USA and northern to central Mexico. Wetwood occurs in the heartwood of poplar trees (including *P. fremontii*) and is characterized by dark brown staining and infusion. When infected with bacteria, yeast, and other fungi, the resulting exudate forms a smelly, foaming mass known as slime flux [13, 14]. The slime flux jelly on the tree wound is likely a bacterial exopolysaccharide (EPS), consistent with the diverse prokaryotic community identified from wetwood on *P. fremontii* and Balsamifera trees in California [15]. Wetwood is a natural occurrence and is not considered detrimental to the health of the tree, although its presence may contribute to the general decline of trees, particularly old trees, and those with low vitality [16], therefore describing and analysing bacteria from slime flux is influential.

Methods

The jelly-like slime flux sample was scraped from the surface of a *Populus* tree using a sterile spatula [12]. The collected sample was mashed in 4.5 ml physiological saline solution in a sterile marble mortar. A dilution series of the resulting solution was spread on R2A agar medium (DSMZ medium 830, https://mediadive.dsmz.de/) using the dilution-plating method.

100 Strain PA1-206B^T was isolated from the diluted samples on R2A agar plates with pH 7.0 after 101 incubation at 28 °C for 5 days. The strain was maintained on R2A agar medium. Genomic DNA was isolated from strain PA1-206B^T according to the methods of Enyedi et al. 102 [17] and the 16S rRNA gene was amplified with primers 27F and 1492R as previously 103 described by Makk et al. [18]. Purification and sequencing of PCR products were carried out 104 by Eurofins BIOMI (Gödöllő, Hungary). A nearly full-length sequence of the 16S rRNA gene 105 (1333 bp) was compiled using the MEGA7 software [19]. The GenBank/EMBL/DDBJ 106 107 accession number for the 16S rRNA gene sequence of strain PA1-206B^T is OP709268. The 16S rRNA gene sequence of strain PA1-206B^T was aligned with sequences available from the 108 EzBioCloud database [20]. The alignment was used to calculate the distance matrix corrected 109 by the Tamura 3-parameter model and a phylogenetic tree was reconstructed using the 110 maximum likelihood method. A discrete Gamma distribution was used to model evolutionary 111 112 rate differences among sites. The rate-variation model allowed for some sites to be evolutionarily invariable. The phylogenetic tree was constructed with MEGA7, and the result 113 of the model test based on the maximum likelihood fits of 24 different nucleotide substitution 114 115 models was applied. Bootstrap analysis was based on 500 resamplings [21]. Full genome sequencing of strain PA1-206B^T was performed as a service provided by 116 Eurofins BIOMI (Gödöllő, Hungary). Genomic DNA was extracted using the NucleoSpin 117 Microbial DNA Kit (Macherey-Nagel). The library was prepared using the Nextera DNA Flex 118 119 Library Preparation Kit (Illumina). The quality of the library was checked using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific), and Agilent 4150 TapeStation D1000 ScreenTape 120 121 System (Agilent). 2x 250 bp paired-end sequencing was carried out on the Illumina Miseq System using an Illumina v2 500 cycle sequencing kit. The sequence read quality was 122 checked by FastQC [22], and low-quality read sequences were trimmed by trimmomatic 123 v0.39 tools [23]. De novo assembly of raw reads was performed using the SPAdes v.3.15.5 124

125 tool in careful mode [24], and the quality of the resulting assembly (assembly size, number of contigs, N50, L50) was assessed by QUAST 5.2 [25]. GC content was calculated by BBmap 126 39.11. package [26]. Contigs shorter than 500 nt were excluded from the assembly. Coverage 127 128 calculated with coverage calculator v0.0.1 was master (https://github.com/GenomicaMicrob/coverage_calculator). Possible contamination of the 129 genome was checked based on the 16S rRNA gene data on the ContEst16S platform [27] and 130 no contamination was detected. The partial 16S rRNA gene sequence of strain PA1-206B^T 131 obtained by the Sanger method was compared with the extracted 16S rRNA gene sequence 132 from the genome assembly by the Pairwise nucleotide sequence alignment for taxonomy tool 133 (https://www.ezbiocloud.net/tools/pairAlign). Raw sequencing reads were deposited in the 134 NCBI Sequence Read Archive (SRA) under the BioProject ID PRJNA1120638 and accession 135 number SRR29909998. The whole-genome shotgun project has been deposited at 136 137 DDBJ/ENA/GenBank under accession JBEFZE000000000. The version described in this paper is JBEFZE010000000. 138 Overall genomic relatedness indices (OGRIs) values were calculated between the genome 139 PA1-206B^T and the available reference genomes of its relatives 140 sequence of (Pseudogemmobacter hezensis D13-10-4-6^T, Pseudogemmobacter bohemicus Cd-10^T, 141 $119/4^{T}$, Falsigemmobacter intermedius Pseudogemmobacter 142 humi **CIP** 111625^{T} . Xinfangfangia soli CCTCC AB 2017177^T, Tabrizicola aquatica RCRI19^T, Falsirhodobacter 143 deserti W402^T, Paracoccus limosus JCM 17370^T, Paracoccus sanguinis DSM 29303^T) 144 downloaded from the NCBI database (results shown in Table 1). Average nucleotide identity 145 146 (ANI) and average amino acid identity (AAI) were calculated using the Enveomics online tools (http://enve-omics.ce.gatech.edu/) [28]. For AAI, the whole genome of PA1-206B^T was 147 annotated with GeneMarkS (http://exon.gatech.edu/genemark/genemarks.cgi) [29]. The Type 148 Strain Genome Server (https://tygs.dsmz.de/) [30] was used for digital DNA-DNA 149

hybridization (dDDH), G+C difference calculation and to construct phylogenomic tree by 150 151 Genome Blast Distance Phylogeny (GBDP) approach [31] based on whole genome sequences of closely related strains identified by the EzBioCloud database. The resulting intergenomic 152 153 distances were used to infer a balanced minimum evolution tree with branch support via 154 FASTME 2.1.6.1 including SPR postprocessing [32]. The proteome tree was constructed from 155 whole-proteome-based GBDP distances. The branch lengths are scaled via GBDP distance 156 formula d_5 . Branch support was inferred from 100 pseudobootstrap replicates each. The trees 157 were rooted at the midpoint [33]. To accurately establish the taxonomic classification of the genome, the phylogenomic tree 158 was constructed using the Genome Taxonomic Database Toolkit 2.4.0 (GTDB-Tk) [34] based 159 on 120 ubiquitously conserved bacterial marker genes by Kbase server [35]. The trees were 160 visualized by the Interactive Tree of Life (iTol) tool (https://itol.embl.de/) [36] and PhyD3 161 162 [37]. For genus delineation, the AAI cut off value within Paracoccaceae family members were 163 164 identified. In total, 4033 existing genomes of the Paracoccaceae family were downloaded from NCBI genome database (accessed on 01.11.2024). Genome quality was assessed by 165 CheckM v1.2.3 (https://github.com/Ecogenomics/CheckM) [38] and after removing the 166 167 genomes with less than 90 % completeness and more than 5 % contamination, remaining 2049 genomes were used for the determination of AAI cut off value by using CompareM 168 (https://github.com/Ecogenomics/CheckMhttps://github.com/donovan-h-169 v0.1.2tool 170 parks/CompareM), which uses the mean amino acid identity of orthologous genes between a 171 given pair of genomes. 172 The draft genome was analysed for prediction of genome features through the Rast server version 2.0 (http://rast.nmpdr.org/) [39] and the DDBJ Fast Annotation and Submission Tool 173 (DFAST) [40]. After submission, the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) 174

175 (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/) also annotated genome. 176 Functional genes that were investigated as having possible roles in metabolic pathways were checked by the KEGG database [41]. A circular graphical display of the genome and 177 178 applicable genes was prepared by the Proksee circular genome visualization tool with the Prokka annotation tool [42]. 179 In this study, the type strains *Pseudogemmobacter hezensis* KCTC 82215^T, *Falsigemmobacter* 180 intermedius DSM 28642^T, and Tabrizicola aquatica JCM 17277^T were used as reference 181 strains for comparison of phenotypic properties of strain PA1-206B^T with several genera 182 under the same laboratory conditions. The colony morphology of strain PA1-206B^T was 183 observed on R2A agar medium (pH 7) after incubation at 28 °C for 5 days by direct 184 observation of single colonies (Supplementary Fig. S1). Growth of the strain was tested on 185 TSA (DSMZ Medium 535) and Nutrient agar (DSMZ Medium 1). The morphology (size, 186 187 shape, arrangement) of the cells grown on R2A medium (pH 7) at 28 °C for 3 days on R2A agar was studied in native preparations and after Gram-staining according to Claus [43] by 188 189 Nikon light microscopy. Electron microscopic investigations were carried out as indicated by 190 Tóth et al. [44] using a JEOL JSM-IT700HR scanning electron microscope (Supplementary Fig. S1). Growth under anaerobic conditions, catalase and oxidase activity, oxidative and 191 192 fermentative degradation of glucose, aerobic nitrate reduction, indole and H₂S production, 193 casease, urease, phosphatase activity, and hydrolysis of gelatine, starch, Tween 80 and 194 aesculin were studied as described by Makk et al. [18]. Temperature and pH optima as well as salt tolerance were determined based on the observed growth intensity at 4, 10, 15, 20, 28, 30, 195 35, 40, and 45 °C, at pH from 3 to 13 (1 pH unit intervals), and from 0 to 5 % (w/v) NaCl 196 concentration (0.5 % intervals), as described previously [18] (in R2A medium). Motility was 197 assessed by phase-contrast microscopy in wet-mount preparations and in deep R2A medium 198 199 with 0.3 % (w/v) agar, respectively. Acid production from different carbon sources as the sole

source of carbon and enzyme activities were tested by using the API 50CH and API ZYM systems (bioMérieux) according to the manufacturer's instructions, except that the strips were incubated for 5 h (API ZYM) and for 24-72 h (API 50CH).

Chemotaxonomic analyses of isoprenoid quinones, cellular fatty acids, and polar lipids were performed as previously described in detail [45].

205

206

207

211

212

214

217

221

224

200

201

202

203

204

Results

The closest relatives of strain PA1-206B^T based on 16S rRNA gene pairwise sequence similarity values are as follows: Pseudogemmobacter hezensis D13-10-4-6^T, 95.9 %; 208 Tabrizicola fusiformis SY72^T, 95.5 %; Pseudogemmobacter humi IMT-291^T, 95.4 %; 209 Neotabrizicola shimadae N10^T, 95.3 %; Pseudogemmobacter bohemicus Cd-10^T, 95.1 % and 210 Rhodobacter ruber CCP-1^T, 95.0 %. PA1-206B^T showed lower similarity to other species than the generally accepted threshold of 98.7 %. Other taxa of the family Paracoccaceae were even more distantly related (with less than 94 % sequence similarity), and they were placed 213 on separated branches on the phylogenetic tree of 16S rRNA-gene sequences (Fig. 1), except for Falsigemmobacter intermedius 119/4^T with low bootstrap value that showed only 94.1 % 215 sequence similarity. Nevertheless, previous studies also demonstrated that 16S rRNA gene 216 sequences are not eligible to determine the taxonomical outline of the family Paracoccaceae 218 [1-3].The assembled genome of strain PA1-206B^T had a total length of 4.5 Mb, 115 contigs with 219 129.4× average coverage depth, N50 and L50 values of 125071 nt and 11 nt, respectively. The 220 DNA G+C content of the strain PA1-206B^T was 67.4 mol% (± 6 mol% standard deviation) as determined by the draft genome sequence. The partial 16S rRNA gene sequence of strain 222 PA1-206B^T obtained by the Sanger method was compared with the extracted 16S rRNA gene 223 sequence from the genome assembly and showed 100 % similarity.

OGRI values between the genome of strain PA1-206B^T and the available genomes of close 225 226 relative species were calculated (Table 1). ANI values were well below the species threshold of 95 %. Based on current AAI genus delineation cutoff of 70% proposed for the 227 Paracoccaceae family (70%) by Huang et al. [3], the genome of strain PA1-206B^T belongs to 228 a new genus. However, objective taxonomic classification of the genome, conducted using the 229 Genome Database Taxonomy toolkit (GTDB-Tk, database release 202), considering 120 230 ubiquitous single-copy proteins from the family *Paracoccaceae*, placed the strain PA1-206B^T 231 within the genus *Pseudogemmobacter* (Supplementary Fig. S2). In this case, the 70% genus 232 delineation threshold does not adequately reflect the observed AAI value between the genome 233 of PA1-206B^T and other species within the genus *Pseudogemmobacter*, suggesting that this 234 threshold may not be appropriate for defining genus-level relationships in this context (see 235 Table 1). Consequently, this study proposes a new genus delineation AAI cutoff of 68% for 236 237 the Paracoccaceae family, based on AAI analyses of 2049 high-quality genomes within the family. This threshold lies within typical genus-level cutoffs for many groups in 238 Paracoccaceae family (Table 1, Supplementary Fig. S3). Digital DNA-DNA hybridization 239 (dDDH) values of strain PA1-206B^T were far below 70 % based on the calculations of the 240 Type Strain Genome Server. G+C difference was above 1 mol% except for Xinfangfangia soli 241 CCTCC AB 2017177^T, Pseudogemmobacter humi CIP 111625^T, and Tabrizicola aquatica 242 243 RCRI19^T (Table 1) but these strains showed low AAI, ANI and dDDH similarities. The ANI. AAI, dDDH, and G+C difference values suggest that strain PA1-206B^T represents a new 244 member of the genus Pseudogemmobacter. 245 The phylogenetic position of strain PA1-206B^T within the genus *Pseudogemmobacter* was 246 confirmed by the results of the phylogenomic analysis based on the whole-proteome-based 247 tree (Fig. 2). Strain PA1-206B^T and other *Pseudogemmobacter* spp. showed a separated 248 branch from the genera Falsigemmobacter, Rhodobacter, Neotabrizicola, Paracoccus, 249

250 Xinfangfangia, Fuscovulum, Pseudotabrizicola and Tabrizicola on the whole-genome-based 251 tree as well (Fig. 2, Supplementary Fig. S4). 252 For the annotation of the draft genome, 4594 coding sequences (CODs) and 318 subsystems were identified based on RAST analysis. Prokka annotation showed 4250 clusters of 253 orthologous genes (COGs) and 1972 hypothetical proteins. DFAST analysis revealed 3 254 rRNAs (5S, 16S, and 23S rRNAs) and 55 tRNAs within the genome (Fig. 3). Based on RAST 255 256 analysis, 300 genes were involved in the metabolism of amino acids and derivatives, and 178 genes were associated with the metabolism of proteins including gelatinase. The draft genome 257 of strain PA1-206B^T revealed 196 gene clusters in the metabolism of carbohydrates, for 258 example, D-glucose, chitin, and N-acetylglucosamine. 122 genes were identified that were 259 involved in the metabolism of cofactors, vitamins, and prosthetic groups (biotin, thiamine, 260 pyridoxine, folate) but genes were not identified in carotenoid, bacteriochlorophyll synthesis, 261 and photosynthesis. Among them, 121 genes were affiliated with respiration processes, and 262 109 genes were linked with the metabolism of nucleosides and nucleotides. Genes encoding 263 proteins involved in the metabolism of CO₂ fixation were not found, and autotrophic 264 265 metabolism was not suggested. The number of genes involved in flagellar motility was only 5, and genes related to nitrogen fixation were not prevalent in the draft genome. 266 Regarding the isolation source, auxin biosynthesis and the degradation of aromatic 267 compounds (salicylate, benzoate, and catechol) were found in the gene clusters, that can 268 enhance bacterial metabolism on the surface of a plant with lignin-containing cell wall. The 269 draft genome of strain PA1-206B^T contains more genes involved in these pathways than its 270 closest relative strain, *Pseudogemmobacter hezensis* D13-10-4-6^T (Supplementary Table S1). 271 The genes (23 by number) of diverse membrane transport systems were identified in the draft 272 273 genome, that enable to maintain the transport of ions, the pH and osmolarity homeostasis in 274 the slime flux [12], such as the magnesium and cobalt efflux protein, the Na⁺/H⁺ antiporter

and the copper-translocating P-type ATPase, alkaline phosphatase. Similarly, genes linked to 275 276 potassium metabolism including the potassium efflux system KefA protein, largeconductance mechanosensitive channel, and the Kup system potassium uptake protein were 277 278 identified in the genome. Branched-chain amino acid transporters were also present that convert into negatively charged glutamic acid [46]. The genome contains several gene clusters 279 280 against osmotic and oxidative stress. 281 RAST functional analysis revealed that the genome of the most closely related type strain Pseudogemmobacter hezensis D13-10-4-6^T contains the same gene subsystems but there were 282 quantitative differences in the gene sets. Among all, 1101 gene functions were common, 148 283 were identified only in strain PA1-206B^T, and 121 were identified 284 Pseudogemmobacter hezensis D13-10-4-6^T (Supplementary Table S1). 285 Differential phenotypic and genotypic characteristics of strain $PA1-206B^T$ and its closest 286 relatives are given in Table 2, Supplementary Fig. S1, S5 and Tables S2-S4. The cells of 287 strain PA1-206B^T are immobile irregular rods, and they produce transparent colonies in 288 accordance to the genomic data. Strain PA1-206B^T did not grow at elevated concentrations of 289 NaCl than other members of the genera Pseudogemmobacter, Falsigemmobacter, and 290 Tabrizicola. The hydrolysis of gelatine, acid production from D-sucrose and D-trehalose, and 291 the presence of alkaline phosphatase distinguished strain PA1-206B^T from its closest 292 293 relatives. The predominant quinone of strain PA1-206B^T was ubiquinone Q-10 accompanied by Q-9. 294 The major cellular fatty acids present in strain PA1-206B^T were $C_{18:1}$ ω 7c, $C_{16:0}$, and 11-295 296 methyl-C_{18:1} ω7c (Supplementary Table S2), which were partially similar to the fatty acid profile of the closest related type strains, and with significant differences in their quantities. 297 298 Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), 299 an unidentified aminolipid (AL), and two unidentified phospholipids (PLs) were the major

polar lipids of PA1-206B^T (Supplementary Fig. S5). PA1-206B^T differed from its closest 300 301 relatives due to the absence of phosphatidylmonomethylethanolamine (PMME) and phosphatidylcholine (Table 2). 302 303 On the basis of differences in the phenotypic (hydrolysis of gelatine, acid production from Dsucrose and D-trehalose, and the presence of alkaline phosphatase), chemotaxonomic, 304 305 phylogenetic (low sequence similarity in the 16S rRNA gene, distinct position within the 306 phylogenetic trees) and phylogenomic data (low values of overall genome-related indices) presented here. strain $PA1-206B^{T}$ represents a novel species 307 Pseudogemmobacter, for which the name Pseudogemmobacter sonorensis sp. nov. is 308 309 proposed.

310

311 Description of *Pseudogemmobacter sonorensis* sp. nov.

312

Pseudogemmobacter sonorensis (so.no.ren´sis. N.L. adj. sonorensis of the Sonoran, named
after the Sonoran Desert, where the organism was collected).
Cells are irregular rod-shaped (0.6–0.7 × 1.0–1.5 μm) and non-motile. Cells of PA1-206B^T

occur form pairs or aggregates. It grows well on R2A, Nutrient, and TGY media. Colonies on 316 317 R2A agar plates are shiny, mucoid, creamy-white translucent, circular, and 2-3 mm in diameter after 3 days of cultivation at 28 °C. Growth occurs at 15–35 °C (optimum at 28-30 318 319 °C), pH 6.0–10.0 (optimum at pH 7.0–9.0). The strains could not grow with 1-5 % (w/v) NaCl. Oxidase- and catalase-positive. Negative for Voges-Proskauer test, glucose 320 321 fermentation, indole production, aerobic nitrite reduction to N₂, phosphatase activity, hydrolysis of urea, aesculine, casein, starch, Tween 80 as well as H₂S production. Positive for 322 hydrolysis of gelatine and weakly positive for aerobic nitrate reduction to nitrite. The API 323 ZYM test showed positive for alkaline phosphatase, esterase (C4), leucine arylamidase, valine 324

arylamidase, naphthol-AS-BI-phosphohydrolase, α -glucosidase, N-acetyl- β -glucosaminidase, and cells are weakly positive for esterase lipase (C8). Enzyme production was negative for lipase (C14), cystine arylamidase, trypsin, α -chymotrypsin, acid phosphatase, α -galactosidase, β -galactosidase, β -glucuronidase, β -glucosidase, α -mannosidase, and α -fucosidase. Based on API 50CH strips, acid production was observed only from D-glucose, D-fructose, D-sucrose, D-trehalose, and a weak reaction from D-mannitol. The major respiratory quinone is Q-10. The polar lipid profile is composed of DPG, PG, PE as major components, and unidentified AL and two unidentified PL as minor components. The DNA G+C content is 67.4 mol% (calculated from the genome sequence).

The type strain, PA1-206B^T (=DSM 115559^T =NCAIM B.02680^T) was isolated from the wound exudate of a tree (*Populus fremontii*) in the Sonoran Desert (USA). The GenBank accession number for the 16S rRNA gene sequence of strain PA1-206B^T is OP709268. The Whole Genome Shotgun project of strain PA1-206B^T has been deposited at DDBJ/ENA/GenBank under accession JBEFZE0000000000. The version described in this paper is version JBEFZE0100000000.

Acknowledgements

This work was supported by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund [grant number ANN141894]. The study was funded by the Scientific Foundations of Education Research Program of the Hungarian Academy of Sciences. We thank Gesa Martens, Birgit Grün and Anika Wasner for excellent technical assistance.

Conflicts of interest

The authors declare that there are no conflicts of interest.

_	_	
D	eference	~

- 353 1. Ma T, Xue H, Piao C, Liu C, Yang M, et al. Reclassification of 11 members of the family
- Rhodobacteraceae at genus and species levels and proposal of *Pseudogemmobacter hezensis*
- 355 sp. nov. Front Microbiol 2022;13:849695.
- 2. Zhang DF, He W, Shao Z, Ahmed I, Zhang Y, et al. Phylotaxonomic assessment based on
- four core gene sets and proposal of a genus definition among the families Paracoccaceae and
- Roseobacteraceae. *Int J Syst Evol Microbiol* 2023;73:006156.
- 359 3. Huang Z, Li M, Oren A, Lai Q. Genome-based analysis of the family Paracoccaceae and
- description of Ostreiculturibacter nitratireducens gen. nov., sp. nov., isolated from an oyster
- 361 farm on a tidal flat. *Front Microbiol* 2024;15:1376777.
- 362 4. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol
- **363** 1983;33:26–37.
- 364 5. Szuróczki S, Abbaszade G, Bóka K, Schumann P, Neumann-Schaal M, et al. Szabonella
- alba gen. nov., sp. nov., a motile alkaliphilic bacterium of the family Rhodobacteraceae
- isolated from a soda lake. *Int J Syst Evol Microbiol* 2022;72:005219.
- 367 6. Maszenan AM, Seviour RJ, Patel BKC, Rees GN, McDougall BM. Amaricoccus gen. nov.,
- 368 a Gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge
- biomass, and descriptions of *Amaricoccus veronensis* sp. nov., *Amaricoccus tamworthensis* sp.
- 370 nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov. Int J Syst
- 371 *Bacteriol* 1997;47:727–734.
- 7. Nedashkovskaya OI, Otstavnykh NY, Gun S, Andrey K, Zhukova N V, et al. Algicella
- marina gen. nov., sp. nov., a novel marine bacterium isolated from a Pacific red alga. *Arch*
- 374 *Microbiol* 2022;204:487.
- 375 8. Chhetri G, Kang M, Kim J, Kim I, So Y, et al. Fuscibacter oryzae gen. nov., sp. nov., a
- phosphate-solubilizing bacterium isolated from the rhizosphere of rice plant. *Antonie van*
- 377 *Leeuwenhoek, Int J Gen Mol Microbiol* 2021;114:1453–1463.

- 378 9. Li F, Huang Y, Hu W, Li Z, Wang Q, et al. Mesobaculum littorinae gen. Nov., sp. nov., a
- novel bacterium isolated from a sea snail littorina scabra. *Int J Syst Evol Microbiol*
- 380 2021;71:004821.
- 381 10. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, et al.
- Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine
- 383 habitats. *ISME J* 2017;11:1483–1499.
- 384 11. Xu GT, Piao C, Chang JP, Guo LM, Yang XQ, et al. Sinorhodobacter populi sp. Nov.,
- isolated from the symptomatic bark tissue of *Populus* x *euramericana* canker. *Int J Syst Evol*
- 386 *Microbiol* 2019;69:1220–1224.
- 387 12. Garvie LAJ. Seasonal formation of ikaite in slime flux jelly on an infected tree (*Populus*
- *fremontii*) wound from the Sonoran Desert. *Sci Nat* 2022;109:48.
- 389 13. Hofstra TS, Stromberg JC, Stutz JC. Factors associated with wetwood intensity of *Populus*
- fremontii (Fremont cottonwood) in Arizona. Gt Basin Nat 1999;59:85–91.
- 391 14. **Roberts H, Hsiang T**. Incidence of slime flux in deciduous trees of Southern Ontario. For
- 392 *Chron* 2018;94:151–154.
- 393 15. **Hofstra T.** Distribution, genetic diversity and compositional variation of wetwood prokaryote
- 394 communities within and among two native California Populus species. University of
- 395 California, Santa Cruz; 2003.
- 396 16. **Hamilton WD**. Wetwood and slime flux in landscape trees. J Arboric 1980;6:247–249.
- 397 17. Enyedi NT, Anda D, Borsodi AK, Szabó A, Pál SE, et al. Radioactive environment adapted
- bacterial communities constituting the biofilms of hydrothermal spring caves (Budapest,
- 399 Hungary). *J Environ Radioact* 2019;203:8–17.
- 400 18. Makk J, Enyedi NT, Tóth E, Anda D, Szabó A, et al. Deinococcus fonticola sp. nov.,
- isolated from a radioactive thermal spring in Hungary. *Int J Syst Evol Microbiol* 2019;69:1724–
- 402 1730.
- 403 19. **Kumar S, Stecher G, Tamura K**. MEGA7: Molecular Evolutionary Genetics Analysis
- 404 version 7.0 for bigger datasets. *Mol Biol Evol* 2016;33:1870–1874.
- 405 20. Chalita M, Kim YO, Park S, Oh HS, Cho JH, et al. EzBioCloud: a genome-driven database

- and platform for microbiome identification and discovery. *Int J Syst Evol Microbiol*
- 407 2024;74:006421.
- 408 21. **Tamura K**. Estimation of the number of nucleotide substitutions when there are strong
- transition-transversion and G+C-content biases. *Mol Biol Evol* 1992;9:678–687.
- 410 22. **Andrews S.** FastQC: a quality control tool for high throughput sequence data. Cambridge;
- 411 2010.
- 412 23. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence
- 413 data. *Bioinformatics* 2014;30:2114–2120.
- 414 24. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo
- 415 assembler. Curr Protoc Bioinforma 2020;70:e102.
- 416 25. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly
- 417 evaluation with QUAST-LG. *Bioinformatics* 2018;34:i142–i150.
- 418 26. **Bushnell B, Rood J, Singer E**. BBMerge Accurate paired shotgun read merging via overlap.
- 419 *PLoS One* 2017;12:1–15.
- 420 27. Lee I, Chalita M, Ha SM, Na SI, Yoon SH, et al. ContEst16S: An algorithm that identifies
- 421 contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol
- 422 2017;67:2053–2057.
- 423 28. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized
- 424 analyses of microbial genomes and metagenomes. *PeerJ Prepr* 2016;4:e1900v1.
- 425 29. **Besemer J, Lomsadze A, Borodovsky M**. GeneMarkS: A self-training method for prediction
- of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory
- 427 regions. *Nucleic Acids Res* 2001;29:2607–2618.
- 428 30. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-
- the-art genome-based taxonomy. *Nat Commun* 2019;10:2182.
- 430 31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species
- delimitation with confidence intervals and improved distance functions. *BMC*
- 432 *Bioinformatics*;14. Epub ahead of print 2013. DOI: 10.1186/1471-2105-14-60.
- 433 32. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-

- based phylogeny inference program. *Mol Biol Evol* 2015;32:2798–2800.
- 435 33. **Farris JS**. Estimating phylogenetic trees from distance matrices. *Am Nat* 1972;106:645–667.
- 436 34. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify
- genomes with the genome taxonomy database. *Bioinformatics* 2020;36:1925–1927.
- 438 35. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, et al. KBase: The United
- States department of energy systems biology knowledgebase. *Nat Biotechnol* 2018;36:566–
- 440 569.
- 441 36. Letunic I, Bork P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree
- display and annotation. *Nucleic Acids Res* 2021;49:W293–W296.
- 443 37. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: A phylogenetic tree
- viewer with extended phyloXML support for functional genomics data visualization.
- 445 *Bioinformatics* 2017;33:2946–2947.
- 446 38. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the
- quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome*
- 448 Res 2015;25:1043–1055.
- 449 39. Aziz RK, Bartels D, Best A, DeJongh M, Disz T, et al. The RAST Server: Rapid annotations
- using subsystems technology. *BMC Genomics* 2008;9:75.
- 451 40. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: A flexible prokaryotic genome annotation
- pipeline for faster genome publication. *Bioinformatics* 2018;34:1037–1039.
- 453 41. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on
- genomes, pathways, diseases and drugs. *Nucleic Acids Res* 2017;45:D353–D361.
- 455 42. Grant JR, Enns E, Marinier E, Mandal A, Herman EK, et al. Proksee: In-depth
- characterization and visualization of bacterial genomes. *Nucleic Acids Res* 2023;51:W484–
- 457 W492.
- 458 43. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–
- 459 452.
- 460 44. Tóth EM, Kéki Z, Bohus V, Borsodi AK, Márialigeti K, et al. Aquipuribacter hungaricus
- gen. nov., sp. nov., an actinobacterium isolated from the ultrapure water system of a power

462		plant. Int J Syst Evol Microbiol 2012;62:556–562.
463	45.	Toumi M, Whitman WB, Kyrpides NC, Woyke T, Wolf J, et al. Antiquaquibacter
464		oligotrophicus gen. nov., sp. nov., a novel oligotrophic bacterium from groundwater. Int J Syst
465		Evol Microbiol 2023;73:006205.
466	46.	Lebre PH, Cowan DA. Genomics of Alkaliphiles. <i>Alkaliphiles Biotechnol</i> 2020;135–155.
467	47.	Kämpfer P, Jerzak L, Wilharm G, Golke J, Busse HJ, et al. Gemmobacter intermedius sp.
468		nov., isolated from a white stork (Ciconia ciconia). Int J Syst Evol Microbiol 2015;65:778–783.
469	48.	Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF, et al. Tabrizicola aquatica gen.
470		nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city,
471		Iran. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 2013;104:1205–1215.
472 473		

Legends

475 476

- 477 Fig. 1. 16S rRNA gene sequence-based maximum likelihood tree showing the phylogenetic
- 478 positions of strain PA1-206B^T among closely related members of the family *Paracoccaceae*.
- 479 GenBank accession numbers are given in parentheses. Bootstrap values (above 50 %) based
- 480 on 500 resamplings are shown at branch nodes (Tamura 1992 [21]). Bar, 0.05 nucleotide
- 481 substitutions per position.

482

- 483 Fig. 2. Phylogenomic tree indicating the position of strain PA1-206B^T among closely related
- 484 taxa based on whole-proteome data. GenBank accession numbers are given in parentheses.
- 485 Tree inferred with FastME 2.1.6.1 (Lefort et al. 2015 [32]) from whole-proteome-based
- 486 GBDP distances. The branch lengths are scaled via GBDP distance formula d_5 . Branch values
- 487 are GBDP psedo-bootstrap support values > 50 % from 100 replications, with an average
- branch support of 85.8 %. The tree was midpoint-rooted (Farris, 1972 [33]).

489

- 490 Fig. 3. A circular graphical display of the genome and applicable genes of strain PA1-206B^T.
- 491 This includes coding sequences (CDS) on the forward strand, CDS on the reverse strand,
- 492 RNA genes, repeat regions and GC content. The figure was prepared by Proksee circular
- 493 genome visualization tool (Grant et al. 2023 [42]).

494

- 495 Table 1. Average nucleotide identity (ANI), average amino acid identity (AAI), digital DNA-
- 496 DNA hybridization (dDDH) and G+C difference values between the genome sequence of
- 497 PAI-206B^T and the available reference genomes of its relatives: *Pseudogemmobacter hezensis*
- 498 D13-10-4-6^T (GCF_013155295.1), Pseudogemmobacter bohemicus $Cd-10^{T}$
- 499 (GCF_003290025.1), Pseudogemmobacter humi CIP 111625^T (GCF_900609055.1),
- 500 Falsigemmobacter intermedius 119/4^T (GCA 004054105.1), Xinfangfangia soli CCTCC AB
- 501 2017177^T (GCA 015999335.1), Tabrizicola aquatica RCRI19^T (GCF 002900975.1),
- 502 Falsirhodobacter deserti W402^T (GCF 004015795.1), Paracoccus limosus JCM 17370^T
- 503 (GCF_009711185.1), Paracoccus sanguinis OM2164^T (GCF_012689545.1). Numbers in
- parentheses indicate the number of proteins on which AAI was based.

505

- Table 2. Differential characteristics of the strain of Pseudogemmobacter sonorensis PA1-
- 507 206B^T and the closely related species.
- 508 Characters are scored as: +, positive; -, negative; w, weak positive reaction; DPG, diphospha-
- 509 tidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; AL, unidentified
- aminolipid; PLx, unidentified phospholipids; PC, phosphatidylcholine; PME, phosphatidyl-
- 511 monomethylethanolamine; Lx, unidentified polar lipid. The data were obtained from this
- 512 study unless otherwise is indicated. Data taken from: a, Ma et al. 2022 [1]; b, Kämpfer et al.
- 513 2015 [47]; c, Tarhriz et al. 2013 [48].

514

516 Supplementary Fig. S1. Scanning electron micrograph showing the general morphology of

517 cell of strain PA1-206B^T after growth at 28 °C in R2A broth.

518

- 519 Supplementary Fig. S2. Trimmed phylogenomic tree of the family *Paracoccaceae* based on
- 520 bacterial 120 conserved proteins of 2049 genomes concatenated by Genome Taxonomic
- 521 Database Toolkit on Kbase server. Colour legends: purple *Pseudogemmobacter* spp., yellow
- 522 strain PA1-206B^T.

523

- 524 Supplementary Fig. S3. The average amino acid identity (AAI) distribution of the
- 525 Paracoccaceae family from 2049 high-quality genomes calculated with CompareM v0.1.2.

526

- 527 Supplementary Fig. S4. Phylogenomic tree indicating the position of strain PA1-206B^T
- 528 among closely related taxa. Tree inferred with FastME 2.1.6.1 (Lefort et al. 2015 [32]) from
- 529 GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of
- 530 GBDP distance formula d5. The numbers above branches are GBDP pseudo-bootstrap
- support values > 50 % from 100 replications, with an average branch support of 54.4 %. The
- tree was rooted at the midpoint (Farris, 1972 [33]) and visualized with PhyD3 (Kreft et al.
- 533 2017 [37]).

534

- 535 Supplementary Fig. S5. Two-dimensional TLC of polar lipids of strain PA1-206B^T after
- 536 spraying with ninhydrin and heating at 100 °C for 10 minutes (A, aminolipids), after spraying
- 537 with molybdenum blue (B, phospholipids), after spraying with 20 % (w/v) ethanolic
- 538 phosphomolybdic acid (Sigma) and subsequent heating at 200 °C for 10 min (C, total lipids)
- 539 and after spraying with α-naphthol reagent and heating at 100 °C for 5 minutes (D, no purple
- 540 spots of glycolipids). Images A and B originate from the same chromatogram.
- 541 Chloroform/methanol/water (65:25:4, by vol.) was used in the first direction (1), followed by
- 542 chloroform/acetic acid/methanol/water (80:15:12:4, by vol.) in the second direction (2).
- 543 Abbreviations: PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; PE,
- phosphatidylethanolamine; PL, unidentified phospholipid; AL, unidentified aminolipid.

545

- 546 Supplementary Table S1. Distribution of genes based on RAST functional categories in the
- 547 genomes of novel strain *Pseudogemmobacter sonorensis* PA1-206B^T and the closest type
- 548 strain *Pseudogemmobacter hezensis* D13-10-4-6^T.

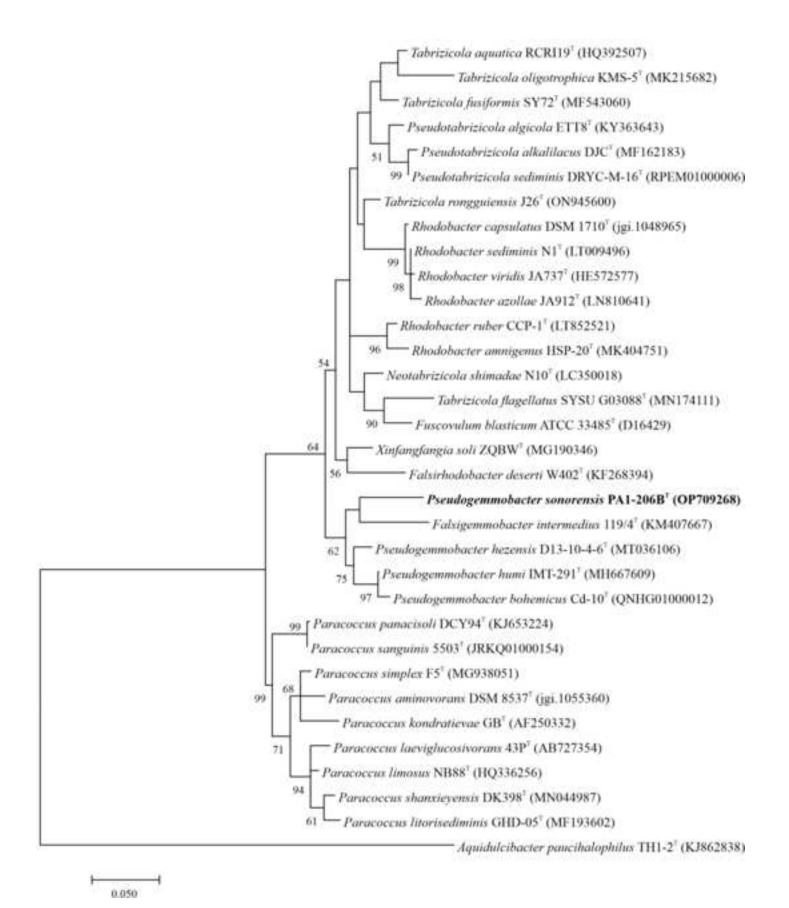
- 550 Supplementary Table S2. Fatty acid profiles of strains: 1, Pseudogemmobacter sonorensis
- PA1-206B^T (data from this study); 2, *Pseudogemmobacter hezensis* KCTC 82215^T (data from
- Ma et al. 2022 [1]); 3, Falsigemmobacter intermedius DSM 28642^T (data from Kämpfer et al.
- 553 2015 [47]); 4, *Tabrizicola aquatica* JCM 17277^T (data from Szuróczki et al. 2022 [5]).
- Major fatty acids (> 5 %) are shown in bold type. Fatty acids amounting to <1% of the total
- fatty acids are listed as tr, trace (<1 %); -, Not detected.

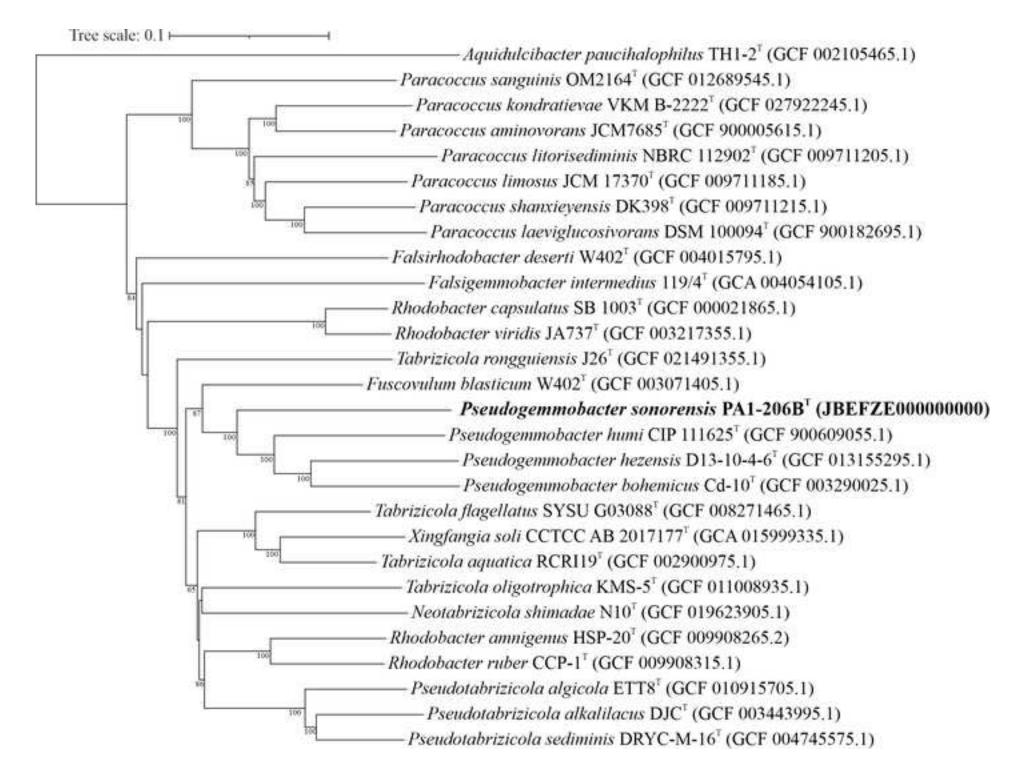
- * trace amounts identified as $C_{16:1}$ ω 7c in *Pseudogemmobacter sonorensis*, ** identified as unknown 11.799 by the MIDI system, ***identified as part of Summed Feature 8 (18:1
- $658 \quad \omega \text{ Tc/18:1 } \omega \text{ 6c}$) by the MIDI system, but identified as C18:1 $\omega \text{ 7c}$ by GC/MS.
- 560 Supplementary Table S3. API ZYM enzyme activities of strains: 1, Pseudogemmobacter
- 561 sonorensis PA1-206B^T; 2, Pseudogemmobacter hezensis KCTC 82215^T; 3, Falsigemmobacter
- 562 intermedius DSM 28642^T; 4, Tabrizicola aquatica JCM 17277^T. Characters are scored as: +,
- 563 positive; -, negative; w, weak positive reaction.

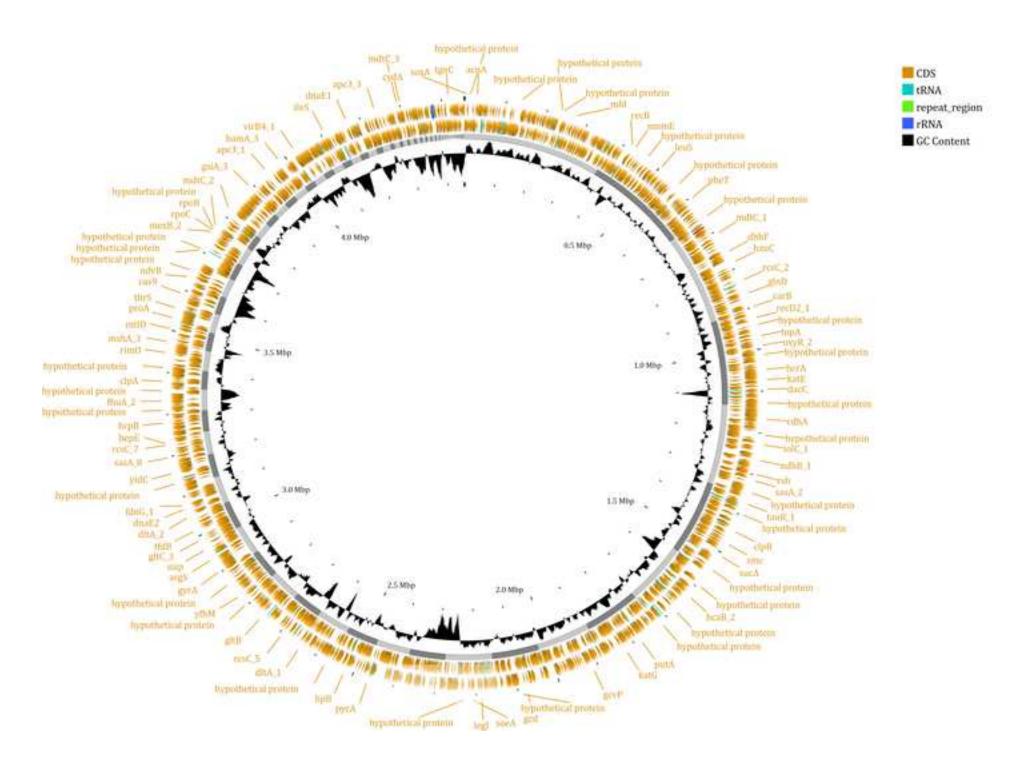
- 564 Supplementary Table S4. API 50CH carbon source utilization of strains: 1,
- 565 Pseudogemmobacter sonorensis PA1-206B^T; 2, Pseudogemmobacter hezensis KCTC 82215^T;
- 566 3, Falsigemmobacter intermedius DSM 28642^T; 4, Tabrizicola aquatica JCM 17277^T.
- 567 Characters are scored as: +, positive; -, negative; w, weak positive reaction.

582 583

570 Tables


571 Table 1. Average nucleotide identity (ANI), average amino acid identity (AAI), digital DNA-DNA hybridization (dDDH) and G+C difference values between the genome sequence of 572 PAI-206B^T and the available reference genomes of its relatives: *Pseudogemmobacter hezensis* 573 D13-10-4-6^T (GCF_013155295.1), Pseudogemmobacter bohemicus Cd-10^T 574 (GCF_003290025.1), Pseudogemmobacter humi CIP 111625^T (GCF_900609055.1), 575 Falsigemmobacter intermedius 119/4^T (GCA 004054105.1), Xinfangfangia soli CCTCC AB 576 2017177^T (GCA_015999335.1), Tabrizicola aquatica RCRI19^T (GCF_002900975.1), 577 Falsirhodobacter deserti W402^T (GCF_004015795.1), Paracoccus limosus JCM 17370^T 578 (GCF_009711185.1), *Paracoccus sanguinis* OM2164^T (GCF_012689545.1). Numbers in 579 580 parentheses indicate the number of proteins on which AAI was based. 581


Strain	ANI (%)	AAI (%)	dDDH (%)	G+C difference (mol%)
Pseudogemmobacter hezensis D13-10-4-6 ^T	80.39	69.59 (2568)	17.3	4.50
Pseudogemmobacter bohemicus Cd-10 ^T	78.97	68.92 (2679)	17.3	4.00
$Pseudogemmobacter\ humi\ CIP\ 111625^{T}$	80.30	70.62 (2571)	21.6	0.85
Falsigemmobacter intermedius $119/4^{T}$	76.67	61.18 (2235)	13.6	4.74
Xinfangfangia soli CCTCC AB 2017177 ^T	78.55	66.19 (2381)	17.1	0.20
Tabrizicola aquatica RCRI19 ^T	77.98	66.88 (2314)	15.9	0.98
Falsirhodobacter deserti W402 ^T	77.41	61.98 (1908)	14.3	3.95
Paracoccus limosus JCM 17370 ^T	77.50	59.77 (2220)	15.2	1.31
Paracoccus sanguinis OM2164 ^T	80.65	58.35 (971)	14.4	3.51


Table 2. Differential characteristics of the strain of *Pseudogemmobacter sonorensis* PA1-206B^T and the closely related species.

Characteristic	Pseudogemmobacter sonorensis	Pseudogemmobacter hezensis	Falsigemmobacter intermedius	Tabrizicola aquatica
	PA1-206B ^T	KCTC 82215 ^T	$\mathbf{DSM}\ 28642^{\mathrm{T}}$	$\mathbf{JCM}17277^{\mathrm{T}}$
Colony pigmentation	Creamy white	Creamy white	Cream	Cream
Cell size (µm)	1.0-1.5 x 0.8	1.6-2.0 x 0.8-1.0 ^a	1.0-1.2 x 2.0-5.0 ^b	$0.9 \times 1.3 - 3^{c}$
Cell shape	irregular rod-shaped	ovoid to rod-shaped ^a	rod- to irregular shaped ^b	rod-shaped ^c
Gramstrain	-	_a	_p	_c
Source of isolation	wound exudate of tree	bark sample of tree ^a	white stork ^b	freshwater lake ^c
Growth temperature (°C)	15-35	15-35 ^a	15-55 ^b	15-45°
NaCl (% w/v) tolerance	0	0-4	0-5	0-5
, ,	0	0-4	0-3	0-3
pH for growth:		50100	50.100	60.120
range	6.0-10.0	5.0-10.0	5.0-10.0	6.0-13.0
optimum	8.0-9.0	7.0-8.0	8.0	7.0-12.0
Acid production from D-glucose (aerob)	-	+	-	-
Hydrolysis of gelatine	+	-	-	-
Nitrate to nitrite	w	W	-	+
Phosphatase activity	-	+	W	-
Enzyme activity (API ZYM):				11 / 4
Alkaline phosphatase	+	-		
Esterase(C4)	+	-		
Esterase lipase (C8)	w	-	w	+
Leucin arylamidase	+	+		¥
Valin arylamidase	+	w	<u> </u>	U -
Naphtol-AS-BI-phosphohydrolase	+	w	w	+
α -galactosidase	-		$II \cap AI \cap D$	+
β-galactosidase	-	1.	11/	+
α-glucosidase	+	+		+
β-glucosidase			1 ·	+
N-Acetyl-β-glucosaminidase	1	\ \ \ \ \	-	-
Acid production from (API 50CH):				
Erythritol	-	W	-	-
D-arabinose	-	W	-	-
L-arabinose	-	+	-	-
D-ribose D-xylose	-	w +	-	-
D-xylose D-galactose	-	+	-	-
D-garactose D-glucose	_	+	-	-
D-fructose	+	W W	<u>-</u>	<u>-</u>
L-rhamnose	· -	W	_	-
D-mannitol	W	-	-	-
N-acetyl-glucosamine	=	W	-	_
D-saccharose	+		-	=
D-trehalose	+	-	-	-
D-lyxose	-	+	-	-
D-fucose	-	+	-	-
L-fucose	-	+	-	-
Major polar lipids	$DPG,PG,PE,AL,PL_{1\text{-}2}$	PME,DPG,PE,PG,PC,PL,L ₆ ^a	PME, DPG, PG, PE, PC,AL ₁₋₃ ,L ₅ ^b	PC,PG,DPG,PE ₁ ^c
DNA G+C content (mol%)	67.4	62.9 ^a	64 ^b	65.9°

Characters are scored as: +, positive; -, negative; w, weak positive reaction; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; AL, unidentified aminolipid; PLx, unidentified phospholipids; PC, phosphatidylcholine; PME, phosphatidylmonomethylethanolamine; Lx, unidentified polar lipid. The data were obtained from this study unless otherwise is indicated. Data taken from: a, Ma et al. 2022 [1]; b, Kämpfer et al. 2015 [47]; c, Tarhriz et al. 2013 [48].

Pseudogemmobacter sonorensis sp. nov., a new alphaproteobacterium isolated from the slime flux of a tree (Populus fremontii) in the Sonora Desert (Arizona, USA).

Nóra Tünde Lange-Enyedi^{1,2}, Erika Tóth^{1,3}, Gorkhmaz Abbaszade^{1,4}, Péter Németh^{5,6}, Laurence A. J. Garvie⁷, Jacqueline Wolf⁸, Meina Neumann-Schaal⁸, Bernadett Khayer⁹, György Sipos², Judit Makk¹

¹Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány Péter stny, 1/C H-1117 Budapest, Hungary

²Functional Genomics and Bioinformatics Group, Faculty of Forestry, University of Sopron, Bajcsy-Zsilinszky út 4, H-9400, Sopron, Hungary

³Health Promotion and Education Research Team, Hungarian Academy of Sciences, Budapest, Hungary

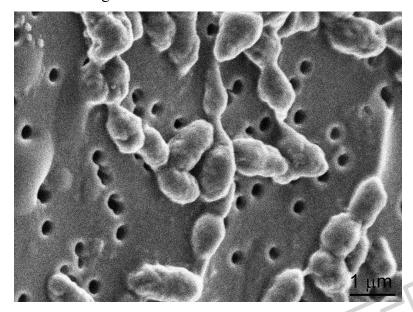
⁴Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany

⁵Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45 H-1112 Budapest, Hungary

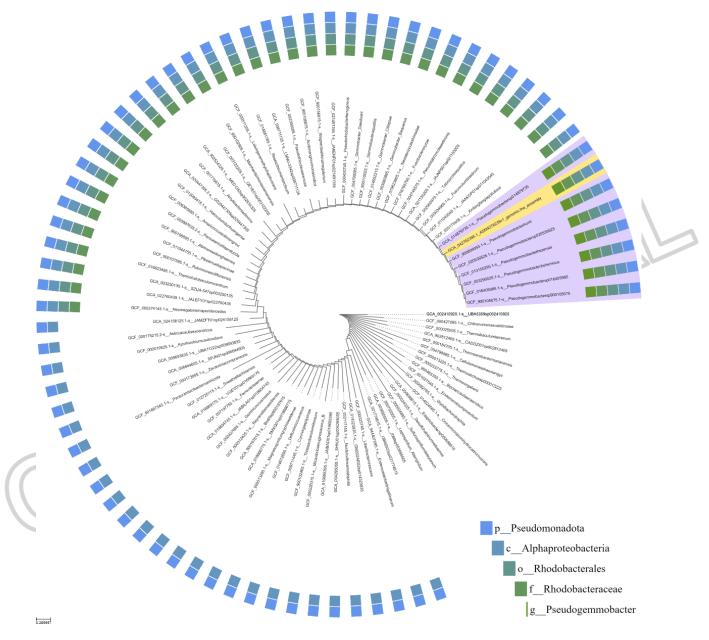
⁶Research Institute of Biomolecular and Chemical Engineering, Nanolab, University of Pannonia, Egyetem út 10 H-8200 Veszprém, Hungary

⁷School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA

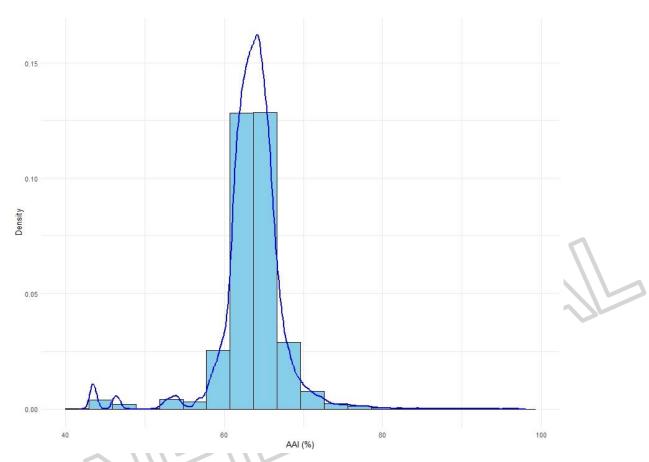
⁸Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany


⁹Department of Public Health Laboratory and Methodology, National Center Public Health and Pharmacy, Albert Flórián út 2-6 H-1097 Budapest, Hungary

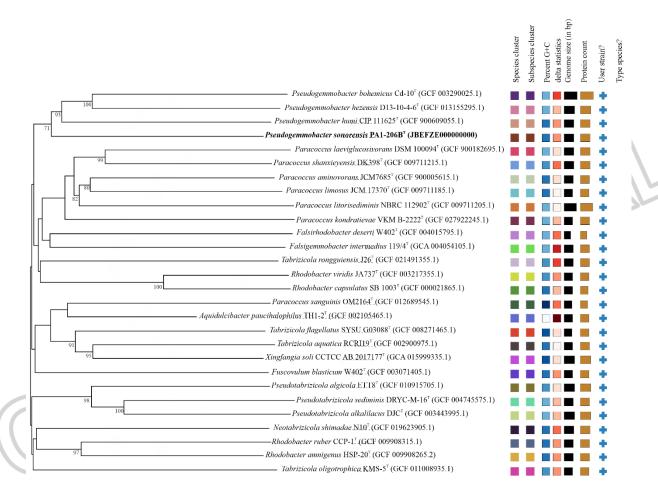
Correspondence author:


Judit Makk

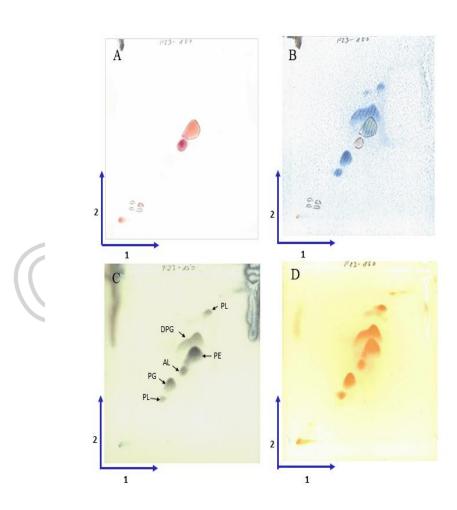
e-mail: makk.judit@ttk.elte.hu


Supplementary Fig. S1. Scanning electron micrograph showing the general morphology of cell of strain PA1-206B^T after growth at 28 °C in R2A broth.

Supplementary Fig. S2. Trimmed phylogenomic tree of the family *Paracoccaceae* based on bacterial 120 conserved proteins of 2049 genomes concatenated by Genome Taxonomic Database Toolkit on Kbase server. Colour legends: purple – *Pseudogemmobacter* spp., yellow - strain PA1-206B^T.



Supplementary Fig. S3. The average amino acid identity (AAI) distribution of the *Paracoccaceae* family from 2049 high-quality genomes calculated with CompareM v0.1.2.



Min.	1st Quantile	Median	Mean	3rd Quantile	0.95 Quantile	Max.
41.75	62.1	63.7	63.6	65.4	68.8	98.1

Supplementary Fig. S4. Phylogenomic tree indicating the position of strain PA1-206B^T among closely related taxa. Tree inferred with FastME 2.1.6.1 (Lefort et al. 2015 [32]) from GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of GBDP distance formula d5. The numbers above branches are GBDP pseudo-bootstrap support values > 50 % from 100 replications, with an average branch support of 54.4 %. The tree was rooted at the midpoint (Farris, 1972 [33]) and visualized with PhyD3 (Kreft et al. 2017 [37]).

Supplementary Fig. S5. Two-dimensional TLC of polar lipids of strain PA1-206B^T after spraying with ninhydrin and heating at 100 °C for 10 minutes (A, aminolipids), after spraying with molybdenum blue (B, phospholipids), after spraying with 20% (w/v) ethanolic phosphomolybdic acid (Sigma) and subsequent heating at 200 °C for 10 min (C, total lipids) and after spraying with α-naphthol reagent and heating at 100 °C for 5 minutes (D, no purple spots of glycolipids). Images A and B originate from the same chromatogram. Chloroform/methanol/water (65:25:4, by vol.) was used in the first direction (1), followed by chloroform/acetic acid/methanol/water (80:15:12:4, by vol.) in the second direction (2). Abbreviations: PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; PE, phosphatidylethanolamine; PL, unidentified phospholipid; AL, unidentified aminolipid.

Supplementary Table S1. Distribution of genes based on RAST functional categories in the genomes of novel strain *Pseudogemmobacter sonorensis* PA1-206B^T and the closest type strain *Pseudogemmobacter hezensis* D13-10-4-6^T.

Subsystem features	Pseudogemmobacter hezensis D13-10-4-6 ^T	Pseudogemmobacter sonorensis PA1-206B ^T	Common features
Amino acids and derivatives	11	22	148
Carbohydrates	24	8	103
Cell wall and capsule	1	2	17
Clustering-based subsystems	11	17	143
Cofactors, vitamins, prosthetic			
groups, pigments	15	8	80
DNA metabolism	5	7	43
Dormancy and sporulation	0	0	1
Fatty acids, lipids, and isoprenoids	0	1	34
Iron acquisition and metabolism	3	9	4
Membrane transport	21	7	36
Metabolism of aromatic			
compounds	2	-11	9
Miscellaneous	0	4	24
Motility and chemotaxis	0	0	5
Nitrogen metabolism	3	1	8
Nucleosides and nucleotides	2	11	63
Phages, prophages, transposable			
elements, plasmids	1 1	4	17
Phosphorus metabolism	3	1	15
Potassium metabolism	0	0	3
Protein metabolism	4	11	146
RNA metabolism	0	2	30
Regulation and cell signaling	2	6	8
Regulons	0	0	1
Respiration	1	7	92
Secondary metabolism	0	0	4
Stress response	10	4	32
Sulfur metabolism	2	2	15
Virulence, disease and defense	0	3	20
Sum of subsystem feature counts	121	148	1101

Supplementary Table S2. Fatty acid profiles of strains: 1, *Pseudogemmobacter sonorensis* PA1-206B^T (data from this study); 2, *Pseudogemmobacter hezensis* KCTC 82215^T [data from Ma et al. 2022 [1]); 3, *Falsigemmobacter intermedius* DSM 28642^T (data from Kämpfer et al. 2015 [47]); 4, *Tabrizicola aquatica* JCM 17277^T (data from Szuróczki et al. 2022 [5]).

Major fatty acids (> 5 %) are shown in bold type. Fatty acids amounting to <1% of the total fatty acids are listed as tr, trace (<1 %); -, Not detected.

* trace amounts identified as $C_{16:1}$ $\omega 7c$ in *Pseudogemmobacter sonorensis*, ** identified as unknown 11.799 by the MIDI system, ***identified as part of Summed Feature 8 (18:1 $\omega 7c/18:1$ $\omega 6c$) by the MIDI system, but identified as $C18:1\omega 7c$ by GC/MS.

Fatty acid	1	2	3	4
$C_{12:0}$	tr	-	-	
$C_{14:0}$	tr	-	- 10	
C _{15:0}	tr	-	251	
$C_{16:0}$	19.2	5.4	3.0	tr
$C_{17:0}$	2.3		3.7	-
$C_{18:0}$	3.6	4.1		1.4
C _{10:0} 3-OH	2.2	2.4	3.1	3.4
C _{14:0} 3-OH	tr		-	-
C _{18:0} 3-OH		2.6	-	-
$C_{12:1} \omega 7c$	3.8	-	2.8**	3.2
$C_{16:1} \omega 7c/C_{16:1} \omega 6c^*$	tr	1.5	6.6	tr
C _{17:1} ω6c	tr	-	-	-
$C_{17:1} \omega 7c$	-	-	-	tr
$C_{18:1} \omega 7c^{***}$	59.5	81.1	80.9	85.9
C _{18:1} ω5c	-	-	-	tr
11-methyl- $C_{18:1} \omega 7c$	7.3	-	-	1.3
C _{19:1} iso ω5c	-	-	-	3.0
C _{20:1} iso ω7c	-	-	-	tr

Supplementary Table S3. API ZYM enzyme activities of strains: 1, *Pseudogemmobacter sonorensis* PA1-206B^T; 2, *Pseudogemmobacter hezensis* KCTC 82215^T; 3, *Falsigemmobacter intermedius* DSM 28642^T; 4, *Tabrizicola aquatica* JCM 17277^T. Characters are scored as: +, positive; -, negative; w, weak positive reaction.

Enzyme activities	1	2	3	4
Alkaline phosphatase	+	-	-	-
Esterase (C4)	+	-	+	-
Esterase lipase (C8)	W	-	W	+
Lipase (C14)	-	-	-	-
Leucin arylamidase	+++	++	-	+
Valin arylamidase	++	W	-	-
Cystine arylamidase	-	-	-	-
Trypsin	-	-	-	-
α-chymotrypsin	-	-	-	-
Acid phosphatase	-	-	-	-
Naphtol-AS-BI-				
phosphohydrolase	+	W	W	+
α-galactosidase	-	-	-	+
β-galactosidase	-	-	-	+
β-glucuronidase	-	-	-	-
α-glucosidase	+	+	-	+
β-glucosidase	-	-	-	+
N-Acetyl-β-glucosaminidase	+	+++	-	-
α-mannosidase	-	-	-	-
α-fucosidase	-	-	-	_

Supplementary Table S4. API 50CH carbon source utilization of strains: 1, *Pseudogemmobacter sonorensis* PA1-206B^T; 2, *Pseudogemmobacter hezensis* KCTC 82215^T; 3, *Falsigemmobacter intermedius* DSM 28642^T; 4, *Tabrizicola aquatica* JCM 17277^T. Characters are scored as: +, positive; -, negative; w, weak positive reaction.

Carbon source	1	2	3	4	Carbon source	1	2	3	4
Glycerol	-	-	-	-	Salicin	-	-	-	-
Erythritol	-	w	-	-	D-cellobiose	-	-	-	-
D-arabinose	-	W	-	-	D-maltose	-	-	-	-
L-arabinose	-	+	-	-	D-lactose	-	-	-	-
D-ribose	-	W	-	-	D-melibiose	-	-	-	-
D-xylose	-	+	-	-	D-sucrose	+	-	-	-
L-xylose	-	-	-	-	D-trehalose	+	-	-	-
D-adonitol	-	-	-	-	Inulin	-	-	-	-
Methyl-β-D-xylopyranoside	-	-	-	-	D-melezitose	-	-	-	-
D-galactose	-	+	-	-	D-raffinose	-	-	-	-
D-glucose	+	+	-	-	Amidon	-	-	-	-
D-fructose	+	W	-	-	Glycogen	-	-	-	-
D-mannose	-	-	-	-	Xylitol	-	-	-	-
L-sorbose	-	-	-	-	Gentiobiose	-	-	-	-
L-rhamnose	-	W	-	-	D-turanose	-	-	-	-
Dulcitol	-	-	-	-	D-lyxose	-	+	-	-
Inositol	-	-	-	-	D-tagatose	-	-	-	-
D-mannitol	W	-	-	-	D-fucose	-	+	-	-
D-sorbitol	-	-	-	-	L-fucose	-	+	-	-
Methyl-α-D-mannopyranoside	-	-	-	-	D-arabitol	-	-	-	-
Methyl-α-D-glucopyranoside	-	-	-	-	L-arabitol	-	-	-	-
N-acetyl-glucosamine	-	w	-	-	Potassium-gluconate	-	-	-	-
Amygdalin	-	-	-	-	Potassium-2-ketogluconate	-	-	-	-
Arbutin	-	-	-	-	Potassium-5-ketogluconate	-	-	-	-
Esculin	-	-	-	-					