

This is the accepted manuscript version of the contribution published as:

Zheng, L., Ibáñez, I., Williams, L.J., Zhu, K., Serrano-León, H., Jensen, J., Eisenhauer, N., Verheyen, K., Scherer-Lorenzen, M., Schnabel, F., Kreft, H., Guerrero-Ramírez, N.R., Hölscher, D., Paterno, G.B., Irawan, B., Ponette, Q., Messier, C., Paquette, A., Stefanski, A., Mereu, S., Bauhus, J., Hajek, P., Nock, C.A., Cavender-Bares, J., Parker, W.C., Quosh, J., Ferlian, O., **Auge, H.**, Potvin, C., Yan, E., Yang, B., Zhang, L., Zhao, Z., Sinacore, K., Hall, J.S., Guillemot, J., Robin, A., Brancalion, P.H.S., Sundawati, L., Reich, P.B. (2025): Neighbourhood diversity increases tree growth in experimental forests more in wetter climates but not in wetter years
Nat. Ecol. Evol. **9**, 1812 - 1824

The publisher's version is available at:

<https://doi.org/10.1038/s41559-025-02805-5>

Neighbourhood diversity increases tree growth in experimental forests more in wetter climates but not in wetter years

Liting Zheng^{1,2,3*}, Inés Ibáñez¹, Laura J. Williams⁴, Kai Zhu¹, Hernán Serrano-León^{5,6}, Joel Jensen⁷, Nico Eisenhauer^{2,3}, Kris Verheyen⁸, Michael Scherer-Lorenzen⁶, Florian Schnabel^{2,5,9}, Holger Kreft^{10,11}, Nathaly R. Guerrero-Ramírez^{10,11,12}, Dirk Hölscher^{11,13}, Gustavo B. Paterno¹⁰, Bambang Irawan^{14,15}, Quentin Ponette¹⁶, Christian Messier^{17,18}, Alain Paquette¹⁷, Artur Stefanski^{19,20}, Simone Mereu^{21,22}, Jürgen Bauhus⁵, Peter Hajek⁶, Charles A. Nock^{6,23}, Jeannine Cavender-Bares²⁴, William C. Parker²⁵, Julius Quosh^{2,3}, Olga Ferlian^{2,3}, Harald Auge^{3,26}, Catherine Potvin²⁷, Enrong Yan²⁸, Baiyu Yang²⁸, Li Zhang²⁸, Zhao Zhao²⁸, Katherine Sinacore^{29,30}, Jefferson S. Hall³¹, Joannès Guillemot^{32,33,34}, Agnès Robin^{32,33}, Pedro H. S. Brancalion³⁴, Leti Sundawati³⁵, Peter B. Reich^{1,4,20*}

Affiliations:

¹ Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, USA

² German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

³ Institute of Biology, Leipzig University, Leipzig, Germany

⁴ Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia

⁵ Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany

⁶ Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany

⁷ Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden

⁸ Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent

University, Melle-Gontrode, Belgium

⁹ Systematic Botany and Functional Biodiversity, Leipzig University, Leipzig, Germany

¹⁰ Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany

¹¹ Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany

¹² Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany

¹³ Tropical Silviculture and Forest Ecology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany

¹⁴ Forestry Department, Agriculture Faculty, University of Jambi Jln Raya Jambi, Jambi, Indonesia

35 ¹⁵ Land Use Transformation Systems Center of Excellence, University of Jambi, Jambi, Indonesia
36 ¹⁶ Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
37 ¹⁷ Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal,
38 Montréal, Canada
39 ¹⁸ Département des sciences naturelles, ISFORT, Université du Québec en Outaouais, Rion, Canada
40 ¹⁹ College of Natural Resources, University of Wisconsin Stevens Point, Wisconsin, USA
41 ²⁰ Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
42 ²¹ Institute of BioEconomy, National Research Council of Italy, Traversa La Crucca 3, Sassari, Italy
43 ²² National Biodiversity Future Center (NBFC), Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
44 ²³ Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences,
45 University of Alberta, Edmonton, Canada
46 ²⁴ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
47 ²⁵ Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, Canada
48 ²⁶ Department of Community Ecology, Helmholtz-Centre for Environmental Research - UFZ, Halle
49 (Saale), Germany
50 ²⁷ Department of Biology, McGill University, Montréal, Quebec, Canada
51 ²⁸ Zhejiang Zhoushan Island Observation and Research Station and Zhejiang Tiantong National Forest
52 Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East
53 China Normal University, Shanghai, China
54 ²⁹ Agua Salud Project, Smithsonian Tropical Research Institute, Balboa, 401 Ancón, Panamá, Panama
55 ³⁰ USDA Forest Service, Rocky Mountain Research Station, 240 W Prospect Rd, Fort Collins, USA
56 ³¹ ForestGEO, Smithsonian Tropical Research Institute, Ancón, 0843-03092 Panama, Panam
57 ³² CIRAD, UMR Eco&Sols, Montpellier, France
58 ³³ Eco&Sols, University Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France
59 ³⁴ Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo,
60 Piracicaba, Brazil
61 ³⁵ Department of Forest Management, Faculty of Forestry and Environment, Institut Pertanian Bogor
62 University, Bogor, Indonesia
63
64 * Corresponding authors' email: lingz@umich.edu; prech@umich.edu

65 **Abstract**

66 Tree diversity often increases stand-level growth, but whether neighbourhood diversity
67 effects on individual tree growth change with climatic conditions remains unclear. Here,
68 using 852,170 records of 113,701 individuals from 129 species in 15 tree-diversity
69 experiments across four biomes, we address this knowledge gap with a synthesis of tree
70 growth data spanning a broad climate gradient. We examine how neighbourhood-scale
71 (defined as a focal tree and the adjacent trees) taxonomic and functional diversity effects on
72 tree growth vary with climate spatially (across sites) and temporally (within sites). Increasing
73 species richness and trait dissimilarity from monospecific to high-diversity neighbourhoods
74 enhanced individual tree growth by 7 - 13% on average. The positive diversity effect
75 increased from dry to wet climates, contrasting with most prior studies, but was unaffected by
76 inter-annual climatic variation within sites. Given that tree-tree interactions are ubiquitous
77 and likely to interact with climate in both young and old forests, our findings suggest
78 incorporating neighbourhood diversity as a management tool to enhance forest productivity,
79 while considering underlying mechanisms and interactions with climate, thereby facilitating
80 targeted and site-specific climate and biodiversity benefits.

81

82 **Introduction**

83 Increasing the diversity of tree species in planted or naturally regenerated forests has been
84 proposed as a nature-based solution to ameliorate the climate crisis and maintain ecosystem
85 functioning under changing environmental conditions¹⁻⁴. Greater tree diversity has been
86 shown to promote individual tree and stand growth^{5,6}, tree survival⁷, and forest resilience and
87 stability under a variety of environmental conditions^{4,8,9}. Tree diversity at the neighbourhood
88 scale plays an important role in modulating the contribution of tree diversity to local forest
89 productivity, as most mechanisms of diversity effects play out via tree-tree interactions at this

90 scale^{10–12}. Furthermore, the magnitude of effects of neighbourhood interactions may depend
91 on climatic factors such as precipitation. Water availability can mediate the strength of
92 facilitation (e.g., stress buffering under dry conditions) and of competition (e.g., for light and
93 nutrients under moist conditions)^{13–15}. However, it remains unclear how tree species
94 interactions at various diversity levels influence tree growth across broad climatic conditions
95 that vary both spatially (i.e., variation across sites) and temporally (i.e., interannual variation
96 within sites). This knowledge is critical for understanding future forest growth, and especially
97 relevant to reforestation and management practices aimed at maintaining or increasing forest
98 productivity across environmental conditions, particularly under a changing climate with
99 greater interannual variation³.

100 Observational studies of naturally regenerated stands using large-scale forest inventory
101 datasets have shown that tree diversity is often more beneficial for tree growth in drier sites^{16–}
102²⁰ (see Supplementary Tables 1 and 2), which is potentially due to increased facilitation
103 interactions under greater abiotic stress, as the stress-gradient hypothesis suggests^{21,22}. By
104 contrast, two global-scale meta-analyses of mixed-species plantations revealed higher
105 diversity effects on tree growth in wetter or warmer climates, due to increased differentiation
106 in nutrient and light use^{5,23}. Why observational studies on natural stands differ from
107 plantations in this respect is unknown. Moreover, until present, there have been no similar
108 assessments based on the increasing pool of tree diversity experiments controlling for
109 confounding effects, which was one of our main goals here.

110 Additionally, some experimental studies (often limited to individual sites) have explored the
111 effects of tree diversity on tree growth in response to interannual climatic variation, and the
112 evidence remains mixed (Supplementary Tables 1 and 2). Some studies show that tree
113 diversity effects are more beneficial in dry years^{13,24}. The enhanced diversity effects under
114 drought can be related to improving water access for tree individuals through hydraulic

115 lift^{25,26}, reducing competition for water among species as they differ in accessing water²⁷,
116 mitigating negative drought impacts on tree growth¹³, reducing individual mortality risk⁷,
117 favoring drought-tolerant trees due to weakened performance of less drought-tolerant
118 neighbors^{2,28,29}, and enhancing nutrient and water uptake through diverse root traits as well as
119 mycorrhizal associations²⁶. However, some other studies have shown that diversity effects
120 remain unchanged³⁰, decreased³¹, or are negative³² in drier years.

121 These inconsistent empirical findings might be partly caused by differences in diversity
122 measures considered, such as the species richness versus phylogenetic and functional
123 differences among neighboring tree species that relate to different species interactions (i.e.,
124 complementarity and competition)^{26,33}. Additionally, those findings may vary contingent on
125 spatial contexts and scales (most across-site studies are region-specific^{34,35}), and/or temporal
126 scale (most single-site studies cover only two or several contrasting climatic years^{30,31}). To
127 date, relatively few studies have simultaneously examined how different facets of diversity
128 drive tree growth across various climate conditions spatially and temporally.

129 To our knowledge, two observational studies have evaluated the impacts of both temporal
130 and spatial climate variation on tree diversity effects on forest productivity^{16,36}, and found
131 greater effects of tree species richness and functional diversity in drier sites, with species
132 richness effects unaffected by inter-annual variation, and increased functional diversity
133 effects in drier years. However, these studies focused on the community rather than the
134 neighbourhood scale at which species interactions take place, examined one facet of
135 biodiversity (either tree species richness or functional diversity), and were limited to specific
136 biomes (i.e. temperate and boreal forests)¹⁶ or forest types (dryland forests)³⁶. Here, we
137 examine how tree diversity effects vary with climate spatially and temporally using
138 individual tree growth and neighbourhood data from 15 tree diversity experiments across a
139 broad range of climates and four biomes. Although data from young experimental forest sites

140 have certain limitations and may not always be applicable to more mature, natural forests, our
141 study advances our insight into the climate dependency of tree diversity effects. By covering
142 a broader bioclimatic gradient than prior studies and using an explicit neighbourhood rather
143 than community-scale approach, we examine how species richness and functional trait
144 diversity drive neighbourhood influences on tree growth.

145 A number of metrics can be employed to quantify effects of tree diversity at the
146 neighbourhood scale, including neighbourhood species richness, trait dissimilarity and trait
147 hierarchy. Neighbourhood species richness has been considered a powerful metric to capture
148 tree diversity effects on tree growth^{11,37}. Richness effects on growth of an individual tree can
149 differ in direction and magnitude^{11,12}, which may depend on the functional characteristics of
150 the focal tree and the functional diversity of the neighbourhood^{13,30,38}. Traits approaches can
151 potentially lead to a more mechanistic understanding of species interactions. Functional traits
152 that represent plant resource acquisition strategies^{39,40} mediate outcomes of complementary
153 (i.e., resource partitioning or facilitation) or competitive interactions among neighboring
154 species^{41–43}. Neighbourhood interactions expressed through trait differences among species
155 may be non-directional (i.e., dissimilarity) or directional (i.e., hierarchy)^{41,44,45}. Trait
156 dissimilarity, a proxy for niche differences, may result in greater resource partitioning, and/or
157 higher facilitation and lower competition⁴⁴, and is closely related to complementary
158 interactions^{43,46}. Trait hierarchy, a proxy for fitness differences, is closely related to
159 competitive interactions⁴⁶; tree growth responses to neighbourhood diversity may depend on
160 the competitive advantage associated with particular trait values (i.e, whether the focal tree
161 has higher or lower trait values compared to its neighbors)^{43–45}. Therefore, we hypothesize
162 that neighbourhood species richness, trait dissimilarity, and traits characterizing high
163 competitive ability promote individual tree growth (H1; Fig. 1A).

164 We further hypothesize that neighbourhood diversity effects are stronger under drier
165 conditions in terms of both spatial (across sites) and temporal (within sites) variability (H2a;
166 Fig. 1B), based on the predictions of the stress-gradient hypothesis^{21,22}. However, two other
167 outcomes are also hypothetically possible. Neighbourhood diversity effects may vary with
168 spatial climate variations rather than temporal variation (H2b), due to canopy structure and
169 carbon reserves that buffer the influence of interannual climate variation^{16,47,48}. Alternatively,
170 neighbourhood diversity effects may be more strongly mediated by climate variation within
171 than across sites (H2c), as the outcomes of plant interactions might be weakly related to
172 spatial climate variation^{41,49}. Identifying which of these hypotheses are fully or partly true is
173 crucial to assess how neighbourhood diversity effects vary with climate variability in space
174 and time.

175 In the present study we analyze 852,170 growth records of 113,701 tree individuals from 129
176 tree species, covering multiple years (4-14 inventories per site, 84 site \times year combinations;
177 Supplementary Figs. 1 and 2). Records were collated from 15 experiments, primarily within
178 the TreeDivNet network (<https://www.treedivnet.ugent.be>), across a broad range of climates
179 and four biomes (Fig. 2), which manipulated community tree species richness (in the early
180 stages of stand development; from monocultures to 24-species mixtures), creating a gradient
181 from monospecific to diverse tree neighbourhoods (1 to 12 species; Supplementary Table 3).
182 To test H1, across all sites and years, we assessed the overall mean effects of neighbourhood
183 species richness and trait differences associated with three key functional traits
184 (Supplementary Fig. 3): specific leaf area, leaf nitrogen content, and wood density. These
185 traits are linked to resource (e.g., light and carbon) acquisition and hydraulic efficiency^{39,40}.
186 To test H2 and its alternatives, we examined how neighbourhood diversity effects on tree
187 growth relate to climatic water availability across and within sites.

188

189 **Results**

190 ***Positive neighbourhood diversity effect on tree growth***

191 Focal tree growth, measured as annual basal area increment (BAI), ~~which reflects structural~~
192 ~~development over a short term and emphasizes physical growth and expansion~~, was analyzed
193 as a function of its size in the preceding year, the effects of neighbourhood competition
194 intensity, and neighbourhood tree diversity (either neighbourhood species richness (NSR),
195 trait dissimilarity or trait hierarchy). After accounting for the influence of the focal tree size
196 and neighbourhood competition intensity (i.e., basal area of neighboring trees;
197 Supplementary Fig. 4), we found a positive effect of neighbourhood species richness on tree
198 growth (Fig. 3A; Supplementary Table 4). Individual tree growth was on average 8.7% (95%
199 CI 1.1 to 17.4) higher in neighbourhoods with high species diversity (six different species,
200 the highest richness common to most sites) compared to growth with monospecific
201 neighbourhoods (Fig. 3B).

202 Neighbourhood trait dissimilarity also had a positive effect on focal tree growth: individual
203 tree growth increased by 6.6% (95% CI 0.5 to 12.6), 7.9% (2.4 to 15.1), and 13.3% (2.9 to
204 24.8) with high dissimilarity (set at 90th percentile of dissimilarity indices across all sites;
205 Supplementary Fig. 5A) of specific leaf area, leaf nitrogen content, and wood density,
206 respectively. However, neighbourhood trait hierarchies — indicative of competitive ranks —
207 did not show any significant associations with tree growth (Fig. 3A; all 95% CIs included
208 zero). Overall, increasing neighbourhood species richness and trait dissimilarity from
209 monospecific to high-diversity neighbourhoods enhanced individual tree growth by 7-13% on
210 average. Additionally, the median-level (50th percentile) increases in neighbourhood species
211 richness and trait dissimilarity also promoted focal tree growth by an average of 1%-3% (Fig.
212 3B).

213

214 ***Neighbourhood diversity effects vary with climatic conditions***

215 We further examined whether neighbourhood diversity effects on focal tree basal area growth
216 changed with climate spatially (across sites) and temporally (across years within sites). The
217 positive effects of neighbourhood species richness on focal tree growth increased as water
218 availability (precipitation / potential evapotranspiration; P/PET) increased across sites and
219 years (Fig. 4; Supplementary Table 5), and this increase was almost exclusively caused by the
220 differences between sites with different average water availability (Supplementary Table 6).
221 Specifically, the neighbourhood species richness effect on tree growth was weak to negligible
222 in ecosystems with low water availability, but stronger and more positive at sites with higher
223 water availability. However, within sites, the strength of the neighbourhood species richness
224 effect was generally not influenced by changes in water availability year to year (Fig. 4;
225 slopes of the individual sites). When considering climate anomalies (standardized
226 precipitation-evapotranspiration index, SPEI), the effects of neighbourhood species richness
227 on tree growth did not change with the intensity of climate events (Supplementary Fig. 6).
228 The influence of neighbourhood trait dissimilarity for the three traits (specific leaf area, leaf
229 nitrogen content, and wood density) on growth did not change along the water availability
230 gradients both across and within sites (Fig. 5A-C and Supplementary Table 6), and the
231 influences were generally positive at most sites (13 out of 15 sites). There were also weak
232 associations between water availability and the effects of neighbourhood trait hierarchy
233 across and within sites (Fig. 5D-F). When considering climate anomalies within sites (i.e.,
234 temporal variability), the effects of neighbourhood trait dissimilarity and hierarchy on tree
235 growth did not change with variation in the intensity of climate events (in relation to SPEI;
236 Supplementary Fig. 7).

237 Further results indicated that forest age was not a confounding factor affecting the observed
238 relationships between neighbourhood diversity effects and climatic water availability. First,

239 there was no significant correlation between model residuals and forest age (Supplementary
240 Fig. 8). Second, when forest age was included as a covariate, it did not affect neighbourhood
241 diversity effects (Supplementary Table 5). Additionally, the greater effects of neighbourhood
242 species richness on tree growth in wetter sites were not attributable to longer experimental
243 durations. Neighbourhood species richness still generally increased tree growth more with
244 high water availability (Supplementary Fig. 9) when data was restricted in the earlier years
245 (from 3 to 6 years; a common period to most sites). As tree size in the preceding year (usually
246 highly correlated with age) was included as a covariate, our models controlled for stand age,
247 allowing us to isolate the neighbourhood diversity effects on tree growth along the gradient of
248 climatic gradient from temporal dynamics.

249

250 **Discussion**

251 We found that the positive neighbourhood diversity effect increased from dry to wet climates
252 but was unaffected by inter-annual variation within sites. These results were inconsistent with
253 our hypothesized scenarios regarding the climate dependency of tree diversity effects, and
254 contrary to most previous studies which found amplified diversity effects in drier
255 sites^{13,16,17,24}. Still, our findings corroborate previous studies showing that plant diversity can
256 enhance productivity and carbon storage, providing an effective nature-based solution at local
257 scales¹⁻⁴. We thus confirmed our hypothesis that neighbourhood tree diversity positively
258 impacts tree growth across various climatic conditions. Overall, these findings highlight the
259 crucial role of neighbourhood-scale tree diversity in enhancing growth, and reveal that its
260 influence varies according to spatial climatic conditions.

261 Our study confirms the positive effects of neighbourhood species richness on tree growth,
262 and also underscores the importance of functional trait dissimilarity and, to a lesser extent,
263 trait hierarchy, both of which relate to two important components determining net diversity

264 effects: complementarity and competitive interactions. The positive effects of neighbourhood
265 trait dissimilarity indicate that dissimilarity in light and carbon capture (i.e., through specific
266 leaf area and leaf nitrogen content) and hydraulic efficiency (i.e., through wood density)
267 between focal and neighboring trees can enhance tree growth. Generally, mechanisms behind
268 the positive effect are complementary strategies in light absorption⁵⁰, water uptake²⁶ and
269 use^{30,51}, mineral nitrogen use⁵², increases in tree water use efficiency⁵¹, facilitation via
270 hydraulic lift⁵³, and/or more stable microclimatic conditions^{47,48}. We did not find consistent
271 effects of neighbourhood trait hierarchies on tree growth. Competitive advantages can arise
272 from high or low resource acquisition capacity or hydraulic efficiency across different
273 climatic conditions. For example, species with high resource acquisition capacity and
274 hydraulic efficiency (e.g., higher specific leaf area and leaf nitrogen content, and lower wood
275 density) usually have great competitive advantages when the water availability is high,
276 whereas species exhibiting drought-adapted trait values (e.g., higher wood density) have great
277 competitive advantages in dry conditions⁵⁴.

278 We found that the intensity of neighbourhood species diversity effects on tree growth was
279 stronger at sites with higher water availability. This may be due to enhanced light-use
280 complementarity effects in wetter sites (where water is not the limiting resource but light is),
281 leading to greater canopy niche partitioning and more efficient light utilization^{34,38,55,56},
282 thereby strengthening the positive impact of biodiversity on tree growth⁵⁷. Additionally,
283 stronger intra-specific competition and higher negative density dependent effects from natural
284 enemies and pathogens could also contribute to the higher intensity of neighbourhood
285 diversity effects in wetter sites⁵⁸. For example, increased water availability tends to boost
286 phytophagous insect activity⁵⁹ and pathogenic fungi infection rates on healthy hosts⁶⁰.
287 However, these multitrophic mechanisms might be weakly captured by leaf and wood trait
288 differences (i.e., the absence of increased effects of trait dissimilarity and hierarchy of leaf

289 economic traits and wood density at sites with higher water availability in this study). A more
290 comprehensive understanding of climate-dependency of trait-based neighbourhood effects
291 could be gained by integrating other combinations of traits (e.g., leaf metabolic and
292 belowground traits^{61,62}) from a multitrophic perspective⁶³, but currently we lack the trait data
293 to capture such effects.

294 Our results differ from most previous studies that found stronger tree diversity effects in
295 harsh environments (e.g., drier, colder, or poor site conditions)^{13,16,17,24}. These stronger effects
296 are typically attributed to decreased competition but increased complementarity or
297 facilitation^{16,17,20}. We found positive effects of neighbourhood trait dissimilarity, indicative of
298 complementary interactions, at sites with low water availability. However, the focal tree's low
299 competitive ability might diminish these complementary benefits, resulting in an overall
300 weak effect of neighbourhood species diversity. Limited hydrological niche space and
301 nutrient availability in dry sites may also constrain complementary interactions related to
302 water and nutrient acquisition⁶⁴. Furthermore, a modeling study indicated that biodiversity
303 effects can be negative at both ends of the stress gradient, depending on how stress affects
304 complementary and competitive species interactions⁶⁵. Quantifying the strengths and
305 importance of complementarity and competition in future studies may help gain better
306 mechanistic insights into the influences of biodiversity on ecosystem functioning along
307 climatic gradients.

308 The generally positive effects of neighbourhood species diversity and trait dissimilarity on
309 tree growth did not vary with environmental variability within sites (i.e., dry/wet years). Still,
310 the process by which diversity effects operate may differ between wet and dry years. In dry
311 years, positive neighbourhood diversity effects on tree growth may arise through increased
312 complementarity for water resources (e.g., functionally distinct neighbors partition water
313 resources through contrasting uptake strategies²⁶, water stress release through hydraulic lift⁵³,

314 or microclimatic buffering effects⁴⁸). In wet years, neighbourhood diversity effects may take
315 place via complementarity for light through enhanced light interception and use
316 efficiency^{34,56}. However, several previous studies have shown that increased tree species
317 richness does not uniformly enhance their capacity to withstand drought^{26,34,66}. While tree
318 diversity might have positive or neutral effects under mild drought, it can become negative
319 during severe or extreme drought due to intensified competition for limited soil
320 water^{29,32,34,65}. Furthermore, our results showed that the trait hierarchy of leaf nitrogen content
321 (a focal tree has higher leaf nitrogen content than its neighbors) shifted from negative during
322 severely dry conditions to positive during wet conditions, suggesting that competition for
323 light and nutrient resources drive neighbourhood interactions in wet conditions¹⁶. Further
324 studies are needed to quantify the strength of niche partitioning, facilitation, and interspecific
325 competition under different resources to better explore mechanisms of neighbourhood
326 diversity effect under varying drought intensities.

327 Due to data availability, we examined neighbourhood diversity effects on focal tree basal area
328 increment rather than other growth metrics such as height, stem volume, or biomass. A
329 previous study found similar diversity effects on tree height and basal area increment, with
330 larger proportional influence on biomass due to allometry⁵. Thus, we expect neighbourhood
331 diversity to have a proportionally larger effect on total tree carbon storage, as this increases
332 with stem volume and biomass. Although the biodiversity-productivity relationship has been
333 found to be non-linear along a broad climate gradient¹⁹, we did not capture non-linear
334 relationships between neighbourhood diversity effects and climatic water availability
335 (Supplementary Table 7), possibly due to limited data from extreme climatic conditions.
336 Climate change is expected to intensify drought and aridity, which will affect ecosystem
337 functioning⁶⁷. It remains unknown whether neighbourhood diversity effects on tree growth
338 will follow linear trends under extreme climate conditions. Additionally, our study focused

339 on young experimental plantations, which are usually more susceptible to climate variation
340 than mature forests⁶⁸. Furthermore, our results reveal considerable variation in effects of
341 neighbourhood species richness on tree growth across and within forest biomes (Fig. 4). For
342 instance, these effects increased from a water-limited Mediterranean site to water-abundant
343 tropical sites, and also tended to increase with water availability within biomes (e.g.,
344 temperate forests). Further studies are needed to investigate the differences among and within
345 biomes and to link them to local ecological contexts (e.g., light availability and soil
346 characteristics) of forests.

347 The overall positive neighbourhood diversity effect on tree growth we found in young
348 experimental forest communities aligns with previous studies showing that diversity effects
349 are generally positive in natural forests and forest plantations, driven by complementary use
350 of aboveground space^{5,6,16,69,70}. However, the experimental pattern of tree neighbourhood
351 diversity effects across diverse, spatial and temporal, climatic conditions, likely does not
352 closely mirror those in natural forest ecosystems. Tree density in natural forests varies
353 considerably across climatic gradients and over time (as opposed to being largely
354 experimentally fixed), which may change the dynamics of complementarity and competition
355 interactions, and therefore the tree diversity effects on growth^{18,20}. The variation in tree
356 density across different biomes/climates deserves further investigation to understand how tree
357 diversity effects on productivity along climate gradients differ between experimental and
358 natural systems. In addition, the influence of heterogeneous abiotic environments (e.g., soil
359 characteristics and microclimate) may modulate diversity effects on tree growth^{19,71}. Further
360 studies with the combination of data from long-term forest diversity experiments and from
361 natural forests are needed to further elucidate the spatial and temporal climatic dependence of
362 tree diversity effects.

363 While neighbourhood diversity positively influences tree growth and regulates tree diversity–
364 productivity relationships in forests^{10,24,72}, our results suggest its potential role in mitigating
365 climate change impacts varies according to the local climate. Still, the average positive
366 effects of neighbourhood tree diversity on tree growth across various climatic conditions
367 suggest benefits for establishing multi-species stands with diverse neighbourhood as nature-
368 based reforestation practices. Establishing and maintaining high-levels of neighbourhood
369 diversity through appropriate approaches in young plantations can enhance tree growth,
370 thereby improving the efficacy of nature-based climate solutions. Moreover, forest
371 management approaches that incorporate tree neighbourhood diversity should consider the
372 climate dependency of biodiversity effects (e.g., more benefits in wetter sites) to achieve
373 more targeted and effective site-specific natural climate solutions.

374

375 **Methods**

376 *Data collection*

377 We assembled a dataset combining data from 15 forest biodiversity experiments, in which 14
378 of the experiments are within the global network TreeDivNet^{73,74} (www.treedivnet.ugent.be).
379 The studied experiments cover broad conditions ranging from tropical and subtropical to
380 mediterranean and temperate biomes (Fig. 1, Supplementary Fig. 1). All tree diversity
381 experiments were designed with a gradient of species richness at community level ranging
382 from monocultures to 24-species mixtures (see the details of the experiments included in this
383 study in Supplementary Table 3). At the neighbourhood scale, species richness ranged from 1
384 (focal trees grow in neighbourhoods with no heterospecific neighbors) to 12 (focal trees grow
385 alongside heterospecific neighbors with 11 other species). Experiments included in this study
386 met the following criteria: 1) experiments with measurements for at least three census
387 intervals (i.e., four different years); 2) individual-level basal diameter (BD) (including

388 monocultures and mixtures) measured at least every three years; 3) the x–y coordinates of
389 individual trees within each plot were available for the calculation of local neighbourhood.
390 Data from the initial two years after planting were excluded from each experiment because
391 interactions among neighboring trees were not evident during this period. The dataset across
392 the 15 sites included 852,170 growth records of 113,701 trees from 129 tree species,
393 measured over 4–14 inventory years per site (Supplementary Fig. 1).

394 *Climate data*

395 We extracted annual mean temperature and precipitation, and mean annual
396 evapotranspiration for each year at each experimental site from ERA5-Land⁷⁵, with a spatial
397 resolution of 9 km. To estimate the annual water availability for each year at each site, we
398 calculated the ratio of annual climate precipitation (P) to potential evapotranspiration
399 (PET)⁷⁶. Higher values of water availability (P/PET) indicate wetter conditions. For example,
400 the drier sites usually have lower P/PET values (<0.65) whereas the wetter sites have higher
401 P/PET values (>1) (Supplementary Fig. 2). We focused on climate-driven water availability,
402 without accounting for the possible impacts of the soil water reserve.

403 We also obtained the Standardized Precipitation–Evapotranspiration Index (SPEI; from the
404 global SPEIbase⁷⁷; with a 0.5-degree spatial resolution) to determine annual water balances
405 for each year at each site. SPEI is a site-specific indicator of the deviations of climatic
406 balance (precipitation minus potential evapotranspiration) over a selected window from the
407 historical long-term average (between 1901 and 2023), which can identify dry/wet years with
408 “abnormal” climatic water balance for a given experimental site^{77,78}. In this study, we
409 considered annual water balances (calculated for a 12-month timescale) as previous studies
410 have shown that annual growth rates respond to approximately annual water balances in both
411 arid and humid biomes⁷⁸. For example, both dry and wet sites can experience extremely dry
412 (SPEI \leq –1.5) and wet years (SPEI \geq 1.5) based on each site’s historical average.

413 *Calculation of individual tree growth*

414 In our dataset, measured basal diameter at 5-10 cm above ground was available from 15
415 experiments, whereas only tree ring records were available from one experiment (BEF-
416 China³⁰). Although there were differences in the methods for tree growth measurements,
417 combining them to test diversity effects on tree growth has been shown feasible⁶⁹. We
418 estimated individual tree growth as annual basal area increment (bai, $\text{cm}^2 \text{ year}^{-1}$) based on the
419 basal diameter (BD) measurements from the growth inventories or tree ring records. Annual
420 basal area increment for each individual tree i , was calculated as the difference in the basal
421 area in the current inventory year (t) and the previous inventory year (t_{t-1}) and divided by the
422 time difference, in years, between measurements:

$$423 \quad bai_{i,t} = \frac{\frac{\pi \cdot BD_{i,t}^2}{4} - \frac{\pi \cdot BD_{i,t-1}^2}{4}}{t_t - t_{t-1}} \quad (1)$$

424

425 *Species functional traits*

426 We focused on species-specific leaf area (SLA; $\text{mm}^2 \text{ mg}^{-1}$), leaf nitrogen content (LNC; mg
427 g^{-1}), and wood density (WD; g cm^{-3}), as these traits are important for explaining plant
428 resource acquisition strategies³⁸⁻³⁹, and are available for a large number of species. Trait
429 values were obtained from TRY⁷⁹, the Botanical Information and Ecology Network⁸⁰, and the
430 global wood density database^{40,81}, or from site-specific measurements when available. We
431 used species mean trait values to define plant resource-use strategies without accounting for
432 intraspecific trait variation due to the lack of individual-level trait measurements across and
433 within experiments. Trait values can vary depending on individual tree and stand
434 conditions^{82,83} and variability in specific functional traits within species can influence stand
435 productivity and functioning^{84,85}. However, interspecific trait variation is usually greater than
436 intraspecific variation, and species-level trait means primarily reflect plants' acquisition

437 strategies as an evolutionary outcome, and are effective in mediating outcomes of interactions
438 among neighbors⁴¹.

439 Data for SLA, LNC and WD were available for 92%, 92%, 98% of 129 species. Most species
440 had measurements for three traits (n=113; Supplementary Fig. 3C). Missing trait values were
441 gap-filled using the phylogenetic imputation procedure in the missForest R package⁸⁶. The
442 phylogeny was obtained using the R package V.Phylomaker⁸⁷, with the GBOTB phylogeny
443 as the backbone⁸⁸. The phylogeny in this analysis was fully resolved without polytomies (129
444 tips, 128 internal nodes). We compared the correlations between functional traits across
445 species with complete measured traits (n=113) and across species with the imputed trait
446 values, and found that they had similar patterns (Supplementary Fig. 3A,B), ranging from
447 “conservative” (lower SLA, LNC and higher WD) to “acquisitive” strategies (higher SLA,
448 LNC and lower WD). The density distributions of each trait for measured and imputed data
449 were also similar (Supplementary Fig. 3C,D). We used the imputed trait dataset in the
450 subsequent analyses of the effect of neighbourhood functional diversity on tree growth,
451 which ensured a consistent dataset across all species richness-based and trait-based
452 neighbourhood analyses.

453

454 *Neighbourhood-scale competition index, species richness, trait dissimilarity and hierarchy*
455 The distance of immediate neighbor trees surrounding a focal tree varies across different
456 experiments due to the different planting distances (ranging from 0.4 to 3m, Supplementary
457 Table 3). The neighbourhood radius was determined by calculating the diagonal distance in a
458 grid-planted design using the maximum planting distance (3 m) across all experiments,
459 calculated as $\sqrt{3^2 + 3^2}$. This radius ensured a feasible distance to include all
460 immediate neighbors around each focal tree, including individuals at grid diagonals, allowing

461 for a standardized comparison across studies. Alternatively, we also used a varying
462 neighbourhood radius (0.4-3m) for different experiments, which detected all the immediate
463 individuals surrounding a focal tree within each site. Previous studies have shown that the
464 detectable neighbourhood effects can extend beyond a focal tree's nearest neighbors⁸⁹. The
465 models using a varying neighbourhood radius produced similar results as those from the
466 model with a fixed distance (Supplementary Fig. 10). For simplicity we opted for the latter,
467 hence, the main results presented in this study were based on the fixed radius neighbourhood
468 radius.

469 We calculated multiple indexes to capture the neighbourhood conditions of a focal tree,
470 including neighbourhood competition index (NCI), neighbourhood species richness (NSR),
471 trait dissimilarity (ND) and hierarchical trait difference (NHD) between a focal tree and its
472 neighbors. NCI was estimated as the distance-dependent index based on the size and distance
473 of its neighbors^{45,90}, in which the competitive effect of a neighbor k on the focal tree i varies
474 as a direct function of the basal area of the neighbor k ($BA_{i,k}$) and an inverse function of the
475 distance to the neighbor ($Distance_{i,k}$). NCI of all neighbors on the focal tree was summed
476 over all neighbors n within the radius around the focal individual i (equation (2)). For focal
477 tree i and its n neighbors k :

$$478 \quad NCI_{i,t} = \sum_{k=1}^n BA_{k,t-1} \times \frac{1}{Distance_{i,k}} \quad (2)$$

479 NSR was estimated as the number of heterospecific (different species identity as the focal
480 tree) tree species within the radius around the focal individual. Neighbourhood trait
481 dissimilarity (ND) and hierarchical difference (NHD) were estimated for each trait as the
482 dissimilarity (i.e., absolute difference) and hierarchical difference (i.e., directional difference)
483 in trait values between the focal tree and its neighbors, respectively^{41,45}. ND is a proxy for the
484 magnitude (but not direction) of niche differentiation among neighboring species, and greater
485 trait dissimilarity may result in greater resource partitioning, and/or higher facilitation and

486 lower competition. NHD is a proxy for differences in traits, which may reflect fitness
 487 differences, and is closely related to hierarchical competition. The overall ND or NHD of a
 488 focal tree was calculated as the mean of pairwise trait dissimilarity or hierarchical trait
 489 differences weighted by the distance and size of neighbors (equations (3) and (4)).

$$490 \quad ND_{i,t} = \frac{\sum_{k=1}^n abs(T_i - T_k) \times \frac{BA_{k,t-1}}{Distance_{i,k}}}{\sum_{j=k}^n \frac{BA_{k,t-1}}{Distance_{i,k}}} \quad (3)$$

$$491 \quad NHD_{i,t} = \frac{\sum_{k=1}^n (T_i - T_k) \times \frac{BA_{k,t-1}}{Distance_{i,k}}}{\sum_{k=1}^n \frac{BA_{k,t-1}}{Distance_{i,k}}} \quad (4)$$

492 ND ranged from zero to positive (see Supplementary Fig. 11), with a value of zero indicating
 493 that a focal tree only grows surrounded by monospecific neighbors, and an increasing value
 494 indicating that a focal tree grows with an increasing number of heterospecific neighbors that
 495 have dissimilar functional traits with the focal tree. NHD_{trait} ranged from negative to positive
 496 (see Supplementary Fig. 11). A positive value of NHD indicates that a focal tree has higher
 497 trait values (e.g., in this case, higher specific leaf area and leaf nitrogen content, or higher
 498 wood density) compared with its neighbors, and a negative NHD_{trait} indicates that a focal tree
 499 has lower trait values compared with its neighbors. There were large variances of
 500 neighbourhood hierarchical trait difference and trait dissimilarity related to different
 501 combinations of neighboring tree species within the same level of neighbourhood species
 502 richness (Supplementary Fig. 5B). In addition, NCI was very weakly correlated with each ND
 503 or NHD index (Supplementary Fig. 11).

504

505 *Statistical analysis*

506 We used two-level hierarchical Bayesian models to assess neighbourhood effects on tree
 507 growth. The hierarchical Bayesian model can effectively accommodate our data's hierarchical

508 structures, incorporating dependencies and variations across different levels (including sites,
509 years, species, and individuals) and providing coherent inference and reliable estimates⁹¹.

510 At the first level, we modeled the growth of a focal individual tree (i) from species (j) in
511 experimental site (s) in a specific year (t) as a function of the tree size in the preceding year,
512 neighbourhood competition and tree diversity indices (either NSR, ND or NHD). We
513 constructed separate models to test the effect on individual tree growth from NSR (equation
514 5.1), ND (equation 5.2) or NHD (equation 5.3).

515 Likelihood:

$$516 \quad \log(bai_{i,j,s,t}) \sim \text{Normal}(G_{i,j,s,t}, \sigma_{j,s,t}^2)$$

517 Process models:

$$518 \quad G_{i,j,s,t} = \beta_0_{j,s,t} + \beta_1_{j,s,t} \log(BA_{i,j,s,t-1}) + \beta_2_{j,s,t} \log(NCI_{i,j,s,t}) + \beta_3_{j,s,t} \text{NSR}_{i,j,s,t} \quad (5.1)$$

519 or

$$520 \quad G_{i,j,s,t} = \beta_0_{j,s,t} + \beta_1_{j,s,t} \log(BA_{i,j,s,t-1}) + \beta_2_{j,s,t} \log(NCI_{i,j,s,t}) + \beta_3_{j,s,t} \text{ND}_{i,j,s,t} \quad (5.2)$$

521 or

$$522 \quad G_{i,j,s,t} = \beta_0_{j,s,t} + \beta_1_{j,s,t} \log(BA_{i,j,s,t-1}) + \beta_2_{j,s,t} \log(NCI_{i,j,s,t}) + \beta_3_{j,s,t} \text{NHD}_{i,j,s,t} \quad (5.3)$$

523 where $\log(bai_{i,j,s,t})$, $\log(BA_{i,j,s,t-1})$, and $\log(NCI_{i,j,s,t})$ represent the log-transformed annual
524 growth, tree size in the preceding year, neighbourhood competition of focal tree i of species j
525 in experimental site s in a specific year t ; $\beta_0-3_{j,s,t}$ are the intercept and coefficients associated
526 with $\log(bai_{i,j,s,t})$, $\log(BA_{i,j,s,t-1})$, $\log(NCI_{i,j,s,t})$, and $\text{NSR}_{i,j,s,t}$, or $\text{ND}_{i,j,s,t}$ or $\text{NHD}_{i,j,s,t}$. NCI
527 captures the trait-independent competition for the focal tree, while ND and NHD reflect trait-
528 dependent interaction processes⁴¹. The plot identity within each site was not included as a

529 random factor in the model because: 1) there was insufficient replication within each species-
530 site-year combination to reliably estimate plot-level variance, and 2) the plot effect was not
531 identifiably different from the residual ‘noise’ term (Supplementary Fig. 12).

532 The effect of NCI on focal tree growth is represented by the β_2 coefficient, which can be
533 negative or positive, indicating evidence of competition or facilitation, respectively. The
534 effect of neighbourhood tree diversity indices (either NSR, ND or NHD) is determined by the
535 β_3 coefficient. A positive coefficient of NSR (or trait dissimilarity, ND) indicates that
536 neighbors with higher species richness (or greater trait differences with focal tree) is
537 positively associated with the growth of the focal tree, via the amelioration of crowding
538 effects or facilitation; a negative coefficient indicates that higher species richness (or greater
539 trait differences) may diminish focal tree growth, likely due to intensified competition for
540 resources. A positive coefficient of NHD indicates that tree growth is higher when the focal
541 tree has a relatively higher trait value compared with its neighbors as it has a higher
542 competitive advantage than the neighbors, and a negative coefficient of NHD indicates that
543 tree growth is higher when the focal tree has a relatively lower trait value compared with its
544 neighbors. We modeled one trait at a time to test the effects of trait dissimilarity or trait
545 hierarchy on tree growth to manage model complexity and differences among traits.

546 To assess the overall effects of tree diversity (testing hypothesis 1), we modeled the
547 coefficients from the first level (i.e., $\beta_{0-3,j,s,t}$ from equations 5) as the overall average effect
548 across all sites and years ($B_{overall}$), and the random effects for species j (ε_j , normally
549 distributed around 0 with variance σ_j^2) and experimental site s (ε_s , normally distributed
550 around 0 with variance σ_s^2) at the second level:

$$551 \quad \beta_{j,s,t} \sim Normal (B_{j,s}, \sigma^2)$$

$$552 \quad B_{j,s} = B_{overall} + \varepsilon_j + \varepsilon_s \quad (6)$$

553 Based on the $B_{overall}$, we then predicted the percent change in focal tree growth from growing
554 with monospecific neighbors at median (50th percentile of index across all sites) and high
555 (90th percentile) level of neighbourhood diversity (Fig. 3; Supplementary Fig. 5A). The
556 detailed interpretation of the predicted percent change (P, %) in individual tree growth with
557 changing neighbourhood diversity can be found in the Supplementary Methods.

558 To assess the strengths of neighbourhood interactions along the climatic gradient (testing
559 hypothesis 2), we constructed additional hierarchical Bayesian models. We modeled the
560 coefficients for each species-level (i.e., $\beta_{0-3j,s,t}$ from equations 5) as a linear function of the
561 annual climatic variables at site s (equations 7). We estimated the overall relationship
562 between the strengths of neighbourhood diversity and the climatic water availability across
563 sites and years, also including random effects for experimental site s (ε_s) and species j (ε_j):

564
$$\beta_{j,s,t} \sim Normal(B_{j,s,t}, \sigma^2)$$

565
$$B_{j,s,t} = \gamma_0 + \gamma_1 \times Climate_{s,t} + \varepsilon_j + \varepsilon_s \quad (7)$$

566 where

567
$$\varepsilon_j \sim Normal(0, \sigma_j^2), \varepsilon_s \sim Normal(0, \sigma_s^2)$$

568 The γ_0 here represents the overall neighbourhood diversity effects estimated in equations 6
569 after accounting for climatic effects.

570 To distinguish within- versus between-sites climate effects⁹², we included both site mean
571 climate and deviations from the site mean, we also included random intercepts and slopes for
572 experimental site s , and the random intercepts for species j (ε_j) (equation 8):

573
$$B_{j,s,t} = G_0 + \gamma_0[s] + G_1 \times \overline{Climate_s} + \gamma_1[s] \times (Climate_{s,t} - \overline{Climate_s}) + \varepsilon_j \quad (8)$$

574 where $\text{Climate}_{s,t}$ refers to the climatic water availability of a specific year t at experimental
575 site s , and $\overline{\text{Climate}}_s$ refers to the mean value of climatic water availability in the
576 experimental site.

577 As tree diversity effects have been shown to be nonlinear along broad climatic gradients¹⁹,
578 we also constructed nonlinear models to examine whether there were any nonlinear
579 relationships between neighbourhood diversity effects on tree growth and climatic water
580 availability across sites and years. However, the model comparison indicated that the linear
581 model had a better fit than the nonlinear model, i.e., Deviance Information Criterion⁹³ (DIC)
582 of linear model was generally lower than the nonlinear model (Supplementary Table 7).
583 Therefore, we reported the relationship between neighbourhood diversity effects and climatic
584 water availability as a linear relationship. In addition, to evaluate whether forest age could
585 confound the relationship between neighbourhood diversity effects and climatic water
586 availability, we examined model residuals as a function of forest age. There was no
587 significant correlation between the residuals of our current model and forest age
588 (Supplementary Fig. 8), indicating that forest age was not a potentially confounding factor of
589 the relationship between neighbourhood diversity effects and climatic water availability in
590 this study.

591 We used non-informative prior distributions for all parameters (see Supplement for JAGS
592 code), and estimated the parameters using Markov chain Monte Carlo (MCMC) sampling
593 techniques in JAGS 4.3.2 and R 4.4.0⁹⁴ using the *rjags* package⁹⁵. We ran three parallel
594 chains (50,000 iterations following a 50,000-iteration burn-in period, followed by a thinning
595 of 50, retaining 1000 posteriors per chain) with different initial values and checked parameter
596 convergence by using Gelman and Rubin's convergence diagnostics (with a threshold value
597 <1.1) and visual inspection of traceplots. To estimate standardized coefficients as the
598 standardized effect size, explanatory variables were standardized (divided by their standard

599 deviations) before analysis. Model selection for tree growth models was done based on
600 comparisons of the DIC (Supplementary Table 8) and on goodness of fit (R^2 , predicted vs.
601 observed). Our neighbourhood-scale model had a Goodness-of-fit (R^2) ranging from 0.18 to
602 0.87 across species (Supplementary Fig. 13).

603 To test whether wetter sites with higher tree growth might have led to earlier aboveground
604 interactions than drier sites, we compared the initial planting density and basal area
605 accumulation over forest age across different experiments. In our dataset, the experiments in
606 drier sites tended to have a higher planting density than those in wetter sites (Supplementary
607 Fig. 14A). According to the comparison of neighbourhood-scale basal area (calculated as the
608 sum of basal area for all individuals within the neighbourhood radius 4.24 m) in
609 monocultures over time for different experiments, there was no evidence that the experiments
610 in wetter sites (e.g., Sardinilla, a tropical experiment) began interacting sooner than those
611 high-density experiments in drier sites (e.g., IDENT-Cloquet, a temperate experiment)
612 (Supplementary Fig. 14B). Furthermore, we did not find that the experiments in wetter sites
613 accumulated higher mean basal area than those high-density experiments in drier sites
614 (Supplementary Fig. 14C). The high-density planting promoted neighboring trees to interact
615 with each other earlier, allowing us to detect tree diversity effects and their mechanisms at an
616 early stage. Therefore, we can somewhat rule out the possibility that the higher
617 neighbourhood tree diversity effects detected in wetter sites were because trees began
618 interacting sooner aboveground compared with drier sites. Meanwhile, the sites with greater
619 neighbourhood species richness effects on tree growth did not correspond to those sites with
620 higher initial planting density, indicating that the higher neighbourhood tree diversity effects
621 were not caused by high initial planting density.

622 To further test whether greater neighbourhood diversity effects were driven by longer-
623 running experiments that have had more time to accumulate diversity effects, we did a further

624 sensitivity analysis by analyzing the neighbourhood tree species richness effects on tree
625 growth along climatic gradients by limiting our data in the earlier years (from 3 to 6 years; a
626 common period to most sites). We still found that neighbourhood species richness increased
627 tree growth more with higher water availability (Supplementary Fig. 9). These results further
628 indicate that climate, rather than forest age drove the pattern that we observed.

629

630 **Data availability**

631 The data including source data, information for each experiment, annual climate data, and
632 species-level trait data used in this study are archived in Figshare (<https://doi.org/10.6084/m9.figshare.29274887>). Raw tree growth data from sites that have been published
633 are publicly available, and non-public raw tree growth data are available upon reasonable
634 request and with permission of the principal investigators of the TreeDivNet network
635 coordinators (<https://treedivnet.ugent.be>).

637 **Code availability**

638 The R code for hierarchical Bayesian models used in this study is available at <https://doi.org/10.6084/m9.figshare.29274887>.

640

641 **Acknowledgments**

642 We thank TreeDivNet (<https://www.treedivnet.ugent.be>) for providing the essential platform
643 for this study. We acknowledge the significant contributions of all the researchers who
644 formulated the initial ideas and hypotheses, designed the tree diversity experiments,
645 conducted maintenance, and ensured regular data collection. The work of H.S.L. and J.J. for
646 assembling the TreeDivNet inventories dataset was funded by the MixForChange project
647 through the 2019-2020 BiodivERsA joint call for research proposals under the BiodivClim
648 ERA-Net COFUND program, and with the funding organizations ANR (ANR-20-EBI5-

649 0003), BELSPO, the German Research Foundation (Deutsche Forschungsgemeinschaft,
650 DFG) (project number 451394862), FAPESP, FWF (1 5086-B) and FORMAS (2020-02339).
651 K.Z. acknowledges funding from the US National Science Foundation (grant 2306198). The
652 maintenance of the FORBIO-Gedinne site is partly supported by the Walloon Forest service
653 (SPW – DNF) in the frame of the 5-yr research programme ‘Plan quinquennal de recherche et
654 de vulgarisation forestières’. IDENT-Macoemer would like to thank FORESTAS forest
655 nursery as well as L. Fadda, T. Chahine, and P. Zara for their support in data collection and
656 site management. N.E., J.Q., and O.F. acknowledge support of the German Centre for
657 Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig iDiv funded by the DFG–FZT
658 118, 202548816, and N.E. acknowledges funding by the DFG (Ei 862/29-1). The research of
659 F.S. in the BEF-China experiment was supported by the International Research Training
660 Group TreeDì, funded by the DFG (319936945/GRK2324) and the University of Chinese
661 Academy of Sciences. For the EFForTS-BEE project: support was provided by DFG (project
662 ID 192626868 /532776526): Biodiversity enrichment in oil palm plantations (EFForTS-BEE)
663 – long-term trajectories of plant succession and yield (to G.B.P., D.H., H.K., L.S., and B.I.).
664 J.C.B, P.B.R., A.S., and L.J.W. were supported by the ASCEND Biological Integration
665 Institutes (grant NSF-DBI-2021898); IDENT_FAB was also supported by the NSF-LTER
666 (grant 1831944). P.H.S.B acknowledges the São Paulo Research Foundation (grants
667 #2019/24318-6, 2021/10573-4; 2014/50279-4; 2020/15230-5), Shell Brazil (grant #22047-5),
668 and WeForest (grant #102946) for financial support. The establishment of the
669 IDENT_Freiburg site was supported by University of Freiburg (“Innovationsfonds
670 Forschung” grant to M.S.-L. and J.B.). K.S. was supported in part by the U.S. Department of
671 Agriculture, Forest Service. The findings and conclusions in this report are those of the
672 author(s) and should not be construed to represent any official USDA or U.S. Government
673 determination or policy. We thank Prof. C. Wirth for his support with data collection from the

674 BEF-China experiment, T. G. Souza for assistance with data analysis, M. N. Umaña and the
675 other members of the University of Michigan Institute for Global Change Biology for their
676 constructive comments, and A. S. Mori for the comments on the revision.

677 **Author contributions Statement**

678 L. Zheng and P.B.R. conceived the project. L. Zheng, P.B.R., I.I., L.J.W. and K.Z.
679 contributed to conceptual development. L. Zheng, H.S.-L., and J.J. assembled the data. L.
680 Zheng performed the analyses with contributions from I.I. and P.B.R. The initial manuscript
681 was prepared by the core group: L. Zheng, P.B.R., I.I., L.W., K.Z., H.S.-L., and J.J. All the
682 following authors including N.E., K.V., H.K., N.R.G.-R., G.B.P., C.M., A.P., A.S., M.S.-L.,
683 F.S., D.H., B.I., Q.P., S.M., J.B., P.H., C.A.N., J.C.-B., W.C.P., O.F., H.A., C.P., E.Y., B.Y.,
684 L. Zhang, Z.Z., K.S., J.S.H., J.G., A.R., L.S., P.H.S.B. contributed to editing and improving
685 several manuscript versions and/or data collection.

686

687 **Competing interests Statement**

688 The authors declare no competing interests.

689

690 **References**

- 691 1. Griscom, B. W. *et al.* Natural climate solutions. *Proc. Natl. Acad. Sci.* **114**, 11645–11650 (2017).
- 692 2. Loreau, M. *et al.* Biodiversity as insurance: from concept to measurement and application. *Biol.*
693 *Rev.* **96**, 2333–2354 (2021).
- 694 3. Messier, C. *et al.* For the sake of resilience and multifunctionality, let's diversify planted forests!
695 *Conserv. Lett.* **15**, e12829 (2022).
- 696 4. Mori, A. S. *et al.* Biodiversity–productivity relationships are key to nature-based climate
697 solutions. *Nat. Clim. Change* **11**, 543–550 (2021).
- 698 5. Feng, Y. *et al.* Multispecies forest plantations outyield monocultures across a broad range of
699 conditions. *Science* **376**, 865–868 (2022).

700 6. Liang, J. *et al.* Positive biodiversity-productivity relationship predominant in global forests.

701 *Science* **354**, aaf8957 (2016).

702 7. Blondeel, H. *et al.* Tree diversity reduces variability in sapling survival under drought. *J. Ecol.*

703 **112**, 1164–1180 (2024).

704 8. Jucker, T., Bouriaud, O., Avacaritei, D. & Coomes, D. A. Stabilizing effects of diversity on

705 aboveground wood production in forest ecosystems: linking patterns and processes. *Ecol. Lett.*

706 **17**, 1560–1569 (2014).

707 9. Schnabel, F. *et al.* Species richness stabilizes productivity via asynchrony and drought-tolerance

708 diversity in a large-scale tree biodiversity experiment. *Sci. Adv.* **7**, eabk1643 (2021).

709 10. Fichtner, A. *et al.* Neighbourhood interactions drive overyielding in mixed-species tree

710 communities. *Nat Commun* **9**, 1144 (2018).

711 11. Yu, W. *et al.* Systematic distributions of interaction strengths across tree interaction networks

712 yield positive diversity–productivity relationships. *Ecol. Lett.* **27**, e14338 (2024).

713 12. Potvin, C. & Dutilleul, P. Neighborhood effects and size-asymmetric competition in a tree

714 plantation varying in diversity. *Ecology* **90**, 321–327 (2009).

715 13. Fichtner, A. *et al.* Neighbourhood diversity mitigates drought impacts on tree growth. *J. Ecol.*

716 **108**, 865–875 (2020).

717 14. Grime, J. P. Competitive exclusion in herbaceous vegetation. *Nature* **242**, 344–347 (1973).

718 15. Muscarella, R., Messier, J., Condit, R., Hubbell, S. P. & Svenning, J.-C. Effects of biotic

719 interactions on tropical tree performance depend on abiotic conditions. *Ecology* **99**, 2740–2750

720 (2018).

721 16. Jucker, T. *et al.* Climate modulates the effects of tree diversity on forest productivity. *J. Ecol.*

722 **104**, 388–398 (2016).

723 17. Ratcliffe, S. *et al.* Biodiversity and ecosystem functioning relations in European forests depend

724 on environmental context. *Ecol. Lett.* **20**, 1414–1426 (2017).

725 18. Mori, A. S. Environmental controls on the causes and functional consequences of tree species

726 diversity. *J. Ecol.* **106**, 113–125 (2018).

727 19. Fei, S. *et al.* Impacts of climate on the biodiversity-productivity relationship in natural forests.

728 *Nat. Commun.* **9**, 5436 (2018).

729 20. Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to
730 boreal forests. *Glob. Ecol. Biogeogr.* **20**, 170–180 (2011).

731 21. Bertness, M. D. & Callaway, R. Positive interactions in communities. *Trends Ecol. Evol.* **9**, 191–
732 193 (1994).

733 22. Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient
734 hypothesis for competition and facilitation in plant communities. *J. Ecol.* **97**, 199–205 (2009).

735 23. Jactel, H. *et al.* Positive biodiversity-productivity relationships in forests: climate matters. *Biol.*
736 *Lett.* **14**, 20170747 (2018).

737 24. Schnabel, F. *et al.* Drivers of productivity and its temporal stability in a tropical tree diversity
738 experiment. *Glob. Change Biol.* **25**, 4257–4272 (2019).

739 25. Jansen, K., von Oheimb, G., Bruelheide, H., Hardtle, W. & Fichtner, A. Tree species richness
740 modulates water supply in the local tree neighbourhood: evidence from wood delta(13)C
741 signatures in a large-scale forest experiment. *Proc Biol Sci* **288**, 20203100 (2021).

742 26. Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts
743 on forests. *New Phytol.* **228**, 42–49 (2020).

744 27. O'Brien, M. J., Reynolds, G., Ong, R. & Hector, A. Resistance of tropical seedlings to drought is
745 mediated by neighbourhood diversity. *Nat Ecol Evol* **1**, 1643–1648 (2017).

746 28. Cavin, L., Mountford, E. P., Peterken, G. F. & Jump, A. S. Extreme drought alters competitive
747 dominance within and between tree species in a mixed forest stand. *Funct. Ecol.* **27**, 1424–1435
748 (2013).

749 29. Serrano-León, H. *et al.* Multi-year drought strengthens positive and negative functional diversity
750 effects on tree growth response. *bioRxiv*. 2024-11 (2024).

751 30. Schnabel, F. *et al.* Neighbourhood species richness and drought-tolerance traits modulate tree
752 growth and δ13C responses to drought. *Plant Biol.* **26**, 330–345 (2024).

753 31. Jucker, T. *et al.* Competition for light and water play contrasting roles in driving diversity–
754 productivity relationships in Iberian forests. *J. Ecol.* **102**, 1202–1213 (2014).

755 32. Shovon, T. A., Auge, H., Haase, J. & Nock, C. A. Positive effects of tree species diversity on

756 productivity switch to negative after severe drought mortality in a temperate forest experiment.

757 *Glob. Change Biol.* **30**, e17252 (2024).

758 33. Haberstroh, S. & Werner, C. The role of species interactions for forest resilience to drought. *Plant*
759 *Biol.* **24**, 1098–1107 (2022).

760 34. Forrester, D. I. & Bauhus, J. A review of processes behind diversity-productivity relationships in
761 forests. *Curr. For. Rep.* **2**, 45–61 (2016).

762 35. Guerrero-Ramirez, N. R. *et al.* Diversity-dependent temporal divergence of ecosystem
763 functioning in experimental ecosystems. *Nat Ecol Evol* **1**, 1639–1642 (2017).

764 36. Hisano, M., Ghazoul, J., Chen, X. & Chen, H. Y. H. Functional diversity enhances dryland forest
765 productivity under long-term climate change. *Sci. Adv.* **10**, eadn4152 (2024).

766 37. Fichtner, A. *et al.* From competition to facilitation: how tree species respond to neighbourhood
767 diversity. *Ecol. Lett.* **20**, 892–900 (2017).

768 38. Ammer, C. Diversity and forest productivity in a changing climate. *New Phytol.* **221**, 50–66
769 (2019).

770 39. Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. *J. Ecol.*
771 **102**, 275–301 (2014).

772 40. Chave, J. *et al.* Towards a worldwide wood economics spectrum. *Ecol. Lett.* **12**, 351–366 (2009).

773 41. Kunstler, G. *et al.* Plant functional traits have globally consistent effects on competition. *Nature*
774 **529**, 204–207 (2016).

775 42. Zheng, L. *et al.* Effects of plant diversity on productivity strengthen over time due to trait-
776 dependent shifts in species overyielding. *Nat. Commun.* **15**, 2078 (2024).

777 43. Williams, L. J. Scaling the effects of interactions among plants from individuals to ecosystems in
778 experimental tree communities. (University of Minnesota, 2018).

779 44. Kunstler, G. *et al.* Competitive interactions between forest trees are driven by species’ trait
780 hierarchy, not phylogenetic or functional similarity: implications for forest community assembly.
781 *Ecol. Lett.* **15**, 831–840 (2012).

782 45. Lasky, J. R., Uriarte, M., Boukili, V. K. & Chazdon, R. L. Trait-mediated assembly processes
783 predict successional changes in community diversity of tropical forests. *Proc. Natl. Acad. Sci.*

784 **111**, 5616–5621 (2014).

785 46. Carroll, I. T., Cardinale, B. J. & Nisbet, R. M. Niche and fitness differences relate the
786 maintenance of diversity to ecosystem function. *Ecology* **92**, 1157–1165 (2011).

787 47. Huang, Y. *et al.* Enhanced stability of grassland soil temperature by plant diversity. *Nat. Geosci.*
788 **17**, 44–50 (2024).

789 48. Schnabel, F. *et al.* Tree diversity increases forest temperature buffering via enhancing canopy
790 density and structural diversity. *Ecol. Lett.* **28**, e70096 (2025).

791 49. Yang, X. *et al.* Net plant interactions are highly variable and weakly dependent on climate at the
792 global scale. *Ecol. Lett.* **25**, 1580–1593 (2022).

793 50. Chen, Y. *et al.* Positive effects of neighborhood complementarity on tree growth in a Neotropical
794 forest. *Ecology* **97**, 776–785 (2016).

795 51. Huang, Z. *et al.* Functionally dissimilar neighbours increase tree water use efficiency through
796 enhancement of leaf phosphorus concentration. *J. Ecol.* **110**, 2179–2189 (2022).

797 52. Pernon, A., Escaravage, N. & Lamaze, T. Complementarity in mineral nitrogen use among
798 dominant plant species in a subalpine community. *Am. J. Bot.* **94**, 1778–1785 (2007).

799 53. Pretzsch, H., Schütze, G. & Uhl, E. Resistance of European tree species to drought stress in
800 mixed versus pure forests: evidence of stress release by inter-specific facilitation. *Plant Biol.* **15**,
801 483–495 (2013).

802 54. Martin-Benito, D. *et al.* Effects of drought on xylem anatomy and water-use efficiency of two co-
803 occurring Pine species. *Forests* **8**, 332 (2017).

804 55. Belluau, M., Vitali, V., Parker, W. C., Paquette, A. & Messier, C. Overyielding in young tree
805 communities does not support the stress-gradient hypothesis and is favoured by functional
806 diversity and higher water availability. *J. Ecol.* **109**, 1790–1803 (2021).

807 56. Searle, E. B. & Chen, H. Y. H. Complementarity effects are strengthened by competition
808 intensity and global environmental change in the central boreal forests of Canada. *Ecol. Lett.* **23**,
809 79–87 (2020).

810 57. Dimitrakopoulos, P. G. & Schmid, B. Biodiversity effects increase linearly with biotope space.
811 *Ecol. Lett.* **7**, 574–583 (2004).

812 58. Bagchi, R. *et al.* Pathogens and insect herbivores drive rainforest plant diversity and composition.

813 *Nature* **506**, 85–88 (2014).

814 59. Rodríguez-Castañeda, G. The world and its shades of green: a meta-analysis on trophic cascades

815 across temperature and precipitation gradients. *Glob. Ecol. Biogeogr.* **22**, 118–130 (2013).

816 60. Sturrock, R. N. *et al.* Climate change and forest diseases. *Plant Pathol.* **60**, 133–149 (2011).

817 61. Weigelt, A. *et al.* An integrated framework of plant form and function: the belowground

818 perspective. *New Phytol.* **232**, 42–59 (2021).

819 62. Walker, T. W. N. *et al.* Leaf metabolic traits reveal hidden dimensions of plant form and function.

820 *Sci. Adv.* **9**, eadi4029 (2023).

821 63. Eisenhauer, N. *et al.* A multitrophic perspective on biodiversity-ecosystem functioning research.

822 *Adv. Ecol. Res.* **61**, 1–54 (2019).

823 64. Hisano, M. & Chen, H. Y. H. Spatial variation in climate modifies effects of functional diversity

824 on biomass dynamics in natural forests across Canada. *Glob. Ecol. Biogeogr.* **29**, 682–695

825 (2020).

826 65. Baert, J. M., Eisenhauer, N., Janssen, C. R. & De Laender, F. Biodiversity effects on ecosystem

827 functioning respond unimodally to environmental stress. *Ecol. Lett.* **21**, 1191–1199 (2018).

828 66. Grossiord, C. *et al.* Impact of interspecific interactions on the soil water uptake depth in a young

829 temperate mixed species plantation. *J. Hydrol.* **519**, 3511–3519 (2014).

830 67. Berdugo, M. *et al.* Global ecosystem thresholds driven by aridity. *Science* **367**, 787–790 (2020).

831 68. Bretfeld, M., Ewers, B. E. & Hall, J. S. Plant water use responses along secondary forest

832 succession during the 2015–2016 El Niño drought in Panama. *New Phytol.* **219**, 885–899 (2018).

833 69. Jucker, T. *et al.* Good things take time-Diversity effects on tree growth shift from negative to

834 positive during stand development in boreal forests. *J. Ecol.* **108**, 2198–2211 (2020).

835 70. Chen, C. *et al.* Neighborhood dissimilarity consistently attenuates competition stress on tree

836 growth under altered water availability in a natural boreal forest. *Agric. For. Meteorol.* **324**,

837 109101 (2022).

838 71. Paquette, A., Vayreda, J., Coll, L., Messier, C. & Retana, J. Climate change could negate positive

839 tree diversity effects on forest productivity: A study across five climate types in Spain and

840 Canada. *Ecosystems* **21**, 960–970 (2018).

841 72. Trogisch, S. *et al.* The significance of tree-tree interactions for forest ecosystem functioning.

842 *Basic Appl. Ecol.* **55**, 33–52 (2021).

843 73. Verheyen, K. *et al.* Contributions of a global network of tree diversity experiments to sustainable

844 forest plantations. *Ambio* **45**, 29–41 (2016).

845 74. Paquette, A. *et al.* A million and more trees for science. *Nat Ecol Evol* **2**, 763–766 (2018).

846 75. Muñoz-Sabater, J. *et al.* ERA5-Land: a state-of-the-art global reanalysis dataset for land

847 applications. *Earth Syst. Sci. Data* **13**, 4349–4383 (2021).

848 76. UNEP. *World Atlas of Desertification*. (Edward Arnold, London, United Kingdom, 1992).

849 77. Santiago Beguería. *Sbegueria/SPEIbase: Version 2.7*. Zenodo

850 <https://doi.org/10.5281/zenodo.5864391> (2022).

851 78. Vicente-Serrano, S. M. *et al.* Response of vegetation to drought time-scales across global land

852 biomes. *Proc. Natl. Acad. Sci.* **110**, 52–57 (2013).

853 79. Kattge, J. *et al.* TRY plant trait database - enhanced coverage and open access. *Glob. Change*

854 *Biol.* **26**, 119–188 (2020).

855 80. Maitner, B. S. *et al.* The bien r package: A tool to access the Botanical Information and Ecology

856 Network (BIEN) database. *Methods Ecol. Evol.* **9**, 373–379 (2018).

857 81. Zanne, A. E. *et al.* Data from: Towards a worldwide wood economics spectrum. *Dryad*

858 <https://doi.org/10.5061/dryad.234> (2009).

859 82. Wambsganss, J. *et al.* Tree species mixing causes a shift in fine-root soil exploitation strategies

860 across European forests. *Funct. Ecol.* **35**, 1886–1902 (2021).

861 83. Williams, L. J. *et al.* Enhanced light interception and light use efficiency explain overyielding in

862 young tree communities. *Ecol. Lett.* **24**, 996–1006 (2021).

863 84. Benavides, R., Valladares, F., Wirth, C., Müller, S. & Scherer-Lorenzen, M. Intraspecific trait

864 variability of trees is related to canopy species richness in European forests. *Perspect. Plant Ecol.*

865 *Evol. Syst.* **36**, 24–32 (2019).

866 85. Serrano-León, H., Nitschke, R., Scherer-Lorenzen, M. & Forrester, D. I. Intra-specific leaf trait

867 variability of *F. sylvatica*, *Q. petraea* and *P. abies* in response to inter-specific competition and

868 implications for forest functioning. *Tree Physiol.* **42**, 253–272 (2022).

869 86. Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for
870 mixed-type data. *Bioinformatics* **28**, 112–118 (2012).

871 87. Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for
872 vascular plants. *Ecography* **42**, 1353–1359 (2019).

873 88. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. *Am. J. Bot.*
874 **105**, 302–314 (2018).

875 89. Grossman, J. J. *et al.* Neighborhood diversity simultaneously increased and decreased
876 susceptibility to contrasting herbivores in an early stage forest diversity experiment. *J. Ecol.* **107**,
877 1492–1505 (2018).

878 90. Britton, T. G., Richards, S. A. & Hovenden, M. J. Quantifying neighbour effects on tree growth:
879 Are common ‘competition’ indices biased? *J. Ecol.* **111**, 1270–1280 (2023).

880 91. Clark, J. S. Why environmental scientists are becoming Bayesians. *Ecol. Lett.* **8**, 2–14 (2005).

881 92. van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject
882 effects using mixed models. *Anim. Behav.* **77**, 753–758 (2009).

883 93. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model
884 complexity and fit. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **64**, 583–639 (2002).

885 94. R Core Team. R: A language and environment for statistical computing R (R Foundation for
886 Statistical Computing, 2022).

887 95. Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian Graphical Models using MCMC.
888 <https://CRAN.R-project.org/package=runjags> (2024).

889 96. Zheng, L. Data and code from: Neighbourhood diversity increases tree growth in experimental
890 forests more in wetter climates but not in wetter years.
891 <https://doi.org/10.6084/m9.figshare.29274887> (2025).

892

893

894

895 **Figure Legends**

896 **Figure 1. Hypothesized effects of neighbourhood diversity on tree growth. a,** An example
897 illustrating the hypothesis that neighbourhood species richness, trait dissimilarity between a
898 focal tree (t_f) and its neighbours (t_n), and higher competitive trait hierarchy all promote
899 individual tree growth across broad climatic conditions (H1). A positive diversity effect can
900 arise from complementary (related to trait dissimilarity) and competitive interactions (related
901 to trait hierarchy). Trait dissimilarity: focal tree growth is greater when its trait values (T_{tf})
902 are more dissimilar to those of its neighbors (T_{tn}). Trait hierarchy: focal tree growth is greater
903 when the focal tree has higher trait values of competitive ability than its neighbors. **b,** We
904 further expect that the positive neighbourhood diversity effects vary with spatial (i.e., climate
905 variation across sites) and/or temporal (i.e., interannual climatic variation within sites)
906 climate variability (H2). Three possibilities: (H2.a) Neighbourhood diversity effects varying
907 with climate should be observed both across and within sites, i.e., effects would be greater in
908 both drier sites along the gradient of water availability and drier years within a site. Based on
909 the stress gradient hypothesis^{21,22}, we posit that this is the most likely outcome. (H2.b)
910 Neighbourhood diversity would have stronger effects at sites with less water availability, but
911 nearly stable across wet and drought years within sites. (H2.c) Neighbourhood diversity may
912 have stronger effects in dry or wet years within sites, but consistent across sites.

913

914 **Figure 2. Locations of the experimental sites and annual climate during the study**

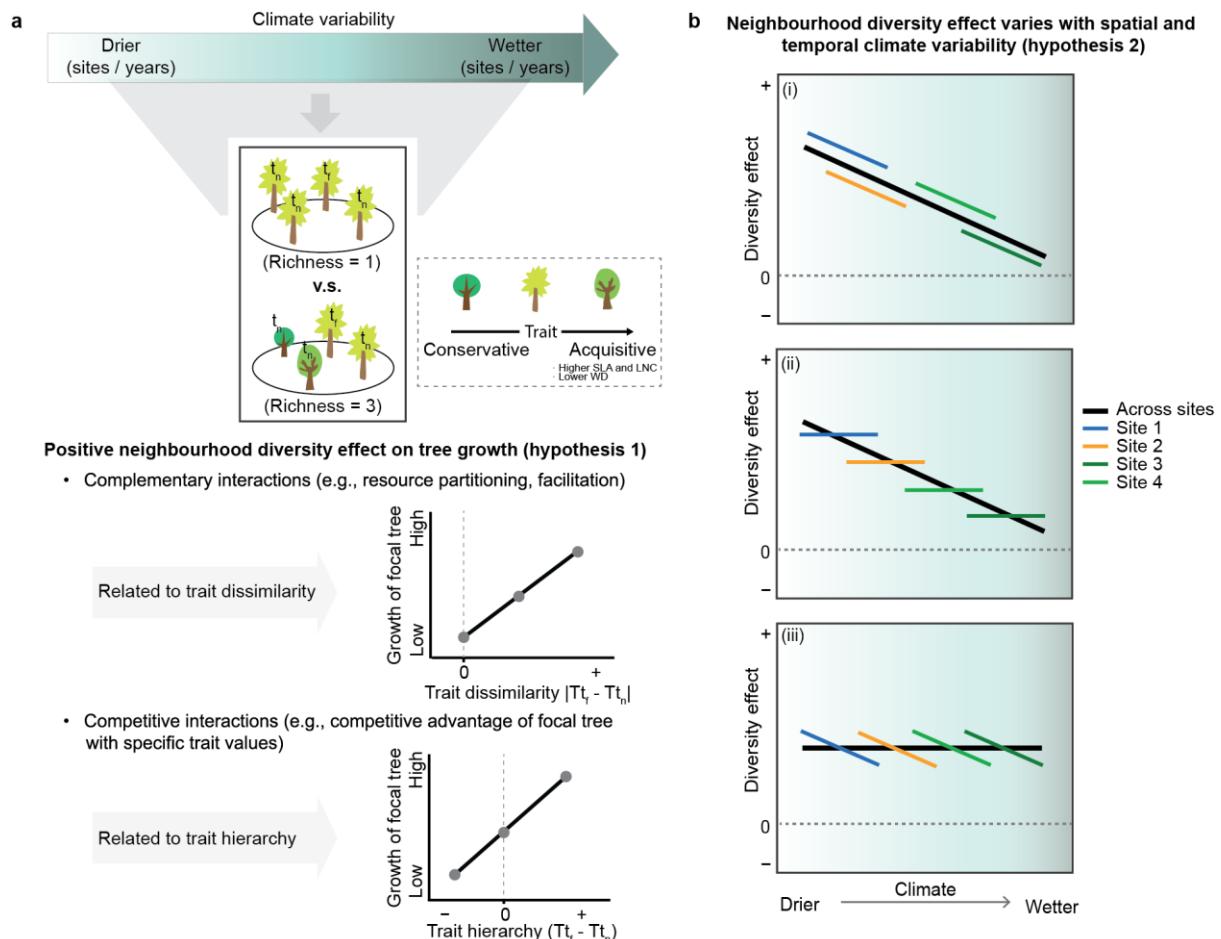
915 **periods. a,** Locations of experimental sites across different biomes. **B,** Distribution of annual
916 climate during the experimental periods in this study. In panel B, Annual temperature and
917 precipitation for each year (represented by a point) at each site (represented by an ellipse).

918 Point color represents climatic water availability (P/PET; precipitation / potential
919 evapotranspiration), and ellipse color represents biomes (see A). The background represents
920 the climate space of the major biomes according to the Whittaker diagram.

921

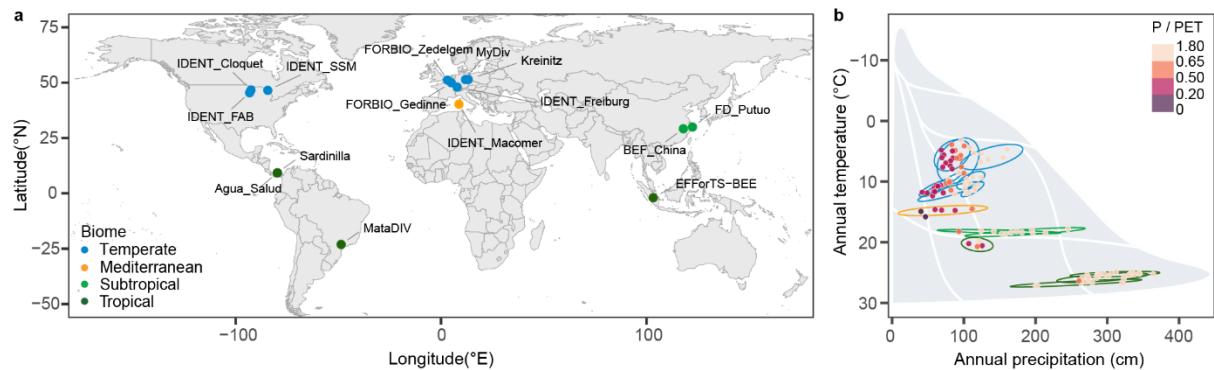
922 **Figure 3. Individual tree basal area growth as a function of different metrics of**
923 **neighbourhood diversity. a,** Standardized growth coefficients of neighbourhood species
924 richness (top orange), neighbourhood trait dissimilarity (middle green) and trait hierarchy
925 (i.e., hierarchical trait difference; bottom blue) of specific leaf area (SLA), leaf nitrogen
926 content (LNC) and wood density (WD). Dots represent species level coefficient means in
927 different years at different sites ($n = 675$ species-year-site combinations) from 15
928 experimental sites, and large circles show the overall means (estimated B_{overall} in Equation
929 (6)) and 95% credible intervals (* indicates statistical significance, 95% credible intervals
930 excluded zero). **b,** Predicted percent change (%, mean and 95%CI) in focal tree growth from
931 growing with monospecific neighbors to median level (50th percentile of neighbourhood
932 diversity indices across all 15 sites; lighter colours) and high level (90th; darker colours)
933 neighbourhood species richness (top, orange), trait dissimilarity (middle, green), and trait
934 hierarchy (bottom, blue). The prediction is based on the overall coefficient mean (B_{overall} , see
935 Supplementary Methods).

936

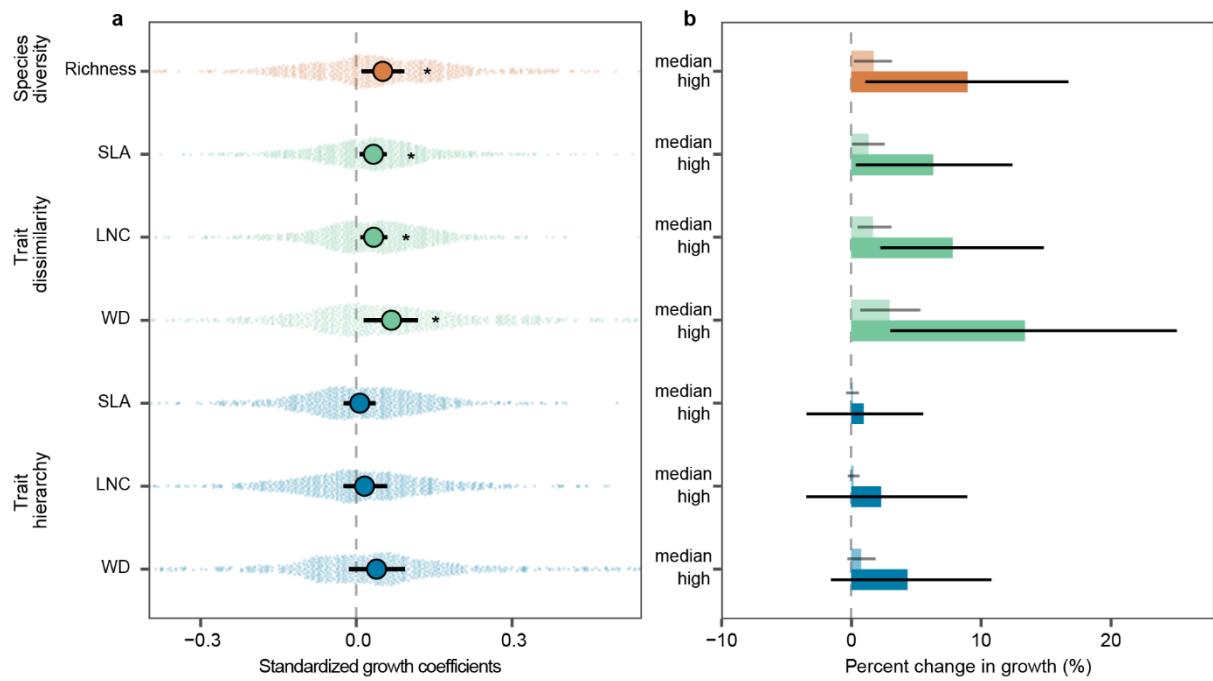

937 **Figure 4. Effects of neighbourhood species richness on individual focal tree basal area**
938 **growth along a gradient of water availability across and within sites.** The line shows
939 species-level standardized coefficients of neighbourhood species richness (NSR) on focal tree
940 basal area growth ($n = 675$ species-year-site combinations) in relation to P/PET, fitted by the
941 hierarchical Bayesian model. The black line and bands indicate the relationship across sites
942 and years (the 95% credible interval [CI] of the slope parameter excluded zero and shown as

943 solid line), and colored lines indicate relationships across years within each site (n = 15). The
944 inset panel shows the site-level slopes and mean P/PET.

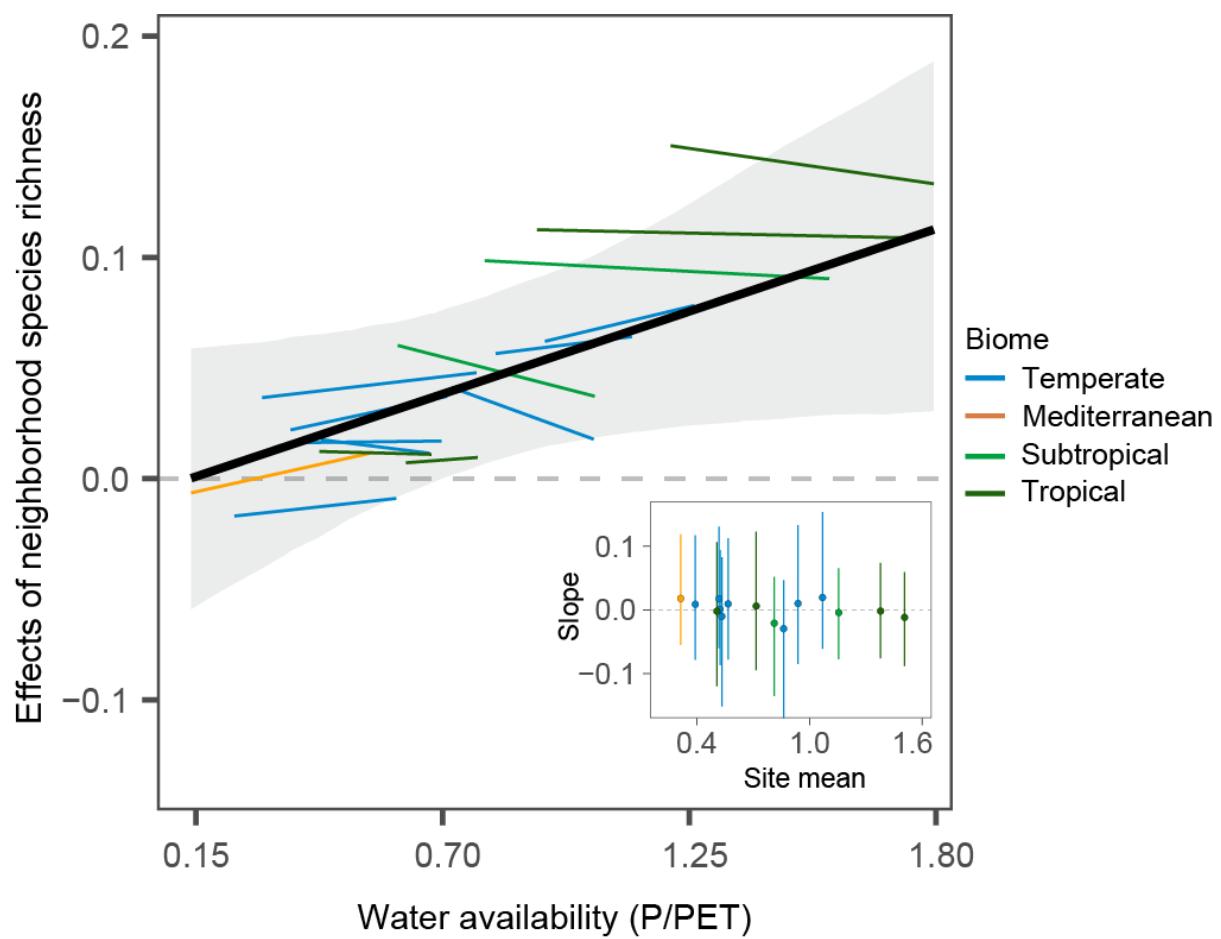
945


946 **Figure 5. Effects of neighbourhood functional trait dissimilarity (a-c) and trait**
947 **hierarchy (d-f) on individual focal tree basal area growth along a gradient of water**
948 **availability across and within sites.** The fitted line shows species-level standardized
949 coefficients of trait dissimilarity and hierarchy (n = 675 species-year-site combinations) in
950 relation to P/PET (potential precipitation/evapotranspiration). Black lines and bands indicate
951 relationship averaged across sites and years (the 95% credible interval [CI] of the slope
952 parameter overlapped zero and is shown as dashed lines), and colored lines indicate
953 relationships across years within each site (n = 15). The inset panel shows the site-level
954 slopes and mean P/PET.

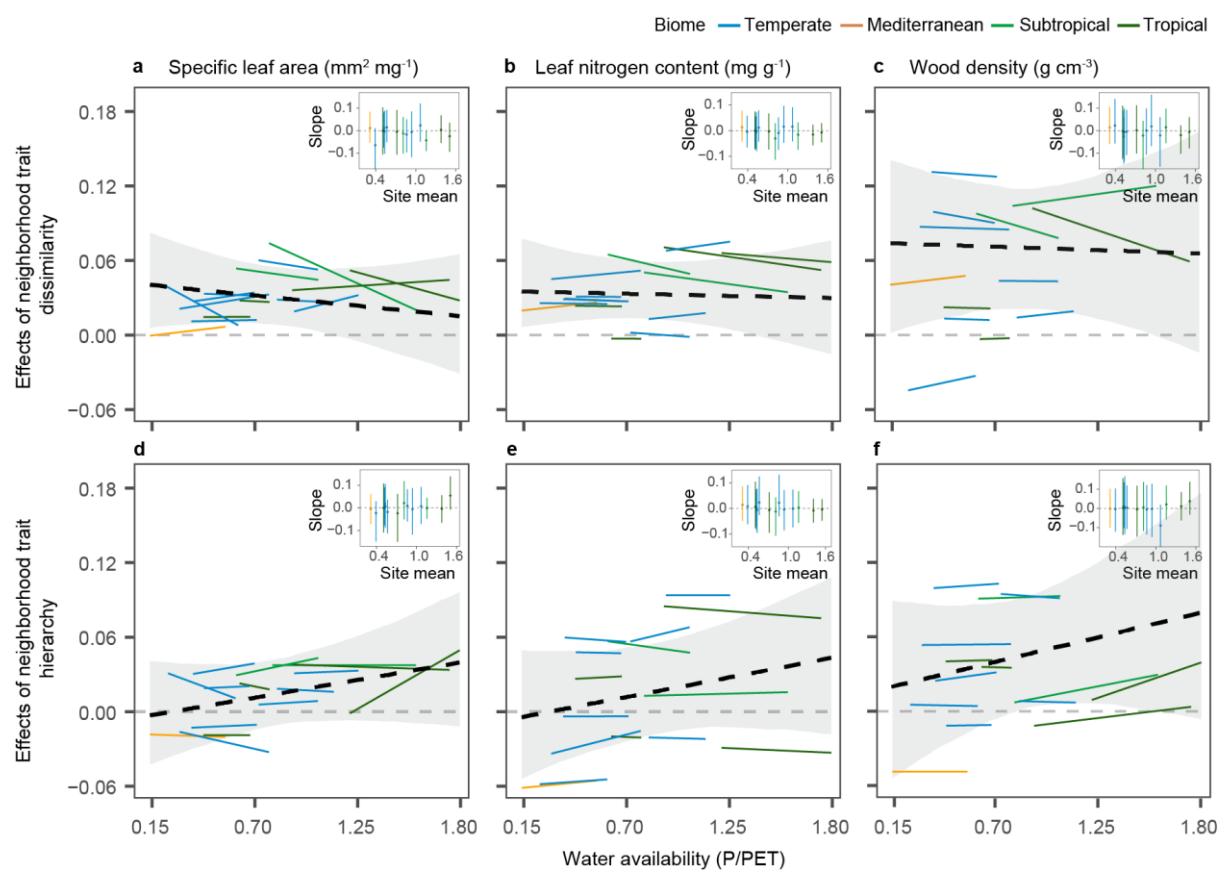
955 Figure 1


956

957 Figure 2


958

959 Figure 3


960

961 Figure 4

962

963 Figure 5

964

965