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A stochastic modeling framework for radionuclide migration from deep geological reposito-

ries considering spatial variability

Zhibao Zheng, Xuerui Wang, Judith Flügge, Thomas Nagel

• An efficient stochastic framework for radionuclide migration is developed.

• The coupled stochastic Darcy and mass transport equations are solved numerically.

• A time-parallel algorithm is proposed to speed up long-duration stochastic simulations.

• The proposed framework is capable of handling high-dimensional random inputs.
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Abstract

Considering the influence of uncertainties on radionuclide migration from deep geological repos-

itories (DGR) is of great significance for safety assessment. However, stochastic modeling for

DGR safety assessment remains challenging due to the high computational requirements of han-

dling large regional scale models with multiphysics coupling, high-dimensional random inputs,

and long simulated durations. This article introduces an efficient numerical framework to tackle

this set of challenges. Specifically, the proposed framework relies on three key components, in-

cluding efficient solutions of stochastic Darcy equations, propagation of stochastic quantities, and

efficient solutions of stochastic mass transport equations. Unknown stochastic solutions are ap-

proximated by summing a series of products involving random variables and deterministic com-

ponents. Alternating iterative algorithms are then proposed to decouple the original stochastic

problems into deterministic equations for the spatial components, one-dimensional stochastic al-

gebraic equations for the random variables, and one-dimensional ordinary differential equations

for the temporal components. These deterministic equations can be solved efficiently using ex-

isting solvers, allowing the handling of large-scale problems. The one-dimensional stochastic

algebraic equations can be solved efficiently using a sampling strategy, allowing the handling of

high-dimensional stochastic state spaces. The one-dimensional ordinary differential equations can

be solved cheaply and further accelerated using a time-parallel algorithm, allowing the handling
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of long simulated time scales. Furthermore, a similar solution approximation and iterative algo-

rithm are also used to propagate stochastic quantities from stochastic Darcy flow to stochastic mass

transport. Numerical examples with up to 122 random variables and a simulated duration of one

million years demonstrate the promising performance of the proposed framework. The numeri-

cal results demonstrate that the developed stochastic framework achieves accuracy comparable to

Monte Carlo simulations while significantly improving computational efficiency by two orders of

magnitude. Moreover, the evolutionary probability density functions obtained from our stochastic

simulations indicate that the proposed framework could potentially serve as an efficient and robust

tool for DGR risk assessment.

Keywords: Uncertainty modeling, Stochastic Darcy flow, Stochastic mass transport,

High-dimensional random inputs, Stochastic finite element method

1. Introduction

Crystalline rock is widely considered one of the most suitable host rocks for a deep geological

repository (DGR) for high-level nuclear waste (HLW), due to its low-permeability that restricts

groundwater flow and reduces the potential for radionuclide migration. The safety assessment

(SA) of such repositories rely critically on the accurate prediction of radionuclide migration over

long timescales, often extending up to a million years [1], and the systematic consideration of

relevant uncertainties [2]. In this context, numerical modeling plays a crucial role in character-

izing the long-term transport properties of radionuclides, providing essential insights for safety

evaluations. However, modeling radionuclide transport in crystalline rock is particularly challeng-

ing due to the presence of fractures and the associated significant uncertainties [3, 4, 5]. Due to

their stochastic nature, fracture networks are usually difficult to characterize and introduce a high

degree of spatial heterogeneity and variability, making it difficult to accurately predict transport

pathways and rates. Recently, a great deal of modeling work has been conducted based on various

approaches to characterize the complex flow and transport properties in fractured rocks. Typically,
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four modeling approaches are used to address the impacts of fractures on flow and transport behav-

ior in fractured rocks, namely, discrete fracture network (DFN), channel network (CN), equivalent

porous medium model (EPM) and stochastic continuum model (SCM) approaches [6, 7]. In [6],

a comparative study of groundwater flow modeling in fractured rocks was performed using the

SCM, DFN, and CN approaches. The results demonstrate that these three modeling approaches

yield similar mean values for the migration parameters. In particular, the SCM was found to effec-

tively capture the advective flow properties of groundwater in various graphical representations.

Compared to other numerical approaches, the SCM approach has significant advantages in terms

of reducing computational effort due to its continuum-based formulation. It does not emphasize

detailed geometric fracture data, but relies primarily on the results of hydraulic tests. Therefore,

the SC approach provides a robust foundation for quantifying uncertainties in groundwater flow

through fractures of varying distributions and scales.

In the present study, we develop a robust and computationally efficient stochastic modeling

framework for the migration process of radionuclides from deep geological repositories in frac-

tured rocks. Specifically, to capture variations in fracture properties and induced heterogeneity

in space, the most relevant parameter governing migration, permeability, is modeled by spatially

variable but continuous random fields within the SC framework. The stochastic mass transport

equation governs radionuclide movement in groundwater flow, influenced by advection, disper-

sion, diffusion, sorption and decay. Groundwater flow, described by the stochastic Darcy equa-

tion, drives radionuclide transport and propagates uncertainties in geological parameters into the

radionuclide concentration dynamics. Therefore, the key to simulating radionuclide migration is

to solve the stochastic multiphysics problem of Darcy flow coupled with radionuclide mass trans-

port, which typically involves large regional scales, high-dimensional random inputs and long time

frame. Since the stochastic Darcy flow and the stochastic mass transport are uni-laterally coupled

in a sequential way, where the stochastic solution of mass transport relies on the stochastic solution

of Darcy flow, the challenge lies on the efficient solution of stochastic “single-physical” problems

(i.e., uncoupled Darcy flow and mass transport) and the propagation of stochastic quantities be-

tween Darcy flow and mass transport.

For the first challenge, several methods originally developed for stochastic uncoupled problems

3
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have been extended to solve each component of the stochastic coupled case. Monte Carlo simu-

lation (MCS) and its extensions [8, 9] are widely used because of their broad applicability. Such

methods have the attractive advantages of being easily implemented using existing deterministic

multiphysics solvers and being suitable for handling high-dimensional random inputs. However,

a large number of deterministic simulations of mass transport coupled with Darcy flow need to

be solved to achieve high-accuracy stochastic solutions, which is prohibitively expensive for the

large-scale and long-duration stochastic problems considered in this article [10]. Another popular

method is based on the polynomial chaos (PC) expansion [11, 12]. This method uses (generalized)

PC bases to approximate stochastic solutions [13, 14]. The original stochastic Darcy and mass

transport problems are then transformed into augmented deterministic Darcy and mass transport

equations using the stochastic Galerkin method. However, since the size of the augmented deter-

ministic problems increases dramatically as the number of random variables and/or the PC basis

truncation order increases, the PC-based approximation is susceptible to the curse of dimensional-

ity, which makes large-scale and/or high-dimensional stochastic analyses prohibitively expensive

in many cases of practical relevance. Therefore, the computational efficiency of PC-based meth-

ods needs to be further improved. Furthermore, other methods, such as the multi-fidelity method,

the response surface method and machine learning-based methods [15, 16, 17, 18], have also been

developed to solve each component of stochastic multiphysics problems. Their computational

accuracy and efficiency need to be further improved to adapt to stochastic multiphysics analy-

sis. For the second difficulty, existing studies usually use the PC approximation of the stochastic

solution of each physical field to exchange probabilistic information between different physical

fields [19, 20, 21, 22]. In addition to the above difficulties faced by PC-based approximations,

probabilistic information transferred between different physical fields must be assumed to be low-

dimensional and then approximated by Karhunen-Loève expansion or reduced-dimensional PC

expansion [19, 21]. Currently, more efficient methods are still needed to propagate the high-

dimensional probabilistic information arising from the complex stochastic multiphysics analysis

considered in this study.

To address the above challenges and achieve efficient simulation of stochastic radionuclide

migration processes, the contribution of this article relies on three aspects, including efficient
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solutions of stochastic Darcy flow and stochastic mass transport, and effective probabilistic in-

formation propagation from Darcy flow to radionuclide mass transport. The first contribution is

concentrated on an efficient solution algorithm for high-dimensional stochastic Darcy equations.

Specifically, a stochastic solution approximation is used to decouple the unknown stochastic solu-

tion as a summation of a series of products of random variables and deterministic spatial vectors.

An alternating iterative algorithm combined with stochastic and deterministic Galerkin methods

[13, 14, 23] is then used to transform the original stochastic Darcy problem into deterministic

equations about the spatial vectors and one-dimensional stochastic algebraic equations about the

random variables. The deterministic equations can be solved efficiently using existing solvers

[24], even for very large-scale problems. Moreover, one-dimensional stochastic algebraic equa-

tions are solved efficiently using a sample-based strategy [25, 26], which differs from existing

tensor product constructions for such solution approximations within the framework of proper

generalized decomposition methods [27, 28]. Benefiting from the dimensionality independence of

random samples, the sample approximation of random variable components allows handling both

low- and high-dimensional random inputs in a unified form, thereby significantly mitigating the

curse of dimensionality caused by high-dimensional random inputs. The second contribution is

to extend the above solution algorithm to solve stochastic mass transport equations for long du-

rations. In this case, the unknown stochastic solution is approximated as a summation of a series

of products of random variables, deterministic spatial vectors and deterministic temporal vectors.

Similarly, the original stochastic mass transport problem is transformed into deterministic equa-

tions about the spatial vectors, one-dimensional stochastic algebraic equations about the random

variables, and one-dimensional ordinary differential equations about the temporal vectors. The

first two equations are solved in a similar way as described above, and the one-dimensional ordi-

nary differential equations are solved cheaply and can be further accelerated using a time-parallel

algorithm. Therefore, the long time scales relevant in nuclear waste disposal can be handled very

well. The third contribution is to efficiently propagate stochastic quantities (e.g. stochastic veloc-

ities) from Darcy flow to mass transport. This typically involves high-dimensional probabilistic

propagation. Similarly to the above algorithms, the stochastic quantities are approximated using

decoupled forms consisting of deterministic vectors and random variables. These components
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are solved using an alternating iterative scheme similar to the above algorithms but simpler. The

promising performance of the proposed framework is demonstrated through numerical examples

with up to 122 random variables, 60 000 degree of freedoms (DoFs) and a simulation duration of

one million years.

This article is organized as follows: The basic problem of radionuclide migration from deep

geological repositories with uncertainties due to spatial variability of key physical properties and

the corresponding stochastic finite element equations are presented in Section 2. The solution

algorithms are proposed in Section 3, including the stochastic solution approximation, the iterative

algorithm, and the time-parallel strategy. Afterward, detailed algorithm implementations are given

in Section 4. In Section 5, numerical examples with high-dimensional random inputs and long

durations are investigated to demonstrate the promising performance of the proposed framework.

Section 6 closes the paper with discussions and conclusions.

2. Stochastic continuum representation of transport in fracture and matrix

2.1. Model description

In this study, we investigate the Modified Multiple Containment Providing Rock Zones (m-

mCRZs) concept (Fig. 1a), which is proposed as a potential repository concept for a deep geolog-

ical repository (DGR) in crystalline rock in Germany [29]. This concept assumes the presence

of several discrete intact rock zones with low permeability within the crystalline host rock, which

serve as an effective geological barrier to prevent the migration of radionuclides into the biosphere.

These intact rock zones are isolated from each other by surrounding fractured rock zones. Indi-

vidual emplacement areas of nuclear waste are constructed in each of these intact rock zones.

To further enhance repository safety, an engineered barrier system (EBS) is integrated into the

design, incorporating bentonite buffer material placed around the waste canisters [30]. To con-

duct a detailed analysis of the flow and transport behavior of the radionuclides in the near field

of the repository, our modeling considers a two-dimensional section of a reference containment

providing rock zone (r-CRZ) with its surrounding fractured rocks from the m-mCRZs. Consistent

with the repository concept, the model domain is divided into three material groups (Fig. 1b): the

6
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(a) Schematic illustration of the repository concept for the modified Multiple

Containment-Providing Rock Zone (m-mCRZ) repository concept [29], and

the considered reference Containment-Providing Rock Zone (r-CRZ).

(b) Model geometry, material groups and boundaries for the r-CRZ.

Figure 1: Repository concept and simulation domain.

emplacement zone containing nuclear waste (Material Group III, MG III), the intact containment

providing rock zone (CRZ) (Material Group II, MG II), and the fractured crystalline rock (Material

Group I, MG I). The goal is to model the migration of radionuclides away from the emplacement

area.
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2.2. Mathematical model for flow and transport

Our modeling framework adopts the stochastic continuum approach, treating the fractured rock

mass as a continuum with spatially variable properties. The flow and mass transport processes

within the fractured rocks are assumed to be similar to those through porous media [31]. The frac-

tured rock mass is thus represented as a locally averaged homogeneous equivalent porous medium

(EPM). In this equivalent system, the heterogeneity introduced by fractures and fracture networks

is captured through spatially random distributions of hydraulic property parameters. Specifically,

in our model a spatially random distribution of element permeability is employed to represent the

locally averaged properties, which can effectively account for the inherent spatial variability in

the fractured rock system. The radionuclide transport (RNT) is primarily governed by advective

groundwater flow, diffusion, hydrodynamic dispersion, sorption, and decay.

2.2.1. Continuity equation

The groundwater flow is described by the continuity equation, which is derived based on the

mass balance of the liquid phase in the porous media

∂ (ϕρ)
∂t
= −∇ · (ϕρv) + Qw, (1)

where ϕ is the porosity, which has different values for MG I, MG II and MG III, Qw is a source/sink

flow rate, ρ is the density of pore fluid, and v ∈ R2 is the vector of flow velocity in the two-

dimensional domain considered here. In our simulation, we assume the use of Darcy’s law to

describe the flow process, where the Darcy velocity q is given by

q = ϕv = −
K̂
µ
· (∇p − ρg) ∈ R2, (2)

where K̂ = KI2 ∈ R2×2 denotes the isotropic permeability tensor, K is a (spatially inhomogeneous)

scalar function, I2 ∈ R2×2 is the identity tensor, µ is the liquid viscosity, g ∈ R2 is the gravitational

acceleration vector, and p is the pore water pressure. In this article, we only consider isotropic

permeability, but K̂ can be anisotropic in general. In practice, aside from the permeability K̂, other

parameters can also be modeled as random inputs, be it as random variables or as random fields.

In this study, without loss of generality, we only consider that the scalar function K is modeled as
8
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a random field K (x, θ), where x = [x, z]T ∈ R2 is the spatial placement vector with the coordinate

system introduced in Fig. 1b. The random event θ ∈ Θ is defined in a suitable probability space

(Θ,Ξ,P), where Θ denotes the space of elementary events, Ξ is the σ-algebra defined on Θ, and

P is the probability measure. Substituting Eq. (2) in Eq. (1), the stochastic governing equation for

porous media flow with the pore pressure p as primary variable can be derived

(ϕ
∂ρ

∂p
+ ρ

∂ϕ

∂p
)
∂p (t, x, θ)

∂t
= ∇ ·

ρ K̂ (x, θ)
µ

·
[
∇p (t, x, θ) − ρg

] + Qw, (3)

Considering the steady-state flow regime of Eq. (3) and the isotropic random permeability tensor

K̂ (x, θ) = K (x, θ) I2, the weak form of Eq. (3) is given by∫
Ω

ρ
K (θ)
µ
∇p (θ) · ∇η dΩ −

∫
Ω

ρ2 K (θ)
µ

g · ∇η dΩ +
∫
Ω

Qwη dΩ = 0. (4)

where the dependence on placement x is omitted here, and η is the deterministic spatial test func-

tion with η|∂Ω = 01.

2.2.2. Mass transport equation for radionuclide migration

Furthermore, for the radionuclide migration, we consider the following stochastic mass trans-

port equation of a representative species

∂

∂t
[
ϕRC (t, θ)

]
= ∇ ·

[
ϕD (θ) · ∇C (t, θ)

]
− q (θ) · ∇C (t, θ) − ϕRτC (t, θ) (5)

with specific initial concentration C (0, θ), where C (t, θ) represents the time-dependent stochastic

concentration of the radionuclide, the coefficient D (θ) ∈ R2×2 is known as the diffusion-dispersion

tensor consisting of molecular diffusion Df ∈ R2×2 and mechanical dispersion Dp (θ) ∈ R2×2

D (θ) = Df + Dp (θ) . (6)

In our modeling, Df = DfI2 is considered to be isotropic, where Df is a scalar value (or a spatial

function). The mechanical dispersion is given by the dispersion matrix

Dp (θ) = (αL − αT)
v ⊗ v
∥v∥
+ αT∥v∥I2, (7)

1Without loss of generality, Dirichlet conditions on the entire boundary ∂Ω were considered in Eq. (4).
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where αL and αT are the longitudinal and transversal dispersion coefficients, respectively, and ∥ · ∥

represents the magnitude of the vector. Furthermore, the coefficient R is the retardation factor

defined as

R = 1 + ρbkd/ϕ, (8)

where kd is the sorption coefficient of the radionuclides, τ = ln 2/t1/2 is the first-order decay

constant, ρb is the bulk density of the porous medium, and t1/2 is the half life of the radionuclide.

Similar to Eq. (4), the weak form of Eq. (5) under prescribed boundary concentrations is given by

∂

∂t

∫
Ω

ϕRC (t, θ) ζ dΩ +
∫
Ω

ϕD (θ) · ∇C (t, θ) · ∇ζ dΩ +
∫
Ω

q (x, θ) · ∇C (t, θ) ζ dΩ

+

∫
Ω

ϕRτC (t, θ) ζ dΩ = 0, (9)

where ζ is the spatial test function with ζ |∂Ω = 0.

2.3. Modeling of random fields

In this article, we assume that the permeability-related scale function K (x, θ) is a Gaussian

random field. For general non-Gaussian random fields, some advanced simulation methods can be

used, e.g., [32, 33, 34]. Specifically, the Gaussian random field K (x, θ) has the mean value K0 (x)

and the covariance function

CovK (x1, x2) = σ2
K exp

(
−
|x1 − x2|

lx

)
, (10)

where σK is the standard deviation and lx is the correlation length. By using the Karhunen-Loève

expansion [13, 35], the random field K (x, θ) can be approximated as

K (x, θ) = K0 (x) +
rK∑
i=1

ξi (θ)
√
κiKi (x) , (11)

where {ξi (θ)}rK
i=1 are a set of mutually independent standard Gaussian random variables, and {κi,Ki (x)}rK

i=1

are respectively the eigenvalues and eigenvectors of the covariance function CovK (x1, x2). They

are solved by the following Fredholm integral equation of the second kind∫
Ω

CovK (x1, x2) Ki (x2) dx2 = κiKi (x1) , (12)

which can be solved efficiently using existing eigenvalue solvers [36], even for very large-scale

problems.
10
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2.4. Stochastic finite element equations

2.4.1. Stochastic finite element equation for stochastic Darcy flow

Applying finite element discretization to the weak form (4), we can generate the following

stochastic finite element equation (SFEE)

A (θ) p (θ) = B (θ) , (13)

where p (θ) ∈ Rn is the unknown stochastic nodal solution of pressure, n is the total number of

degrees of freedom (DoFs), the stochastic matrix A (θ) =
⋃ne

e=1 A(e) (θ) ∈ Rn×n is obtained by

assembling all stochastic element matrices, and the stochastic vector B (θ) =
⋃ne

e=1 B(e) (θ) ∈ Rn

is obtained by assembling all stochastic element vectors. Taking the linear triangle element as an

example, the stochastic solution of each element is approximated as

p(e) (θ) = Np(e) (θ) ∈ R, (14)

where p(e) (θ) =
[
p(e)

1 (θ) , p(e)
2 (θ) , p(e)

3 (θ)
]T
∈ R3 is the vector of nodal pressure values, and the

shape function matrix N and its derivative ∂N
∂x are

N =
[

N1 N2 N3

]
∈ R1×3,

∂N
∂x
=

 ∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N1
∂z

∂N2
∂z

∂N3
∂z

 ∈ R2×3. (15)

According to Eq. (4), the stochastic element matrix A(e) (θ) and the stochastic element vector

B(e) (θ) are given by

A(e) (θ) =
∫
Ω(e)

ρ
K (θ)
µ

(
∂N
∂x

)T
∂N
∂x

dΩ(e)
∈ R3×3, B(e) =

∫
Ω(e)

ρ2 K (θ)
µ

(
∂N
∂x

)T

g − NTQw

 dΩ(e)
∈ R3.

(16)

In a similar way, other types and higher-order elements can be used for the spatial discretization.

In addition, considering the random field approximation (11), the stochastic matrix A (θ) and the

stochastic vector B (θ) in Eq. (13) can be further expressed as

A (θ) =
rK∑
j=0

ξ j (θ) A j, B (θ) =
rK∑
j=0

ξ j (θ) B j, (17)

11
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where ξ0 (θ) ≡ 0 and the deterministic matrices and vectors
{
A j ∈ Rn×n,B j ∈ Rn

}rK

j=0
are obtained

by assembling the following deterministic element matrices and vectors for the example of the

linear triangular element

A(e)
0 =

∫
Ω(e)

ρ
K0

µ

(
∂N
∂x

)T
∂N
∂x

dΩ(e)
∈ R3×3, B(e)

0 =

∫
Ω(e)

ρ2 K0

µ

(
∂N
∂x

)T

g − NTQw

 dΩ(e)
∈ R3,

(18a)

A(e)
j =

∫
Ω(e)

ρ

√
κiK j

µ

(
∂N
∂x

)T
∂N
∂x

dΩ(e)
∈ R3×3, B(e)

j =

∫
Ω(e)

ρ2
√
κiK j

µ

(
∂N
∂x

)T

g dΩ(e)
∈ R3, ∀ j ∈ {1, r}.

(18b)

There are several difficulties in solving Eq. (13). One the one hand, large-scale problems typ-

ically result in a large number of spatial DoFs, whose solutions are time-consuming and storage-

intensive. On the other hand, high-dimensional random inputs, e.g., a large truncation number r

in Eq. (11), suffer from the so-called curse of dimensionality in stochastic spaces. The coupling of

large scales and high stochastic dimensions will make the solution more difficult. To address these

issues, we will present an efficient and accurate algorithm in the next section.

2.4.2. Stochastic finite element equation for stochastic mass transport

With the stochastic pressure obtained by Eq. (13), the stochastic velocity vector v (θ) and the

stochastic diffusion-dispersion matrix D (θ) can be calculated using Eqs. (2) and (7). Similar to

Eq. (13), applying finite element discretization to the weak form (9), we can generate the following

SFEE

M
∂C (t, θ)
∂t

+ Z (θ) C (t, θ) = 0, (19)

where C (t, θ) ∈ Rn is the time-dependent stochastic nodal solution of concentration, the matrices

M =
⋃ne

e=1 M(e) ∈ Rn×n and Z (θ) =
⋃ne

e=1 Z(e) (θ) ∈ Rn×n are obtained by assembling all stochastic

element matrices. Considering again the linear triangle element, we have

M(e) =

∫
Ω(e)

ϕR NTN dΩ(e)
∈ R3×3, (20a)

Z(e) (θ) =
∫
Ω(e)

ϕ

(
∂N
∂x

)T

D (θ)
∂N
∂x

dΩ(e) +

∫
Ω(e)

ϕNTvT (θ)
∂N
∂x

dΩ(e)

+

∫
Ω(e)

ϕRτNTN dΩ(e)
∈ R3×3, (20b)
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where D (θ) ∈ R2×2 is the matrix form of D (θ) at each integration point, and v (θ) ∈ R2 is the vector

form of v (θ) at integration point. It is noted that the matrix M is deterministic and only Z (θ) is

an asymmetric stochastic matrix. Furthermore, following the expansion Eq. (11), we assume that

the stochastic velocity v (θ) and the stochastic diffusion-dispersion tensor D (θ) have the following

decoupled forms (this will be achieved later on)

v (θ) =
rv∑

i=1

χv,i (θ) vi, D (θ) =
rD∑
j=1

χD, j (θ) D j, (21)

where
{
χv,i (θ)

}rv
i=1 and

{
χD, j (θ)

}rD

j=1
are scalar random variables, and {vi}

rv
i=1 and

{
D j

}rD

j=1
are deter-

ministic components/bases. In this way, we can rewrite the SFEE (19) as

M
∂C (t, θ)
∂t

+

 rZ∑
i=0

χi (θ) Zi

 C (t, θ) = 0, (22)

where rZ = rv + rD, the random variables χi (θ) = χv,i (θ), i ∈ {1, rv} and χrv+ j (θ) = χD, j (θ),

j ∈ {1, rD}, and the deterministic element matrices of Zi are given by

Z(e)
0 =

∫
Ω(e)

ϕRτNTN dΩ(e)
∈ R3×3, (23a)

Z(e)
i =

∫
Ω(e)

ϕNTvT
i
∂N
∂x

dΩ(e)
∈ R3×3, i ∈ {1, rv}, (23b)

Z(e)
rv+ j =

∫
Ω(e)

ϕ

(
∂N
∂x

)T

D j
∂N
∂x

dΩ(e)
∈ R3×3, j ∈ {1, rD}, (23c)

In order to solve Eq. (19) efficiently and accurately, in addition to the difficulties of handling

large scales and high-dimensional random inputs, long simulated time spans must also be consid-

ered in this study. To address long duration and its coupling with large scales and high stochastic

dimensions, an efficient algorithm will be proposed in the next section. Furthermore, the stochastic

velocity v (θ) and the stochastic diffusion-dispersion coefficient D (θ) need to be calculated based

on the stochastic solution of Eq. (13) and are reused in Eq. (19). This is not trivial, as they typically

involve high stochastic dimensions and need to be propagated to Eq. (19) with high accuracy. This

is also a focus to be solved in the present study.

3. Efficient solution algorithms for SFEEs

In this section we focus on developing efficient algorithms to solve the SFEEs (13) and (19)

and to propagate stochastic quantities between them.
13

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5153607

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



3.1. Solution algorithm for SFEE of Darcy flow

To solve SFEE (13), we approximate the stochastic solution p (θ) using the following decou-

pled and greedy way

pk (θ) =
k∑

i=1

λi (θ) di = pk−1 (θ) + λk (θ) dk, (24)

where pk−1 (θ) =
∑k−1

i=1 λi (θ) di ∈ Rn and pk (θ) ∈ Rn are the (k − 1)th and kth approximations of

the stochastic solution. For the approximation, a set of random variables{λi (θ)}ki=1 and a set of

deterministic vectors {di ∈ Rn}
k
i=1 are used so that λk (θ) dk ∈ Rn is the kth stochastic increment of

the stochastic solution. In practice, both the random variables {λi (θ)}ki=1 and the deterministic vec-

tors {di ∈ Rn}
k
i=1 are not known a priori. We adopt an iterative method to solve the pair {λi (θ) ,di}

one by one. To this end, substituting Eq. (24) into Eq. (13) and assuming that the approximation

pk−1 (θ) has been known (or given as an initial value), Eq. (13) is rewritten as

A (θ) λk (θ) dk = Bk (θ) , (25)

where the vector Bk (θ) = B (θ) − A (θ) pk−1 (θ) ∈ Rn. In this way, we only need to solve the kth

unknown pair {λk (θ) ,dk}. The following alternating iteration is used for this:

For a known random variable λk (θ) (or given an initial value), applying the stochastic Galerkin

method [13, 14] to Eq. (25) we have

E
{
λ2

k (θ) A (θ)
}

dk = E {λk (θ) Bk (θ)} , (26)

where the expectation operator E {·} =
∫
Θ
· dP (θ). Eq. (26) is a linear deterministic equation for the

unknown vector dk, which can be solved efficiently and accurately by existing numerical solvers

[24], even for very large problems. In the practical implementation, to speed up the convergence,

we let dk be orthogonal to the previously obtained vectors {di}
k−1
i=1 . The following Gram-Schmidt

orthonormalization process is used for this

dk = dk −

k−1∑
i=1

dT
k di

dT
i di

di = dk −

k−1∑
i=1

(
dT

k di

)
di, dT

k dk = 1, (27)

which is equivalent to dT
k di = δki, i ∈ {1, k − 1}, where δki is the Kronecker delta.

14
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Based on the obtained vector dk using Eq. (26), applying the classical Galerkin method to

Eq. (25) we have2

ak (θ) λk (θ) = bk (θ) , (28)

where the scalar random variables ak (θ) ∈ R and bk (θ) ∈ R are given by

ak (θ) = dT
k A (θ) dk, bk (θ) = dT

k Bk (θ) . (29)

Although Eq. (28) has a very simple form, it still suffers from the curse of dimensionality occurring

in high-dimensional stochastic spaces if common numerical methods are used, such as the PC

expansion-based methods. To avoid this, we adopt a sampling method to solve Eq. (28), which

corresponds to

λk

(̂
θ
)
= ak

(̂
θ
)
⊘ bk

(̂
θ
)
∈ Rns , (30)

where λk

(̂
θ
)
∈ Rns , ak

(̂
θ
)
∈ Rns and bk

(̂
θ
)
∈ Rns are the sample realization vectors of the random

variables λk (θ), ak (θ) and bk (θ), respectively, and ⊘ is the element-wise division of two vectors.

Since all random inputs are embedded into random sample vectors, Eq. (30) is insensitive to the

stochastic dimension and cheap enough even for very high-dimensional random inputs. In this

sense, the proposed method avoids the curse of dimensionality to a great extent. The effectiveness

of this strategy has been verified in our previous studies [25, 26].

Repeatedly solving Eqs. (25) and (30) until both the random variable λk (θ) and the determin-

istic vector dk converge, we can obtain their final solutions. The next pair {λk+1 (θ) ,dk+1} is solved

in the same way. By solving enough pairs until a certain accuracy is reached, we can obtain the

final stochastic solution of p (θ). However, it is important to note that each pair is solved in a

greedy way and the random variables are approximated using random samples, which may not be

accurate enough in some cases. To address this, we consider Q = [d1, · · · ,dk] ∈ Rn×k as a set

of reduced bases and re-approximate the stochastic solution as p (θ) = QΛ (θ), where the random

variable vector Λ (θ) = [λ1 (θ) , · · · , λk (θ)]T
∈ Rk was introduced. To improve the computational

accuracy of the stochastic solution, the following reduced-order SFEE is used to recalculate Λ (θ)[
QTA (θ) Q

]
Λ (θ) = QTB (θ) , (31)

2Repeated indices do not imply summation in this work.
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where the size of the stochastic matrix QTA (θ) Q ∈ Rk×k is much smaller than the original SFEE

(13), that is, k ≪ n. Therefore, significant computational savings are achieved. Furthermore, we

can solve Eq. (31) cheaply for a set of random sample realizations
{
θ(i) ∈ Θ

}ns

i=1
using MCS owing

to the small size k. The total computational cost is still very low.

3.2. Solution algorithm for SFEE of mass transport

In this section we extend the above iterative process to solve Eq. (19). To this end, the stochas-

tic solution C (t, θ) is approximated using the following decoupled and greedy way

Ck (t, θ) =
k∑

i=1

ηi (θ) gi (t) hi = Ck−1 (t, θ) + ∆Ck (t, θ) , (32)

where Ck−1 (t, θ) =
∑k−1

i=1 ηi (θ) gi (t) hi and Ck (t, θ) are the (k − 1)th- and kth approximations of the

stochastic solution C (t, θ), {ηi (θ)}ki=1 are a set of random variables, {gi (t)}ki=1 are a set of temporal

functions, {hi ∈ Rn}
k
i=1 are a set of deterministic vectors, and ∆Ck (t, θ) = ηk (θ) gk (t) hk is the kth

stochastic increment. Similarly, the set of triplets {ηi (θ) , gi (t) ,hi}
k
i=1 is not known a priori and

needs to be solved one by one. Assuming that the approximation Ck−1 (t, θ) has been known or

given an initial value and substituting Eq. (32) into Eq. (19) we have

LC [∆Ck (t, θ)] = Sk (t, θ) , (33)

where the stochastic linear operator LC = M ∂
∂t + Z (θ) ∈ Rn×n and the stochastic right-side vector

Sk (t, θ) = −LC [Ck−1 (t, θ)] ∈ Rn. Only the triplet {ηk (θ) , gk (t) ,hk} is unknown, and they are

solved using the following alternating iteration[∫∫
Θ×T

η2
k (θ) gk (t)LCgk (t) dtdP (θ)

]
hk =

∫∫
Θ×T

ηk (θ) gk (t) Sk (t, θ) dtdP (θ) ∈ Rn, (34a)[∫
Θ

η2
k (θ)

(
hT

kLChk

)
dP (θ)

]
gk (t) =

∫
Θ

ηk (θ) hT
k Sk (t, θ) dP (θ) ∈ R, (34b)[∫

T

gk (t)
(
hT

kLChk

)
gk (t) dt

]
ηk (θ) =

∫
T

hT
k Sk (t, θ) gk (t) dt ∈ R. (34c)

Given a known random variable ηk (θ) and a known temporal function gk (t) (or given their initial

values), Eq. (34a) is a deterministic linear equation that is obtained by applying the stochastic

Galerkin method [13, 14] and the time Galerkin method [23] to Eq. (33), which can be solved
16

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5153607

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



efficiently and accurately using existing numerical solvers, even for very large problem sizes. With

the known random variable ηk (θ) and the known deterministic vector hk (obtained by Eq. (34a)),

Eq. (34b) is a one-dimensional ordinary differential equation for gk (t) that is obtained by applying

the stochastic Galerkin method and the space Galerkin method to Eq. (33). This equation can also

solved using existing solvers [37], even for very long-duration problems (i.e. a large temporal

grid). With the known deterministic vector hk (obtained by Eq. (34a)) and the known temporal

function gk (t) (obtained by Eq. (34b)), Eq. (34c) is a one-dimensional stochastic algebraic equation

that is obtained by applying the space and time Galerkin methods to Eq. (33), which can also be

solved efficiently by the sample-based strategy used in Eq. (30), even for very high-dimensional

stochastic problems. Also, during the iteration, we perform the orthonormalization hT
k hi = δki, i ∈

{1, k − 1} and the normalization
∫
T

g2
k (t) dt = 1. Moreover, we highlight that the implementations

of Eq. (34) are inexpensive. Specifically, we have∫∫
Θ×T

η2
k (θ) gk (t)LCgk (t) dtdP (θ) = E

{
η2

k (θ)
} ∫
T

∂gk (t)
∂t

gk (t) dt + E
{
η2

k (θ) Z (θ)
}
, (35a)∫

Θ

η2
k (θ)

(
hT

kLChk

)
dP (θ) = E

{
η2

k (θ)
} (

hT
k Mhk

) ∂
∂t
+ hT

kE
{
η2

k (θ) Z (θ)
}

hk, (35b)∫
T

gk (t)
(
hT

kLChk

)
gk (t) dt =

(
hT

k Mhk

) ∫
T

∂gk (t)
∂t

gk (t) dt + hT
k Z (θ) hk, (35c)

where E
{
η2

k (θ)
}

and E
{
η2

k (θ) Z (θ)
}

can be calculated cheaply for both low- and high-dimensional

random inputs using their random sample realizations and are reused in both Eqs. (35a) and (35b),∫
T

∂gk(t)
∂t gk (t) dt is a scalar value even for long-duration problems, and hT

k Mhk and hT
k Z (θ) hk are

deterministic and stochastic scalar values even for large-scale problems and are reused in both

Eqs. (35b) and (35c). The right-side terms in Eq. (34) can be calculated cheaply in a similar way.

To conclude, we highlight that the proposed iteration can handle large-scale, stochastically high-

dimensional and long-duration problems very well.

Furthermore, similar to Eq. (31), we consider H = [h1, · · · ,hk] ∈ Rn×k as a set of reduced

bases and re-approximate the stochastic solution as C (t, θ) = HG (t, θ), where the time-dependent

random vector G (t, θ) =
[
g1 (t, θ) , · · · , gk (t, θ)

]T
∈ Rk is introduced and gi (t, θ) are temporal-

stochastic scalar-valued function. To improve the computational accuracy of the stochastic solu-
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tion C (t, θ), the following time-dependent reduced-order SFEE is used to recalculate G (t, θ)(
HTLCH

)
G (t, θ) = 0, (36)

equivalently,

m (θ)
∂G (t, θ)

∂t
+ z (θ) G (t, θ) = 0, (37)

where the stochastic reduced-order matrices m (θ) = HTM (θ) H ∈ Rk×k and z (θ) = HTZ (θ) H ∈

Rk×k are much smaller. Therefore, we can use MCS to solve Eq. (37) cheaply for a set of sample

realizations
{
θ(i) ∈ Θ

}ns

i=1
. The final stochastic solution of G (t, θ) is given by G

(
t, θ̂

)
∈ Rk×nt×ns ,

where nt is the total number of time steps. This may involve a high storage requirement when nt

and ns are large. To avoid this, we represent G (t, θ) as follows (this will be discussed later on)

G (t, θ) =
rG∑
j=1

η j (θ) G j (t) , (38)

where the deterministic matrices G j (t) ∈ Rk×nt and the random sample vectors η j

(̂
θ
)
∈ R1×1×ns

(actually a vector-like tensor to match the dimension of G (t, θ)). In this way, the storage re-

quirement is reduced from O (nntns) for C (t, θ) in the original SFEE (19) to O (kntns) for G (t, θ)

in the reduced-order SFEE (37), then to O (rG (knt + ns)) for G (t, θ) in Eq. (38). More impor-

tantly, Eq. (38) provides a decoupled representation of stochastic and temporal components and

incorporates all uncertainties into random sample vectors
{
η j

(̂
θ
)}rG

j=1
. This is very convenient for

subsequent uncertainty quantification analysis.

To further speed up the solution of Eq. (37), we propose a time parallel algorithm. Specifically,

we use the Backward Euler time discretization to solve Eq. (37)

[m + z (θ)∆t] G j (θ) = mG j−1 (θ) , (39)

where G j (θ) = G
(
t j, θ

)
is the solution at the time t j and ∆t is the time step. Eq. (39) can be further

rewritten as

G j (θ) = [m + z (θ)∆t]−1 mg j−1 (θ) . (40)

Following this, we perform the eigendecomposition [m + z (θ)∆t]−1 m = QAQT, where Q−1 =

QT ∈ Rk×k is an orthogonal matrix consisting of all eigenvectors of the matrix [m + z (θ)∆t]−1 m
18
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and A ∈ Rk×k is a diagonal matrix whose elements are the corresponding eigenvalues. Due to the

small size of [m + z (θ)∆t]−1 m, the eigendecomposition is cheap enough, which is typically not

applicable for the original SFEE (19) since the eigendecomposition of large-scale matrices is too

expensive. Substituting the decomposition into Eq. (40) we can obtain the following time parallel

solution

G j (θ) = QA jQTG0 (θ) , (41)

where G0 (θ) is given by initial conditions. Therefore, the solutions at different time steps are

independent of each other and can be solved in parallel. Furthermore, it only requires calculating

A j at each time step, which is very cheap due to the diagonal property of the matrix A.

Remark 1. It is worth noting that the iteration in Eq. (34) may be unstable in the cases where the

coefficient matrix
∫∫
Θ×T

η2
k (θ) gk (t)LCgk (t) dtdP (θ) ∈ Rn×n in Eq. (34a) is ill-conditioned (may

be caused by integration in the time domain), or the probability distributions of the scalar-valued

coefficients
∫
Θ
η2

k (θ)
(
hT

kLChk

)
dP (θ) or

∫
T

gk (t)
(
hT

kLChk

)
gk (t) dt in Eqs. (34b) and (34c) contain

the value zero (may be caused by integration in the time domain and the stochastic space). In these

cases, we cannot obtain converged solutions. To overcome this, we can use the iteration proposed

in our previous work [38], which is a bit more complex but sufficiently stable. Specifically, instead

of the approximation ∆Ck (t, θ) = ηk (θ) gk (t) hk, we use the following two approximations for the

stochastic increment

∆Ck (t, θ) ≈ ηk (θ) h̃k (t) , (42a)

≈ g̃k (t, θ) hk. (42b)

where h̃k (t) is the temporal-spatial coupled approximation of gk (t) and hk, and g̃k (t, θ) is the

temporal-stochastic coupled approximation of gk (t) and ηk (θ). The following alternating iteration

is used to solve the triplet {ηk (θ) , gk (t) ,hk}:

E
{
η2

k (θ)LC
}

h̃k (t) = E {ηk (θ) Sk (t, θ)} , h̃k (t) = hkgk (t) ∈ Rn×nt , gk (t) ∈ R1×nt , (43a)(
hT

kLChk

)
g̃k (t, θ) = hT

k Sk (t, θ) , g̃k

(
t, θ̂

)
= ηk

(̂
θ
)

gk (t) ∈ Rns×nt , ηk

(̂
θ
)
∈ Rns . (43b)

For a known random variable ηk (θ), considering the approximation Eq. (42a) and applying the

stochastic Galerkin method to Eq. (33), we obtain Eq. (43a), which is a linear time-dependent
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equation and can be solved efficiently using existing solvers. To achieve the temporal-spatial de-

coupled approximation of gk (t) and hk, the rank-1 singular value decomposition (SVD) is further

used in Eq. (43a). With the obtained vector hk, considering the approximation Eq. (42b) and ap-

plying the space Galerkin method to Eq. (33) we obtain Eq. (43b), which is a one-dimensional

stochastic ordinary differential equation and can be solved cheaply using MCS. To achieve the

temporal-stochastic decoupled approximation of gk (t) and ηk (θ), the randomized rank-1 SVD is

further used in Eq. (43b). In this way, the iteration in Eq. (43) is stable enough. The effectiveness

and more numerical details of this method can be found in [38].

3.3. High-dimensional random inputs

In this section we highlight the effectiveness of the proposed method handling high-dimensional

random inputs without any modification, although this has already been hinted at above. Specifi-

cally, we explicitly introduce high-dimensional random inputs by setting large values rK in Eq. (11)

and rZ in Eq. (22). On the basis of this, the calculations involving high-dimensional random in-

puts, including the expectations E
{
λ2

k (θ) A (θ)
}

in Eq. (26) and E
{
η2

k (θ) Z (θ)
}

in Eq. (35), as well

as the vector-stochastic matrix multiplication dT
k A (θ) dk in Eq. (29) and hT

k Z (θ) hk in Eq. (35), are

given by

E
{
λ2

k (θ) A (θ)
}
=

rK∑
j=0

E
{
λ2

k (θ) ξ j (θ)
}

A j, E
{
η2

k (θ) Z (θ)
}
=

rZ∑
j=0

E
{
λ2

k (θ) χ j (θ)
}

Z j, (44a)

dT
k A (θ) dk =

rK∑
j=0

(
dT

k A jdk

)
ξ j (θ) , hT

k Z (θ) hk =

rZ∑
j=0

(
dT

k Z jdk

)
χ j (θ) . (44b)

It can be seen that Eq. (44a) only involves the expectations of random variables and Eq. (44b) only

involves vector-deterministic matrix multiplication. Both equations are cheap enough, even for

very high-dimensional random inputs. More importantly, their computational effort is insensitive

to the stochastic dimension and proportionally increases as the stochastic dimension increases.

In this sense, the proposed method successfully avoids the curse of dimensionality occurring in

high-dimensional stochastic spaces.
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3.4. Efficient propagation of stochastic quantities

In this section we address the issue of efficient propagation of stochastic quantities. To generate

Eq. (19), we need to calculate the stochastic velocity v (θ) and the stochastic diffusion-dispersion

coefficient D (θ) using the stochastic pressure obtained by Eq. (13), and then propagate them into

Eq. (19). In fact, this is not trivial for many cases. Specifically, the stochastic velocity matrix

(including two spatial directions) calculated through Eq. (2) is given by

v (θ) =
q (θ)
ϕ
= −

rK∑
j=0

ξ j (θ)

 k∑
i=1

λi (θ)
[
∇xdi,∇zdi

]T
− ρg

 Kϕµ, j ∈ R2×n, (45)

where Kϕµ, j is a diagonal matrix whose diagonal elements are the evaluation of K j

ϕµ
at each spatial

discretized node (K j is given in Eq. (11)). Rewriting v (θ) as a vector form we have

ṽ (θ) = −
rK∑
j=0

k∑
i=1

ξ j (θ) λi (θ)

 Kϕµ, j (∇xdi − ρgx1n×1)

Kϕµ, j

(
∇ydi − ρgy1n×1

)
︸                            ︷︷                            ︸

=−f ji∈R2n

=

rK∑
j=0

k∑
i=1

ξ j (θ) λi (θ) f ji ∈ R2n, (46)

where 1n×1 ∈ Rn is the all-ones vector. If k · rK is a large number, we have to calculate numerous

terms f ji, which further leads to the need of a large amount of matrix assembly and storage for

{Zi}
rKk
i=1 in Eq. (22). Therefore, the solution and storage of Eq. (22) will be quite expensive. A

similar issue also occurs with the stochastic diffusion-dispersion coefficient D (θ).

To address the above issue, we consider the following low-rank decoupled approximation

ṽ (θ) =
rv∑

l=1

χv,l (θ) vl, (47)

where χv,l (θ) ∈ R and vl ∈ R2n are unknown random variables and deterministic vectors, respec-

tively. A greedy iteration is used to solve each pair

χv,r (θ) vr = ṽ (θ) −
r−1∑
l=1

χv,l (θ) vl. (48)

Here assuming that
{
χv,l (θ) , vl

}r−1
l=1 have been known, we only need to solve the pair

{
χv,r (θ) , vr

}
.

The following alternating iteration is used for this purpose

E
{
χ2

v,r (θ)
}

vr = E
χv,r (θ)

̃v (θ) −
r−1∑
l=1

χv,l (θ) vl


 ∈ R2n, (49a)
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(
vT

r vr

)
χv,r (θ) = vT

r

̃v (θ) −
r−1∑
l=1

χv,l (θ) vl

 ∈ R. (49b)

Given a known random variable χv,r (θ), Eq. (49a) is obtained by applying the stochastic Galerkin

method to Eq. (48), and with the known deterministic vector vr obtained by Eq. (48), Eq. (49b) is

obtained by applying the Galerkin method to Eq. (48). We still perform the orthonormalization

vT
r vi = δri, i ∈ {1, r − 1} during the iteration. Considering Eq. (46) and the orthonormalization,

Eq. (49) is further rewritten as

vr =
1

E
{
χ2

v,r (θ)
}  rK∑

j=0

k∑
i=1

E
{
χv,r (θ) ξ j (θ) λi (θ)

}
f ji −

r−1∑
l=1

E
{
χv,r (θ) χv,l (θ)

}
vl

 , (50a)

χv,r (θ) =
rK∑
j=0

k∑
i=1

ξ j (θ) λi (θ)
(
vT

r f ji

)
, (50b)

where E
{
χv,r (θ) ξ j (θ) λi (θ)

}
and E

{
χv,r (θ) χv,l (θ)

}
are calculated cheaply by using sample realiza-

tions of these random variables, and vT
r f ji only involves vector-vector multiplication. Therefore,

Eq. (50) has very low computational effort. Furthermore, by using a similar way, we can achieve

other decoupled representations in Eqs. (21) and (38).

4. Algorithm implementations

The proposed algorithm for solving the SFEE of Darcy flow is summarized in Algorithm 1.

It consists of double loops and a recalculation process. From step 2 to step 13, the outer loop is

used to solve all potential pairs {λi (θ) ,di}
k
i=1, and from step 5 to step 10, the inner loop is used

to solve each pair {λk (θ) ,dk}. For the inner loop, a nonzero vector of size ns is given in step 4

as the initialization of the random variable λk (θ). The intermediate vector d( j)
k during iteration is

orthonormalized in step 7 using the Gram–Schmidt method. Following the outer loop, a recalcu-

lation process is performed to update the random variable vector Λ (θ) for a set of random sample

realizations. Furthermore, there are two iterative indicators in step 9 and step 12 used to check the

convergence of the inner and outer loops, respectively. The indicator ϵd, j in step 9 measures the

difference between the vectors d( j)
k and d( j−1)

k , where ∥ · ∥2 is the L2 norm. The indicator ϵp,k in step
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Algorithm 1 Algorithm for solving the SFEE of Darcy flow
1: Assemble the stochastic matrix A (θ) ∈ Rn×n and the stochastic vector B (θ) ∈ Rn in Eq. (13),

k ← 1

2: while ϵp,k > ϵp do

3: Update the right-side vector Bk (θ) = B (θ) − A (θ) pk−1 (θ) ∈ Rn

4: Initialize the random sample vector λ(0)
k

(̂
θ
)
∈ Rns

5: while ϵd, j > ϵd do

6: Solve the deterministic vector d( j)
k ∈ R

n using Eq. (26)

7: Orthonormalize the vector d( j)
k using Eq. (27)

8: Solve the sample vector λ( j)
k

(̂
θ
)
∈ Rns using Eq. (30)

9: Calculate the iterative error ϵd, j =
∥∥∥d( j)

k − d( j−1)
k

∥∥∥2

2
, j← j + 1

10: end

11: Update the deterministic matrix D = [D, dk] ∈ Rn×k

12: Calculate the iterative error ϵp,k, k ← k + 1

13: end

14: Recalculate the sample realizations of Λ (θ) using Eq. (31)

12 is given by

ϵp,k =
E

{
∥pk (θ) − pk−1 (θ)∥22

}
E

{
∥pk (θ)∥22

} =
E

{
λ2

k (θ)
}

dT
k dk∑k

i, j=1 E
{
λi (θ) λ j (θ)

}
dT

i d j

=
E

{
λ2

k (θ)
}

∑k
i=1 E

{
λ2

i (θ)
} , (51)

which measures the contribution of the kth pair {λk (θ) ,dk} to the stochastic solution pk (θ). In

practice, ϵp,k does not keep decreasing for some cases since the random variables {λi (θ)}ki=1 are

solved in a greedy way. To improve this, an eigendecomposition is performed: E
{
Λ (θ)Λ (θ)T

}
=

QΨQT, whereΨ is a diagonal matrix and Q ∈ Rk×k is an orthonormal matrix satisfying QQT = Ik.

The stochastic solution is re-represented as pk (θ) = DQQTΛ (θ), which does not improve the

computational accuracy but only provides a new representation. Substituting it into Eq. (51) and

introducing an equivalent vector QTΛ (θ) =
[̃
λ1 (θ) , · · · , λ̃k (θ)

]T
∈ Rk, we have

ϵp,k =
E

{̃
λ2

k (θ)
}

∑k
i=1 E

{̃
λ2

i (θ)
} = ψk

Tr (Ψ)
, (52)
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Algorithm 2 Algorithm for solving the SFEE of mass transport
1: Assemble the stochastic matrices M ∈ Rn×n and Z (θ) ∈ Rn×n in Eq. (19), k ← 1

2: while ϵC,k > ϵC do

3: Update the right-side vector Sk (t, θ) ∈ Rn

4: Initialize the random sample vector η(0)
k

(̂
θ
)
∈ Rns

5: while ϵh, j > ϵh do

6: Solve the deterministic vector h( j)
k ∈ R

n using Eq. (34a)

7: Orthogonalize the vector h( j)
k using Eq. (27)-like process

8: Solve the temporal function g( j)
k (t) ∈ R1×nt using Eq. (34b)

9: Solve the sample vector η( j)
k

(̂
θ
)
∈ Rns using Eq. (34c)

10: Calculate the iterative error ϵh, j =
∥∥∥h( j)

k − h( j−1)
k

∥∥∥2

2
, j← j + 1

11: end

12: Update the deterministic matrix H = [H, hk] ∈ Rn×k

13: Calculate the iterative error ϵC,k, k ← k + 1

14: end

15: Recalculate the sample realizations of G (t, θ) using Eq. (41)

16: Generate the decoupled representation (38) using Algorithm 3

where Tr (·) is the trace operator and ψk is the kth diagonal element of the matrix Ψ. In this way,

the iterative indicator ϵp,k keeps decreasing as the item k increases.

Similar to Algorithm 1, the proposed method for solving the SFEE of mass transport is summa-

rized in Algorithm 2, where all notations are the same as in Algorithm 1. Compared to Algorithm

1, an additional step is used in step 8 to solve the temporal component, and following the recal-

culation step 15, an additional step in step 16 is introduced to generate a decoupled representation

of the temporal-stochastic solution. In addition, if the inner iteration from step 5 to step 11 is

unstable, it needs to be replaced using the method given in Remark 1. According to our numerical

tests, the problem that this article focuses on is sufficiently stable.

The proposed method for propagating stochastic quantities is also summarized in Algorithm

3, which has similar structure to Algorithm 1 and Algorithm 2. However, this algorithm is much
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Algorithm 3 Algorithm for propagating stochastic quantities

1: Giving a stochastic quantity, e.g., ṽ (θ) in Eq. (46) and G (t, θ) in Eq. (37), k ← 1

2: while ϵq,k > ϵq do

3: Initialize the random sample vector χ(0)
v,k

(̂
θ
)
∈ Rns

4: while ϵv, j > ϵv do

5: Solve the deterministic vector v( j)
k ∈ R

n using Eq. (50a)

6: Orthogonalize the vector v( j)
k using Eq. (27)-like process

7: Solve the sample vector χ( j)
v,k

(̂
θ
)
∈ Rns using Eq. (50b)

8: Calculate the iterative error ϵv, j =
∥∥∥v( j)

k − v( j−1)
k

∥∥∥2

2
, j← j + 1

9: end

10: Store the vector: [v1, · · · , vk−1, vk] ∈ Rn×k

11: Store the sample vector:
[
χv,1

(̂
θ
)
, · · · , χv,k−1

(̂
θ
)
, χv,k

(̂
θ
)]
∈ Rns×k

12: Calculate the iterative error ϵq,k, k ← k + 1

13: end

more efficient since it does not require solving systems of linear equations.

5. Numerical results

In this section we verify the proposed framework using a numerical example. For all algo-

rithms, the sample size of the iterative processes is ns = 1 · 104, and the convergence criteria of

inner iterations are set to εd = εh = εv = 1 · 10−3. Reference solutions are obtained by 1 · 104

standard Monte Carlo simulations, which is sufficient to achieve converged stochastic solutions

according to numerical tests. Furthermore, to eliminate the influence caused by the sampling pro-

cess itself, the same 1 · 104 random sample realizations are used in the proposed scheme. All tests

are performed on a desktop computer (sixteen cores, Intel Core i7, 2.5 GHz), but only a single core

is used for the numerical implementation.

5.1. Model inputs

As mentioned in Section 2.1, a 2D model is created considering different material groups sur-

rounding a reference containment-providing rock zone (r-CRZ) in the context of an m-mCRZ
25
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Table 1: Model parameters

Quantity Unit Value

Porosity ϕ : –

MG∗ I&II 0.01 [39]

MG III 0.36 [40]

Permeability K (x, θ) m2 [39]

MG I K0 = 5 ·10−16, σK = 0.2 K0

MG II&III [1 · 10−20, 1 · 10−18]

Pore diffusion coefficient Df m2 s−1

MG I&II 1 · 10−10 [41]

MG I 5 · 10−10

Bulk density of the porous medium ρb kg m−3

MG I&II 2650 [41]

MG III 2700 [40]

Liquid viscosity µ Pa · s 0.001

Dispersivity αL, αT m 20, 5 [41]
129I sorption coefficient kd m3 kg−1 0 [41]
129I half life t1/2 a 15.7 · 106 [41]

∗ MG denotes material group which are illustrated in Fig. 1b

repository concept in crystalline rock. The model parameters are listed in Table 1, where most

parameter values are sourced from the literature. Homogeneous material properties are assigned

for material groups representing the emplacement zone (MG III) and bentonite buffer (MG II).

Furthermore, a two-layer diffusion system is considered, with different diffusion coefficients as-

signed for bentonite buffer and crystalline rock. In accordance with the German Site Selection

Act for high-level waste repositories (StandAG)[1], the minimum permeability requirement for

the barrier system is less than 1 · 10−17 m2. Consequently, uniformly distributed random variables

within the range of
[
10−20, 10−18

]
m2 are applied for the permeability of the intact rock and the
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bentonite buffer layers. Furthermore, permeability values in MG II and MG III are assumed to

be independent. To represent the impact of fractures and fracture networks on hydraulic proper-

ties, the permeability of the fractured rock mass (MG I) is modeled as a random field with the

mean value K0 = 5 · 10−16 m2 and the standard deviation σK = 1 · 10−16 m2 (i.e. a COV of 0.2).

Due to its long half-life and minimal sorption effect on crystalline rock, the radionuclide 129I is

expected to have the highest transport potential. Therefore, this simulation focuses primarily on

studying the transport behavior of 129I, but other radionuclides can also be easily simulated us-

ing the proposed framework. 129I is conservatively considered to be homogeneously distributed

initially within the emplacement zone (MG III) (Fig. 1b). The value of the initial concentration

(Table 2) is defined based on the total inventory suggested by [42]. In all other material groups,

the initial concentration of 129I is set to zero. The starting time for the modeling is defined as the

time of canister failure, marking the onset of radionuclide release and subsequent transport. As the

boundary condition for groundwater flow, a hydraulic gradient in the horizontal direction is given

by defining differing Dirichlet boundary conditions for pressure at the left and right boundaries

(Fig. 1b). Further initial and boundary conditions are given in Table 2.

The finite element mesh is shown in Fig. 2. The spatial discretization generates a total of

30 295 nodes and 60 304 linear triangle elements, where a gradient mesh is used, with a finer mesh

for the inside part. For the random permeability field in Eq. (11) of the fractured rock mass, the

correlation lengths are lx = ly = 20 m, and the truncation term is r = 72 to achieve a truncation

error of χr/
∑rK

i=1 χi < 1 ·10−2. Therefore, this problem involves a total of 74 random variables (i.e.,

72 Gaussian random variables and two uniform random variables), leading to the subsequent high-

dimensional stochastic analysis. Three sample realizations of the random field K
(
x, z, θ(∗)

)
are

shown in Fig. 3. It can be seen that these sample realizations involve strong spatial inhomogeneity.

It is noted that random samples θ(i) with min
x,z

K
(
x, z, θ(i)

)
≤ 1 · 10−25 are discarded to ensure that

all realizations are physically meaningful. Since the discarded sample interval has a very low

probability of occurring, this truncation will actually cause minimal impact on the distribution

change. It is worth noting that even if the distributions of random inputs were changed to non-

Gaussian, the proposed method would still work without any modification due to its use of the

sample-based strategy.
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Table 2: Initial and boundary conditions (ICs/BCs)

Quantity Unit Value

Flow equation:

Boundary conditions∗

zero-flux BC at Γt and Γb: q · n = 0

Dirichlet BC at Γl: pl Pa 1.82 · 105

Dirichlet BC Γr: pr Pa 1.00 · 105

Solute transport:

Initial conditions

C0
I−129 in MGIII g m−3 0.186

C0
I−129 in MGI and MGII g m−3 0

Boundary conditions

zero-flux BC at Γl and Γr: ∇C ·n = 0

Dirichlet BC at Γtand Γb: CI−129 g m−3 0

∗ The boundaries Γt, Γb, Γr, Γl are illustrated in Fig. 1b

Figure 2: Finite element mesh: Mesh of the entire domain and location of two reference points A and B (left); zoomed

in mesh of the inner part (right).

5.2. Results of stochastic Darcy flow

By using Algorithm 1 to solve Eq. (13), the stopping criterion in step 2 is set to εp = 1 · 10−10,

and the corresponding iterative errors of different retained items are shown in Fig. 4. It can be

seen that 35 retained items are sufficient to achieve the specified accuracy, which demonstrates

the good convergence of the proposed method in solving the stochastic Darcy flow. Moreover, the
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Figure 3: Three exemplary sample realizations of the permeability random field K
(
x, z, θ(∗)

)
.

1 5 10 15 20 25 30 35

10 -10

10 -5

10 0

Figure 4: Iterative errors of different retained items.

iterative error keeps decreasing, which is consistent with the discussion of Eq. (52). Six solution

components of the stochastic pressure field are shown in Fig. 5, including the deterministic vectors

and the probability density functions (PDFs) of the corresponding random variable coefficients.

Among the selected modes, we see a clear dominance of the linear component of the pressure

field, d1, in accordance with the boundary conditions (primary solution). The remaining modes

constitute roughly zero-mean fluctuations around this primary pressure field. Different modes of

spatial vectors can be captured well and used to approximate the stochastic pressure accurately.

In terms of computational accuracy, we focus on the PDF of the stochastic pressure at the

interior center point. PDFs obtained using a different number of retained items k = {10, 20, 35}

are shown in Fig. 6a and their absolute errors relative to the MCS reference PDF can be seen from

Fig. 6b. Even 10 retained items can provide a good approximation for the stochastic pressure. It is

important to note that as the number of retained items increases, a decrease of the approximation

error is observed. Therefore, if a more accurate stochastic solution is needed, more items should

be retained. Furthermore, we highlight that even for each sample realization of random inputs,
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(a) Deterministic vectors {di}i={1,5,10,15,20,25}.
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(b) PDFs of the random variables {λi (θ)}i={1,5,10,15,20,25}.

Figure 5: Solution components of the stochastic pressure field: Selected deterministic vectors (top) and PDFs of the

corresponding random variable coefficients (bottom).
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(a) PDFs obtained by MCS and SFEM with the

number of retained items k = {10, 20, 35}.
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(b) Absolute errors relative to the MCS reference

PDF.

Figure 6: PDFs of the stochastic pressure (Pa) at the domain’s mid point.

the proposed method is still accurate enough. For a given random sample realization, the sample

realizations of stochastic pressure obtained by the proposed method and MCS, and their relative
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Figure 7: Pressure solution realization (Pa): SFEM (left), MCS (mid) and their relative error (right).

error are depicted in Fig. 7, which verifies the high accuracy of the proposed method for the given

sample realization of random inputs. In this sense, the recalculation process using Eq. (31) can

be used as a stochastic reduced-order model, allowing real-time or near-real-time simulations for

large-scale groundwater systems with uncertainties. Furthermore, in the deterministic solution

with homogeneously distributed permeability, a linear pressure gradient is expected from the left

to right boundary. However, in our simulation, the introduction of a random field for permeability

results in local variations in the pressure field. This highlights the importance of taking uncertainty

into account to make the analysis more realistic. These variations will become more prominent

when studying the velocity field.

Table 3: Computational times to solve stochastic Darcy flow.

Process Solving vectors Recalculation Total time MCS

Time 295.89 s 2.60 s 298.49 s 56.73 min

In terms of computational efficiency, as listed in Table 3, the time costs of the proposed method

and MCS are 298.49 s and 56.73 min, respectively, which demonstrates that the proposed method is

more efficient than MCS by a factor of more than ten. For the proposed method, the computational

time consists of the time required to solve for the basis vectors and the recalculation time. The

former is the cost from step 2 to step 13 of Algorithm 1, which is 295.89 s in this case. The latter is

the cost of the recalculation step 14 of Algorithm 1, which is 2.60 s in this case. The recalculation

time is less costly owing to the small size of Eq. (31). Therefore, more sample realizations of the

stochastic solution can be solved cheaply if needed.
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Figure 8: Sample realizations of the stochastic velocity (m/s) in x (top) and z (bottom) directions obtained by SFEM

(left), MCS (mid), and their absolute errors (right).

5.3. Results of stochastic velocity and stochastic diffusion-dispersion coefficient propagation

By using Eq. (2) and Algorithm 3, the stochastic velocity can be calculated, where the stopping

criterion in step 2 is set to ϵq = 1 · 10−4. According to Eq. (46), if a direct calculation is used, the

stochastic velocity involves 72 · 35 = 2520 random variables (ξ j (θ) λi (θ) is considered as a new

random variable), which is reduced to 62 random variables by using Algorithm 3. In terms of

approximation accuracy, for a given sample realization, Fig. 8 shows the corresponding sample

realizations of stochastic velocities obtained by the proposed method and the direct calculation

using MCS. The proposed method is in good agreement with MCS, which verifies the effectiveness

of Algorithm 3. Moreover, it can be seen that unlike the symmetric solution in a deterministic

analysis, the velocity in the x direction has strong spatial variability, which also leads to non-

homogeneous radionuclide migration in space. Furthermore, the stochastic coefficient Dp (θ) can

be calculated through Eq. (7)

Dp (θ) =

 Dp,xx (θ) Dp,xz (θ)

Dp,zx (θ) Dp,zz (θ)

 = αL − αT

∥v (θ)∥

 vx (θ) vx (θ) vx (θ) vz (θ)

vz (θ) vx (θ) vz (θ) vz (θ)

 + αT∥v (θ)∥I2, (53)

which involves a total of 2520 · 2520 + 1 = 6 350 401 random variables. Algorithm 3 is used

to reduce these to 60 random variables. Statistical properties of the velocity vector field, and

the dispersivity tensor field are depicted in Fig. 9. The mean values are very similar to the cor-

responding deterministic analysis. The standard deviations show the random variations of these

quantities, which can have significant impacts on subsequent stochastic analysis of radionuclide
32
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(a) Means of the stochastic velocity (m/s) in x (left) and z (right) direc-

tions, respectively.

(b) Standard deviations of the stochastic velocity in x (left) and z (right)

directions, respectively.

(c) Means of the stochastic coefficients Dp,xx (θ) (left), Dp,xz (θ) (mid) and Dp,zz (θ) (right), respectively.

(d) Standard deviations of the stochastic coefficients Dp,xx (θ) (left), Dp,xz (θ) (mid) and Dp,zz (θ) (right), respec-

tively.

Figure 9: Means and standard deviations of the stochastic velocity (the first two lines) and the stochastic coefficient

D (θ) (the last two lines).

mass transport.

5.4. Results of stochastic mass transport

For the radionuclide migration process, a total of 122 random variables (62 for velocities and

60 for Dp (θ)) are involved based on the above propagation process. Furthermore, we consider a

duration of 1 million years and use a time step of 100 years, thus yielding a total of 10 000 time

steps. By using Algorithm 2 to solve Eq. (13), the stopping criterion in step 2 is set to ϵC = 1·10−12,

which is used to show that the proposed method can achieve low errors. The iterative errors of
33
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Figure 10: Iterative errors of different retained items.

Figure 11: Deterministic vector components {hi}
6
i=1 of the stochastic concentration.

different retained items are shown in Fig. 10. In this case, 29 items are sufficient to achieve the

specific accuracy, which demonstrates the good convergence of the proposed method in solving

stochastic mass transport. It can be seen that for a stricter stopping criterion, the proposed method

can still achieve good convergence and effectively decrease the iterative error. The first six deter-

ministic vectors {hi}
6
i=1 of the stochastic concentration are depicted in Fig. 11, which clearly shows

characteristic modes of the radionuclide migration process resembling the source configuration

and the near- and far-field plumes.

In terms of computational accuracy, we focus on the probabilistic breakthrough curves at the

two reference points A and B (see Fig. 2 left). These breakthrough curves enhanced by evolving

PDFs for concentration obtained by Algorithm 2 and MCS, as well as their absolute errors, are

depicted in Fig. 12. The proposed method still has an accuracy comparable to that of MCS in
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(a) Probabilistic breakthrough curves of the stochastic concentration (g/m3) at point A.

(b) Probabilistic breakthrough curves of the stochastic concentration at point B.

Figure 12: Colors indicate the evolution of PDFs of concentration (in decadic logarithmic scale) of the stochastic

concentration, providing probabilistic breakthrough curves at reference points A (top) and B (bottom), respectively.

this case. Following groundwater flow and hydrodynamic dispersion, the radionuclides gradually

migrate from the emplacement zone to the surrounding regions. Consequently, as shown in our re-

sults (Fig. 12), at a given location, the concentration gradually increases over time. After reaching

its peak value, the concentration successively decreases as radionuclides are transported to more

distant areas. Since the reference point A is closer to the repository, the peak of the concentration

is reached earlier, after approximately 6 · 105 a. In contrast, at the farther point B, the maximum

concentration is reached after around 8 ·105 a. Characterizing the peak concentrations is of critical

importance in the context of SA for nuclear waste repositories, as the time of peak release from a

CRZ can be regarded as the period of highest risk for the repository. If the containment condition

has been ensured in the maximum risk period, long-term safety can usually be guaranteed for the

remaining storage period. Typically, long-term SA is recommended to cover up to one million

years [43]. National standards for SA timeframes vary from country to country. However, the
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potential dependency of SA timeframes on the observation regions has been rarely considered.

Our results highlight that the time point of peak release is strongly dependent on the boundaries

of the CRZ. The results also confirm that the consideration of one million years is reasonable for

this study’s configuration and can cover periods of peak radionuclide release. In this sense, the

proposed stochastic modeling framework could potentially provide reliable guidance to determine

the interaction between the timeframes required for safety evaluation and the dimensioning of the

CRZ when impacts of uncertainties in radionuclide transport are taken into account.

(a) Sample realizations of the stochastic concentration (g/m3) at the time t = 1 · 104 a.

(b) Sample realizations of the stochastic concentration at the time t = 1 · 105 a.

(c) Sample realizations of the stochastic concentration at the time t = 1 · 106 a.

Figure 13: Sample realizations of the stochastic concentration at different times (top to bottom) obtained by SFEM

(left) and MCS (mid), and their absolute errors (right).

Also, in addition to probabilistic solutions, we emphasize that the proposed method can ac-

curately solve the sample realization of stochastic concentration corresponding to each sample

realization of random inputs. To show this, with a given sample realization of random inputs, the

sample realizations of stochastic concentration at different time points obtained by the proposed

method and MCS are compared in Fig. 13. The method achieves very small absolute errors, thus

verifying the accuracy of Algorithm 2. The method is computationally very efficient for simula-
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tions of practically relevant dimensions, i.e. a high number of degrees of freedom and time steps.

Computational times of the proposed method and MCS are listed in Table 4, where the vector

solution time is the cost from step 2 to step 14 of Algorithm 2 and the recalculation time is the

cost of the recalculation step 15. The proposed method is still much more efficient than MCS and

achieves a speedup of 170. Furthermore, the recalculation process is performed using the time-

parallel solution given in Eq. (41). The computational time is 25.81 s if the non-parallel method in

Eq. (39) is used. This also verifies the effectiveness of the proposed time-parallel strategy.

Table 4: Computational times to solve stochastic mass transport.

Process Solving vectors Recalculation Total time MCS

Time 1.14 · 103 s 1.52 s 0.32 h 54.44 h

6. Conclusion

This article developed an effective and efficient framework for handling the influence of uncer-

tainties on radionuclide migration from deep geological repositories. Three challenging aspects

are highlighted, including large spatial scales, high-dimensional random inputs, and long durations

that require many time steps. The framework relies on the decoupling of stochastic solutions in

spatial, temporal and stochastic spaces and dedicated iterative algorithms to solve each component

alternately. The effectiveness of the proposed method has been verified using examples with up to

122 random variables, around 60 000 DoFs, and a duration of 1 million years. Furthermore, it was

shown that the proposed framework can provide high-accuracy probabilistic transport results in

the form of breakthrough curves, thus opening up a powerful pathway for subsequent uncertainty

quantification analysis such as reliability-based risk assessment and parameter sensitivity analysis

[44, 45], which will be followed up in future studies.
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