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Abstract

Considering the influence of uncertainties on radionuclide migration from deep geological repos-
itories (DGR) is of great significance for safety assessment. However, stochastic modeling for
DGR safety assessment remains challenging due to the high computational requirements of han-
dling large regional scale models with multiphysics coupling, high-dimensional random inputs,
and long simulated durations. This article introduces an efficient numerical framework to tackle
this set of challenges. Specifically, the proposed framework relies on three key components, in-
cluding efficient solutions of stochastic Darcy equations, propagation of stochastic quantities, and
efficient solutions of stochastic mass transport equations. Unknown stochastic solutions are ap-
proximated by summing a series of products involving random variables and deterministic com-
ponents. Alternating iterative algorithms are then proposed to decouple the original stochastic
problems into deterministic equations for the spatial components, one-dimensional stochastic al-
gebraic equations for the random variables, and one-dimensional ordinary differential equations
for the temporal components. These deterministic equations can be solved efficiently using ex-
isting solvers, allowing the handling of large-scale problems. The one-dimensional stochastic
algebraic equations can be solved efficiently using a sampling strategy, allowing the handling of
high-dimensional stochastic state spaces. The one-dimensional ordinary differential equations can

be solved cheaply and further accelerated using a time-parallel algorithm, allowing the handling



of long simulated time scales. Furthermore, a similar solution approximation and iterative algo-
rithm are also used to propagate stochastic quantities from stochastic Darcy flow to stochastic mass
transport. Numerical examples with up to 122 random variables and a simulated duration of one
million years demonstrate the promising performance of the proposed framework. The numeri-
cal results demonstrate that the developed stochastic framework achieves accuracy comparable to
Monte Carlo simulations while significantly improving computational efficiency by two orders of
magnitude. Moreover, the evolutionary probability density functions obtained from our stochastic
simulations indicate that the proposed framework could potentially serve as an efficient and robust

tool for DGR risk assessment.

Keywords: Uncertainty modeling, Stochastic Darcy flow, Stochastic mass transport,

High-dimensional random inputs, Stochastic finite element method

1. Introduction

Crystalline rock is widely considered one of the most suitable host rocks for a deep geological
repository (DGR) for high-level nuclear waste (HLW), due to its low-permeability that restricts
groundwater flow and reduces the potential for radionuclide migration. The safety assessment
(SA) of such repositories rely critically on the accurate prediction of radionuclide migration over
long timescales, often extending up to a million years [[1], and the systematic consideration of
relevant uncertainties [2]]. In this context, numerical modeling plays a crucial role in character-
izing the long-term transport properties of radionuclides, providing essential insights for safety
evaluations. However, modeling radionuclide transport in crystalline rock is particularly challeng-
ing due to the presence of fractures and the associated significant uncertainties [3} 14, [5]. Due to
their stochastic nature, fracture networks are usually difficult to characterize and introduce a high
degree of spatial heterogeneity and variability, making it difficult to accurately predict transport
pathways and rates. Recently, a great deal of modeling work has been conducted based on various

approaches to characterize the complex flow and transport properties in fractured rocks. Typically,
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four modeling approaches are used to address the impacts of fractures on flow and transport behav-
ior in fractured rocks, namely, discrete fracture network (DFN), channel network (CN), equivalent
porous medium model (EPM) and stochastic continuum model (SCM) approaches [6, [7]. In [6]],
a comparative study of groundwater flow modeling in fractured rocks was performed using the
SCM, DFN, and CN approaches. The results demonstrate that these three modeling approaches
yield similar mean values for the migration parameters. In particular, the SCM was found to effec-
tively capture the advective flow properties of groundwater in various graphical representations.
Compared to other numerical approaches, the SCM approach has significant advantages in terms
of reducing computational effort due to its continuum-based formulation. It does not emphasize
detailed geometric fracture data, but relies primarily on the results of hydraulic tests. Therefore,
the SC approach provides a robust foundation for quantifying uncertainties in groundwater flow
through fractures of varying distributions and scales.

In the present study, we develop a robust and computationally efficient stochastic modeling
framework for the migration process of radionuclides from deep geological repositories in frac-
tured rocks. Specifically, to capture variations in fracture properties and induced heterogeneity
in space, the most relevant parameter governing migration, permeability, is modeled by spatially
variable but continuous random fields within the SC framework. The stochastic mass transport
equation governs radionuclide movement in groundwater flow, influenced by advection, disper-
sion, diffusion, sorption and decay. Groundwater flow, described by the stochastic Darcy equa-
tion, drives radionuclide transport and propagates uncertainties in geological parameters into the
radionuclide concentration dynamics. Therefore, the key to simulating radionuclide migration is
to solve the stochastic multiphysics problem of Darcy flow coupled with radionuclide mass trans-
port, which typically involves large regional scales, high-dimensional random inputs and long time
frame. Since the stochastic Darcy flow and the stochastic mass transport are uni-laterally coupled
in a sequential way, where the stochastic solution of mass transport relies on the stochastic solution
of Darcy flow, the challenge lies on the efficient solution of stochastic “single-physical” problems
(i.e., uncoupled Darcy flow and mass transport) and the propagation of stochastic quantities be-
tween Darcy flow and mass transport.

For the first challenge, several methods originally developed for stochastic uncoupled problems
3



have been extended to solve each component of the stochastic coupled case. Monte Carlo simu-
lation (MCS) and its extensions [, 9] are widely used because of their broad applicability. Such
methods have the attractive advantages of being easily implemented using existing deterministic
multiphysics solvers and being suitable for handling high-dimensional random inputs. However,
a large number of deterministic simulations of mass transport coupled with Darcy flow need to
be solved to achieve high-accuracy stochastic solutions, which is prohibitively expensive for the
large-scale and long-duration stochastic problems considered in this article [10]. Another popular
method is based on the polynomial chaos (PC) expansion [[11,[12]]. This method uses (generalized)
PC bases to approximate stochastic solutions [[13, [14]. The original stochastic Darcy and mass
transport problems are then transformed into augmented deterministic Darcy and mass transport
equations using the stochastic Galerkin method. However, since the size of the augmented deter-
ministic problems increases dramatically as the number of random variables and/or the PC basis
truncation order increases, the PC-based approximation is susceptible to the curse of dimensional-
ity, which makes large-scale and/or high-dimensional stochastic analyses prohibitively expensive
in many cases of practical relevance. Therefore, the computational efficiency of PC-based meth-
ods needs to be further improved. Furthermore, other methods, such as the multi-fidelity method,
the response surface method and machine learning-based methods [15, (16} 17, 18], have also been
developed to solve each component of stochastic multiphysics problems. Their computational
accuracy and efficiency need to be further improved to adapt to stochastic multiphysics analy-
sis. For the second difficulty, existing studies usually use the PC approximation of the stochastic
solution of each physical field to exchange probabilistic information between different physical
fields 19} 20, 21}, 22]]. In addition to the above difficulties faced by PC-based approximations,
probabilistic information transferred between different physical fields must be assumed to be low-
dimensional and then approximated by Karhunen-Loeve expansion or reduced-dimensional PC
expansion [19, 21]. Currently, more efficient methods are still needed to propagate the high-
dimensional probabilistic information arising from the complex stochastic multiphysics analysis
considered in this study.

To address the above challenges and achieve efficient simulation of stochastic radionuclide

migration processes, the contribution of this article relies on three aspects, including efficient
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solutions of stochastic Darcy flow and stochastic mass transport, and effective probabilistic in-
formation propagation from Darcy flow to radionuclide mass transport. The first contribution is
concentrated on an efficient solution algorithm for high-dimensional stochastic Darcy equations.
Specifically, a stochastic solution approximation is used to decouple the unknown stochastic solu-
tion as a summation of a series of products of random variables and deterministic spatial vectors.
An alternating iterative algorithm combined with stochastic and deterministic Galerkin methods
(13} [14) 23] is then used to transform the original stochastic Darcy problem into deterministic
equations about the spatial vectors and one-dimensional stochastic algebraic equations about the
random variables. The deterministic equations can be solved efficiently using existing solvers
[24]], even for very large-scale problems. Moreover, one-dimensional stochastic algebraic equa-
tions are solved efficiently using a sample-based strategy [25, [26], which differs from existing
tensor product constructions for such solution approximations within the framework of proper
generalized decomposition methods [27, 28]. Benefiting from the dimensionality independence of
random samples, the sample approximation of random variable components allows handling both
low- and high-dimensional random inputs in a unified form, thereby significantly mitigating the
curse of dimensionality caused by high-dimensional random inputs. The second contribution is
to extend the above solution algorithm to solve stochastic mass transport equations for long du-
rations. In this case, the unknown stochastic solution is approximated as a summation of a series
of products of random variables, deterministic spatial vectors and deterministic temporal vectors.
Similarly, the original stochastic mass transport problem is transformed into deterministic equa-
tions about the spatial vectors, one-dimensional stochastic algebraic equations about the random
variables, and one-dimensional ordinary differential equations about the temporal vectors. The
first two equations are solved in a similar way as described above, and the one-dimensional ordi-
nary differential equations are solved cheaply and can be further accelerated using a time-parallel
algorithm. Therefore, the long time scales relevant in nuclear waste disposal can be handled very
well. The third contribution is to efficiently propagate stochastic quantities (e.g. stochastic veloc-
ities) from Darcy flow to mass transport. This typically involves high-dimensional probabilistic
propagation. Similarly to the above algorithms, the stochastic quantities are approximated using

decoupled forms consisting of deterministic vectors and random variables. These components
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are solved using an alternating iterative scheme similar to the above algorithms but simpler. The
promising performance of the proposed framework is demonstrated through numerical examples
with up to 122 random variables, 60 000 degree of freedoms (DoFs) and a simulation duration of
one million years.

This article is organized as follows: The basic problem of radionuclide migration from deep
geological repositories with uncertainties due to spatial variability of key physical properties and
the corresponding stochastic finite element equations are presented in Section [2] The solution
algorithms are proposed in Section 3] including the stochastic solution approximation, the iterative
algorithm, and the time-parallel strategy. Afterward, detailed algorithm implementations are given
in Section {] In Section [5] numerical examples with high-dimensional random inputs and long
durations are investigated to demonstrate the promising performance of the proposed framework.

Section [ closes the paper with discussions and conclusions.

2. Stochastic continuum representation of transport in fracture and matrix

2.1. Model description

In this study, we investigate the Modified Multiple Containment Providing Rock Zones (m-
mCRZs) concept (Fig.[la), which is proposed as a potential repository concept for a deep geolog-
ical repository (DGR) in crystalline rock in Germany [29]. This concept assumes the presence
of several discrete intact rock zones with low permeability within the crystalline host rock, which
serve as an effective geological barrier to prevent the migration of radionuclides into the biosphere.
These intact rock zones are isolated from each other by surrounding fractured rock zones. Indi-
vidual emplacement areas of nuclear waste are constructed in each of these intact rock zones.
To further enhance repository safety, an engineered barrier system (EBS) is integrated into the
design, incorporating bentonite buffer material placed around the waste canisters [30]. To con-
duct a detailed analysis of the flow and transport behavior of the radionuclides in the near field
of the repository, our modeling considers a two-dimensional section of a reference containment
providing rock zone (r-CRZ) with its surrounding fractured rocks from the m-mCRZs. Consistent

with the repository concept, the model domain is divided into three material groups (Fig.[1D): the
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(a) Schematic illustration of the repository concept for the modified Multiple
Containment-Providing Rock Zone (m-mCRZ) repository concept [29], and

the considered reference Containment-Providing Rock Zone (r-CRZ).
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(b) Model geometry, material groups and boundaries for the r-CRZ.

Figure 1: Repository concept and simulation domain.

emplacement zone containing nuclear waste (Material Group III, MG III), the intact containment
providing rock zone (CRZ) (Material Group II, MG II), and the fractured crystalline rock (Material
Group I, MG I). The goal is to model the migration of radionuclides away from the emplacement

area.



2.2. Mathematical model for flow and transport

Our modeling framework adopts the stochastic continuum approach, treating the fractured rock
mass as a continuum with spatially variable properties. The flow and mass transport processes
within the fractured rocks are assumed to be similar to those through porous media [31]]. The frac-
tured rock mass is thus represented as a locally averaged homogeneous equivalent porous medium
(EPM). In this equivalent system, the heterogeneity introduced by fractures and fracture networks
is captured through spatially random distributions of hydraulic property parameters. Specifically,
in our model a spatially random distribution of element permeability is employed to represent the
locally averaged properties, which can effectively account for the inherent spatial variability in
the fractured rock system. The radionuclide transport (RNT) is primarily governed by advective

groundwater flow, diffusion, hydrodynamic dispersion, sorption, and decay.

2.2.1. Continuity equation
The groundwater flow is described by the continuity equation, which is derived based on the

mass balance of the liquid phase in the porous media

0
290) - 5 (9w + 0, M

where ¢ is the porosity, which has different values for MG I, MG Il and MG 111, Q% is a source/sink
flow rate, p is the density of pore fluid, and v € R? is the vector of flow velocity in the two-
dimensional domain considered here. In our simulation, we assume the use of Darcy’s law to

describe the flow process, where the Darcy velocity ¢ is given by

—

K
q=¢v=—;-<Vp—pg>eR2, (2)

where K = KT, € R>? denotes the isotropic permeability tensor, K is a (spatially inhomogeneous)
scalar function, I, € R>? is the identity tensor, 4 is the liquid viscosity, g € R? is the gravitational
acceleration vector, and p is the pore water pressure. In this article, we only consider isotropic
permeability, but K can be anisotropic in general. In practice, aside from the permeability K, other
parameters can also be modeled as random inputs, be it as random variables or as random fields.

In this study, without loss of generality, we only consider that the scalar function K is modeled as
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a random field K (x, §), where x = [x, z]* € R? is the spatial placement vector with the coordinate
system introduced in Fig.[Ib] The random event 6 € @ is defined in a suitable probability space
(0, E,P), where ® denotes the space of elementary events, = is the o-algebra defined on ®, and
P is the probability measure. Substituting Eq. (2) in Eq. (1)), the stochastic governing equation for

porous media flow with the pore pressure p as primary variable can be derived

d¢_Op (1,x,0) ( K (x,6)
M

0p = . . f— w
(¢% +p%)T =V P [Vp (t’ X, 9) pg]) + Q s (3)

Considering the steady-state flow regime of Eq. (3]) and the isotropic random permeability tensor

K (x,0) = K (x, 0) I, the weak form of Eq. (3) is given by

fp@vp(e)-VndQ—fpzwg-vndfﬂfQ”WdQ:O- )
Q M Q K @

where the dependence on placement x is omitted here, and 7 is the deterministic spatial test func-

tion with 7], = (ff}

2.2.2. Mass transport equation for radionuclide migration
Furthermore, for the radionuclide migration, we consider the following stochastic mass trans-

port equation of a representative species
% [¢RC (1,0)] =V - [¢D (6) - VC (1,6)] — q(6) - VC (1,6) — R C (1,6) (5)

with specific initial concentration C (0, #), where C (¢, 8) represents the time-dependent stochastic
concentration of the radionuclide, the coefficient D (6) € R?>*? is known as the diffusion-dispersion

tensor consisting of molecular diffusion Dy € R?*? and mechanical dispersion D, (9) € R>?
D@©) =D;+D, ). (©)

In our modeling, D; = D¢l is considered to be isotropic, where Dy is a scalar value (or a spatial

function). The mechanical dispersion is given by the dispersion matrix

YV

vl

D, (6) = (ar — ar) + aglplL, (7)

"Without loss of generality, Dirichlet conditions on the entire boundary Q were considered in Eq. @)
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where @ and a7 are the longitudinal and transversal dispersion coefficients, respectively, and || - ||
represents the magnitude of the vector. Furthermore, the coefficient R is the retardation factor

defined as
R =1+ pykq/ o, ®)
where ky 1s the sorption coefficient of the radionuclides, T = In2/t), is the first-order decay

constant, py, is the bulk density of the porous medium, and ¢, , is the half life of the radionuclide.

Similar to Eq. @), the weak form of Eq. (5) under prescribed boundary concentrations is given by
0
EfqﬁRC(t,é))ng + quD(H) -VC(1,0)-VdQ + f q(x,0)-VC(t,0)dQ
Q Q Q

+f¢RTC(t, 0)£dQ =0, 9)
Q

where { is the spatial test function with |, = 0.

2.3. Modeling of random fields

In this article, we assume that the permeability-related scale function K (x, 6) is a Gaussian
random field. For general non-Gaussian random fields, some advanced simulation methods can be
used, e.g., [32, 133, 34]]. Specifically, the Gaussian random field K (x, 8) has the mean value K (x)

and the covariance function

X —X2|)’ (10)

Covk (X|,X;) = 0% €Xp (— l

where ok is the standard deviation and / is the correlation length. By using the Karhunen-Loeve

expansion [[13}35]], the random field K (x, 8) can be approximated as
'K
K (x,60) = Ko (%) + Y &) VkiKi (x), (11)
i=1

where {¢; (0)}, are a set of mutually independent standard Gaussian random variables, and {«;, K; (X)}7,
are respectively the eigenvalues and eigenvectors of the covariance function Covg (X1, X,). They

are solved by the following Fredholm integral equation of the second kind

f Covg (x1,X2) K; (x0) dx» = k;K; (X1), (12)
Q

which can be solved efficiently using existing eigenvalue solvers [36], even for very large-scale

problems.
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2.4. Stochastic finite element equations

2.4.1. Stochastic finite element equation for stochastic Darcy flow
Applying finite element discretization to the weak form (@), we can generate the following

stochastic finite element equation (SFEE)
A@)p@©) =B(@), (13)

where p (f) € R” is the unknown stochastic nodal solution of pressure, n is the total number of
degrees of freedom (DoFs), the stochastic matrix A () = UZ; A© (6) € R™™ is obtained by
assembling all stochastic element matrices, and the stochastic vector B (6) = U, B® @) € R"
is obtained by assembling all stochastic element vectors. Taking the linear triangle element as an

example, the stochastic solution of each element is approximated as

P (0) = Np®© (0) € R, (14)

where p© (0) = [p(le) ), p(ze) o), pge) (0)]T € R3 is the vector of nodal pressure values, and the

shape function matrix N and its derivative &~ are

ox
ON Ny Ny ON;
ox ox ox 2X3
N:[ ]eR% N _ e R¥, 5
Ny N, N; T N oN o (15)
0z 0z 0z

According to Eq. @), the stochastic element matrix A® () and the stochastic element vector
B© (6) are given by

T T

A(e) (9) — f p @ a_N a_N dQ(e) c R3X3, B(e) — f p2 @ a_N g— NTQW dQ(e) c R3.
0e© u \ox) ox Q© u o\ ox

(16)

In a similar way, other types and higher-order elements can be used for the spatial discretization.
In addition, considering the random field approximation (TTJ), the stochastic matrix A (6) and the

stochastic vector B (0) in Eq. can be further expressed as

AO)=) &OA;, BO =) £O)B, (17)
j=0 Jj=0
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where &) (6) = 0 and the deterministic matrices and vectors {A ;€ER™,B; € R”}r‘K are obtained

by assembling the following deterministic element matrices and vectors for the example of the

linear triangular element

ON\' 6N Ko (N
Age) — f o— ( ) dQ(e) R3X3, Bée) — f p2 a0 (_) g NTQW dg(e) c R3,
Q) 0x (9X Qe M 0x

(18a)
iK; iK;
Ai'e) B f() \/i (GX) 51: dQ® e R, Bge) B f() \/i (5X) BdQ® € R, Vj (L.
Qe Qe
(18b)

There are several difficulties in solving Eq. (I3). One the one hand, large-scale problems typ-
ically result in a large number of spatial DoFs, whose solutions are time-consuming and storage-
intensive. On the other hand, high-dimensional random inputs, e.g., a large truncation number r
in Eq. (T1)), suffer from the so-called curse of dimensionality in stochastic spaces. The coupling of
large scales and high stochastic dimensions will make the solution more difficult. To address these

issues, we will present an efficient and accurate algorithm in the next section.

2.4.2. Stochastic finite element equation for stochastic mass transport

With the stochastic pressure obtained by Eq. (I3), the stochastic velocity vector v (6) and the
stochastic diffusion-dispersion matrix D (6) can be calculated using Eqgs. (2) and (7). Similar to
Eq. (13), applying finite element discretization to the weak form (9), we can generate the following
SFEE

oC(t,0)
M ot

where C (z,6) € R” is the time-dependent stochastic nodal solution of concentration, the matrices

M = U, M@ e R™ and Z (6) = (U, Z® (0) € R™" are obtained by assembling all stochastic

+Z0)C(,0) =0, (19)

element matrices. Considering again the linear triangle element, we have

M®© = f PRNTN AQ® e R¥, (20a)
Q)

N ON
7 9) = f ¢( )D(a) dQ© + f dNTVT (9) dsz(e)
Qe© ox Qe

+ f SRTNTNAQ® € RS, (20b)
Qe
12



where D () € R?? is the matrix form of D () at each integration point, and v (f) € R? is the vector
form of v () at integration point. It is noted that the matrix M is deterministic and only Z (6) is
an asymmetric stochastic matrix. Furthermore, following the expansion Eq. (I'T)), we assume that
the stochastic velocity v (6) and the stochastic diffusion-dispersion tensor D () have the following
decoupled forms (this will be achieved later on)

V(o) = va, ©@vi, DO = ZXDJ Oy 1)

j=1

where {y,; (6)}:;1 and {XD,j (9)}].:1 are scalar random variables, and {v,-}f;l and {D j}r,D are deter-

ministic components/bases. In this way, we can rewrite the SFEE (19) as

M€ (t 2 (Z i (Q)Z)C(t 0) = 22)

where rz = r, + rp, the random variables x; (6) = x,,;(0), i € {1,r} and x,,+;(0) = xp,;(0),

€ {1, rp}, and the deterministic element matrices of Z; are given by

79 = [ greNNaQ <7, (230)
Qe

7P = ()¢NT T(ZNdQ(e) R¥, ie{l,n}, (23b)
Qe

Zﬁflj:f()qﬁ(?;:) Dg—NdQ(e)eR3X3 je{l,rp}, (23¢)

In order to solve Eq. efficiently and accurately, in addition to the difficulties of handling
large scales and high-dimensional random inputs, long simulated time spans must also be consid-
ered in this study. To address long duration and its coupling with large scales and high stochastic
dimensions, an efficient algorithm will be proposed in the next section. Furthermore, the stochastic
velocity v (0) and the stochastic diffusion-dispersion coefficient D () need to be calculated based
on the stochastic solution of Eq. (I3) and are reused in Eq. (19). This is not trivial, as they typically
involve high stochastic dimensions and need to be propagated to Eq. (I9) with high accuracy. This

is also a focus to be solved in the present study.

3. Efficient solution algorithms for SFEEs

In this section we focus on developing efficient algorithms to solve the SFEEs and

and to propagate stochastic quantities between them.
13



3.1. Solution algorithm for SFEE of Darcy flow

To solve SFEE (I3), we approximate the stochastic solution p (6) using the following decou-

pled and greedy way

k
Pe(0) = > Ai(O)d; = pey (6) + 4 (0) dy, (24)

i=1
where pr_; () = Y] 2;(0)d; € R” and p; (§) € R” are the (k — 1)™ and k™ approximations of
the stochastic solution. For the approximation, a set of random variables{A; (9)}?‘21 and a set of
deterministic vectors {d; € ]R”}f:1 are used so that A, (8) d; € R" is the k™ stochastic increment of
the stochastic solution. In practice, both the random variables {A; (0)}f-‘:, and the deterministic vec-
tors {d; € R”}ﬁ;l are not known a priori. We adopt an iterative method to solve the pair {4; (0) , d;}
one by one. To this end, substituting Eq. into Eq. and assuming that the approximation

P«-1 (6) has been known (or given as an initial value), Eq. 1s rewritten as
AO) 4 (0)d, = B, (0), (25)

where the vector B, (8) = B(6) — A (6) pr_; (6) € R". In this way, we only need to solve the k™
unknown pair {4, (6), d;}. The following alternating iteration is used for this:

For a known random variable 4 (6) (or given an initial value), applying the stochastic Galerkin

method [[13} [14] to Eq. we have
E {/11% 0 A (9)} di = E{4 () B (9}, (26)

where the expectation operator E {-} = f -dP (0). Eq. (26) is a linear deterministic equation for the
unknown vector d;, which can be solved efficiently and accurately by existing numerical solvers
[24]], even for very large problems. In the practical implementation, to speed up the convergence,
we let d; be orthogonal to the previously obtained vectors {di}f-:ll. The following Gram-Schmidt
orthonormalization process is used for this
=1 qTq k=1
di =d - d’_;— =d,- ) (did)d, did; =1, (27)

= ! i=1

which is equivalent to d{d,- = 0y, 1 € {1,k — 1}, where ¢y, is the Kronecker delta.

14



Based on the obtained vector d; using Eq. (26), applying the classical Galerkin method to

Eq. we havef]

a (0) 4 (6) = b (0), (28)

where the scalar random variables a; (0) € R and b, (6) € R are given by
a; (0) = A (0)dy, b (6) = d; B (0). (29)

Although Eq. (28) has a very simple form, it still suffers from the curse of dimensionality occurring
in high-dimensional stochastic spaces if common numerical methods are used, such as the PC
expansion-based methods. To avoid this, we adopt a sampling method to solve Eq. (28)), which
corresponds to

2. (6) = ak@®bk (6) € R™, (30)

where A (5) € R™, a; (5) € R™ and b, @ € R are the sample realization vectors of the random
variables A, (6), a; (6) and by (6), respectively, and @ is the element-wise division of two vectors.
Since all random inputs are embedded into random sample vectors, Eq. (30) is insensitive to the
stochastic dimension and cheap enough even for very high-dimensional random inputs. In this
sense, the proposed method avoids the curse of dimensionality to a great extent. The effectiveness
of this strategy has been verified in our previous studies [25, [26]].

Repeatedly solving Egs. and (30) until both the random variable A, (6) and the determin-
istic vector d; converge, we can obtain their final solutions. The next pair {4 (0) , di41} is solved
in the same way. By solving enough pairs until a certain accuracy is reached, we can obtain the
final stochastic solution of p (). However, it is important to note that each pair is solved in a
greedy way and the random variables are approximated using random samples, which may not be
accurate enough in some cases. To address this, we consider Q = [dy,--- ,d;] € R™* as a set
of reduced bases and re-approximate the stochastic solution as p (6) = QA (6), where the random
variable vector A (6) = [4, (0),--- , 4 (®)]" € R* was introduced. To improve the computational

accuracy of the stochastic solution, the following reduced-order SFEE is used to recalculate A (6)

|Q"A()Q|A®) = Q"B (H). (31)

?Repeated indices do not imply summation in this work.
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where the size of the stochastic matrix QTA (6) Q € R¥* is much smaller than the original SFEE
(13), that is, k < n. Therefore, significant computational savings are achieved. Furthermore, we
ns
i=

can solve Eq. cheaply for a set of random sample realizations {H(i) € ®} ] using MCS owing

to the small size k. The total computational cost is still very low.

3.2. Solution algorithm for SFEE of mass transport

In this section we extend the above iterative process to solve Eq. (I9). To this end, the stochas-

tic solution C (z, 6) is approximated using the following decoupled and greedy way
k
Ci(t.0)= Y 1 (®) g (h; = Ciuy (1,60) + AC, (1,6), (32)
i=1

where C;_; (1,60) = Zf:ll n; (0) g; (H)h; and C; (, 6) are the (k — D™ and i approximations of the
stochastic solution C (z, 6), {n; (9)}5;1 are a set of random variables, {g; (t)}f-‘:1 are a set of temporal
functions, {h; € R”}f: , are a set of deterministic vectors, and ACy (¢,60) = n (6) gx (1) hy is the kb
stochastic increment. Similarly, the set of triplets {r; (0), g; (¢), h,~}f~‘:1 is not known a priori and
needs to be solved one by one. Assuming that the approximation C;_; (¢, 6) has been known or

given an initial value and substituting Eq. (32) into Eq. (I9) we have
Lo [AC (1,0)] = Si (£,0), (33)

where the stochastic linear operator L. = M% + Z.(0) € R™" and the stochastic right-side vector
Si(t,0) = —Lo[Ciq (2,0)] € R". Only the triplet {n; (6), gk (t) . hy} is unknown, and they are

solved using the following alternating iteration
[ f f 7 (6) 80 (1) Log <r>drd¢><e>] hy = f f 1 (©) g (DS (1.6) drdP (6) € B, (34a)
OxXT OxXT
[ f n; (0) (hy Lchy) d@(e)] g (1) = f i (0)hy Sy (1,60) dP (0) € R, (34b)
(€] (€]

[ f g1 (1) (h} Lehy) g (r)dt] HOE f(/_ h!S; (1.6) gi (1) dt € R. (34c)
.

Given a known random variable 7, (6) and a known temporal function g, (¢) (or given their initial
values), Eq. (34a)) is a deterministic linear equation that is obtained by applying the stochastic

Galerkin method [[13] [14] and the time Galerkin method [23] to Eq. (33), which can be solved
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efficiently and accurately using existing numerical solvers, even for very large problem sizes. With
the known random variable 7, (6) and the known deterministic vector h; (obtained by Eq. ),
Eq. (34b) is a one-dimensional ordinary differential equation for g () that is obtained by applying
the stochastic Galerkin method and the space Galerkin method to Eq. (33). This equation can also
solved using existing solvers [37], even for very long-duration problems (i.e. a large temporal
grid). With the known deterministic vector hy (obtained by Eq. (34a))) and the known temporal
function g (¢) (obtained by Eq. (34b)), Eq. is a one-dimensional stochastic algebraic equation
that is obtained by applying the space and time Galerkin methods to Eq. (33), which can also be
solved efficiently by the sample-based strategy used in Eq. (30), even for very high-dimensional
stochastic problems. Also, during the iteration, we perform the orthonormalization h} h; = &, i €
{1,k — 1} and the normalization fT g,% () dt = 1. Moreover, we highlight that the implementations

of Eq. are inexpensive. Specifically, we have

0
[ #oa0Lanwro-2hio) [ EloouElozo)  os
XT T

f@ n; (0) (b Lche) dP (9) = E {n; (0)) (h{th)% +hE{} OZ©O)}h,  (35b)

)
f g (1) (hy Lchy) g (1) dr = (h{Mh, ) f g;t(t)gk (1) dr + h{Z (O)hy, (35¢)
T T

where E {ni (9)} and E {17,% O Z (9)} can be calculated cheaply for both low- and high-dimensional
random inputs using their random sample realizations and are reused in both Eqs. (35a) and (35b),
fT %gk (#) dt is a scalar value even for long-duration problems, and thhk and h{Z (6) hy, are
deterministic and stochastic scalar values even for large-scale problems and are reused in both
Eqgs. (35b) and (35¢). The right-side terms in Eq. (34)) can be calculated cheaply in a similar way.
To conclude, we highlight that the proposed iteration can handle large-scale, stochastically high-
dimensional and long-duration problems very well.

Furthermore, similar to Eq. , we consider H = [hy,--- ,h;] € R as a set of reduced
bases and re-approximate the stochastic solution as C (¢, §) = HG (¢, 8), where the time-dependent

random vector G (1,0) = [g1(t,0), -, g (t, 19)]T € R* is introduced and g; (¢,6) are temporal-

stochastic scalar-valued function. To improve the computational accuracy of the stochastic solu-
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tion C (z, 6), the following time-dependent reduced-order SFEE is used to recalculate G (¢, 6)

(HTLCH) G(1,6) =0, (36)
equivalently,
m (6) aG(;;’ 9 2010 =0, 37)

where the stochastic reduced-order matrices m () = HHM (@) H € R** andz(#) = H'Z(O)H e
R¥* are much smaller. Therefore, we can use MCS to solve Eq. cheaply for a set of sample
realizations {H(i) € ®}ln:1 The final stochastic solution of G (¢, 6) is given by G(t,H e Rbxmxns
where n, is the total number of time steps. This may involve a high storage requirement when n,

and n are large. To avoid this, we represent G (z, 6) as follows (this will be discussed later on)

GO =) OG0, (38)

=1
where the deterministic matrices G; () € R*™ and the random sample vectors 7; @ e RIxbxn
(actually a vector-like tensor to match the dimension of G (z,6)). In this way, the storage re-
quirement is reduced from & (nnny) for C (¢, 6) in the original SFEE to O (knn) for G (¢, 0)
in the reduced-order SFEE (37), then to & (r¢ (kn, + ny)) for G (¢,6) in Eq. (38). More impor-
tantly, Eq. (38) provides a decoupled representation of stochastic and temporal components and
incorporates all uncertainties into random sample vectors {n j @}:(;1 . This is very convenient for
subsequent uncertainty quantification analysis.

To further speed up the solution of Eq. (37)), we propose a time parallel algorithm. Specifically,

we use the Backward Euler time discretization to solve Eq.
[(m +z(0) At] G; (6) = mG,_; (), (39)

where G; (0) = G (t j, 9) is the solution at the time #; and At is the time step. Eq. 1i can be further
rewritten as

G;(0)=[m+z(0)Ar] ' mg; , (6). (40)

Following this, we perform the eigendecomposition [m + z (6) At 'm = QAQT, where Q! =

Q" € RP* is an orthogonal matrix consisting of all eigenvectors of the matrix [m + z () At 'm
18



and A € R*%* is a diagonal matrix whose elements are the corresponding eigenvalues. Due to the
small size of [m + z (6) Af]"' m, the eigendecomposition is cheap enough, which is typically not
applicable for the original SFEE (19) since the eigendecomposition of large-scale matrices is too
expensive. Substituting the decomposition into Eq. we can obtain the following time parallel
solution

G, (0) = QA'Q'G( (), (41)

where Gy (6) is given by initial conditions. Therefore, the solutions at different time steps are
independent of each other and can be solved in parallel. Furthermore, it only requires calculating

A’ at each time step, which is very cheap due to the diagonal property of the matrix A.

Remark 1. It is worth noting that the iteration in Eq. (34) may be unstable in the cases where the
coefficient matrix f f@x‘]’ ni (0) gi (1) Lcegi () dedP (0) € R™ in Eq. (344)) is ill-conditioned (may
be caused by integration in the time domain), or the probability distributions of the scalar-valued

coefficients f® . (6) (hZLChk) dP () or f,/, gr (1) (hz£chk) gr (1) dt in Egs. (34b) and (34c) contain

the value zero (may be caused by integration in the time domain and the stochastic space). In these
cases, we cannot obtain converged solutions. To overcome this, we can use the iteration proposed
in our previous work [38|], which is a bit more complex but sufficiently stable. Specifically, instead
of the approximation ACy (t,6) = n; (6) g (¢) hy, we use the following two approximations for the

stochastic increment

ACL(1,0) ~ mi (O) hy (1), (42a)
~ T (40 hy. (42b)
where Hk (t) is the temporal-spatial coupled approximation of g, (t) and hy, and g, (t,0) is the
temporal-stochastic coupled approximation of g; (t) and 1, (0). The following alternating iteration

is used to solve the triplet {n, (0), g, (t) ,h;}:
E{n 0) Lo () = Efme S (1,0)},  he(d) =hygi () € R™™, g () e ™™, (43a)
(hf Lchy) 2 (1. 6) = hiS, (1.6). % (t.0) = 1 (6) g (1) e R™™, 1, () e R™.  (43b)

For a known random variable 1, (6), considering the approximation Eq. (42a) and applying the

stochastic Galerkin method to Eq. (33)), we obtain Eq. @3d), which is a linear time-dependent
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equation and can be solved efficiently using existing solvers. To achieve the temporal-spatial de-
coupled approximation of g, (t) and hy, the rank-1 singular value decomposition (SVD) is further
used in Eq. @3ad). With the obtained vector hy, considering the approximation Eq. 2b) and ap-
plying the space Galerkin method to Eq. we obtain Eq. @3b), which is a one-dimensional
stochastic ordinary differential equation and can be solved cheaply using MCS. To achieve the
temporal-stochastic decoupled approximation of g (t) and ny (6), the randomized rank-1 SVD is
further used in Eq. @43b). In this way, the iteration in Eq. (43) is stable enough. The effectiveness

and more numerical details of this method can be found in [38]].

3.3. High-dimensional random inputs

In this section we highlight the effectiveness of the proposed method handling high-dimensional
random inputs without any modification, although this has already been hinted at above. Specifi-
cally, we explicitly introduce high-dimensional random inputs by setting large values rx in Eq. (1)
and rz in Eq. (22). On the basis of this, the calculations involving high-dimensional random in-
puts, including the expectations E {/1,% A (9)} in Eq. li and E {ni 6 Z (0)} in Eq. li , as well
as the vector-stochastic matrix multiplication dzA (6)d; in Eq. and h',fZ (6) h; in Eq. , are

given by
E{% ©)A®) = Z E{G©)&OA,  E{ROZ@O)= Z E{A ) x; O} Z;,  (44a)
J=0 j=0
drA (0)d, = Z (dfAdy) & 0). hIZ () hy = ZZ (d{Z,di)x; ().  (44b)
j=0 j=0

It can be seen that Eq. (44a)) only involves the expectations of random variables and Eq. (44b) only
involves vector-deterministic matrix multiplication. Both equations are cheap enough, even for
very high-dimensional random inputs. More importantly, their computational effort is insensitive
to the stochastic dimension and proportionally increases as the stochastic dimension increases.
In this sense, the proposed method successfully avoids the curse of dimensionality occurring in

high-dimensional stochastic spaces.
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3.4. Efficient propagation of stochastic quantities

In this section we address the issue of efficient propagation of stochastic quantities. To generate
Eq. (19), we need to calculate the stochastic velocity v (6) and the stochastic diffusion-dispersion
coefficient D () using the stochastic pressure obtained by Eq. (13)), and then propagate them into
Eq. (I9). In fact, this is not trivial for many cases. Specifically, the stochastic velocity matrix

(including two spatial directions) calculated through Eq. (2) is given by

0 rg k
v(6) = % == 26O 4O)[V.d,V.d]" - ng Ky, € R>, (45)
j=0 i=1

where Ky, ; is a diagonal matrix whose diagonal elements are the evaluation of % at each spatial

discretized node (K is given in Eq. (T)). Rewriting v (6) as a vector form we have

rk  k K (V d. — 1 ) gk

—_ P, xYi ng nx1 n

VO =-> > gOu0)| " =D EO L@ e R, (46)
=0 i=1 Ky, j (Vydi —,Ogy]lnxl) =0 i=1

=—fj,'E]R2"
where 1,4, € R" is the all-ones vector. If k - rx is a large number, we have to calculate numerous
terms f;, which further leads to the need of a large amount of matrix assembly and storage for

{Z)** in Eq. . Therefore, the solution and storage of Eq. will be quite expensive. A

i=1

similar issue also occurs with the stochastic diffusion-dispersion coefficient D (6).

To address the above issue, we consider the following low-rank decoupled approximation
VO =D X O, (47)
I=1

where y,;(0) € R and v, € R?" are unknown random variables and deterministic vectors, respec-

tively. A greedy iteration is used to solve each pair
r—1
Xor OV, =V O = > xn1 OV, (48)
=1

Here assuming that {y,; (6), V,};1 have been known, we only need to solve the pair {y, . (6),V,}.

The following alternating iteration is used for this purpose

r—1
E{y:, @)y, =E {)( C) [V O = > X (6) vl]} e R, (49a)
=1
21



r—1
(VI X (0) = V) [7(6) = > X (©) v,} eR. (49b)

I=1
Given a known random variable y, , (6), Eq. (49a)) is obtained by applying the stochastic Galerkin
method to Eq. (48), and with the known deterministic vector v, obtained by Eq. (8), Eq. is
obtained by applying the Galerkin method to Eq. (48). We still perform the orthonormalization
val- = 0,;, 1 € {l,r — 1} during the iteration. Considering Eq. and the orthonormalization,

Eq. (#9) is further rewritten as

1 K k r—1
K ,Z;‘ Z; E {0 0) 4; (O} £ = > Eles O, @lw. (500
k. k
or 0= 13160 4,60 (V]1). som
j=0 i=1

where E {)(v,r @& (9) A (9)} and E {y,, (0) x,., (0)} are calculated cheaply by using sample realiza-
tions of these random variables, and v, f;; only involves vector-vector multiplication. Therefore,
Eq. (50) has very low computational effort. Furthermore, by using a similar way, we can achieve

other decoupled representations in Egs. (21]) and (38).

4. Algorithm implementations

The proposed algorithm for solving the SFEE of Darcy flow is summarized in Algorithm [T}
It consists of double loops and a recalculation process. From step [2] to step [I3] the outer loop is
used to solve all potential pairs {4; (9), di}le, and from step [5| to step the inner loop is used
to solve each pair {1, (0),d}. For the inner loop, a nonzero vector of size ng is given in step
as the initialization of the random variable A; (6). The intermediate vector d,(cj) during iteration is
orthonormalized in step [/|using the Gram—Schmidt method. Following the outer loop, a recalcu-
lation process is performed to update the random variable vector A (6) for a set of random sample
realizations. Furthermore, there are two iterative indicators in step [9]and step[I2Jused to check the
convergence of the inner and outer loops, respectively. The indicator € ; in step [0] measures the

difference between the vectors d;{j) and d;{j _1), where || - ||, is the L, norm. The indicator €, in step
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Algorithm 1 Algorithm for solving the SFEE of Darcy flow
1: Assemble the stochastic matrix A () € R™" and the stochastic vector B () € R" in Eq. ,

k1
2: while €, > €, do

3: Update the right-side vector B, (6) = B (6) — A (6) py—1 (8) € R”

4: Initialize the random sample vector Aﬁco) @ e R™

5: while €3 ; > €4 do

6: Solve the deterministic vector dﬁ{j e R using Eq.

7 Orthonormalize the vector d,((j) using Eq.

8: Solve the sample vector /l,(cj) @ € R™ using Eq.

9: Calculate the iterative error €3 ; = ||d,(<j) - d,ij_l)”; Je—j+1
10: end

11: Update the deterministic matrix D = [D, d;] € R

12: Calculate the iterative error €,, k < k + 1

13: end

14: Recalculate the sample realizations of A (6) using Eq. (31)

[12)is given by
E {lIp« (6) - pe-1 (D)3} E{2 ()} d]d, E{2 )]

Ellc @B S LELOLO)dd 3 E(2O)]

(1)

€pk

which measures the contribution of the k™ pair {1, (6),d,} to the stochastic solution p; (6). In
practice, €, does not keep decreasing for some cases since the random variables {4; (9)}5‘:1 are
solved in a greedy way. To improve this, an eigendecomposition is performed: E {A @A (H)T} =
QYQ’, where ¥is a diagonal matrix and Q € RP* is an orthonormal matrix satisfying QQ' =1,.
The stochastic solution is re-represented as pi () = DQQ'A (9), which does not improve the
computational accuracy but only provides a new representation. Substituting it into Eq. and

introducing an equivalent vector QTA (6) = [Zl @,--- ,Zk (6)]T e R¥, we have

_ ]E{E%(G)} U
TUSLERE) T
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Algorithm 2 Algorithm for solving the SFEE of mass transport
1: Assemble the stochastic matrices M € R and Z (9) € R in Eq. (19), k « 1

2: while e, > ¢ do

3: Update the right-side vector S; (¢,0) € R”

4: Initialize the random sample vector 7],((0) 0) e R™

5: while g, ; > &, do

6: Solve the deterministic vector hij) € R” using Eq. (34al)

7: Orthogonalize the vector hfcj) using Eq. —like process

8: Solve the temporal function g,(cj) (t) € R using Eq. (34b)

9: Solve the sample vector n,((j) (5) € R™ using Eq. (34¢
10: Calculate the iterative error €, ; = ||h,(<j) - h,({j_l)”; je—j+1
11: end

12: Update the deterministic matrix H = [H, h;] € R

13: Calculate the iterative error €cy, k «— k + 1

14: end
15: Recalculate the sample realizations of G (z, 6) using Eq. {1)
16: Generate the decoupled representation using Algorithm 3|

where Tr (+) is the trace operator and ¢ is the k™ diagonal element of the matrix . In this way,
the iterative indicator €, keeps decreasing as the item k increases.

Similar to Algorithm/[I] the proposed method for solving the SFEE of mass transport is summa-
rized in Algorithm 2] where all notations are the same as in Algorithm[I}] Compared to Algorithm
[I} an additional step is used in step [§] to solve the temporal component, and following the recal-
culation step[15] an additional step in step [16]is introduced to generate a decoupled representation
of the temporal-stochastic solution. In addition, if the inner iteration from step [5] to step [I1] is
unstable, it needs to be replaced using the method given in Remark|[I] According to our numerical
tests, the problem that this article focuses on is sufficiently stable.

The proposed method for propagating stochastic quantities is also summarized in Algorithm

[3] which has similar structure to Algorithm [T]and Algorithm 2] However, this algorithm is much
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Algorithm 3 Algorithm for propagating stochastic quantities
1: Giving a stochastic quantity, e.g., v (6) in Eq. and G (1,0) in Eq. (37), k « 1

2: while €, > ¢, do

3: Initialize the random sample vector )(5?,2 0) e R™

4: while €, ; > €, do

5: Solve the deterministic vector Vij ' eR" using Eq. (50a))

6: Orthogonalize the vector sz) using Eq. —like process

7: Solve the sample vector Xi’,i 0) € R™ using Eq. (50b

8: Calculate the iterative error €, ; = ||V§(j) - v,((j_l) i, jej+1
9: end
10: Store the vector: [vy, -+ , Vi1, Vi] € R

11: Store the sample vector: [)(v,l @ 5T s X k-1 @ S Xvk (5)] e Rxk
12: Calculate the iterative error €,4, k < k + 1

13: end

more efficient since it does not require solving systems of linear equations.

5. Numerical results

In this section we verify the proposed framework using a numerical example. For all algo-
rithms, the sample size of the iterative processes is ny, = 1 - 10*, and the convergence criteria of
inner iterations are set to g4 = &, = & = 1 - 107>, Reference solutions are obtained by 1 - 10*
standard Monte Carlo simulations, which is sufficient to achieve converged stochastic solutions
according to numerical tests. Furthermore, to eliminate the influence caused by the sampling pro-
cess itself, the same 1 - 10* random sample realizations are used in the proposed scheme. All tests
are performed on a desktop computer (sixteen cores, Intel Core 17, 2.5 GHz), but only a single core

is used for the numerical implementation.

5.1. Model inputs

As mentioned in Section [2.1} a 2D model is created considering different material groups sur-

rounding a reference containment-providing rock zone (r-CRZ) in the context of an m-mCRZ
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Table 1: Model parameters

Quantity Unit Value
Porosity ¢ : -
MG™ [&I1 0.01 [39]
MG III 0.36 [40]
Permeability K (x, 6) m? [39]
MGI Ky=5-10"1% 0 = 0.2 K,
MG [ &IIT [1-1072°,1-1071%]
Pore diffusion coefficient D; m?s~!
MG I&II 1-10710 [41]
MGI 5-1071°

Bulk density of the porous medium p, kgm

MG I[&IT 2650 [41]]
MG I 2700 [40]
Liquid viscosity u Pa-s 0.001
Dispersivity ay, @t m 20, 5 [41]]
1291 sorption coefficient ky m kg™ 0 [41]
1291 half life ¢, a 15.7 - 105 [41]

* MG denotes material group which are illustrated in Fig.|1b

repository concept in crystalline rock. The model parameters are listed in Table |1, where most
parameter values are sourced from the literature. Homogeneous material properties are assigned
for material groups representing the emplacement zone (MG III) and bentonite buffer (MG II).
Furthermore, a two-layer diffusion system is considered, with different diffusion coefficients as-
signed for bentonite buffer and crystalline rock. In accordance with the German Site Selection
Act for high-level waste repositories (StandAG)[1], the minimum permeability requirement for
the barrier system is less than 1 - 10~ m2. Consequently, uniformly distributed random variables

within the range of [10‘20, 10‘18] m? are applied for the permeability of the intact rock and the
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bentonite buffer layers. Furthermore, permeability values in MG II and MG III are assumed to
be independent. To represent the impact of fractures and fracture networks on hydraulic proper-
ties, the permeability of the fractured rock mass (MG I) is modeled as a random field with the
mean value K, = 5 - 107" m? and the standard deviation ox = 1-107'm? (i.e. a COV of 0.2).
Due to its long half-life and minimal sorption effect on crystalline rock, the radionuclide '*I is
expected to have the highest transport potential. Therefore, this simulation focuses primarily on
studying the transport behavior of '*I, but other radionuclides can also be easily simulated us-
ing the proposed framework. '?°I is conservatively considered to be homogeneously distributed
initially within the emplacement zone (MG III) (Fig.[Ib). The value of the initial concentration
(Table [2)) is defined based on the total inventory suggested by [42]. In all other material groups,
the initial concentration of '*1 is set to zero. The starting time for the modeling is defined as the
time of canister failure, marking the onset of radionuclide release and subsequent transport. As the
boundary condition for groundwater flow, a hydraulic gradient in the horizontal direction is given
by defining differing Dirichlet boundary conditions for pressure at the left and right boundaries
(Fig.[Tb). Further initial and boundary conditions are given in Table

The finite element mesh is shown in Fig.[2] The spatial discretization generates a total of
30295 nodes and 60 304 linear triangle elements, where a gradient mesh is used, with a finer mesh
for the inside part. For the random permeability field in Eq. of the fractured rock mass, the
correlation lengths are [, = I, = 20m, and the truncation term is r = 72 to achieve a truncation
error of y,./ 205 xi < 1- 1072. Therefore, this problem involves a total of 74 random variables (i.e.,
72 Gaussian random variables and two uniform random variables), leading to the subsequent high-
dimensional stochastic analysis. Three sample realizations of the random field K (x, 2 9(*)) are
shown in Fig.[3] It can be seen that these sample realizations involve strong spatial inhomogeneity.
It is noted that random samples 6 with I’I;IZI] K (x, Z Q(i)) < 1-107% are discarded to ensure that
all realizations are physically meaningful.7 Since the discarded sample interval has a very low
probability of occurring, this truncation will actually cause minimal impact on the distribution
change. It is worth noting that even if the distributions of random inputs were changed to non-
Gaussian, the proposed method would still work without any modification due to its use of the

sample-based strategy.
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Table 2: Initial and boundary conditions (ICs/BCs)

Quantity Unit

Value

Flow equation:

Boundary conditions™
zero-flux BCatl'iandI,: q- m=0
Dirichlet BC at I'}: p; Pa
Dirichlet BCI';: p, Pa

1.82-10°
1.00 - 10°

Solute transport:

Initial conditions

CY |, in MGIII gm™

€Y |,y in MGI and MGII gm™

0.186

Boundary conditions
zero-flux BCatIyand I;: VC -n=0
Dirichlet BC at Ftand Fbi CI_129 g 1’1’1_3

*The boundaries I'y, Iy, I, [ are illustrated in Fig.|1b

in mesh of the inner part (right).

5.2. Results of stochastic Darcy flow
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Figure 2: Finite element mesh: Mesh of the entire domain and location of two reference points A and B (left); zoomed

By using Algorithmto solve Eq. (13)), the stopping criterion in step@is settog, =1-1071°,
and the corresponding iterative errors of different retained items are shown in Fig.[] It can be
seen that 35 retained items are sufficient to achieve the specified accuracy, which demonstrates

the good convergence of the proposed method in solving the stochastic Darcy flow. Moreover, the
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Figure 3: Three exemplary sample realizations of the permeability random field K (x, zZ, 9(*)).

10°

=
o
&

Iterative error € .

AALAANNNANNNNNDNNAA

A

o
a
o

1 5 10 15 20 25 30 35
Number of the retained item k

Figure 4: Iterative errors of different retained items.

iterative error keeps decreasing, which is consistent with the discussion of Eq. (52)). Six solution
components of the stochastic pressure field are shown in Fig.[5] including the deterministic vectors
and the probability density functions (PDFs) of the corresponding random variable coefficients.
Among the selected modes, we see a clear dominance of the linear component of the pressure
field, d;, in accordance with the boundary conditions (primary solution). The remaining modes
constitute roughly zero-mean fluctuations around this primary pressure field. Different modes of
spatial vectors can be captured well and used to approximate the stochastic pressure accurately.
In terms of computational accuracy, we focus on the PDF of the stochastic pressure at the
interior center point. PDFs obtained using a different number of retained items k£ = {10, 20, 35}
are shown in Fig.[6a and their absolute errors relative to the MCS reference PDF can be seen from
Fig.[6b] Even 10 retained items can provide a good approximation for the stochastic pressure. It is
important to note that as the number of retained items increases, a decrease of the approximation
error is observed. Therefore, if a more accurate stochastic solution is needed, more items should

be retained. Furthermore, we highlight that even for each sample realization of random inputs,
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Figure 5: Solution components of the stochastic pressure field: Selected deterministic vectors (top) and PDFs of the

corresponding random variable coefficients (bottom).
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Figure 6: PDFs of the stochastic pressure (Pa) at the domain’s mid point.

the proposed method is still accurate enough. For a given random sample realization, the sample

realizations of stochastic pressure obtained by the proposed method and MCS, and their relative

30



%10

5
1.8 1.8
1.6 1.6
1.4 1.4
1.2 1.2
1 1

Figure 7: Pressure solution realization (Pa): SFEM (left), MCS (mid) and their relative error (right).

error are depicted in Fig.[7, which verifies the high accuracy of the proposed method for the given
sample realization of random inputs. In this sense, the recalculation process using Eq. (31)) can
be used as a stochastic reduced-order model, allowing real-time or near-real-time simulations for
large-scale groundwater systems with uncertainties. Furthermore, in the deterministic solution
with homogeneously distributed permeability, a linear pressure gradient is expected from the left
to right boundary. However, in our simulation, the introduction of a random field for permeability
results in local variations in the pressure field. This highlights the importance of taking uncertainty
into account to make the analysis more realistic. These variations will become more prominent

when studying the velocity field.

Table 3: Computational times to solve stochastic Darcy flow.

Process ‘ Solving vectors Recalculation ‘ Total time ‘ MCS

Time ‘ 295.89s 2.60s ‘ 298.49s ‘ 56.73 min

In terms of computational efficiency, as listed in Table[3] the time costs of the proposed method
and MCS are 298.49 s and 56.73 min, respectively, which demonstrates that the proposed method is
more efficient than MCS by a factor of more than ten. For the proposed method, the computational
time consists of the time required to solve for the basis vectors and the recalculation time. The
former is the cost from step[2]to step[I3|of Algorithm[I] which is 295.89 s in this case. The latter is
the cost of the recalculation step[14] of Algorithm[I]} which is 2.60s in this case. The recalculation
time is less costly owing to the small size of Eq. (31)). Therefore, more sample realizations of the

stochastic solution can be solved cheaply if needed.
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5.3. Results of stochastic velocity and stochastic diffusion-dispersion coefficient propagation

By using Eq. (2)) and Algorithm[3] the stochastic velocity can be calculated, where the stopping
criterion in step [2|is set to g, = 1 - 107*. According to Eq. , if a direct calculation is used, the
stochastic velocity involves 72 - 35 = 2520 random variables (£; (6) 4; (6) is considered as a new
random variable), which is reduced to 62 random variables by using Algorithm [3] In terms of
approximation accuracy, for a given sample realization, Fig.[§] shows the corresponding sample
realizations of stochastic velocities obtained by the proposed method and the direct calculation
using MCS. The proposed method is in good agreement with MCS, which verifies the effectiveness
of Algorithm [3] Moreover, it can be seen that unlike the symmetric solution in a deterministic
analysis, the velocity in the x direction has strong spatial variability, which also leads to non-
homogeneous radionuclide migration in space. Furthermore, the stochastic coeflicient D, () can

be calculated through Eq.

Dp,xx (0) Dp,xz (9) _ ay, — ar Vx (9) Vx (9) Vx (0) V; (9)
Dy @ D@ | WO 5 @)v,0) v.(0)v.(6)

D, (0) = +arly @Ik,  (53)

which involves a total of 2520 - 2520 + 1 = 6350401 random variables. Algorithm 3| is used
to reduce these to 60 random variables. Statistical properties of the velocity vector field, and
the dispersivity tensor field are depicted in Fig.0] The mean values are very similar to the cor-
responding deterministic analysis. The standard deviations show the random variations of these

quantities, which can have significant impacts on subsequent stochastic analysis of radionuclide
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Figure 9: Means and standard deviations of the stochastic velocity (the first two lines) and the stochastic coefficient

D (6) (the last two lines).

mass transport.

5.4. Results of stochastic mass transport

For the radionuclide migration process, a total of 122 random variables (62 for velocities and
60 for D, (¢)) are involved based on the above propagation process. Furthermore, we consider a
duration of 1 million years and use a time step of 100 years, thus yielding a total of 10000 time
steps. By using Algorithmto solve Eq. , the stopping criterion in stepis settoec = 1-10712,

which is used to show that the proposed method can achieve low errors. The iterative errors of
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Figure 11: Deterministic vector components {h,-}f.’= | of the stochastic concentration.

different retained items are shown in Fig.[T0} In this case, 29 items are sufficient to achieve the
specific accuracy, which demonstrates the good convergence of the proposed method in solving
stochastic mass transport. It can be seen that for a stricter stopping criterion, the proposed method
can still achieve good convergence and effectively decrease the iterative error. The first six deter-
ministic vectors {h,-}?:1 of the stochastic concentration are depicted in Fig. which clearly shows
characteristic modes of the radionuclide migration process resembling the source configuration
and the near- and far-field plumes.

In terms of computational accuracy, we focus on the probabilistic breakthrough curves at the
two reference points A and B (see Fig.[2]left). These breakthrough curves enhanced by evolving
PDFs for concentration obtained by Algorithm 2] and MCS, as well as their absolute errors, are

depicted in Fig.[I2l The proposed method still has an accuracy comparable to that of MCS in

34



%107 SFEM %107 MCS «10>  Absolute error

N W R 1O N ©
N W R 1O N ©

2 4 6 8 10 2 4 6 8 10 2 4 6 s 10
t %10° t %10° t %10°

(a) Probabilistic breakthrough curves of the stochastic concentration (g/m?) at point A.

%10 SFEM «10°© MCS 108  Absolute error

12 12
10 10
=
o
~
0 0
10 10

2 4 6 8 2 4 6 8
t t

-
o
-
S}

12

10

2 o0 o
IS @

[S]
N

N W R 0O N © ©
a

N W R U0 N O ©
(o))

%10° %10° t %10°
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Figure 12: Colors indicate the evolution of PDFs of concentration (in decadic logarithmic scale) of the stochastic

concentration, providing probabilistic breakthrough curves at reference points A (top) and B (bottom), respectively.

this case. Following groundwater flow and hydrodynamic dispersion, the radionuclides gradually
migrate from the emplacement zone to the surrounding regions. Consequently, as shown in our re-
sults (Fig.[12)), at a given location, the concentration gradually increases over time. After reaching
its peak value, the concentration successively decreases as radionuclides are transported to more
distant areas. Since the reference point A is closer to the repository, the peak of the concentration
is reached earlier, after approximately 6 - 10° a. In contrast, at the farther point B, the maximum
concentration is reached after around 8 - 103 a. Characterizing the peak concentrations is of critical
importance in the context of SA for nuclear waste repositories, as the time of peak release from a
CRZ can be regarded as the period of highest risk for the repository. If the containment condition
has been ensured in the maximum risk period, long-term safety can usually be guaranteed for the
remaining storage period. Typically, long-term SA is recommended to cover up to one million

years [43]. National standards for SA timeframes vary from country to country. However, the
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potential dependency of SA timeframes on the observation regions has been rarely considered.
Our results highlight that the time point of peak release is strongly dependent on the boundaries
of the CRZ. The results also confirm that the consideration of one million years is reasonable for
this study’s configuration and can cover periods of peak radionuclide release. In this sense, the
proposed stochastic modeling framework could potentially provide reliable guidance to determine
the interaction between the timeframes required for safety evaluation and the dimensioning of the

CRZ when impacts of uncertainties in radionuclide transport are taken into account.
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(c) Sample realizations of the stochastic concentration at the time # = 1 - 10° a.

Figure 13: Sample realizations of the stochastic concentration at different times (top to bottom) obtained by SFEM

(left) and MCS (mid), and their absolute errors (right).

Also, in addition to probabilistic solutions, we emphasize that the proposed method can ac-
curately solve the sample realization of stochastic concentration corresponding to each sample
realization of random inputs. To show this, with a given sample realization of random inputs, the
sample realizations of stochastic concentration at different time points obtained by the proposed
method and MCS are compared in Fig.[I3] The method achieves very small absolute errors, thus

verifying the accuracy of Algorithm [2| The method is computationally very efficient for simula-
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tions of practically relevant dimensions, i.e. a high number of degrees of freedom and time steps.
Computational times of the proposed method and MCS are listed in Table 4} where the vector
solution time is the cost from step 2] to step [I4] of Algorithm [2] and the recalculation time is the
cost of the recalculation step The proposed method is still much more efficient than MCS and
achieves a speedup of 170. Furthermore, the recalculation process is performed using the time-
parallel solution given in Eq. (41)). The computational time is 25.81 s if the non-parallel method in

Eq. (39) is used. This also verifies the effectiveness of the proposed time-parallel strategy.

Table 4: Computational times to solve stochastic mass transport.

Process ‘ Solving vectors Recalculation ‘ Total time ‘ MCS

Time‘ 1.14-10°s 1.52s ‘ 0.32h ‘54.44h

6. Conclusion

This article developed an effective and efficient framework for handling the influence of uncer-
tainties on radionuclide migration from deep geological repositories. Three challenging aspects
are highlighted, including large spatial scales, high-dimensional random inputs, and long durations
that require many time steps. The framework relies on the decoupling of stochastic solutions in
spatial, temporal and stochastic spaces and dedicated iterative algorithms to solve each component
alternately. The effectiveness of the proposed method has been verified using examples with up to
122 random variables, around 60 000 DoFs, and a duration of 1 million years. Furthermore, it was
shown that the proposed framework can provide high-accuracy probabilistic transport results in
the form of breakthrough curves, thus opening up a powerful pathway for subsequent uncertainty
quantification analysis such as reliability-based risk assessment and parameter sensitivity analysis

(44, 45]], which will be followed up in future studies.
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