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39 Abstract

40 Aquifer characterization is essential for optimizing Aquifer Thermal Energy Storage 

41 (ATES) systems. Single well tests, also known as push-pull tests, are a common method to 

42 identify effective solute and heat transport parameters of the aquifer, which are crucial for the 

43 design and assurance of long-term performance of ATES systems. Tracer breakthrough 

44 curves from push-pull tests are commonly used to calibrate analytical or numerical models of 

45 heat and solute transport in order to infer effective transport parameters like dispersivity of 

46 heat and solutes, retardation factors, and porosity. The main bottleneck of such 

47 multiparametric calibration is the non-uniqueness of the inverse problem solution which 

48 requires ensemble-based optimization to address the parametric uncertainty. In addition, the 

49 field measurements can only be performed up to a certain confidence as well, which 

50 introduces additional uncertainty to the calibration results. To account for both sources of 

51 uncertainty while targeting computationally affordable simulation, we have developed a 

52 surrogate model-based optimization framework for stochastic parameter optimisation. The 

53 surrogate model uses Gaussian process regression (GPR) to train and predict the objective 

54 function based on up to six aquifer and tracer properties. For training and fast model 

55 evaluation, we implemented a stable 1D radial finite difference representation of the 

56 advection-dispersion equation for sorbing compounds including measured input time-series as 

57 transient boundary condition and wellbore storage to accurately model push-pull tests. The 

58 surrogate model is used to calibrate this model and to propose plausible parameter 

59 combinations. The optimisation framework was applied to push-pull experiments using 

60 uranine, iodide, lithium, and heat as tracers in a sandy aquifer in Horonobe (Hokkaido, Japan). 
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61 The samples drawn from the posterior distribution resulting from the GPR-based optimisation 

62 show an overall good fit to the field observations. Based on the posterior parameter 

63 distribution, it was possible to shrink the uncertainty intervals of the solute and heat 

64 dispersivity and porosity. The outcome suggests low sensitivity to the solute retardation 

65 factors. However, the study also reveals that slight sorption may be acting in the Horonobe 

66 aquifer for some of the solute tracers commonly assumed to be conservative. Moreover, the 

67 study shows that exact porosity measurements may reveal the presence of sorption and thus 

68 improve the understanding of the tracers’ behaviour. We demonstrate the benefits of using 

69 multiple tracers and high-resolution measurements to improve calibration accuracy under 

70 measurement uncertainty. The demonstrated approach offers a computationally efficient 

71 framework for addressing parametric uncertainty in push-pull test analysis, improving the 

72 design and optimization of ATES systems.

73 Key words: ATES, Push-Pull test, Simulation-based inference, Modelling, Solute and 

74 heat transport

75 1. Introduction

76 Aquifer thermal energy storage (ATES) has been gaining growing popularity recently as 

77 an alternative to fossil fuel-based heating and cooling (De Schepper et al., 2020; Stemmle et 

78 al., 2023). Being an efficient energy storage option making use of the subsurface, ATES 

79 enables large energy savings and massive reduction of CO2 emissions (Vanhoudt et al., 2011; 

80 Bloemendal and Olsthoorn, 2018; Beernink et al., 2022). The efficiency of geothermal power 

81 generation as well as aquifer thermal energy storage systems is highly affected by the 

82 subsurface heat storage and transport properties (Doughty et al., 1982; Tang and Rijnaarts, 

83 2023). Therefore, one of the essential steps in ATES design is an accurate characterisation of 

84 the target aquifer (Blöcher et al., 2024). This is typically done by hydraulic field tests, core 

85 logging, and laboratory experiments (Müller and Regenspurg, 2014; Wagner et al., 2014; Park 

86 et al., 2015).

87 Among hydraulic field tests for aquifer characterization for an optimal design of ATES 

88 systems, the push-pull test (PPT) using tracers is a well-established and commonly applied 

89 method to approximate the effective transport parameters of an aquifer (Schroth and Istok, 

90 2005; Vandenbohede et al., 2009; Vandenbohede et al., 2011; Park et al., 2015; Stettler, et al., 

91 2022). PPT results have been widely used to infer solute and heat transport parameters as well 
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92 as aquifer properties such as dispersivity, retardation factors, porosities, attenuation factor 

93 (Blöcher et al., 2024), groundwater velocity, and heat capacities (Leap and Kaplan, 1988; 

94 Kim et al., 2019; Ueckert et al., 2020; Kruisdijk and Breukelen, 2021; Johnson et al., 2023). 

95 To approximate the necessary parameters, multiple analytical (Schroth and Istok, 2005), semi-

96 analytical (Shi et al., 2020; Suk et al., 2023), as well as numerical models (e.g., 

97 Vandenbohede et al., 2009) have been employed to account for PPTs of varying complexity 

98 including different processes and geological conditions as well as varying boundary 

99 conditions. 

100 The majority of studies named above were dedicated to inference of a unique parameter 

101 set. However, in subsurface systems data collection is typically limited to sparse information 

102 from available boreholes, leading to incomplete information about the spatial distribution of 

103 properties. This limited data introduces significant uncertainty, particularly when inferring 

104 parameters for spatially distributed and physics-based modelling approaches (Kitanidis, 

105 1998). As the number of unknown parameters increases, the solution may become non-

106 unique, meaning different parameter combinations can yield outcomes of similar quality 

107 fitting the data equally well within the given uncertainty. To address these challenges, 

108 stochastic methods are employed, as they provide a robust framework to account for 

109 uncertainty and explore multiple possible parameter realizations, ultimately improving the 

110 reliability and predictive capability of physics-based models (Rasmusson et al., 2014; Cirpka 

111 and Valocchi, 2016; Jin et al., 2024). Although both, the simulation of PPTs and stochastic 

112 methods have been extensively developed already, only a limited number of studies aimed to 

113 apply stochastic methods to the calibration of real word PPTs.

114 This article presents a computationally efficient framework to stochastically calibrate 

115 PPT data under uncertainty using field data. We aim to provide a surrogate model-based 

116 workflow for uncertainty-acknowledged stochastic parameter estimation of the PPT data. For 

117 training and rapid model evaluation, we developed a fast and stable 1D finite-difference (FD) 

118 implementation of the advection-dispersion equation for sorbing tracers based on an analytical 

119 radial flow field. This model employs an adaptive explicit time-stepping scheme that ensures 

120 numerical stability while minimizing numerical diffusion. Furthermore, it can account for 

121 wellbore storage, the injection of a chaser after the push phase, as well as it can handle an 

122 input-time-series of concentration or temperature as transient boundary conditions. The 

123 workflow was applied to the Horonobe aquifer, which is a sandy aquifer in Hokkaido, Japan 
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124 (Hebig et al. 2014, 2015a,b), demonstrating its effectiveness in calibrating real-world PPT 

125 data serving for a better design of ATES systems. The PPT data was modelled stochastically 

126 while reducing the number of model runs required with ongoing calibration and maintaining 

127 calibration precision. Posterior distributions of thermal and solute dispersivity, porosity, and 

128 retardation factors of solutes and heat were analysed with the aim to investigate which 

129 parameters can be reliably deduced from the calibration procedure, enhancing our 

130 understanding of aquifer characterization through PPTs. This approach addresses the 

131 challenges of parameter estimation in complex subsurface systems, offering a computationally 

132 efficient method for improving ATES design and optimization. Calibrated parameter sets 

133 indicate that tracers, traditionally assumed to be conservative under most conditions in a 

134 sandy aquifer, such as uranine, iodide, or lithium may experience in fact slight sorption. Exact 

135 measurements of porosity may reveal, if this is actually the case in reality.

136 2. Site description and push-pull tests
137 The field experiments were performed at the Hamasato test site, which is the part of 

138 the municipality of Horonobe, at the north-western coast of Hokkaido, Japan (Matsumoto et 

139 al., 2020). Horonobe is situated in a coastal sedimentary basin composed primarily of loosely 

140 compacted sandstones, siltstones, and mudstones (Ikawa et al., 2014). The well field is 

141 located approximately 250 meters from the shoreline of the Sea of Japan, with the site 

142 elevation being around 5 meters above sea level (Hebig et al., 2016), moreover, it is screening 

143 the Sarabetsu Formation. This formation consists of unconsolidated Quaternary alluvial 

144 deposits, characterized by interbedded layers of coarse sand, fine gravel, and clay lenses 

145 (Hebig et al., 2015). The well screens a confined aquifer, primarily composed of sand and 

146 gravel, which is located between 90.7 and 99.7 meters below ground level. Although detailed 

147 hydraulic gradient and ambient groundwater flow velocity data for the monitoring well are 

148 unavailable, groundwater flow is generally from the recharge zone in the Horonobe Anticline, 

149 located about 10 km northeast, towards the Sea of Japan. Isotopic analysis and numerical 

150 simulations suggest groundwater ages ranging from 8,000 to 18,000 years, indicating an 

151 estimated flow velocity of approximately 0.56–1.25 meters per year (Matsumoto et al., 2020). 

152 Thus, we can safely neglect background flow for the analysis of the PPTs as the flow 

153 velocities induced by pumping in the near-field around the well are several orders of 

154 magnitude higher.
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155

156 2.1. Experiments
157 A total of seven PPTs were performed in the year 2012 in the well DD-2 having a diameter of 

158 5.08 cm (Figure 1), fully penetrating the aquifer with the thickness of 9.0 m. The experimental 

159 setup is discussed in details in (Hebig, 2015; Hebig et al., 2016, 2016; Matsumoto et al., 

160 2020). To ensure the targeted investigations of the aquifer, the well was sealed with a packer. 

161 The general setup of the PPTs included ~920 L of the injected test solution with an average 

162 pumping rate of 5 – 10 L/min. Immediately after the push phase 120 L of chaser solution was 

163 injected with the same pumping rate to replace the well volume (95 L). The following 

164 extraction of a 10 times higher volume of 10367 to 10404 L ensured tracer recovery. The tests 

165 took place with a descent recovery time of at least 12 hours in between to ensure the recovery 

166 of the natural aquifer conditions by the time of the next experiment. Mass recovery for the 

167 tests varied from 65 to 85 % depending on the setup. The identical tests “PPT1” and “PPT2” 

168 were used for the current study to identify aquifer parameters.
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169

Figure 1: Experimental setup for the PPTs in the well DD-2 (after Zeilfelder et al., 2015). 

170 2.2. Tracers
171 In the push-pull tracer tests, uranine, iodide, lithium, and temperature were simultaneously 

172 injected in the aquifer. Heat transport is known to exhibit retardation behaviour similar to 

173 sorption (Section 3). While iodide and uranine are generally regarded as conservative tracers 

174 (Adams and Davis, 1991), studies have noted weak sorptive behaviour with retardation 

175 factors ranging from 1.0 to 2.0 (Breuer, 2016). Lithium, as an alkali metal, typically exhibits 

176 minimal to no retardation in sandy aquifers due to its weak sorption onto the according 

177 aquifer material, represented predominantly by quartz sand with low organic carbon content. 

178 If sorbed, the retardation factor for lithium is close to that of a conservative tracer, typically 

179 ranging from 1.0 to 1.6, attributed to its small ionic size and limited interaction with the 
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180 mineral matrix (Fuentes et al., 1989; Mojid and Vereecken, 2005). In our field tests 

181 considered, the breakthrough curves of lithium and uranine exhibit very similar close to 

182 conservative behaviour while the iodide breakthrough may be retarded in comparison to 

183 cations (Figure 2, top) in porous media mainly composited of quartz. Based on this, we tested 

184 two calibration scenarios: (i) conservative behaviour for all solutes (ii) conservative behaviour 

185 for lithium and uranine and weakly sorbing behaviour of iodide; (iii) weakly sorbing 

186 behaviour for all solutes (Table 2). Given the relatively short duration of the experiments (6.5 

187 hours for injection and 35 hours for extraction), we assume linear sorption behaviour to be 

188 valid over the timescale of the tests. The pore diffusion coefficient for the solutes was set to 

189 1·10-9 [m2 s-1] while the thermal diffusion coefficient was set to 1·10-6 [m2 s-1].

190 Table 1. Parameter ranges for the model calibration.

Parameter Unit Lower bound Upper bound

Porosity n - 0.01 0.3

Solute dispersivity 𝛼𝑙 m 0.001 0.2 

Thermal dispersivity 𝛼 𝑇 m 0.001 0.8

Iodide retardation factor 𝑅𝐼 - 1 2

Uranine retardation factor 𝑅𝑈 - 1 2

Heat retardation factor 𝑅𝑇 - computed form porosity (Eq. 8)

Lithium retardation factor 𝑅𝐿𝑖 - 1 2

191

192 2.3. Approximate confidence intervals
193 PPT 1 and PPT 2 were conducted under identical experimental conditions to facilitate 

194 an estimation of measurement accuracy and to evaluate approximate confidence intervals for 

195 the observed data. The measurements and their difference for each tracer are illustrated in 

196 Figure 2, where the bottom panel displays the deviation between values recorded during PPT 1 

197 and PPT 2 at each time step, and the top panel presents the corresponding breakthrough 

198 curves. The maximum observed deviations were around 5% for temperature, 4% for uranine, 

199 8% for iodide, and 2% for lithium. 
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200 To account for a conservative calibration scenario, the maximum value of a duplicate error 

201 was assigned as an approximate confidence interval for each component. These confidence 

202 intervals were then incorporated into a calibration strategy to normalize the root mean square 

203 error (RMSE) as an objective function.

204 3. Process-based model of the push-pull test

205 Push-pull tests (PPTs) are single-well tests and as such an established and broadly 

206 applied technique for in situ characterization of effective transport parameters of the near-well 

207 area. The advantages of a PPT compared to multi-well tests include: easier operation, lower 

208 cost, and greater efficiency. However, the aquifer volume, which is sampled, is typically 

209 smaller with such a single-well test than with tracer tests involving multiple injection, 

210 extraction and observation wells. During the push phase, water is injected in a screened well, 

211 then one borehole volume of tracer-free water is injected as chaser, and during the pull phase, 

212 water is extracted from the borehole (Figure 3). The concentration/temperature is being 

213 monitored throughout the whole experiment. This relatively basic setting is complemented by 

214 using different kinds of tracers – conservative, decaying, sorptive, or heat. Based on the tracer 

215 properties, their corresponding effective transport parameters are evaluated. Analytical 

216 solutions are widely utilized for inferring parameters of relatively simple test setups (constant 

Figure 2: Top: breakthrough curves of lithium, iodide, uranine, and temperature (from left to 
right) during the extraction phase of duplicate PPTs performed in Hokkaido, Japan; bottom: 
absolute concentration difference between two duplicate PPTs. Concentrations are normalized 
in order to have the same maximum value considering mass recovery. 
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217 input, linear behaviour), whereas numerical modelling is usually used for more sophisticated 

218 setups such as non-linear reaction rates, heterogeneous media, or transient tracer inputs. 

219 Conservative tracers allow the estimation of longitudinal dispersivity and porosity or 

220 groundwater flow velocity, while the comparison with a sorbing tracer yields a solute-specific 

221 retardation coefficient, and reactive tracers reveal properties like reaction rates, aquifer 

222 reactive capacities, or, by inverse modelling, Monod- and Michaelis-Menten coefficients etc. 

223 (Gelhar, L.W, Collins, 1971; Snodgrass and Kitanidis, 1998; Schroth and Istok, 2005; 

224 Boisson et al., 2013; Kruisdijk and Breukelen, 2021).

225

226

Figure 3. Conceptual representation of a multi-tracer PPT with push, chase and pull phases 
(left), and corresponding sketch of a typical breakthrough curve of a single tracer (heat via 
temperature as primary variable in this case) observed the borehole (right); dashed black 
curve corresponds to almost conservative tracer whereas solid line is a retaded tracer.

227

228 3.1. Model equations
229 The physical model describes PPTs in a fully screened well in a confined aquifer, where flow 

230 is solely induced by pumping and the ambient hydraulic gradient is neglected. As such, we 

231 aim to reduce the dimensionality of our transport problem via considering the advection-

232 dispersion equation (ADE) for a sorbing solute in cylindrical coordinates. This is a classical 

233 assumption together with the one assuming spherical coordinates. We neglect all fluxes in the 

234 vertical, which was our Cartesian axes, if considered, and assume the same concentration over 

235 depth. Moreover, we neglect transverse dispersion and end up with a radially symmetric 

236 equation derived from cylindrical coordinates from which we start our further consideration 

237 (compare e.g. Moench et al., 1989; Leiji et al., 1991; Hwang, 2021):

238 𝑛𝑒𝑅
∂𝑐
∂𝑡 + 𝑞𝑟

∂𝑐
∂𝑟 -

1
𝑟

∂
∂𝑟(𝑛𝑒𝐷𝑙𝑟

∂𝑐
∂𝑟) = 0
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239 (1)

240 where 𝑛𝑒 = 𝑛[-] is effective porosity, R [-] is the retardation factor, c [N L−1], t [T] is 

241 time, qr [L T−1] is the specific discharge in radial direction, r [L] is the radial coordinate in 

242 space, and Dl is the longitudinal dispersion coefficient as simplification of the dispersion 

243 tensor: 

244 𝐷𝑙 = 𝛼𝑙|𝑣𝑟| + 𝐷𝑝

245 (2)

246 where vr [L T−1] is the seepage velocity as vr = qr/ne, and Dp [L2 T−1] is the pore diffusion 

247 coefficient including an estimation of tortuosity, and 𝛼𝑙 = 𝛼 is the longitudinal dispersivity. In the 

248 following, we assume that the effective porosity is constant throughout the physical domain, 

249 thus we divide by the porosity to get rid of the additional pre-factor in front of the temporal 

250 derivative and operate with the seepage velocity in the advective term. Moreover, we neglect 

251 the spatial variability of dispersion, thus (∂Dℓ/∂r) (∂c/∂r) = 0. Finally, we observe the 

252 emergence of the term (Dℓ/r) (∂c/∂r), which acts as correction term to advection due to 

253 cylindrical coordinates. However, together with our other assumptions and the assumption 

254 that 𝛼𝑙 is a constant factor independent of seepage velocity, we observe that in a numerical 

255 model very close to well advective flow may get effectively reverted due to this factor for 

256 high dispersivity, which is an unphysical behaviour. Several authors emphasized that 

257 Scheidegger’s model of dispersion (Equation 2) may be wrong for high dispersivity close to a 

258 pumping well (Parker and van Genuchten, 1984; Dagan and Bresler, 1985; Moench et al., 

259 1989). PPTs are acting on relatively small spatial scales, thus the near-field of the well is 

260 important to us, requiring an adequate numerical resolution in space. To avoid unphysical 

261 behaviour close to a well, we thus neglect the correction factor inducing spurious flow 

262 reversal and employ the classical radial advection-dispersion equation (Wang and Crampon, 

263 1995; Schroth et al., 2001; Chen, 2010; Huang et al., 2010; Kang et al., 2015):

264 𝑅
∂𝑐
∂𝑡 + 𝑣

∂𝑐
∂𝑟 - 𝐷𝑙

∂2𝑐
∂𝑟2 = 0

265 (3)

266 We assume radial flow induced by the well over the area of a cylinder, which implies 

267 divergent flow in the radial direction, such that the seepage velocity becomes: 
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268 𝑣𝑟 =
𝑄𝑤

2𝜋𝑟ℎ𝑎𝑛𝑒

269 (4)

270 where Qw [L3 T−1] is the volumetric pumping rate of the well, where different signs lead 

271 to flow reversal in radial direction, and ha [L] is the thickness of the aquifer. With A = 

272 (Qw/2πhane), and dividing by R we end up with our model equation for a solute:

273
∂𝑐
∂𝑡 +

𝐴
𝑟𝑅

∂𝑐
∂𝑟 - (𝐴𝛼𝑙

𝑟𝑅 +
𝐷𝑝

𝑅 )∂2𝑐
∂𝑟2 = 0

274 (5)

275 For retardation, we solely consider linear sorption, which may be justified by the low 

276 retardation coefficients considered in our study for the according tracers and by the high 

277 induced flow velocities as well as considering a single continuum porous medium only. Thus, 

278 the retardation factor for solutes is:

279

280 𝑅 = 1 +
(1 - 𝑛𝑒)

𝑛𝑒
𝜌𝑠𝐾𝑑 = 1 +

𝜌𝑏𝐾𝑑

𝑛𝑒

281 (6)

282 where 𝜌𝑠 [M L−3] is the solid density of the grains, ρb [M L−3] is the dry bulk density of the 

283 porous medium, and Kd is the linear sorption coefficient in equilibrium. Please note, that in 

284 our model application, we consider not c but solely normalized concentration c/c0 [-], where 

285 c0 is the input concentration in the well.

286 For heat transport, we rewrite Equation (5) considering temperature T [Θ]:

287
∂𝑇
∂𝑡 +

𝐴
𝑟𝑅𝑇

∂𝑇
∂𝑟 - (𝐴𝛼𝑇

𝑟𝑅𝑇
+

𝐷𝑇

𝑅𝑇)∂2𝑇
∂𝑟2 = 0

288 (7)

289 where αT [L] is the dispersion length for temperature, DT is the diffusion coefficient for 

290 temperature, and RT [-] is the retardation factor for temperature, which is defined as follows:

291 𝑅𝑇 =
𝑛𝑒𝑝𝑤𝐶𝑝,𝑤 + (1 - 𝑛𝑒)𝜌𝑠𝐶𝑝,𝑠

𝑛𝑒𝑝𝑤𝐶𝑝,𝑤

292 (8)
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293 where ρw [M L−3] is the density of water, Cp,w [L2 T−2 Θ−1] is the specific heat capacity of 

294 water, and Cp,s [L2 T−2 Θ−1] is the specific heat capacity of the grains, which equal the solid 

295 matrix in the considered porous medium. 

296 3.2. Numerical implementation
297 For solving the governing equations (5) and (7) we combine a fast and stable finite-difference 

298 approximation with an explicit Euler scheme on a regular grid. This has the advantage that we 

299 do not need to assembly storage and mobility matrices and can thus just push an initial 

300 condition forward in time without the need to solve a linear equation system. The initial 

301 normalized concentrations in solute transport are zero in the domain while for temperature the 

302 initial temperature is background temperature. In the following, all our considerations are for 

303 a quantity 𝑎 ∈ {𝑐,𝑇} which is a solute concentration, c, or temperature, T. 

304 We define an effective seepage velocity veff, which is valid for either concentration or 

305 temperature:

306 𝑣𝑒𝑓𝑓 = { 𝐴
𝑟𝑅 , if 𝑎 = 𝑐
𝐴

𝑟𝑅𝑇
, if 𝑎 = 𝑇

307 (9)

308 Note that that in our case the velocities are either from left to right (having a positive sign) or 

309 from right to left (having a negative sign). The exact value for veff depends on r. For 

310 advection, we use an upstream finite-difference scheme, where the effective seepage velocity 

311 for the flux between the nodes i and i − 1, where numbering is from left to right, considering i 

312 is:

313 𝑣𝑢𝑝
𝑒𝑓𝑓,𝑖 = {𝑣𝑒𝑓𝑓,𝑖-1,  for 𝑣𝑒𝑓𝑓 > 0

𝑣𝑒𝑓𝑓,𝑖,  for 𝑣𝑒𝑓𝑓 < 0  

314 (10)

315 where veff,i is the effective seepage velocity at node i, veff,i−1 is the effective seepage velocity at 

316 node i−1, vi→i−1 is the seepage velocity at node i towards the node i − 1, and vi−1→i is the 

317 seepage velocity at node i − 1 towards the node i. Note that that in our case the velocities are 

318 either from left to right (having a positive sign) or from right to left (having a negative sign). 

319 Note that seepage velocity gets reverted in orientation for the pull phase compared to the push 
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320 phase, node orientation thus needs to be accordingly. For a Courant number of unity the 

321 upstream finite-difference scheme is shock-capturing for advection, for a larger Courant 

322 number the scheme is instable, and for a lower Courant number numerical diffusion is 

323 introduced, which can be minimized by grid refinement. The approximation of the advective 

324 flux together with an explicit Euler discretization related to a node i reads:

325 𝐽𝑎𝑑𝑣 = {𝑣𝑢𝑝
𝑒𝑓𝑓,𝑖∆𝑡
∆𝑥

(𝑎𝑖-1(𝑡) -  𝑎𝑖(𝑡)), for 𝑣𝑢𝑝
𝑒𝑓𝑓,𝑖 > 0

𝑣𝑢𝑝
𝑒𝑓𝑓,𝑖∆𝑡
∆𝑥

(𝑎𝑖(𝑡) -  𝑎𝑖-1(𝑡)), for 𝑣𝑢𝑝
𝑒𝑓𝑓,𝑖 < 0

 

326 (11)

327 where Δx is the spatial increment and Δt is the global time-step size. For the approximation of 

328 dispersion, we employ central finite differences. First, we define an effective dispersion 

329 coefficient:

330 𝐷𝑒𝑓𝑓 = { 𝐴𝛼𝑙

𝑟𝑅 +
𝐷𝑝

𝑅 , if 𝑎 = 𝑐
𝐴𝛼𝑇

𝑟𝑅𝑇
+

𝐷𝑇

𝑅𝑇
, if 𝑎 = 𝑇

331 (12)

332 Thus, a central differentiation scheme for the dispersive flux considering node i reads:

333 𝐽𝑑𝑖𝑠𝑝 =  
𝐷𝑒𝑓𝑓,𝑖∆𝑡

∆𝑥
(𝑎𝑖-1(𝑡) -  2𝑎𝑖(𝑡) +  𝑎𝑖+1(𝑡))

334 (13)

335 Finally, our overall scheme for an internal node i reads for a quantity 𝑎 ∈ {𝑐,𝑇}, which can be 

336 either concentration or temperature:
337 𝑎(𝑡 +  ∆𝑡) = 𝑎(𝑡) + 𝐽𝑎𝑑𝑣 +  𝐽𝑑𝑖𝑠𝑝

338 (14)

339 Moreover, we employ free inflow and outflow boundary conditions. For solute transport, we 

340 consider a constant normalized inflow concentration of unity and account for well-bore 

341 storage, whereas for heat, we consider an input time-series for temperature. In such a scheme 

342 it is not necessary to explicitly account for well-bore storage for temperature propagation. To 

343 render the scheme to be fast and stable, while not overly introducing spurious diffusion, our 

344 scheme computes an optimal global time step on a fixed grid size, Δx, as such:

345 ∆𝑡 = 𝑚𝑖𝑛
∀𝑖 ∈ 𝑁( ∆𝑥

𝑣𝑒𝑓𝑓,𝑖
, 

∆𝑥2

3𝐷𝑒𝑓𝑓,𝑖)𝑓
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346 (15)

347 where N is the set of nodes, the first entry in the vector is the optimal timestep size in an 

348 explicit Euler scheme for advection based on the Courant number, which needs to be unity at 

349 maximum, whereas the second is the optimal time-step size due to dispersion based on the 

350 condition that the Neumann number should be less or equal 1/3 for a stable approximation of 

351 diffusion/dispersion. For stability reasons the smaller value of the two values needs to be 

352 taken such that at the end the smallest time step for all nodes considering advection and 

353 dispersion is chosen to be the global time step for the next iteration. Expression (15) is 

354 eventually multiplied with a dimensionless safety factor f, slightly smaller than unity for 

355 enhanced stability and to account for numerical precision. The chosen global time step is the 

356 smallest time step for advection and dispersion over all nodes. We implemented the described 

357 methodology in Matlab 2024a.

358 3.3. Surrogate model formulation
359 Parameterization of the advection-dispersion equation (ADE) to fit the observed 

360 experimental breakthrough-curve data is typically done by optimizing an objective function 

361 such as RMSE which reflects on a match between the model and the observed data. For 

362 breakthrough-curve data obtained from natural geological media, this may involve high-

363 dimensional parametric spaces, non-convex objective functions, and inherent uncertainties as 

364 well as unresolved heterogeneities, which potentially make deterministic methods stuck in 

365 local optima or fail to capture the variability of the solution space (Cirpka and Valocchi, 

366 2016; Fiori et al., 2016). Overcoming these limitations is possible by stochastic modelling 

367 (Kitanidis, 1998), which can effectively handle multimodal functions and may include an 

368 uncertainty estimate. However, such stochastic optimization techniques are often limited by 

369 the high computational costs associated with ensemble simulations of physics-based 

370 numerical models. To minimize the time required for the optimization process, a surrogate 

371 model capturing the relationship between aquifer parameters and the objective function was 

372 applied. Surrogate modeling emerged as a powerful approach to mitigate computational speed 

373 limitations by employing an approximation of the model to be fitted, which is the surrogate 

374 model. This enables efficient stochastic parameter estimation and uncertainty quantification 

375 (Erdal et al., 2020; Allgeier, 2023; Rohmer et al., 2023; Ershadi et al., 2024). Among the 

376 different surrogate modelling approaches available, Gaussian process regression (GPR) was 

377 selected since it preserves the continuous and smoothed-out nature of concentrations fields in 
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378 natural porous media and can include a combination of several multiparametric ADEs (Degen 

379 et al., 2023). The principles and mathematical formulation of GPR originates from the kriging 

380 principles, applied to multidimensional parameter spaces (Allgeier and Cirpka, 2023; Rohmer 

381 et al., 2023). 

382 The continuous input parameters varying within site-specific ranges (Table 1) are solute 

383 and heat dispersivity treated separately, porosity as an aquifer property, as well as individual 

384 solute and heat retardation factors for each component. The response for each tracer is the 

385 sum of squared errors normalized by confidence intervals residuals and number of points 

386 considered:

387 𝑅𝑀𝑆𝐸(𝒑) = ∑𝑁
𝑖=1 (𝑦𝑚𝑜𝑑,𝑖 - 𝑦𝑜𝑏𝑠,𝑖)2/𝐶𝐼

𝑁
, (18)

388 where p is the set of parameters to be optimized in the solute or heat transport model, 𝑦mod,𝑖 

389 and 𝑦obs,𝑖, refer to the modelled and the observed value at the discrete points i in time 

390 considering the breakthrough curves, where the modelled values depend i.a. on p, N is the 

391 total number of simulated/measured values, and CI is an approximated confidence interval. 

392 The differences between observed and modelled values within the confidence interval are 

393 considered equally acceptable due to the resolution limits of the measurements.

394 The best-estimate calibration aims for all tracers to minimize the objective function 𝑓𝑜𝑏𝑗, 

395 which is the deviation between measured and modelled values considering the maximum 

396 RMSE:

397 𝑓𝑜𝑏𝑗 = 𝑚𝑎𝑥((𝑅𝑀𝑆𝐸(𝒑)𝑗)𝑗=1,…,𝑛), (19)

398 where n is the number of considered solutes plus temperature. For calibration, only 

399 favourable unique parameter combinations are sampled in order to obtain an ensemble of a 

400 defined size. Once trained, the GPR is employed to propose potentially plausible parameter 

401 combinations by computing the probability of satisfying the condition (Equation 19). 

402 Possible parameter combinations are drawn using a Halton sequence using an adaptive 

403 sampling approach to ensure the local optimization and global accuracy of the surrogate 

404 model. The infill criteria for the new samples focus on a combination of exploitation of high-

405 probability regions (indicated by the GPR model) with exploration of regions where the 

406 model demonstrates high uncertainty. At every iteration 20 initial candidate parameter 
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407 combinations are drawn from the Latin hypercube sampling (Figure 4). To balance between 

408 exploitation and exploration, we proportionally added a small amount of exploration 

409 (searching for new regions) and large amount of exploitation (refining predictions in 

410 promising areas). The selected candidate parameter combinations are then optimized using the 

411 prediction capacity of the surrogate model. The interior-point algorithm, which is suitable for 

412 high-dimensional constrained problems (Byrd et al., 2000), is employed for optimization of 

413 GPR by minimizing the predicted RMSE value. In addition, a secondary small set of five 

414 candidate parameter combinations is generated based on sampling a large (10000 realizations) 

415 sample of surrogate models and predicting their likelihood of being optimal (Erdal et al., 

416 2020). The cumulative distribution function (CDF) was employed for sampling to identify 

417 points in the input space where the predictive error is expected to be close to the lowest 

418 RMSE. From the set of 10000 GPR realizations and corresponding CDF values, five points 

419 with the highest probability were selected to prioritize the points which are most likely to 

420 improve the surrogate model and reduce the uncertainty further.

421

Figure 4. Flowchart for the surrogate modelling process for optimization of advective-
dispersive transport parameters of a PPT; the purple circles refer to the main adaptive 
sampling loop.

422 The dynamically improving surrogate modelling strategy is outlined in the flowchart 

423 (Figure 2) and is similar to (Allgeier and Cirpka, 2023): (i) Sample a uniform prior of the 

424 Latin hypercube, (ii) train the GPR based on the model response, (iii) Based on the GPR 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5232178

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



18 

425 results, compute the probability of satisfying the condition (Eq.19) in n random locations in 

426 the parametric space. Select points with the highest probability; (iv) create additional (small) 

427 sample by a 1D random walk in each parametric space for existing favourable samples, (v) for 

428 the selected points, run the full model and add new ensemble members to the training set; (vi) 

429 periodically retrain the model with the updated training data. Steps 2 – 5 are repeated until the 

430 ensemble is filled by successful model runs. To account for measurement uncertainty, all 

431 members of the posterior parameter distribution are treated as equally valid, and thus no 

432 ranking was performed within the parameter distributions that satisfy Equation 19. The prior 

433 was sampled from the normalized parameter space using the Halton quasi-random sequence 

434 with reverse-radix scrambling (Mascagni and Chi, 2004). 

435 The Figure 5 (right) shows an exemplary response surface of an example calibration for 

436 a single conservative tracer which requires only two parameters to be estimated: dispersivity 

437 and porosity based on the analytical solution of Schroth and Istok (2005). Thanks to the 

438 simplicity of the response surface (Fig.3, right), the acceptance rate increases drastically 

439 already after 100 model runs (Fig. 3, left). As shown in analytical solutions (Schroth and 

440 Istok, 2005), the dispersivity inversion from the push pull test is plausible while porosity may 

441 leave a broad range of possible realizations. At the same time, the area of the minimum 

442 RMSE on the response surface (Fig .3, right) covers up the whole prior range of possible 

443 porosity values revealing lower sensitivity of the output to the porosity. This consideration is 

444 kept for calibration of the sorbing solutes and heat.

445

Figure 5 Calibration of conservative tracer data using the analytical approximation of 
(Schroth and Istok, 2005). Left: Performance progress of the calibration is shown reflecting 
the RMSE decrease with increase of model runs leading to surrogate model specification. The 
solid line refers to the acceptance threshold of the normalized RMSE=1, where all model 
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results below it are considered plausible and added to ensemble. Right: Response surface 
which was created based on all model runs. The colour code refers to the decadic logarithm 
of the RMSE with the darker colours (blue) corresponding to higher RMSE values and the 
lighter colours (yellow) representing smaller RMSE values, the yellow dots denote the model 
runs and the bold yellow circle denotes the “true” value based on the values used to generate 
a hypothetically true parameter combination.

446 The ensemble size was defined based on a stop criterion (Zhu et al., 2023) which in the 

447 current application corresponds to 600 plausible samples. To validate the suggestion of Zhu et 

448 al. (2023), the ensemble size was gradually increased from 50 to 700 plausible samples to 

449 confirm no further change in the posterior distribution. 

450 The surrogate model performance was evaluated using 20% holdout of the data which 

451 did not contribute to training by evaluating the coefficient of determination:

452 𝑅2 = 1 -  
∑𝑛

𝑖=1 (𝑦𝑜𝑏𝑠 -  𝑦𝑝𝑟𝑒𝑑)2

∑𝑛
𝑖=1 (𝑦𝑜𝑏𝑠 -  𝑦)2

453 where yobs and ypred, denote the observed and predicted RMSE values, respectively, and 

454 𝑦 denotes the mean of the observed RMSE values.

455 4. Results

456 This section outlines performance metrics of the surrogate modelling and numerical 

457 calibration results that reveal the sensitivity of the model to dispersivity, porosity, and 

458 retardation factors demonstrating the influence of using multiple tracers on calibration quality 

459 of effective transport parameters. 

460 4.1. Surrogate model evaluation

461 The optimization constitutes a three-dimensional optimization space for all solutes 

462 being conservative (porosity, longitudinal diversities of solutes and heat are unknown), a four-

463 dimensional space for the case when lithium and uranine are considered conservative tracers 

464 (retardation factor of iodide is added to the unknowns), and a six-dimensional space in case 

465 all solutes are sorbing (retardation factors of lithium and uranine are added to the unknowns). 

466 The hyperparameters of the GPR were optimized using Bayesian optimization (Snoek, 

467 et al., 2012) with a holdout 20% of the total data for validation. Special attention was given to 
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468 sampling data points with lower RMSE values, as these regions are crucial for precise 

469 optimization in the area of interest. The optimized length scale of 0.87 (not shown) indicates 

470 that the model assumes a relatively smooth underlying function which is typical for the ADE 

471 (Degen et al., 2023). The relatively high variance of 9.0084 corresponds to the non-normalized 

472 RMSE array resulting in substantial variability, which the model is capturing. The noise 

473 standard deviation 0.0246 is small compared to the signal variance, meaning that the model is 

474 performing well at distinguishing the underlying trend from noise in the data. 

475 The performance improvement of the surrogate model is depicted in Figure 6. The right 

476 plot presents the distribution of RMSE values, reflecting that the majority of RMSE values are 

477 concentrated between 3 and 5, with a peak probability density of ~0.6. This indicates that, 

478 while some variability in performance exists, a significant portion of the predictions achieves 

479 low RMSE values, which enables using GPR for proposing the plausible parameter 

480 combinations. The parity plot at the end-state of GPR training (Fig. 6, left) illustrates good 

481 agreement between the actual RMSE values running the physical model and the predicted 

482 values from the GPR model on the holdout set with R2 of 0.9985. The predictions generally 

483 follow the 1:1 line, indicating a reasonable correlation between the actual and predicted 

484 RMSE values. Although some deviation is observed suggesting potential limitations in the 

485 model's ability to generalize in this range, the trained model is sufficient to propose the 

486 potentially plausible parameter combinations leading to smaller RMSE values. 

487

Figure 6 Performance evaluation of the GPR model considering all tracers exhibit sorptive 
behaviour. Left: parity plot between surrogate model prediction and the holdout dataset of the 
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physics-based model outcomes; right: distribution of the RMSE based on the physics-based 
model evaluation.

488 4.2. Application to Hokkaido site and posterior parameter distributions
489 Lithium, iodide, and uranine are generally considered to be conservative tracers. 

490 However, several studies have shown that they may exhibit slightly sorptive behaviour under 

491 some conditions (Breuer, 2016; Fuentes et al., 1989; Mojid and Vereecken, 2005). In the 

492 calibration strategy, we studied the importance of accounting for the possible sorption of the 

493 tracers for parameter inference. As such, three calibration scenarios were considered: (i) all 

494 three tracers, lithium, iodide, and uranine are exhibiting sorptive behaviour; (ii) only iodide is 

495 sorbing whereas lithium and uranine are conservative; (iii) all tracers are conservative on the 

496 time scale of the experiment.

497 4.2.1. Lithium, iodide, and uranine are sorptive tracers 
498 This scenario corresponds to a hypothesis of slightly sorptive behaviour of all solutes 

499 considered, i.e., lithium, uranine, and iodide, and corresponds to calibration of their 

500 retardation factors together with porosity, solute dispersivity, and thermal dispersivity. This 

501 case corresponds to the highest amount of six parameters in total for calibration, which define 

502 the quality of breakthrough curves (BCs) for each tracer. To calibrate the model, we used the 

503 breakthrough curves of iodide, uranine, lithium, and temperature to estimate the normalized 

504 RMSE. 

505 The calibrated breakthrough curves demonstrate generally a good fit to the data meeting 

506 the critical points - maximum concentration and the half-front for all solutes (Fig 7). The 

507 observed breakthrough curves of iodide and uranine expose higher tailing concentrations at 

508 the later times of the extraction which could not be captured by the numerical model. The 

509 model of lithium displays lower tailing concentrations for the later times with slightly 

510 increased concentrations directly after the peak concentration. The higher concentrations 

511 measured especially for iodide may correspond to an overall larger amount of injected mass 

512 compared to the input assumptions. Also, a higher measurement error as assumed may play a 

513 role as well as retention of the component associated with aquifer heterogeneity or the in-fact 

514 existence of a dual porosity medium including a micro-porosity e.g. only available for anions, 

515 which is not included in the current physical model. Notably, the temperature (Fig. 7, bottom-
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516 right) exhibits the opposite behaviour – the modelled concentration fits very well the higher 

517 relative temperatures while exceeding the measured values for later times. 

518 Posterior distributions of parameters are depicted in Figure 8. As expected from the 

519 analytical solutions and sensitivity studies (Schroth and Istok, 2005; Maier and Kocabas, 

520 2013; Shi, Wang and Zhan, 2020), the posterior distributions of solute dispersivity and 

521 thermal dispersivity narrowed down to a much smaller range than the uniform prior. Posterior 

522 parameter distributions of the Horonobe aquifer reflect the effect of high sensitivity to 

523 dispersivity leading to substantial uncertainty reduction (Fig. 8). The identified thermal 

524 dispersivity values belong to the range between 1·10-3 m and 0.2 m with the mean value 

525 around 0.1 m, while the solute dispersivity is, as expected, characterized by lower values less 

526 than 0.05 m. Considering the injected radius may vary from 0.5 to 0.9 m depending on the 

527 porosity, the dispersion of solutes corresponds to 6-10% of the spread. Porosity is a less 

528 sensitive parameter and tends to be within the broad range of 0.05 to around 0.19 in 

529 comparison to 0.01 to 0.3 as a prior distribution while being most likely around 0.1 according 

530 to the calibration results. The posterior distribution of heat retardation factor as a function of 

531 porosity (Equation 8) represents a narrow interval between 2.3 (for porosity 19%) to 7.4 (for 

532 porosity 5 %).

533

Figure 7 Ensemble optimization results considering iodide, lithium, and uranine to exhibit 
sorptive behaviour. Breakthrough curves for the solutes and temperature; red lines refers to 
the concentration measurements during the extraction phase of the PPT, grey lines refer to 
the fitted modelled data for the extraction period, time equals to 0 corresponds to the start of 
the push phase.
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534

Figure 8 Posterior distributions of calibrated retardation factors of iodide, lithium, uranine, 
porosity, solute and thermal dispersivity considering lithium, uranine, and iodide to exhibit 
sorptive behaviour; vertical dashed lines indicate the mean parameter values and the dotted 
lines indicate the median.

535

536 The retardation factors of solutes are not very sensitive to the calibration which highlights the 

537 lowest sensitivity of the model to its variation (Schroth and Istok, 2005). However, they tend 

538 to be around 1.5 for iodide and uranine and around 1.6 for lithium, still the full prior range 

539 between 1.0 and 2.0 remains possible. Thus, the model shows a low sensitivity to retardation 

540 factors of all tracers – lithium, iodide, and uranine, making their transport behaviour 

541 inconclusive from the breakthrough-curve observations. Although representing an uncertainty 

542 in tracers’ behaviour, this fact suggests to reduce the number of parameters to solute and 

543 thermal dispersivity, and porosity in the following, thus simplifying the calibration process of 

544 the latter parameters.

545 4.2.2. Lithium and Uranine are conservative tracers while Iodide exhibit 
546 slightly sorptive behaviour
547 Lithium and uranine are typically considered conservative in sandy aquifers because 

548 lithium due to its small molecule size and positive charge does not interact significantly with 

549 quartz, while uranine being neutral at lower pH values and an anion at higher pH values, is 

550 not significantly interacting with the often slightly negatively charged sand surfaces (Jada et 

551 al., 2006). In contrast, iodide may exhibit slight sorption due to its high polarizability, 
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552 allowing weak van der Waals interactions or surface complexation with minerals like iron 

553 oxides or organic matter. This difference in behaviour was considered in this calibration 

554 scenario. Under the assumption of conservative tracer behaviour of lithium and uranine, the 

555 four other parameters were calibrated which are: retardation factor of iodide, aquifer porosity, 

556 solute dispersivity, and thermal dispersivity.

557 The posterior parameter distributions (Figure 9) for dispersivity of solute and heat are 

558 generally similar to the previous scenario, however, solute dispersivity shows a narrower 

559 range than before with a mean value around 0.03 m. Thermal dispersivity, while overall being 

560 very similar, shows a slightly higher likelihood for smaller and larger values compared to the 

561 former results. The posterior distribution of porosity is a bit narrower now allowing also for 

562 higher porosity values. However, the most likely value is a little bit smaller than 0.1, which is 

563 a little bit less compared to the former results. Since smaller porosity values increase seepage 

564 velocity, this causes an earlier breakthrough of the tracer. Therefore, the model compensates 

565 by reducing the retardation factor a bit to maintain the correct arrival time in the breakthrough 

566 curve. The corresponding heat retardation factors vary from 2.0 to 15.6 which corresponds to 

567 a broader range and higher heat attenuation.

568

Figure 9 Posterior distributions of calibrated retardation factor of iodide, porosity, solute 
and thermal dispersivity considering lithium and uranine to be conservative tracers and 
iodide to exhibit sorptive behaviour; vertical dashed lines indicate the mean parameter values 
and the dotted lines indicate the median.

569

570 4.2.3. Optimization results considering all tracers to be conservative 
571 Due to the relatively small duration of a push pull test and relatively low expected 

572 sorption to the quartz minerals of sand, all tracers may have experienced in fact a conservative 
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573 behaviour. In this case, only three parameters need to be calibrated – solute and thermal 

574 dispersivity as well as porosity.

575 Posterior distributions of parameters are shown in Figure 10. The histograms indicate 

576 the posterior distributions of the calibrated parameters, constrained within the predefined prior 

577 ranges. While solute dispersivity shows a very similar pattern compared to the former results, 

578 where only iodide was considered potentially sorbing, the distribution of thermal dispersivity 

579 shrank with a mean value considerably closer to solute dispersivity and a slight bi-modal 

580 shape. The posterior distribution for porosity is similar to the case, where all tracers where 

581 conservative allowing for a range of values below 0.2 but having a most likely value of 

582 around 0.1 like in the case where all tracers were considered to be sorptive. The value range 

583 of heat retardation factors for this scenario is 2.4-5.4. As depicted in Figure 8, the PPT 

584 exhibits low sensitivity to the retardation factors of the solute tracers, making it challenging to 

585 exactly quantify the physically correct transport parameters based solely on breakthrough 

586 curve analysis. Also, a case considering all tracers to be conservative yields reasonable 

587 posterior parameter distributions. Otherwise, solute and thermal dispersivities are sensitive 

588 parameters to the calibration, whereas porosity shows consistently a similar mean value 

589 throughout the calibration scenarios, which is a promising finding. However, the mean values 

590 of solute and thermal dispersivities shown in Figure 10 are actually close to each other, which 

591 makes sense if dispersivity is considered to be a pure hydrodynamic parameter and thermal 

592 and solute diffusion coefficients are chosen correctly.

593

Figure 10 Ensemble optimization results for porosity, solute and thermal dispersivity 
considering that all tracers exhibit conservative behaviour; vertical dashed lines indicate the 
mean parameter values and the dotted lines indicate the median.

594

595 5. Discussion
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596 This study presents a novel application of GPR for stochastic optimization of a 

597 multitracer PPT for inferring effective transport parameters in a sandy aquifer in Horonobe, 

598 Japan. A surrogate model-based optimization framework was developed for parameter 

599 estimation of PPT data, addressing both parametric uncertainty and approximate measurement 

600 confidence intervals. The framework employed GPR to train and predict the objective 

601 function based on aquifer and tracer properties, significantly reducing computational costs 

602 compared to traditional ensemble-based methods. The GPR training resulted in a good 

603 convergence between the modelled and predicted RMSE values confirming the hypothesis 

604 that the optimization of a multitracer push pull test can be done by Gaussian processes as the 

605 underlying solution is close enough to a Gaussian hypersurface. This provides a benefit in 

606 terms of calibration capacity and applicability of the described method.

607 To evaluate the breakthrough curves of tracers, a 1D ADE solver accounting for the 

608 transient tracer input was developed in this study. By assuming homogeneity, the model 

609 provided a clear and interpretable baseline for analysing transport behaviour, which can be 

610 further refined to account for spatial variability e.g. in porosity or flow velocity coupled with 

611 travel time approaches (Selzer and Cirpka, 2020). The solver provides a firm base for 

612 understanding fundamental transport dynamics and serves as a computationally efficient tool 

613 for simulating advective-dispersive transport in porous media. While its 1D structure 

614 simplifies the representation of flow and transport, this approach enables efficient numerical 

615 simulations and facilitates sensitivity analyses. To enhance its applicability to complex field 

616 conditions, the model could be eventually extended to a dual porosity medium to eventually 

617 describe the tailing observed in the breakthrough curves especially for iodide and uranine.

618 Using three solutes and temperature with potentially different sorption characteristics 

619 for calibration of a PPT allowed for determining both, solute and thermal dispersivity, identify 

620 the heat retardation factor and slightly narrow down the possible porosity range. The thermal 

621 dispersivity varies from 1·10-3 m to 0.2 m with a mean value which is significantly shifted 

622 towards lower values for the case that all solutes are considered conservative, which indicates 

623 the benefits of performing PPTs with solutes and heat simultaneously for later evaluation. For 

624 the cases that all solutes sorb or at least iodides sorbs, solute dispersivity is significantly 

625 smaller than thermal dispersivity, while the mean values of both are around the same for the 

626 case that no solute is sorbing. Thus, the latter case is consistent with the assumption that 

627 dispersivity should be hydrodynamic parameter, if solute and thermal diffusion coefficients 
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628 are set about correctly. The heat retardation factors expose some variability from one scenario 

629 to another depending on the exact porosity distribution exposing smallest range and minimal 

630 value for scenario of all reactive tracers (1.57-2.08), and the highest range and values for the 

631 scenario when only iodide exposes sorptive behaviour (1.7 – 4.6). The RMSE is normalized 

632 by the approximate confidence interval of the measurements creating a “window” of possible 

633 truth values instead of a discrete point, which introduces some spread to the posterior 

634 parameter distribution. The more precise the measurements are, the lower will be the 

635 uncertainty in the parameter inference. 

636 A GPR trained on RMSE values considering PPT measurements and the ADE model 

637 provides a powerful data-driven approach for improving the calibration of a physics-based 

638 model of advective-dispersive transport while capturing the parametric uncertainty. By 

639 learning from discrepancies between the model results and measurements, the GPR can refine 

640 parameter estimations and enhance the interpretability of simulation results. While its 

641 performance is influenced by the physical model assumptions delivering the training data, the 

642 framework applied in this study offers flexibility also to incorporate more complex transport 

643 behaviour including more sophisticated models as dual-porosity modelling apporaches. 

644 Additionally, while RMSE-based training prioritizes overall error minimization, further 

645 refinements can focus on improving localized transport phenomena, such as sharp 

646 concentration fronts or early breakthrough times. By integrating additional process knowledge 

647 or multi-fidelity approaches, the GPR emulator can be further optimized to represent real-

648 world transport behaviour with greater precision. Overall, the presented approach offers a 

649 computationally efficient method for characterizing aquifer properties crucial for ATES 

650 system design and long-term performance prediction via improved effective transport 

651 parameter characterization. The presented uncertainty-acknowledged calibration strategy is 

652 generally applicable to more complicated models as well with more unknown parameters, 

653 considering proportionally increased amount of data or additional knowledge about the 

654 aquifer functioning. 

655 6. Conclusions

656 In this study we developed a parameter optimization methodology based on Gaussian process 

657 regression used for improved calibration of a finite-difference based advection-dispersion 

658 model of push-pull tests capturing parametric uncertainty. This framework was applied to 
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659 analyse push-pull tests performed in a sandy aquifer in Horonobe, Japan, using four tracers 

660 (heat, uranine, lithium, and iodide) to infer effective transport parameters. We demonstrated 

661 the method's effectiveness in constraining uncertainty intervals for solute and heat dispersivity 

662 and to some extent, porosity and retardation factors. The hypothesis of sorbing and non 

663 sorbing tracers behaviour was tested by considering calibration scenarios which account for 

664 sorption of all tracers, only iodide, and conservative tracer behaviour.

665 In all calibration scenarios, the solute dispersivity and thermal dispersivity ranges in 

666 Horonobe site exhibit almost identintical posterior distributions. As such, solute dispersivity 

667 constrains from 6% to 10% of the injected radius with the values of up to 0.05m. Thermal 

668 dispersivity covers predictably larger range of up to 0.2 m constraining considerable 20% to 

669 40% of the injected radius. Porosity posterior distributions are varying for different scenarios 

670 within ranges from 0.04 to 0.19 for all sorptive scenario, 0.02 to 0.28 in iodide only sorbing 

671 scenario, and from 0.04 to 0.18 for scenario when all tracers are considered conservative. The 

672 calibration scenario analysis of including linear sorption behaviour of the tracers typically 

673 assumed to be conservative highlights the value of the conceptual model choice and the bias 

674 introduced by the conceptual model selection in interpretation of hydrogeological systems. 

675 However, the calibration results for solute retardation factors remain inconclusive with little 

676 sensitivity of the model considering solute retardation factors, though assuming all tracers to 

677 be conservative lead to similar mean solute and thermal dispersivities, which is consistent 

678 with the assumption that dispersivity is a hydrodynamic parameter, if solute and thermal 

679 diffusion coefficients are well chosen. For the case where all solutes or only iodide are 

680 assumed to undergo slight sorption, solute and thermal dispersivity significantly differ, with 

681 thermal dispersivity being larger than solute dispersivity. Still, the inherent biases introduced 

682 by choosing a particular conceptual model - whether considering cations as conservative or 

683 including sorption - can impact the estimated parameter ranges significantly and, 

684 consequently, the interpretation of subsurface processes. The choice to model slight sorption 

685 behaviour not only slightly broadens the overall range of acceptable porosity values but also 

686 emphasizes the degree to which model selection influences our understanding of key system 

687 properties. 

688 The findings of this study suggest that some parameters, such as the dispersivity, exhibit 

689 limited variation across model scenarios, being very well inferrable. Other parameters such as 

690 solute retardation factors are less sensitive to calibration and are closely related to estimated 
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691 porosity values due to the physical model resulting in broad porosity distributions and 

692 inconclusive results for the retardation factors. One way to further narrow down the 

693 uncertainty and to finally estimate if slight sorption may take place for the considered solutes 

694 can be the exact measurement of porosity in the lab based on drilling cores narrowing down 

695 the broad distribution of possible values of porosity to ideally only one value with only a 

696 small uncertainty associated to it, if the medium is assumed to be homogeneous for the 

697 aquifer volume the push-pull test samples. Thus, porosity may be a relatively easy to measure 

698 proxy to identify whether solute tracers, which are typically assumed to show a conservative 

699 non-sorbing transport behaviour, may in fact experience slight sorption even in sandy aquifers 

700 or not. 

701 Our study highlights that push-pull test experiments can significantly improve the 

702 knowledge about aquifer characteristics like dispersivity, porosity, and heat retardation, which 

703 are essential for ATES design. By identifying flow and transport parameters of the aquifer, 

704 push-pull tests enable more accurate long-term predictions of ATES system functioning. 

705 Results however suggest low sensitivity to solute retardation factors, indicating potential 

706 limitations in inferring certain parameters from push-pull test data alone and calling for more 

707 exact measurements, which can be performed on cores, like exact porosity measurements. By 

708 using different types of tracers (conservative, sorptive, heat), push-pull tests allow for a 

709 comprehensive evaluation of various aquifer properties relevant to ATES performance and to 

710 improve calibration accuracy capturing the ambiguity inherent in many calibration scenarios 

711 and reducing parameter uncertainty. 

712
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