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Abstract

Aquifer characterization is essential for optimizing Aquifer Thermal Energy Storage
(ATES) systems. Single well tests, also known as push-pull tests, are a common method to
identify effective solute and heat transport parameters of the aquifer, which are crucial for the
design and assurance of long-term performance of ATES systems. Tracer breakthrough
curves from push-pull tests are commonly used to calibrate analytical or numerical models of
heat and solute transport in order to infer effective transport parameters like dispersivity of
heat and solutes, retardation factors, and porosity. The main bottleneck of such
multiparametric calibration is the non-uniqueness of the inverse problem solution which
requires ensemble-based optimization to address the parametric uncertainty. In addition, the
field measurements can only be performed up to a certain confidence as well, which
introduces additional uncertainty to the calibration results. To account for both sources of
uncertainty while targeting computationally affordable simulation, we have developed a
surrogate model-based optimization framework for stochastic parameter optimisation. The
surrogate model uses Gaussian process regression (GPR) to train and predict the objective
function based on up to six aquifer and tracer properties. For training and fast model
evaluation, we implemented a stable 1D radial finite difference representation of the
advection-dispersion equation for sorbing compounds including measured input time-series as
transient boundary condition and wellbore storage to accurately model push-pull tests. The
surrogate model is used to calibrate this model and to propose plausible parameter
combinations. The optimisation framework was applied to push-pull experiments using

uranine, iodide, lithium, and heat as tracers in a sandy aquifer in Horonobe (Hokkaido, Japan).
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The samples drawn from the posterior distribution resulting from the GPR-based optimisation
show an overall good fit to the field observations. Based on the posterior parameter
distribution, it was possible to shrink the uncertainty intervals of the solute and heat
dispersivity and porosity. The outcome suggests low sensitivity to the solute retardation
factors. However, the study also reveals that slight sorption may be acting in the Horonobe
aquifer for some of the solute tracers commonly assumed to be conservative. Moreover, the
study shows that exact porosity measurements may reveal the presence of sorption and thus
improve the understanding of the tracers’ behaviour. We demonstrate the benefits of using
multiple tracers and high-resolution measurements to improve calibration accuracy under
measurement uncertainty. The demonstrated approach offers a computationally efficient
framework for addressing parametric uncertainty in push-pull test analysis, improving the

design and optimization of ATES systems.

Key words: ATES, Push-Pull test, Simulation-based inference, Modelling, Solute and

heat transport

1. Introduction

Aquifer thermal energy storage (ATES) has been gaining growing popularity recently as
an alternative to fossil fuel-based heating and cooling (De Schepper et al., 2020; Stemmle et
al., 2023). Being an efficient energy storage option making use of the subsurface, ATES
enables large energy savings and massive reduction of CO, emissions (Vanhoudt et al., 2011;
Bloemendal and Olsthoorn, 2018; Beernink et al., 2022). The efficiency of geothermal power
generation as well as aquifer thermal energy storage systems is highly affected by the
subsurface heat storage and transport properties (Doughty et al., 1982; Tang and Rijnaarts,
2023). Therefore, one of the essential steps in ATES design is an accurate characterisation of
the target aquifer (Blocher et al., 2024). This is typically done by hydraulic field tests, core
logging, and laboratory experiments (Miiller and Regenspurg, 2014; Wagner et al., 2014; Park
etal., 2015).

Among hydraulic field tests for aquifer characterization for an optimal design of ATES
systems, the push-pull test (PPT) using tracers is a well-established and commonly applied
method to approximate the effective transport parameters of an aquifer (Schroth and Istok,
2005; Vandenbohede et al., 2009; Vandenbohede et al., 2011; Park et al., 2015; Stettler, et al.,

2022). PPT results have been widely used to infer solute and heat transport parameters as well
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as aquifer properties such as dispersivity, retardation factors, porosities, attenuation factor
(Blocher et al., 2024), groundwater velocity, and heat capacities (Leap and Kaplan, 1988;
Kim et al., 2019; Ueckert et al., 2020; Kruisdijk and Breukelen, 2021; Johnson et al., 2023).
To approximate the necessary parameters, multiple analytical (Schroth and Istok, 2005), semi-
analytical (Shi et al., 2020; Suk et al., 2023), as well as numerical models (e.g.,
Vandenbohede et al., 2009) have been employed to account for PPTs of varying complexity
including different processes and geological conditions as well as varying boundary

conditions.

The majority of studies named above were dedicated to inference of a unique parameter
set. However, in subsurface systems data collection is typically limited to sparse information
from available boreholes, leading to incomplete information about the spatial distribution of
properties. This limited data introduces significant uncertainty, particularly when inferring
parameters for spatially distributed and physics-based modelling approaches (Kitanidis,
1998). As the number of unknown parameters increases, the solution may become non-
unique, meaning different parameter combinations can yield outcomes of similar quality
fitting the data equally well within the given uncertainty. To address these challenges,
stochastic methods are employed, as they provide a robust framework to account for
uncertainty and explore multiple possible parameter realizations, ultimately improving the
reliability and predictive capability of physics-based models (Rasmusson et al., 2014; Cirpka
and Valocchi, 2016; Jin et al., 2024). Although both, the simulation of PPTs and stochastic
methods have been extensively developed already, only a limited number of studies aimed to

apply stochastic methods to the calibration of real word PPTs.

This article presents a computationally efficient framework to stochastically calibrate
PPT data under uncertainty using field data. We aim to provide a surrogate model-based
workflow for uncertainty-acknowledged stochastic parameter estimation of the PPT data. For
training and rapid model evaluation, we developed a fast and stable 1D finite-difference (FD)
implementation of the advection-dispersion equation for sorbing tracers based on an analytical
radial flow field. This model employs an adaptive explicit time-stepping scheme that ensures
numerical stability while minimizing numerical diffusion. Furthermore, it can account for
wellbore storage, the injection of a chaser after the push phase, as well as it can handle an
input-time-series of concentration or temperature as transient boundary conditions. The

workflow was applied to the Horonobe aquifer, which is a sandy aquifer in Hokkaido, Japan
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(Hebig et al. 2014, 2015a,b), demonstrating its effectiveness in calibrating real-world PPT
data serving for a better design of ATES systems. The PPT data was modelled stochastically
while reducing the number of model runs required with ongoing calibration and maintaining
calibration precision. Posterior distributions of thermal and solute dispersivity, porosity, and
retardation factors of solutes and heat were analysed with the aim to investigate which
parameters can be reliably deduced from the calibration procedure, enhancing our
understanding of aquifer characterization through PPTs. This approach addresses the
challenges of parameter estimation in complex subsurface systems, offering a computationally
efficient method for improving ATES design and optimization. Calibrated parameter sets
indicate that tracers, traditionally assumed to be conservative under most conditions in a
sandy aquifer, such as uranine, iodide, or lithium may experience in fact slight sorption. Exact

measurements of porosity may reveal, if this is actually the case in reality.

2. Site description and push-pull tests

The field experiments were performed at the Hamasato test site, which is the part of
the municipality of Horonobe, at the north-western coast of Hokkaido, Japan (Matsumoto et
al., 2020). Horonobe is situated in a coastal sedimentary basin composed primarily of loosely
compacted sandstones, siltstones, and mudstones (Ikawa et al., 2014). The well field is
located approximately 250 meters from the shoreline of the Sea of Japan, with the site
elevation being around 5 meters above sea level (Hebig et al., 2016), moreover, it is screening
the Sarabetsu Formation. This formation consists of unconsolidated Quaternary alluvial
deposits, characterized by interbedded layers of coarse sand, fine gravel, and clay lenses
(Hebig et al., 2015). The well screens a confined aquifer, primarily composed of sand and
gravel, which is located between 90.7 and 99.7 meters below ground level. Although detailed
hydraulic gradient and ambient groundwater flow velocity data for the monitoring well are
unavailable, groundwater flow is generally from the recharge zone in the Horonobe Anticline,
located about 10 km northeast, towards the Sea of Japan. Isotopic analysis and numerical
simulations suggest groundwater ages ranging from 8,000 to 18,000 years, indicating an
estimated flow velocity of approximately 0.56—1.25 meters per year (Matsumoto et al., 2020).
Thus, we can safely neglect background flow for the analysis of the PPTs as the flow
velocities induced by pumping in the near-field around the well are several orders of

magnitude higher.
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2.1. Experiments

A total of seven PPTs were performed in the year 2012 in the well DD-2 having a diameter of
5.08 cm (Figure 1), fully penetrating the aquifer with the thickness of 9.0 m. The experimental
setup is discussed in details in (Hebig, 2015; Hebig et al., 2016, 2016; Matsumoto et al.,
2020). To ensure the targeted investigations of the aquifer, the well was sealed with a packer.
The general setup of the PPTs included ~920 L of the injected test solution with an average
pumping rate of 5 — 10 L/min. Immediately after the push phase 120 L of chaser solution was
injected with the same pumping rate to replace the well volume (95 L). The following
extraction of a 10 times higher volume of 10367 to 10404 L ensured tracer recovery. The tests
took place with a descent recovery time of at least 12 hours in between to ensure the recovery
of the natural aquifer conditions by the time of the next experiment. Mass recovery for the
tests varied from 65 to 85 % depending on the setup. The identical tests “PPT1” and “PPT2”

were used for the current study to identify aquifer parameters.
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Figure 1: Experimental setup for the PPTs in the well DD-2 (after Zeilfelder et al., 2015).

2.2. Tracers

In the push-pull tracer tests, uranine, iodide, lithium, and temperature were simultaneously
injected in the aquifer. Heat transport is known to exhibit retardation behaviour similar to
sorption (Section 3). While iodide and uranine are generally regarded as conservative tracers
(Adams and Davis, 1991), studies have noted weak sorptive behaviour with retardation
factors ranging from 1.0 to 2.0 (Breuer, 2016). Lithium, as an alkali metal, typically exhibits
minimal to no retardation in sandy aquifers due to its weak sorption onto the according
aquifer material, represented predominantly by quartz sand with low organic carbon content.
If sorbed, the retardation factor for lithium is close to that of a conservative tracer, typically

ranging from 1.0 to 1.6, attributed to its small ionic size and limited interaction with the
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mineral matrix (Fuentes et al., 1989; Mojid and Vereecken, 2005). In our field tests
considered, the breakthrough curves of lithium and uranine exhibit very similar close to
conservative behaviour while the iodide breakthrough may be retarded in comparison to
cations (Figure 2, top) in porous media mainly composited of quartz. Based on this, we tested
two calibration scenarios: (i) conservative behaviour for all solutes (ii) conservative behaviour
for lithium and uranine and weakly sorbing behaviour of iodide; (iii) weakly sorbing
behaviour for all solutes (Table 2). Given the relatively short duration of the experiments (6.5
hours for injection and 35 hours for extraction), we assume linear sorption behaviour to be
valid over the timescale of the tests. The pore diffusion coefficient for the solutes was set to

1-10° [m? s7'] while the thermal diffusion coefficient was set to 1-10¢ [m? s'1].

Table 1. Parameter ranges for the model calibration.

Parameter Unit Lower bound Upper bound
Porosity n - 0.01 0.3

Solute dispersivity a m 0.001 0.2

Thermal dispersivity ar m 0.001 0.8

lIodide retardation factor R - 1 2

Uranine retardation factor Ry - 1 2

Heat retardation factor Ry - computed form porosity (Eq. 8)
Lithium retardation factor Ry - 1 2

2.3. Approximate confidence intervals

PPT 1 and PPT 2 were conducted under identical experimental conditions to facilitate
an estimation of measurement accuracy and to evaluate approximate confidence intervals for
the observed data. The measurements and their difference for each tracer are illustrated in
Figure 2, where the bottom panel displays the deviation between values recorded during PPT 1
and PPT 2 at each time step, and the top panel presents the corresponding breakthrough
curves. The maximum observed deviations were around 5% for temperature, 4% for uranine,

8% for 1odide, and 2% for lithium.
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To account for a conservative calibration scenario, the maximum value of a duplicate error
was assigned as an approximate confidence interval for each component. These confidence
intervals were then incorporated into a calibration strategy to normalize the root mean square

error (RMSE) as an objective function.
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Figure 2: Top: breakthrough curves of lithium, iodide, uranine, and temperature (from left to
right) during the extraction phase of duplicate PPTs performed in Hokkaido, Japan; bottom:
absolute concentration difference between two duplicate PPTs. Concentrations are normalized
in order to have the same maximum value considering mass recovery.

3. Process-based model of the push-pull test

Push-pull tests (PPTs) are single-well tests and as such an established and broadly
applied technique for in situ characterization of effective transport parameters of the near-well
area. The advantages of a PPT compared to multi-well tests include: easier operation, lower
cost, and greater efficiency. However, the aquifer volume, which is sampled, is typically
smaller with such a single-well test than with tracer tests involving multiple injection,
extraction and observation wells. During the push phase, water is injected in a screened well,
then one borehole volume of tracer-free water is injected as chaser, and during the pull phase,
water is extracted from the borehole (Figure 3). The concentration/temperature is being
monitored throughout the whole experiment. This relatively basic setting is complemented by
using different kinds of tracers — conservative, decaying, sorptive, or heat. Based on the tracer
properties, their corresponding effective transport parameters are evaluated. Analytical

solutions are widely utilized for inferring parameters of relatively simple test setups (constant



217
218
219
220
221
222
223
224

225

226

227

228
229
230
231
232
233
234
235
236
237

238

input, linear behaviour), whereas numerical modelling is usually used for more sophisticated
setups such as non-linear reaction rates, heterogeneous media, or transient tracer inputs.
Conservative tracers allow the estimation of longitudinal dispersivity and porosity or
groundwater flow velocity, while the comparison with a sorbing tracer yields a solute-specific
retardation coefficient, and reactive tracers reveal properties like reaction rates, aquifer
reactive capacities, or, by inverse modelling, Monod- and Michaelis-Menten coefficients etc.
(Gelhar, L.W, Collins, 1971; Snodgrass and Kitanidis, 1998; Schroth and Istok, 2005;
Boisson et al., 2013; Kruisdijk and Breukelen, 2021).

ALAAl 3
—....? - —3\ l
Tamb

tpush tchase textract t

Figure 3. Conceptual representation of a multi-tracer PPT with push, chase and pull phases
(left), and corresponding sketch of a typical breakthrough curve of a single tracer (heat via
temperature as primary variable in this case) observed the borehole (right); dashed black
curve corresponds to almost conservative tracer whereas solid line is a retaded tracer.

3.1. Model equations
The physical model describes PPTs in a fully screened well in a confined aquifer, where flow
is solely induced by pumping and the ambient hydraulic gradient is neglected. As such, we
aim to reduce the dimensionality of our transport problem via considering the advection-
dispersion equation (ADE) for a sorbing solute in cylindrical coordinates. This is a classical
assumption together with the one assuming spherical coordinates. We neglect all fluxes in the
vertical, which was our Cartesian axes, if considered, and assume the same concentration over
depth. Moreover, we neglect transverse dispersion and end up with a radially symmetric
equation derived from cylindrical coordinates from which we start our further consideration

(compare e.g. Moench et al., 1989; Leiji et al., 1991; Hwang, 2021):

dc dc 10 dc
(repr57) =0

R=—+ qr— - ——(neDir —| =
P P L i G

10
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(1

where n, =n[-] is effective porosity, R [-] is the retardation factor, ¢ [N L™!], ¢ [T] is
time, g, [L T"!] is the specific discharge in radial direction, r [L] is the radial coordinate in
space, and D, is the longitudinal dispersion coefficient as simplification of the dispersion

tensor:

Dl = al|17r| + Dp

)

where v, [L T!'] is the seepage velocity as v, = g,/n., and D, [L? T™!] is the pore diffusion
coefficient including an estimation of tortuosity, and @; = « is the longitudinal dispersivity. In the
following, we assume that the effective porosity is constant throughout the physical domain,
thus we divide by the porosity to get rid of the additional pre-factor in front of the temporal
derivative and operate with the seepage velocity in the advective term. Moreover, we neglect
the spatial variability of dispersion, thus (6D/0r) (0c/0r) = 0. Finally, we observe the
emergence of the term (Dgr) (Oc/Or), which acts as correction term to advection due to
cylindrical coordinates. However, together with our other assumptions and the assumption
that ; is a constant factor independent of seepage velocity, we observe that in a numerical
model very close to well advective flow may get effectively reverted due to this factor for
high dispersivity, which is an unphysical behaviour. Several authors emphasized that
Scheidegger’s model of dispersion (Equation 2) may be wrong for high dispersivity close to a
pumping well (Parker and van Genuchten, 1984; Dagan and Bresler, 1985; Moench et al.,
1989). PPTs are acting on relatively small spatial scales, thus the near-field of the well is
important to us, requiring an adequate numerical resolution in space. To avoid unphysical
behaviour close to a well, we thus neglect the correction factor inducing spurious flow
reversal and employ the classical radial advection-dispersion equation (Wang and Crampon,
1995; Schroth et al., 2001; Chen, 2010; Huang et al., 2010; Kang et al., 2015):

Rac+ dc Dacho
ot Vor Ulge2

3)

We assume radial flow induced by the well over the area of a cylinder, which implies

divergent flow in the radial direction, such that the seepage velocity becomes:

11
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Qw

= 2nrhgn,

vy

4

where Q,,[L3 T !] is the volumetric pumping rate of the well, where different signs lead

to flow reversal in radial direction, and 4, [L] is the thickness of the aquifer. With 4 =
(Q,/2rh,n.), and dividing by R we end up with our model equation for a solute:

dc A ac (Aocl Dp) d*c
R R

ot rRor’ Ror2
)

For retardation, we solely consider linear sorption, which may be justified by the low
retardation coefficients considered in our study for the according tracers and by the high
induced flow velocities as well as considering a single continuum porous medium only. Thus,

the retardation factor for solutes is:

(1-np) K PrKa

R=1+ psKa=1+

(6)

where p; [M L73] is the solid density of the grains, p, [M L73] is the dry bulk density of the
porous medium, and K, is the linear sorption coefficient in equilibrium. Please note, that in
our model application, we consider not ¢ but solely normalized concentration c/cy [-], where
co 1s the input concentration in the well.

For heat transport, we rewrite Equation (5) considering temperature 7 [®]:

oT A oT (AaT DT)aZT

- |—— | —
ot rRror \rRr Ryp)or?

(7)
where a7 [L] is the dispersion length for temperature, Dy is the diffusion coefficient for
temperature, and Ry [-] is the retardation factor for temperature, which is defined as follows:

B nepwcp,w + (1 - ne)pscp,s
! neprp,w

(8)

12
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where p,, [M L73] is the density of water, C,,, [L? T2 @] is the specific heat capacity of
water, and C,, [L?2 T2 ©7!] is the specific heat capacity of the grains, which equal the solid

matrix in the considered porous medium.

3.2. Numerical implementation
For solving the governing equations (5) and (7) we combine a fast and stable finite-difference
approximation with an explicit Euler scheme on a regular grid. This has the advantage that we
do not need to assembly storage and mobility matrices and can thus just push an initial
condition forward in time without the need to solve a linear equation system. The initial
normalized concentrations in solute transport are zero in the domain while for temperature the
initial temperature is background temperature. In the following, all our considerations are for

a quantity a € {c¢,T} which is a solute concentration, ¢, or temperature, 7.

We define an effective seepage velocity v, which is valid for either concentration or

temperature:

—,ifa=c

Veff = T;f

r—RT,lfa=T

)

Note that that in our case the velocities are either from left to right (having a positive sign) or
from right to left (having a negative sign). The exact value for v.; depends on 7. For
advection, we use an upstream finite-difference scheme, where the effective seepage velocity
for the flux between the nodes i and i — 1, where numbering is from left to right, considering i
is:

S {Ueff,i_1, for vepr>0
ffE™ | Wers,, for vess <0

(10)

where v, is the effective seepage velocity at node 7, v ;-1 is the effective seepage velocity at
node i—1, v;_,;—; is the seepage velocity at node i towards the node i — 1, and v;—;_,; is the
seepage velocity at node i — 1 towards the node i. Note that that in our case the velocities are
either from left to right (having a positive sign) or from right to left (having a negative sign).

Note that seepage velocity gets reverted in orientation for the pull phase compared to the push

13
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phase, node orientation thus needs to be accordingly. For a Courant number of unity the
upstream finite-difference scheme is shock-capturing for advection, for a larger Courant
number the scheme is instable, and for a lower Courant number numerical diffusion is
introduced, which can be minimized by grid refinement. The approximation of the advective

flux together with an explicit Euler discretization related to a node i reads:

ViR At
}Z —(a;1(6) - @ (D), for vir; >0
Jaav = up
v, ff,'At
EA; (ai(®) - aw1(t)), for vy, <0

(11)

where Ax is the spatial increment and At is the global time-step size. For the approximation of
dispersion, we employ central finite differences. First, we define an effective dispersion

coefficient:

Deff: Aar Dy

Ry Ry’
(12)
Thus, a central differentiation scheme for the dispersive flux considering node 7 reads:
Jaisp = De%;m(ai-l(t) - 2a,(t) + aga(t))
(13)

Finally, our overall scheme for an internal node i reads for a quantity a € {c,T}, which can be
either concentration or temperature:
a(t + At) =a(t) + Jaav + Jaisp

(14)
Moreover, we employ free inflow and outflow boundary conditions. For solute transport, we
consider a constant normalized inflow concentration of unity and account for well-bore
storage, whereas for heat, we consider an input time-series for temperature. In such a scheme
it is not necessary to explicitly account for well-bore storage for temperature propagation. To
render the scheme to be fast and stable, while not overly introducing spurious diffusion, our

scheme computes an optimal global time step on a fixed grid size, Ax, as such:

At ] (Ax Ax? )f
= min|—, ——
vie N\Veff,i 3Deff,

14
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(15)
where N is the set of nodes, the first entry in the vector is the optimal timestep size in an
explicit Euler scheme for advection based on the Courant number, which needs to be unity at
maximum, whereas the second is the optimal time-step size due to dispersion based on the
condition that the Neumann number should be less or equal 1/3 for a stable approximation of
diffusion/dispersion. For stability reasons the smaller value of the two values needs to be
taken such that at the end the smallest time step for all nodes considering advection and
dispersion is chosen to be the global time step for the next iteration. Expression (15) is
eventually multiplied with a dimensionless safety factor f, slightly smaller than unity for
enhanced stability and to account for numerical precision. The chosen global time step is the
smallest time step for advection and dispersion over all nodes. We implemented the described

methodology in Matlab 2024a.

3.3. Surrogate model formulation

Parameterization of the advection-dispersion equation (ADE) to fit the observed
experimental breakthrough-curve data is typically done by optimizing an objective function
such as RMSE which reflects on a match between the model and the observed data. For
breakthrough-curve data obtained from natural geological media, this may involve high-
dimensional parametric spaces, non-convex objective functions, and inherent uncertainties as
well as unresolved heterogeneities, which potentially make deterministic methods stuck in
local optima or fail to capture the variability of the solution space (Cirpka and Valocchi,
2016; Fiori et al., 2016). Overcoming these limitations is possible by stochastic modelling
(Kitanidis, 1998), which can effectively handle multimodal functions and may include an
uncertainty estimate. However, such stochastic optimization techniques are often limited by
the high computational costs associated with ensemble simulations of physics-based
numerical models. To minimize the time required for the optimization process, a surrogate
model capturing the relationship between aquifer parameters and the objective function was
applied. Surrogate modeling emerged as a powerful approach to mitigate computational speed
limitations by employing an approximation of the model to be fitted, which is the surrogate
model. This enables efficient stochastic parameter estimation and uncertainty quantification
(Erdal et al., 2020; Allgeier, 2023; Rohmer et al., 2023; Ershadi et al., 2024). Among the
different surrogate modelling approaches available, Gaussian process regression (GPR) was

selected since it preserves the continuous and smoothed-out nature of concentrations fields in
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natural porous media and can include a combination of several multiparametric ADEs (Degen
et al., 2023). The principles and mathematical formulation of GPR originates from the kriging
principles, applied to multidimensional parameter spaces (Allgeier and Cirpka, 2023; Rohmer

etal., 2023).

The continuous input parameters varying within site-specific ranges (Table 1) are solute
and heat dispersivity treated separately, porosity as an aquifer property, as well as individual
solute and heat retardation factors for each component. The response for each tracer is the
sum of squared errors normalized by confidence intervals residuals and number of points

considered:

RMSE(p) = \/2?'1 (ymod,;'v‘ yobs,i)z/CI, (1 8)

where p is the set of parameters to be optimized in the solute or heat transport model, Ymod,i
and yons; refer to the modelled and the observed value at the discrete points i in time
considering the breakthrough curves, where the modelled values depend i.a. on p, N is the
total number of simulated/measured values, and CI is an approximated confidence interval.
The differences between observed and modelled values within the confidence interval are

considered equally acceptable due to the resolution limits of the measurements.

The best-estimate calibration aims for all tracers to minimize the objective function fp;,

which is the deviation between measured and modelled values considering the maximum

RMSE:

fobj = max((RMSE(p)))j-1,...n), (19)

where n is the number of considered solutes plus temperature. For calibration, only
favourable unique parameter combinations are sampled in order to obtain an ensemble of a
defined size. Once trained, the GPR is employed to propose potentially plausible parameter

combinations by computing the probability of satisfying the condition (Equation 19).

Possible parameter combinations are drawn using a Halton sequence using an adaptive
sampling approach to ensure the local optimization and global accuracy of the surrogate
model. The infill criteria for the new samples focus on a combination of exploitation of high-
probability regions (indicated by the GPR model) with exploration of regions where the

model demonstrates high uncertainty. At every iteration 20 initial candidate parameter

16



407
408
409
410
411
412
413
414
415
416
417
418
419
420

421

422
423
424

combinations are drawn from the Latin hypercube sampling (Figure 4). To balance between
exploitation and exploration, we proportionally added a small amount of exploration
(searching for new regions) and large amount of exploitation (refining predictions in
promising areas). The selected candidate parameter combinations are then optimized using the
prediction capacity of the surrogate model. The interior-point algorithm, which is suitable for
high-dimensional constrained problems (Byrd et al., 2000), is employed for optimization of
GPR by minimizing the predicted RMSE value. In addition, a secondary small set of five
candidate parameter combinations is generated based on sampling a large (10000 realizations)
sample of surrogate models and predicting their likelihood of being optimal (Erdal et al.,
2020). The cumulative distribution function (CDF) was employed for sampling to identify
points in the input space where the predictive error is expected to be close to the lowest
RMSE. From the set of 10000 GPR realizations and corresponding CDF values, five points
with the highest probability were selected to prioritize the points which are most likely to

improve the surrogate model and reduce the uncertainty further.

Sample prior
parameter
distribution

Evaluate models

(Re)Train the Sampl ‘
surrogate ol
sunogate
points
Ensemble
. size

i Append Compute
| GPR i points to objective
| i ensemble function

Figure 4. Flowchart for the surrogate modelling process for optimization of advective-
dispersive transport parameters of a PPT; the purple circles refer to the main adaptive
sampling loop.

The dynamically improving surrogate modelling strategy is outlined in the flowchart
(Figure 2) and is similar to (Allgeier and Cirpka, 2023): (1) Sample a uniform prior of the
Latin hypercube, (ii) train the GPR based on the model response, (iii) Based on the GPR

17



425
426
427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
442
443
444

445

results, compute the probability of satisfying the condition (Eq.19) in n random locations in
the parametric space. Select points with the highest probability; (iv) create additional (small)
sample by a 1D random walk in each parametric space for existing favourable samples, (v) for
the selected points, run the full model and add new ensemble members to the training set; (vi)
periodically retrain the model with the updated training data. Steps 2 — 5 are repeated until the
ensemble is filled by successful model runs. To account for measurement uncertainty, all
members of the posterior parameter distribution are treated as equally valid, and thus no
ranking was performed within the parameter distributions that satisfy Equation 19. The prior
was sampled from the normalized parameter space using the Halton quasi-random sequence

with reverse-radix scrambling (Mascagni and Chi, 2004).

The Figure 5 (right) shows an exemplary response surface of an example calibration for
a single conservative tracer which requires only two parameters to be estimated: dispersivity
and porosity based on the analytical solution of Schroth and Istok (2005). Thanks to the
simplicity of the response surface (Fig.3, right), the acceptance rate increases drastically
already after 100 model runs (Fig. 3, left). As shown in analytical solutions (Schroth and
Istok, 2005), the dispersivity inversion from the push pull test is plausible while porosity may
leave a broad range of possible realizations. At the same time, the area of the minimum
RMSE on the response surface (Fig .3, right) covers up the whole prior range of possible
porosity values revealing lower sensitivity of the output to the porosity. This consideration is

kept for calibration of the sorbing solutes and heat.

102_

= log,,(RMSE}

+ Model run
| ——log, (rmse) =0 |

O True value

10" | o

RMSE
=)

10’ 102 108 10* 0 1 2 3 4 5 6 7 8 9
Model runs a [m]

Figure 5 Calibration of conservative tracer data using the analytical approximation of
(Schroth and Istok, 2005). Left: Performance progress of the calibration is shown reflecting
the RMSE decrease with increase of model runs leading to surrogate model specification. The
solid line refers to the acceptance threshold of the normalized RMSE=1, where all model
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results below it are considered plausible and added to ensemble. Right: Response surface
which was created based on all model runs. The colour code refers to the decadic logarithm
of the RMSE with the darker colours (blue) corresponding to higher RMSE values and the
lighter colours (vellow) representing smaller RMSE values, the yellow dots denote the model
runs and the bold yellow circle denotes the “true” value based on the values used to generate
a hypothetically true parameter combination.

The ensemble size was defined based on a stop criterion (Zhu et al., 2023) which in the
current application corresponds to 600 plausible samples. To validate the suggestion of Zhu et
al. (2023), the ensemble size was gradually increased from 50 to 700 plausible samples to

confirm no further change in the posterior distribution.

The surrogate model performance was evaluated using 20% holdout of the data which

did not contribute to training by evaluating the coefficient of determination:

Z?:l (YObs - ypred)z
21;1 (yobs - 5)2

R?>=1-

where y,,, and y,.q, denote the observed and predicted RMSE values, respectively, and

y denotes the mean of the observed RMSE values.
4. Results

This section outlines performance metrics of the surrogate modelling and numerical
calibration results that reveal the sensitivity of the model to dispersivity, porosity, and
retardation factors demonstrating the influence of using multiple tracers on calibration quality

of effective transport parameters.

4.1. Surrogate model evaluation

The optimization constitutes a three-dimensional optimization space for all solutes
being conservative (porosity, longitudinal diversities of solutes and heat are unknown), a four-
dimensional space for the case when lithium and uranine are considered conservative tracers
(retardation factor of iodide is added to the unknowns), and a six-dimensional space in case

all solutes are sorbing (retardation factors of lithium and uranine are added to the unknowns).

The hyperparameters of the GPR were optimized using Bayesian optimization (Snoek,

et al., 2012) with a holdout 20% of the total data for validation. Special attention was given to

19



468
469
470
471
472
473
474

475
476
477
478
479
480
481
482
483
484
485
486

487

sampling data points with lower RMSE values, as these regions are crucial for precise
optimization in the area of interest. The optimized length scale of 0.87 (not shown) indicates
that the model assumes a relatively smooth underlying function which is typical for the ADE
(Degen et al., 2023). The relatively high variance of 9.0084 corresponds to the non-normalized
RMSE array resulting in substantial variability, which the model is capturing. The noise
standard deviation 0.0246 is small compared to the signal variance, meaning that the model is

performing well at distinguishing the underlying trend from noise in the data.

The performance improvement of the surrogate model is depicted in Figure 6. The right
plot presents the distribution of RMSE values, reflecting that the majority of RMSE values are
concentrated between 3 and 5, with a peak probability density of ~0.6. This indicates that,
while some variability in performance exists, a significant portion of the predictions achieves
low RMSE values, which enables using GPR for proposing the plausible parameter
combinations. The parity plot at the end-state of GPR training (Fig. 6, left) illustrates good
agreement between the actual RMSE values running the physical model and the predicted
values from the GPR model on the holdout set with R? of 0.9985. The predictions generally
follow the 1:1 line, indicating a reasonable correlation between the actual and predicted
RMSE values. Although some deviation is observed suggesting potential limitations in the
model's ability to generalize in this range, the trained model is sufficient to propose the

potentially plausible parameter combinations leading to smaller RMSE values.
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Figure 6 Performance evaluation of the GPR model considering all tracers exhibit sorptive
behaviour. Left: parity plot between surrogate model prediction and the holdout dataset of the
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physics-based model outcomes; right: distribution of the RMSE based on the physics-based
model evaluation.

4.2. Application to Hokkaido site and posterior parameter distributions

Lithium, iodide, and uranine are generally considered to be conservative tracers.
However, several studies have shown that they may exhibit slightly sorptive behaviour under
some conditions (Breuer, 2016; Fuentes et al., 1989; Mojid and Vereecken, 2005). In the
calibration strategy, we studied the importance of accounting for the possible sorption of the
tracers for parameter inference. As such, three calibration scenarios were considered: (1) all
three tracers, lithium, iodide, and uranine are exhibiting sorptive behaviour; (ii) only iodide is
sorbing whereas lithium and uranine are conservative; (iii) all tracers are conservative on the

time scale of the experiment.

4.2.1. Lithium, iodide, and uranine are sorptive tracers

This scenario corresponds to a hypothesis of slightly sorptive behaviour of all solutes
considered, i.e., lithium, uranine, and iodide, and corresponds to calibration of their
retardation factors together with porosity, solute dispersivity, and thermal dispersivity. This
case corresponds to the highest amount of six parameters in total for calibration, which define
the quality of breakthrough curves (BCs) for each tracer. To calibrate the model, we used the
breakthrough curves of iodide, uranine, lithium, and temperature to estimate the normalized

RMSE.

The calibrated breakthrough curves demonstrate generally a good fit to the data meeting
the critical points - maximum concentration and the half-front for all solutes (Fig 7). The
observed breakthrough curves of iodide and uranine expose higher tailing concentrations at
the later times of the extraction which could not be captured by the numerical model. The
model of lithium displays lower tailing concentrations for the later times with slightly
increased concentrations directly after the peak concentration. The higher concentrations
measured especially for iodide may correspond to an overall larger amount of injected mass
compared to the input assumptions. Also, a higher measurement error as assumed may play a
role as well as retention of the component associated with aquifer heterogeneity or the in-fact
existence of a dual porosity medium including a micro-porosity e.g. only available for anions,

which is not included in the current physical model. Notably, the temperature (Fig. 7, bottom-
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right) exhibits the opposite behaviour — the modelled concentration fits very well the higher

relative temperatures while exceeding the measured values for later times.

Posterior distributions of parameters are depicted in Figure 8. As expected from the
analytical solutions and sensitivity studies (Schroth and Istok, 2005; Maier and Kocabas,
2013; Shi, Wang and Zhan, 2020), the posterior distributions of solute dispersivity and
thermal dispersivity narrowed down to a much smaller range than the uniform prior. Posterior
parameter distributions of the Horonobe aquifer reflect the effect of high sensitivity to
dispersivity leading to substantial uncertainty reduction (Fig. 8). The identified thermal
dispersivity values belong to the range between 1-103 m and 0.2 m with the mean value
around 0.1 m, while the solute dispersivity is, as expected, characterized by lower values less
than 0.05 m. Considering the injected radius may vary from 0.5 to 0.9 m depending on the
porosity, the dispersion of solutes corresponds to 6-10% of the spread. Porosity is a less
sensitive parameter and tends to be within the broad range of 0.05 to around 0.19 in
comparison to 0.01 to 0.3 as a prior distribution while being most likely around 0.1 according
to the calibration results. The posterior distribution of heat retardation factor as a function of
porosity (Equation 8) represents a narrow interval between 2.3 (for porosity 19%) to 7.4 (for

porosity 5 %).

-

T 1 -
—— ADE model —ADE model

w 0.8 —— Experiment measurements — 08 ——Experiment measurements
8 0.6 8 0.6

E <2 0.
O S
504 E 04
k=] =
202 Eo0.2

0 0

0 5 10 15 0 5 10 15
t[s] 10t tls] x10*
1 T 1 T
——— ADE model i —— ADE model
208 == Experiment measurements 8 0.8 = Experiment measurements
(=] =
8 0.6 % 0.6
£

o4 g 04
& 202
502 E ’

5 A N

0 5 10 15 0 5 10 15
t[s] x10* t[s] x10*

Figure 7 Ensemble optimization results considering iodide, lithium, and uranine to exhibit
sorptive behaviour. Breakthrough curves for the solutes and temperature, red lines refers to
the concentration measurements during the extraction phase of the PPT, grey lines refer to
the fitted modelled data for the extraction period, time equals to 0 corresponds to the start of
the push phase.
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Figure 8 Posterior distributions of calibrated retardation factors of iodide, lithium, uranine,
porosity, solute and thermal dispersivity considering lithium, uranine, and iodide to exhibit
sorptive behaviour; vertical dashed lines indicate the mean parameter values and the dotted
lines indicate the median.

The retardation factors of solutes are not very sensitive to the calibration which highlights the
lowest sensitivity of the model to its variation (Schroth and Istok, 2005). However, they tend
to be around 1.5 for iodide and uranine and around 1.6 for lithium, still the full prior range
between 1.0 and 2.0 remains possible. Thus, the model shows a low sensitivity to retardation
factors of all tracers — lithium, iodide, and uranine, making their transport behaviour
inconclusive from the breakthrough-curve observations. Although representing an uncertainty
in tracers’ behaviour, this fact suggests to reduce the number of parameters to solute and
thermal dispersivity, and porosity in the following, thus simplifying the calibration process of

the latter parameters.

4.2.2. Lithium and Uranine are conservative tracers while Iodide exhibit
slightly sorptive behaviour

Lithium and uranine are typically considered conservative in sandy aquifers because
lithium due to its small molecule size and positive charge does not interact significantly with
quartz, while uranine being neutral at lower pH values and an anion at higher pH values, is
not significantly interacting with the often slightly negatively charged sand surfaces (Jada et

al., 2006). In contrast, iodide may exhibit slight sorption due to its high polarizability,
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allowing weak van der Waals interactions or surface complexation with minerals like iron
oxides or organic matter. This difference in behaviour was considered in this calibration
scenario. Under the assumption of conservative tracer behaviour of lithium and uranine, the
four other parameters were calibrated which are: retardation factor of iodide, aquifer porosity,
solute dispersivity, and thermal dispersivity.

The posterior parameter distributions (Figure 9) for dispersivity of solute and heat are
generally similar to the previous scenario, however, solute dispersivity shows a narrower
range than before with a mean value around 0.03 m. Thermal dispersivity, while overall being
very similar, shows a slightly higher likelihood for smaller and larger values compared to the
former results. The posterior distribution of porosity is a bit narrower now allowing also for
higher porosity values. However, the most likely value is a little bit smaller than 0.1, which is
a little bit less compared to the former results. Since smaller porosity values increase seepage
velocity, this causes an earlier breakthrough of the tracer. Therefore, the model compensates
by reducing the retardation factor a bit to maintain the correct arrival time in the breakthrough
curve. The corresponding heat retardation factors vary from 2.0 to 15.6 which corresponds to

a broader range and higher heat attenuation.
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Figure 9 Posterior distributions of calibrated retardation factor of iodide, porosity, solute
and thermal dispersivity considering lithium and uranine to be conservative tracers and
iodide to exhibit sorptive behaviour, vertical dashed lines indicate the mean parameter values
and the dotted lines indicate the median.

4.2.3. Optimization results considering all tracers to be conservative
Due to the relatively small duration of a push pull test and relatively low expected

sorption to the quartz minerals of sand, all tracers may have experienced in fact a conservative
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behaviour. In this case, only three parameters need to be calibrated — solute and thermal

dispersivity as well as porosity.

Posterior distributions of parameters are shown in Figure 10. The histograms indicate
the posterior distributions of the calibrated parameters, constrained within the predefined prior
ranges. While solute dispersivity shows a very similar pattern compared to the former results,
where only iodide was considered potentially sorbing, the distribution of thermal dispersivity
shrank with a mean value considerably closer to solute dispersivity and a slight bi-modal
shape. The posterior distribution for porosity is similar to the case, where all tracers where
conservative allowing for a range of values below 0.2 but having a most likely value of
around 0.1 like in the case where all tracers were considered to be sorptive. The value range
of heat retardation factors for this scenario is 2.4-5.4. As depicted in Figure 8, the PPT
exhibits low sensitivity to the retardation factors of the solute tracers, making it challenging to
exactly quantify the physically correct transport parameters based solely on breakthrough
curve analysis. Also, a case considering all tracers to be conservative yields reasonable
posterior parameter distributions. Otherwise, solute and thermal dispersivities are sensitive
parameters to the calibration, whereas porosity shows consistently a similar mean value
throughout the calibration scenarios, which is a promising finding. However, the mean values
of solute and thermal dispersivities shown in Figure 10 are actually close to each other, which
makes sense if dispersivity is considered to be a pure hydrodynamic parameter and thermal
and solute diffusion coefficients are chosen correctly.
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! = posterior
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Porosity n [-] Solute dispersivity o [m] Thermal dispersivity ap [m]

Figure 10 Ensemble optimization results for porosity, solute and thermal dispersivity
considering that all tracers exhibit conservative behaviour; vertical dashed lines indicate the
mean parameter values and the dotted lines indicate the median.

5. Discussion
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This study presents a novel application of GPR for stochastic optimization of a
multitracer PPT for inferring effective transport parameters in a sandy aquifer in Horonobe,
Japan. A surrogate model-based optimization framework was developed for parameter
estimation of PPT data, addressing both parametric uncertainty and approximate measurement
confidence intervals. The framework employed GPR to train and predict the objective
function based on aquifer and tracer properties, significantly reducing computational costs
compared to traditional ensemble-based methods. The GPR training resulted in a good
convergence between the modelled and predicted RMSE values confirming the hypothesis
that the optimization of a multitracer push pull test can be done by Gaussian processes as the
underlying solution is close enough to a Gaussian hypersurface. This provides a benefit in

terms of calibration capacity and applicability of the described method.

To evaluate the breakthrough curves of tracers, a 1D ADE solver accounting for the
transient tracer input was developed in this study. By assuming homogeneity, the model
provided a clear and interpretable baseline for analysing transport behaviour, which can be
further refined to account for spatial variability e.g. in porosity or flow velocity coupled with
travel time approaches (Selzer and Cirpka, 2020). The solver provides a firm base for
understanding fundamental transport dynamics and serves as a computationally efficient tool
for simulating advective-dispersive transport in porous media. While its 1D structure
simplifies the representation of flow and transport, this approach enables efficient numerical
simulations and facilitates sensitivity analyses. To enhance its applicability to complex field
conditions, the model could be eventually extended to a dual porosity medium to eventually

describe the tailing observed in the breakthrough curves especially for iodide and uranine.

Using three solutes and temperature with potentially different sorption characteristics
for calibration of a PPT allowed for determining both, solute and thermal dispersivity, identify
the heat retardation factor and slightly narrow down the possible porosity range. The thermal
dispersivity varies from 1-10 m to 0.2 m with a mean value which is significantly shifted
towards lower values for the case that all solutes are considered conservative, which indicates
the benefits of performing PPTs with solutes and heat simultaneously for later evaluation. For
the cases that all solutes sorb or at least iodides sorbs, solute dispersivity is significantly
smaller than thermal dispersivity, while the mean values of both are around the same for the
case that no solute is sorbing. Thus, the latter case is consistent with the assumption that

dispersivity should be hydrodynamic parameter, if solute and thermal diffusion coefficients

26



628
629
630
631
632
633
634
635

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

655

656
657
658

are set about correctly. The heat retardation factors expose some variability from one scenario
to another depending on the exact porosity distribution exposing smallest range and minimal
value for scenario of all reactive tracers (1.57-2.08), and the highest range and values for the
scenario when only iodide exposes sorptive behaviour (1.7 — 4.6). The RMSE is normalized
by the approximate confidence interval of the measurements creating a “window” of possible
truth values instead of a discrete point, which introduces some spread to the posterior
parameter distribution. The more precise the measurements are, the lower will be the

uncertainty in the parameter inference.

A GPR trained on RMSE values considering PPT measurements and the ADE model
provides a powerful data-driven approach for improving the calibration of a physics-based
model of advective-dispersive transport while capturing the parametric uncertainty. By
learning from discrepancies between the model results and measurements, the GPR can refine
parameter estimations and enhance the interpretability of simulation results. While its
performance is influenced by the physical model assumptions delivering the training data, the
framework applied in this study offers flexibility also to incorporate more complex transport
behaviour including more sophisticated models as dual-porosity modelling apporaches.
Additionally, while RMSE-based training prioritizes overall error minimization, further
refinements can focus on improving localized transport phenomena, such as sharp
concentration fronts or early breakthrough times. By integrating additional process knowledge
or multi-fidelity approaches, the GPR emulator can be further optimized to represent real-
world transport behaviour with greater precision. Overall, the presented approach offers a
computationally efficient method for characterizing aquifer properties crucial for ATES
system design and long-term performance prediction via improved effective transport
parameter characterization. The presented uncertainty-acknowledged calibration strategy is
generally applicable to more complicated models as well with more unknown parameters,
considering proportionally increased amount of data or additional knowledge about the

aquifer functioning.
6. Conclusions

In this study we developed a parameter optimization methodology based on Gaussian process
regression used for improved calibration of a finite-difference based advection-dispersion

model of push-pull tests capturing parametric uncertainty. This framework was applied to
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analyse push-pull tests performed in a sandy aquifer in Horonobe, Japan, using four tracers
(heat, uranine, lithium, and iodide) to infer effective transport parameters. We demonstrated
the method's effectiveness in constraining uncertainty intervals for solute and heat dispersivity
and to some extent, porosity and retardation factors. The hypothesis of sorbing and non
sorbing tracers behaviour was tested by considering calibration scenarios which account for

sorption of all tracers, only iodide, and conservative tracer behaviour.

In all calibration scenarios, the solute dispersivity and thermal dispersivity ranges in
Horonobe site exhibit almost identintical posterior distributions. As such, solute dispersivity
constrains from 6% to 10% of the injected radius with the values of up to 0.05m. Thermal
dispersivity covers predictably larger range of up to 0.2 m constraining considerable 20% to
40% of the injected radius. Porosity posterior distributions are varying for different scenarios
within ranges from 0.04 to 0.19 for all sorptive scenario, 0.02 to 0.28 in iodide only sorbing
scenario, and from 0.04 to 0.18 for scenario when all tracers are considered conservative. The
calibration scenario analysis of including linear sorption behaviour of the tracers typically
assumed to be conservative highlights the value of the conceptual model choice and the bias
introduced by the conceptual model selection in interpretation of hydrogeological systems.
However, the calibration results for solute retardation factors remain inconclusive with little
sensitivity of the model considering solute retardation factors, though assuming all tracers to
be conservative lead to similar mean solute and thermal dispersivities, which is consistent
with the assumption that dispersivity is a hydrodynamic parameter, if solute and thermal
diffusion coefficients are well chosen. For the case where all solutes or only iodide are
assumed to undergo slight sorption, solute and thermal dispersivity significantly differ, with
thermal dispersivity being larger than solute dispersivity. Still, the inherent biases introduced
by choosing a particular conceptual model - whether considering cations as conservative or
including sorption - can impact the estimated parameter ranges significantly and,
consequently, the interpretation of subsurface processes. The choice to model slight sorption
behaviour not only slightly broadens the overall range of acceptable porosity values but also
emphasizes the degree to which model selection influences our understanding of key system

properties.

The findings of this study suggest that some parameters, such as the dispersivity, exhibit
limited variation across model scenarios, being very well inferrable. Other parameters such as

solute retardation factors are less sensitive to calibration and are closely related to estimated
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porosity values due to the physical model resulting in broad porosity distributions and
inconclusive results for the retardation factors. One way to further narrow down the
uncertainty and to finally estimate if slight sorption may take place for the considered solutes
can be the exact measurement of porosity in the lab based on drilling cores narrowing down
the broad distribution of possible values of porosity to ideally only one value with only a
small uncertainty associated to it, if the medium is assumed to be homogeneous for the
aquifer volume the push-pull test samples. Thus, porosity may be a relatively easy to measure
proxy to identify whether solute tracers, which are typically assumed to show a conservative
non-sorbing transport behaviour, may in fact experience slight sorption even in sandy aquifers

or not.

Our study highlights that push-pull test experiments can significantly improve the
knowledge about aquifer characteristics like dispersivity, porosity, and heat retardation, which
are essential for ATES design. By identifying flow and transport parameters of the aquifer,
push-pull tests enable more accurate long-term predictions of ATES system functioning.
Results however suggest low sensitivity to solute retardation factors, indicating potential
limitations in inferring certain parameters from push-pull test data alone and calling for more
exact measurements, which can be performed on cores, like exact porosity measurements. By
using different types of tracers (conservative, sorptive, heat), push-pull tests allow for a
comprehensive evaluation of various aquifer properties relevant to ATES performance and to
improve calibration accuracy capturing the ambiguity inherent in many calibration scenarios

and reducing parameter uncertainty.

Acknowledgements

This work was funded the German Federal Ministry of Education and Research

(BMBF) project "SpeicherCity", grant number 03G0911.

29



717

718
719
720

721
722
723
724

725
726
727
728
729

730
731
732

733
734
735

736
737
738

739
740
741

742
743
744

745

References

Allgeier, J. and Cirpka, O. A. (2023) ‘Surrogate-Model Assisted Plausibility-Check,
Calibration, and Posterior-Distribution Evaluation of Subsurface-Flow Models’, Water

Resources Research, 59(7), p. €2023WR034453. doi: 10.1029/2023WR034453.

Beernink, S., Bloemendal, M., Kleinlugtenbelt, R. and Hartog, N. (2022) ‘Maximizing the use
of aquifer thermal energy storage systems in urban areas : effects on individual system
primary energy use and overall GHG emissions’, Applied Energy, 311(February), p. 118587.
doi: 10.1016/j.apenergy.2022.118587.

Blocher, G., Regenspurg, S., Kranz, S., Lipus, M., Pei, L., Norden, B., Reinsch, T.,
Henninges, J., Siemon, R., Orenczuk, D., Zeilfelder, S., Scheytt, T. and Saadat, A. (2024)
‘Best practices for characterization of High Temperature-Aquifer Thermal Energy Storage (
HT-ATES ) potential using well tests in Berlin ( Germany ) as an example’, Geothermics,

116(May 2022), p. 102830. doi: 10.1016/j.geothermics.2023.102830.

Bloemendal, M. and Olsthoorn, T. (2018) ‘Geothermics ATES systems in aquifers with high
ambient groundwater fl ow velocity’, Geothermics, 75(January), pp. 81-92. doi:

10.1016/j.geothermics.2018.04.005.

Boisson, A., Anna, P. De, Bour, O., Borgne, T. Le, Aquilina, L., Boisson, A., Anna, P. De,
Bour, O., Borgne, T. Le and Labasque, T. (2013) ‘Abstract SC’, Journal of Contaminant
Hydrology. doi: 10.1016/j.jconhyd.2013.02.006.

Breuer, F. (2016) ‘Investigation of Sorption and Degradation Parameters of Selected
Emerging Organic Contaminants under Different Hydrological Conditions’.MS dissertation at

Freiburg im Breisgau University

Byrd, R. H., Gilbert, J. C. and Nocedal, J. (2000) ‘A trust region method based on interior
point techniques for nonlinear programming’, Mathematics Subject Classification, 185, pp.

149-185. doi: 10.1007/s101070000189

Chen, J. (2010) ‘Analytical model for fully three-dimensional radial dispersion in a finite-
thickness aquifer’, Hydrological Processess, 24, 945(December 2009), pp. 934-945. doi:
10.1002/hyp.7541.

Cirpka, O. A. and Valocchi, A. J. (2016) ‘Debates—Stochastic subsurface hydrology from

30



746
747
748

749
750
751
752

753
754
755
756

757
758
759

760
761
762
763

764
765
766
767

768
769
770
771
772

773
774
775

theory topractice: Does stochastic subsurface hydrology help solvingpractical problems of
contaminant hydrogeology?’, Journal of the American Water Resources Association, 5(3), pp.

2-2.doi: 10.1111/5.1752-1688.1969.tb04897 x.

Dagan, G. and Bresler, E. (1985) ‘Comment on “Flux-Averaged and Volume-Averaged
Concentration in Continuum Approaches to Solute Transport” by J. C. Parker and M. Th. van
Genuchten’, Water Resources Research, 21(8), pp. 1299—-1300. doi:
https://doi.org/10.1029/WR0211008p01299.

Degen, D., Voulliéme, D. C., Buiter, S. Hendricks Franssen, H.-J., Vereecken, H., Gonzalez-
Nicolas, A., and Wellmann, F. (2023) ‘Perspectives of physics-based machine learning
strategies for geoscientific applications governed by partial differential equations’,

Geoscientific Model Development, 16, 7375-7409, 2023 doi: 10.5194/gmd-16-7375-2023.

Doughty, C., Hellstrom, G., Tsang, C. F. and Claesson, J. (1982) ‘A dimensionless parameter
approach to the thermal behavior of an aquifer thermal energy storage system’, Water

Resources Research, 18(3), pp. 571-587. doi: 10.1029/WR0181003p00571.

Erdal, D., Xiao, S., Nowak, W. and Cirpka, O. A. (2020) ‘Sampling behavioral model
parameters for ensemble-based sensitivity analysis using Gaussian process emulation and
active subspaces’, Stochastic Environmental Research and Risk Assessment, 34(11), pp.

1813-1830. doi: 10.1007/s00477-020-01867-0.

Ershadi, A., Finkel, M., Liu, B., Cirpka, O. A. and Grathwohl, P. (2024) ‘Ensemble surrogate
modeling of advective-dispersive transport with intraparticle diffusion model for column-
leaching test’, Journal of Contaminant Hydrology, 267(June), p. 104423. doi:
10.1016/j.jconhyd.2024.104423.

Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Dietrich, P., Zech, A. and
Teutsch, G. (2016) ‘Debates—Stochastic subsurface hydrology from theory to practice: The
relevance of stochastic subsurface hydrology to practical problems of contaminant transport

and remediation. What is characterization and stochastic theory good for?’, Water Resources

Research, 52(12), pp. 9228-9234. doi: 10.1002/2015WR017525.

Fuentes, H R, Polzer, W. L., Essington, E. H. , Newman, B. D. (1989) Characterization of
Reactive Tracers for C-Wells Field Experiments I : Electrostatic Sorption Mechanism ,

Lithium, Los Alamos National Laboratory, Report LA— 11691-MS.

31



776
777

778
779
780

781
782
783

784
785
786

787
788
789

790
791
792
793

794
795
796

797
798
799

800
801
802

803
804

Gelhar, L.W, Collins, M. A. (1971) ‘General Analysis of Longitudinal Dispersion in
Nonuniform Flow’, Water Resources Research, 7(6). doi: 10.1029/WR0071006p01511.

Hebig, K. H., Ito, N., Tecklenburg, J., Machida, 1., Marui, A. and Scheytt, T. (2016) ‘Use of
single-well push — pull tracer tests to simulate a dynamic saltwater — freshwater interface’,

Environmental Earth Sciences. doi: 10.1007/s12665-015-4999-x.

Hebig, K. H., Zeilfelder, S., Ito, N., Machida, I., Marui, A. and Scheytt, T. J. (2015)
‘Geothermics Study of the effects of the chaser in push — pull tracer tests by using temporal

moment analysis’, Geothermics, 54, pp. 43—53. doi: 10.1016/j.geothermics.2014.11.004.

Hebig-Schubert, K. (2015) Deep groundwater flow systems and their characterization in
single-well settings by "push-pull" tracer tests. Doctoral Thesis, TU Berlin. doi:
10.14279/depositonce-4272

Huang, J., Christ, J. A. and Goltz, M. N. (2010) ‘Analytical solutions for efficient
interpretation of single - well push - pull tracer tests’, 46(April), pp. 1-16. doi:
10.1029/2008 WR007647.

Hwang, G. (2021) ‘International Journal of Heat and Mass Transfer A unified approach to
two-dimensional linear advection-dispersion equation in cylindrical coordinates on a finite
domain’, International Journal of Heat and Mass Transfer, 164, p. 120569. doi:

10.1016/j.ijheatmasstransfer.2020.120569.

Ikawa, R., Machida, I., Koshigai, M., Nishizaki, S., Matui, A. (2014) ‘Coastal aquifer system
in late Pleistocene to Holocene deposits at Horonobe in Hokkaido, Japan’, Hydrogeology

Journal, 22, pp. 987-1002. doi: 10.1007/s10040-014-1106-4.

Jada, A., Ait Akbour, R. and Douch, J. (2006) ‘Surface charge and adsorption from water
onto quartz sand of humic acid’, Chemosphere, 64(8), pp. 1287—-1295. doi:
10.1016/j.chemosphere.2005.12.063.

Jin, A., Wang, Q. and Zhan, H. (2024) ‘A novel four phase slug single-well push—pull test
with regional flux: forward modeling and parameter estimation’, Journal of Hydrology, 630,

p. 130705. doi: 10.1016/j.jhydrol.2024.130705.

Johnson, R. H., Paradis, C. J., Kent, R. D., Tigar, A. D. and Reimus, P. W. (2023) ‘Single-

Well Push—Pull Tracer Test Analyses to Determine Aquifer Reactive Transport Parameters at

32



805 a Former Uranium Mill Site (Grand Junction, Colorado)’, Minerals, 13(2), pp. 1-26. doi:
806 10.3390/min13020228.

807 Kang, P. K., Le Borgne, T., Dentz, M., Bour, O. and Juanes, R. (2015) ‘Impact of velocity
808 correlation and distribution on transport in fractured media: Field evidence and theoretical

809 model’, Water Resources Research, 51(2), pp. 940-959. doi: 10.1002/2014WRO015799.

810 Kim, H. H., Koh, E. H,, Lee, S. S. and Lee, K. K. (2019) ‘Biased estimation of groundwater
811 velocity from a push-pull tracer test due to plume density and pumping rate’, Water

812 (Switzerland), 11(8). doi: 10.3390/w11081558.

813 Kitanidis, P. K. (1998) ‘Stochastic approaches to inverse problems’, Computer Methods in
814 Water Resources, 12. doi: 10.2495/CMWR980352.

815 Kruisdijk, E. and Breukelen, B. M. Van (2021) ‘Applied Geochemistry Reactive transport
816 modelling of push-pull tests : A versatile approach to quantify aquifer reactivity’, Applied
817 Geochemistry, 131(March), p. 104998. doi: 10.1016/j.apgeochem.2021.104998.

818 Leap, D. 1., and P. G. Kaplan (1988), A single-well tracing method for estimating regional
819 advective velocity in a confined aquifer: Theory and preliminary laboratory verification,

820 Water Resour. Res., 24(7), 993-998, doi:10.1029/WR0241007p00993..

821 Leiji, F. J.,, Skaggs, T. H., van Genuchten, M. T. (1991) ‘Analytical solutions for solute
822 transport in three-dimensional semi-infinite porous media’, Water Resources Research, 27,

823 pp.2719-2733. doi: 10.1029/91WRO01912.

824 Maier, F. and Kocabas, 1. (2013) ‘Efficient analytical solution for parameter estimation of
825 push shut-in pull experiments in an idealized single fracture system', Pangea.Stanford.Edu,
826 (Ipcc 2011). PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir

827 Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198.

828 Mascagni, M. and Chi, H. (2004) ‘On the Scrambled Halton Sequence’, Monte Carlo
829 Methods and Applications, 10(3—4), pp. 435—442. doi: doi:10.1515/mcma.2004.10.3-4.435.

830 Matsumoto, S., Machida, 1., Hebig, K. H., Zeilfelder, S. and Ito, N. (2020) ‘Estimation of very
831 slow groundwater movement using a Single-Well Push- Pull test’, Journal of Hydrology,

832  591(June), p. 125676. doi: 10.1016/j.jhydrol.2020.125676.

833 Moench, A. F., (1989), Convergent radial dispersion: A Laplace transform solution for aquifer

33



834

835
836
837

838
839
840

841
842
843

844
845
846

847
848
849
850

851
852
853

854
855
856
857

858
859
860

861
862

tracer testing, Water Resources Research, 25(3), 439-447, doi:10.1029/WR025i1003p00439.

Mojid, M. A. and Vereecken, H. (2005) ‘On the physical meaning of retardation factor and
velocity of a nonlinearly sorbing solute’, 302, pp. 127-136. doi:
10.1016/j.jhydrol.2004.06.041.

Miiller, D. and Regenspurg, S. (2014) ‘Geochemical characterization of the lower Jurassic
Aquifer in Berlin (Germany) for aquifer thermal energy storage applications’, Energy

Procedia, 59, pp. 285-292. doi: 10.1016/j.egypro.2014.10.379

Park, B. H., Bae, G. O. and Lee, K. K. (2015) ‘Importance of thermal dispersivity in
designing groundwater heat pump (GWHP) system: Field and numerical study’, Renewable
Energy, 83(August 2021), pp. 270-279. doi: 10.1016/j.renene.2015.04.036.

Parker, J. C. and van Genuchten, M. T. (1984) ‘Flux-Averaged and Volume-Averaged
Concentrations in Continuum Approaches to Solute Transport’, Water Resources Research,

20(7), pp. 866-872. doi: 10.1029/WR020i007p00866.

Rasmusson, K., Rasmusson, M., Fagerlund, F., Bensabat, J., Tsang, Y. and Niemi, A. (2014)
‘Analysis of alternative push—pull-test-designs for determining in situ residual trapping of
carbon dioxide’, International Journal of Greenhouse Gas Control, 27, pp. 155-168. doi:

10.1016/j.ijggc.2014.05.008.

Rohmer, J., Armandine Les Landes, A., Loschetter, A. and Maragna, C. (2023) ‘Fast
prediction of aquifer thermal energy storage: a multicyclic metamodelling procedure’,

Computational Geosciences, 27(2), pp. 223-243. doi: 10.1007/s10596-023-10192-8.

De Schepper, G., Bolly, P.-Y., Vizzotto, P., Wecxsteen, H. and Robert, T. (2020)
‘Investigations into the First Operational Aquifer Thermal Energy Storage System in
Wallonia (Belgium): What Can Potentially Be Expected?’, Geosciences, 10(1), p. 33. doi:
10.3390/geosciences10010033.

Schroth, M. H. and Istok, J. D. (2005) ‘Approximate solution for solute transport during
spherical-flow push-pull tests’, Ground Water, 43(2), pp. 280-284. doi: 10.1111/5.1745-
6584.2005.0002.x.

Schroth, M. H., Istok, J. D. and Haggerty, R. (2001) ‘In situ evaluation of solute retardation
using single-well push = pull tests’, Advances in Water Resources, 24, pp. 105-117, doi:

34



863

864
865
866

867
868
869

870
871
872

873
874
875
876

877
878
879

880
881
882

883
884
885

886
887
888

889
890
891

10.1016/S0309-1708(00)00023-3.

Selzer, P., Cirpka, O.A (2020). ‘Postprocessing of standard finite element velocity fields for
accurate particle tracking applied to groundwater flow’. Computational Geoscience, 24,

1605-1624. doi:10.1007/s10596-020-09969-y.

Shi, W., Wang, Q. and Zhan, H. (2020) ‘New Simplified Models of Single-Well Push-Pull
Tests With Mixing Effect’, Water Resources Research, 56(8), pp. 1-11. doi:
10.1029/2019WR026802.

Snodgrass, M. F. and Kitanidis, P. K. (1998) ‘A Method to Infer In Situ Reaction Rates from
Push-Pull Experiments’, Groundwater, 36(4), pp. 645—650. doi: 10.1111/.1745-
6584.1998.tb02839.x.

Stemmle, R., Lee, H., Blum, P. and Menberg, K. (2023) ‘Residential heating and cooling with
Aquifer Thermal Energy Storage ( ATES ) on city scale’, EGU General Assembly 2023,
Vienna, Austria, 23-28 Apr 2023, EGU23-1030, https://doi.org/10.5194/egusphere-egu23-
1030, 2023..

Stettler, M., Dentz, M. and Cirpka, O. A. (2022) ‘Linear Stochastic Analysis of the Partial
Reversibility of Ensemble and Effective Dispersion in Heterogeneous Porous Media Water

Resources Research’. doi: 10.1029/2022WR033570.

Suk, H., Han, W. S., Chen, J. S. and Yang, M. (2023) ‘Semi-analytical solution of single-well
push—pull test under transient flow conditions’, Journal of Hydrology, 620(PB), p. 129542.
doi: 10.1016/j.jhydrol.2023.129542.

Tang, D. W. S. and Rijnaarts, H. H. M. (2023) ‘Dimensionless Thermal Efficiency Analysis
for Aquifer Thermal Energy Storage Water Resources Research’. doi:

10.1029/2023WR035797.

Ueckert, M., Wismeth, C. and Baumann, T. (2020) ‘Crystallization of calcium carbonate in a
large-scale push—pull heat storage test in the Upper Jurassic carbonate aquifer’, Geothermal

Energy, 8(1). doi: 10.1186/540517-020-0160-5.

Vandenbohede, A., Hermans, T., Nguyen, F. and Lebbe, L. (2011) ‘Shallow heat injection
and storage experiment: Heat transport simulation and sensitivity analysis’, Journal of

Hydrology, 409(1-2), pp. 262-272. doi: 10.1016/j.jhydrol.2011.08.024.

35



892
893
894

895
896
897

898
899
900

901
902
903

904
905
906

907
908
909

910

Vandenbohede, A., Louwyck, A. and Lebbe, L. (2009) ‘Conservative solute versus heat
transport in porous media during push-pull tests’, Transport in Porous Media, 76(2), pp. 265—
287. doi: 10.1007/s11242-008-9246-4.

Vanhoudt, D., Desmedt, J., Van Bael, J., Robeyn, N. and Hoes, H. (2011) ‘An aquifer thermal
storage system in a Belgian hospital: Long-term experimental evaluation of energy and cost

savings’, Energy and Buildings, 43(12), pp. 3657-3665. doi: 10.1016/j.enbuild.2011.09.040.

Wagner, V., Bayer, P., Bisch, G., Kiibert, M. and Blum, P. (2014) ‘Hydraulic characterization
of aquifers by thermal response testing: Validation by large-scale tank and field experiments’,

Water Resources Research, 50(1), pp. 71-85. doi: 10.1002/2013WR013939.

Wang, H. Q. and Crampon, N. (1995) ‘Method for interpreting tracer experiments in radial
flow using modified analytical solutions’, Journal of Hydrology, 165(1), pp. 11-31. dot:
10.1016/0022-1694(94)02588-3.

Zeilfelder, S., Hebig, KH, Ito, N., Machida, I., Scheytt, T. ‘The single well “ push-pull ”
tracer method : A systematic approach for setup optimization’, 17, p. 9573. - EGU General
Assembly Conference Abstracts, 2015

Zhu, J., Yang, M. and Ren, Z. J. (2023) ‘Machine Learning in Environmental Research :
Common Pitfalls and Best Practices’ Environ. Sci. Technol. 2023, 57, 17671—17689. doi:
10.1021/acs.est.3¢00026.

36



