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For my mother and father





Today, one third of the world’s people, mainly in least developed countries and small island
developing states, are still not covered by early warning systems . . . This is unacceptable,

particularly with climate impacts sure to get even worse. Early warnings and action save lives. To
that end, today I announce the United Nations will spearhead new action to ensure every person

on Earth is protected by early warning systems within five years.

— UN Secretary-General António Guterres on World Meteorological Day (2022)
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A B S T R A C T

Floods are one of the most prevalent natural disasters, impacting 55 millions lives yearly.
Floods in small catchments have substantial implications, yet their risks and impacts
remain difficult to predict using the state-of-the-art Global Hydrological Model (GHM)s
and Flood Early Warning Systems (FEWS). This dissertation focuses on addressing these
limitations by developing new methods to improve flood impact forecasting. Through
the integration of improved large-scale streamflow modeling, machine learning, and
real-time flood mapping, the research aims to enhance FEWS capabilities and make them
more responsive to localized flooding events.

One key innovation explored in this research is the use of 2D hydrodynamic models to
generate real-time flood inundation maps and impact indicators. Existing FEWS either
interpolated flood hazard maps (e.g., Global Flood Awareness System (GloFAS), European
Flood Awareness System (EFAS)) or relay only the local rainfall depths or gauge levels to
the users. This results in inaccuracies for unprecedented extreme events in the first case
and misinformed actions in the second. We demonstrate the feasibility of the ICON-D2-
EPS-mHM-RIM2D operational FEWS for the 2021 European Summer Flood in the Ahr valley.
Parallelized RIM2D high resolution flood inundation ensemble runs on GPUs reduce the
total forecast runtime of the FEWS to under three hours. The FEWS forecasts lead time to
specified inundation thresholds and at-risk infrastructure factoring in forecast uncertainty,
which are crucial information for emergency response teams and policymakers.

Representation of catchment shape presents a unique challenge for GHMs. D8, arguably
the most widely used method of catchment upscaling in GHMs, struggles to accurately rep-
resent catchment shapes smaller than 30 times the area of the grid pixel. This dissertation
introduces a novel stream upscaling technique – Subgrid Catchment Contribution (SCC) –
as a solution. SCC improves the accuracy of streamflow simulations by allowing multiple
downstream connections within a single grid cell, thereby addressing the limitations
of the widely-used D8 method, which only permits a single outflow direction per cell.
This advancement in stream network upscaling significantly enhances the precision of
modelled catchments, ensuring that even the smallest contributing areas are properly
accounted for.

The effectiveness of SCC is demonstrated through experiments in the Rhine basin and at
the global scale. In these experiments, SCC not only improves the accuracy of streamflow
simulations but also offers up to a five-fold increase in computational efficiency compared
to existing methods. This directly contributes to the real-time applications of FEWS, where
speed and accuracy are paramount. Furthermore, SCC ensures accurate streamflow across
modeling resolutions, eliminating the need for GHMs to reach sub-kilometer scales for
streamflow precision. This, combined with the advantage that SCC can be integrated with
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any land surface or hydrological model, significantly expands its use in global flood
forecasting systems.

Small catchments have historically been under-served by global models but are often
the location for catastrophic flood events. This research makes an important contribution
by addressing the “catchment size problem”, a long-standing problem in GHMs where
representation accuracy diminishes with smaller catchments. SCC improves the upscaling
of catchment areas irrespective of catchment size, solving the catchment size problem
entirely and allowing GHMs to deliver locally relevant streamflow at given points of
interest. This represents a major opportunity in flood forecasting technology, allowing
FEWS to rely on fluvial boundary conditions from a unified GHM setup for flood events
at any scale, whether local or regional, eliminating the need for separate hydrological
model setups and the associated resolution challenges.

The SCC method also offers a novel solution to the issue of simulating streamflow at
multiple points of interest within a single grid cell. Current methods (e.g., D8) are limited
to providing a single streamflow value per grid cell. The multiple downstream connectiv-
ity of SCC allows for a grid to have multiple routing fractions with the corresponding
values, overcoming the limitation of single streamflow values within the same cell. This
feature is especially important for regions with complex hydrological setting such as
multiple tributaries, intricate river networks, dense networks of monitoring stations, or
high density of reservoirs, where capturing the full scope of hydrological interactions is
crucial for accurate streamflow predictions.

In addition to these advancements in catchment representation, the dissertation ex-
plores the use of Machine Learning (ML) to improve the simulation of streamflow down-
stream of regulated reservoirs. Reservoirs have the potential to introduce significant
discontinuities in natural streamflow patterns. These discontinuities are often difficult
to model using traditional hydrological approaches. The research presents a ML based
method to predict non-consumptive demand at hydropower reservoirs based using down-
stream streamflow observations as control point. The ML demand model, when fed to the
hydrological model, enables more precise simulation of daily streamflow downstream of
31 global reservoirs. This is particularly important for FEWS, as regulated rivers often pose
significant forecasting challenges due to the variability in reservoir operations based on
water demand. The improved simulations would allow FEWS to generate more accurate
predictions, which can help mitigate flood risks in communities downstream of large/
disruptive reservoirs. While the current focus of the ML model is on non-consumptive
reservoirs, its methodology could be extended to consumptive uses like irrigation if
reliable data is available.

Another novel aspect of this research is the investigation into the role of reservoir
bathymetry, the underwater topography of reservoirs, on lake surface evaporation. Reser-
voirs contribute substantially to global evaporation, yet their shapes are often oversim-
plified in GHMs. The dissertation quantifies the impact of bathymetric assumptions on
evaporation and streamflow predictions, finding that oversimplifications can lead to
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significant overestimation of evaporation. A new function for estimating reservoir surface
reflectivity based on latitude and the solar elevation angle is introduced, offering a more
physically accurate approach to modeling reservoir evaporation dynamics in GHMs. These
findings enhance the accuracy of evaporation estimates and improve upstream fluvial
boundary conditions for FEWS to forecast downstream flood risks.

The final contribution of the dissertation addresses the computational challenges of
large-scale hydrological modeling. Current global database includes 38 000 georeferenced
dams. Simulating every reservoir in a large model domain is computationally expensive,
so this study introduces a prioritization method based on reservoir “disruptivity” – the
degree to which a reservoir alters natural streamflow patterns. By establishing thresholds
for excluding less disruptive reservoirs from simulations, the dissertation offers a way to
reduce computational costs while still maintaining accuracy in GHMs. This is particularly
valuable for regional scale FEWS, where real-time forecasting requires a balance between
precision and computational efficiency.

In summary, this dissertation makes significant contributions to the development of
more accurate, efficient, and reliable flood forecasting systems. Through the integration
of fast 2D hydrodynamic models, the introduction of the SCC method, and investigation
of reservoir representation methods, the research enhances the capabilities of GHMs in
generating fluvial boundary conditions in FEWS to forecast “flood impacts” in small
catchments and regulated rivers. The advancements made in this dissertation offer
transferable tools and methodologies that provide a foundation for future work in global
hydrological modeling and flood forecasting and the opportunity to reduce flood impacts
on communities worldwide.
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Z U S A M M E N FA S S U N G

Überschwemmungen gehören zu den häufigsten Naturkatastrophen und betreffen jähr-
lich 55 Millionen Menschen. Überschwemmungen in kleinen Einzugsgebieten haben
erhebliche Auswirkungen, doch ihre Risiken und Folgen sind mit den modernsten globa-
len hydrologischen Modellen (GHMs) und Frühwarnsystemen für Überschwemmungen
(FEWS) schwer vorherzusagen. Diese Dissertation befasst sich mit der Lösung dieser Ein-
schränkungen durch die Entwicklung neuer Methoden zur Verbesserung der Vorhersage
von Überschwemmungsauswirkungen. Durch die Integration von verbesserten großskali-
gen Abflussmodellen, maschinellem Lernen und Echtzeit-Überschwemmungskartierung
zielt diese Forschung darauf ab, die Fähigkeiten von FEWS zu verbessern und sie reakti-
onsfähiger auf lokale Überschwemmungsereignisse zu machen.

Eine zentrale Innovation, die in dieser Forschung untersucht wird, ist die Verwendung
von 2D-hydrodynamischen Modellen zur Erstellung von Echtzeit-Überschwemmungskarten
und Impact-Indikatoren. Bestehende FEWS interpolieren entweder Gefahrenkarten (z.B.
GloFAS, EFAS) oder übermitteln den Nutzern lediglich die lokalen Niederschlagsmen-
gen oder Pegelstände. Dies führt im ersten Fall zu Ungenauigkeiten bei beispiellosen
Extremereignissen und im zweiten zu missinformierten Handlungen. Wir demonstrieren
die Machbarkeit des operationellen FEWS ICON-D2-EPS-mHM-RIM2D für die europäi-
sche Sommerflut 2021 im Ahrtal. Parallelisierte hochauflösende Überschwemmungsläufe
von RIM2D auf GPUs reduzieren die Gesamtlaufzeit der Vorhersage des FEWS auf
unter drei Stunden. Die Vorhersagen des FEWS bieten Vorlaufzeiten bis zu bestimm-
ten Überflutungsschwellen und gefährdeten Infrastrukturen unter Berücksichtigung
von Prognoseunsicherheiten, diese sind wichtige Informationen für Notfallteams und
Entscheidungsträger.

Die Darstellung der Einzugsgebietsform stellt eine besondere Herausforderung für
GHMs dar. Das D8-Verfahren, das wohl am häufigsten verwendete Upscaling-Verfahren
für Einzugsgebiete in GHMs, hat Schwierigkeiten, Einzugsgebietsformen abzubilden,
die kleiner als 30-mal die Fläche des Rasterpixels sind. Diese Dissertation stellt eine
neuartige Methode zur Skalierung von Flüssen vor, das Subgrid-Catchment-Contribution
Verfahren (SCC). SCC verbessert die Genauigkeit der Abflusssimulationen, indem es
mehrere Abflussverbindungen für eine Rasterzelle ermöglicht und so die Einschränkun-
gen des weit verbreiteten D8-Verfahrens behebt, das nur eine einzige Abflussrichtung
pro Zelle zulässt. Diese Weiterentwicklung in der Skalierung von Flussnetzen verbessert
die Präzision der modellierten Einzugsgebiete erheblich und stellt sicher, dass auch die
kleinsten beitragenden Flächen angemessen berücksichtigt werden.

Die Wirksamkeit von SCC wird durch Experimente im Rheineinzugsgebiet und im
globalen Maßstab demonstriert. In diesen Experimenten verbessert SCC nicht nur die
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Genauigkeit der Abflusssimulationen, sondern bietet auch eine bis zu fünfmal höhere
Recheneffizienz im Vergleich zu bestehenden Methoden. Dies trägt direkt zu den Echt-
zeitanwendungen von FEWS bei, wo Geschwindigkeit und Genauigkeit von größter
Bedeutung sind. Darüber hinaus stellt SCC sicher, dass der Abfluss unabhängig von
der Modellierungsauflösung präzise ist, wodurch GHMs nicht auf Sub-Kilometerskalen
operieren müssen, um genaue Abflussvorhersagen zu gewährleisten. Dies, zusammen mit
dem Vorteil, dass SCC in jedes Landoberflächen- oder hydrologische Modell integriert
werden kann, erweitert seine Anwendungsmöglichkeiten in globalen Hochwasservorher-
sagesystemen erheblich.

Kleine Einzugsgebiete wurden historisch gesehen von globalen Modellen vernachläs-
sigt, sind jedoch oft Schauplatz katastrophaler Hochwasserereignisse. Diese Forschung
leistet einen wichtigen Beitrag zur Lösung des „Einzugsgebietsgrößenproblems“, eines
langjährigen Problems in GHMs, bei dem die Darstellung mit kleineren Einzugsgebieten
an Genauigkeit verliert. SCC verbessert das Upscaling von Einzugsgebieten unabhängig
von deren Größe und löst das Größenproblem vollständig, sodass GHMs lokal relevan-
te Abflüsse für bestimmte Punkte liefern können. Dies stellt eine bedeutende Chance
für die Hochwasservorhersagetechnologie dar und ermöglicht es FEWS, auf fluviale
Randbedingungen aus einer einheitlichen GHM-Konfiguration für Hochwassereignisse
jeder Größenordnung – ob lokal oder regional – zurückzugreifen, wodurch separate
hydrologische Modellkonfigurationen und die damit verbundenen Auflösungsprobleme
überflüssig werden.

Die SCC-Methode bietet auch eine neuartige Lösung für das Problem der Abflusssi-
mulation an mehreren Interessenspunkten innerhalb einer einzigen Rasterzelle. Aktuelle
Methoden (z.B. D8) sind auf die Bereitstellung eines einzigen Abflusswerts pro Ras-
terzelle beschränkt. Die Mehrfachverbindungen von SCC ermöglichen es einer Zelle,
mehrere Abflussfraktionen mit den entsprechenden Werten zu haben, wodurch die Ein-
schränkung eines einzigen Abflusswerts pro Zelle überwunden wird. Diese Funktion
ist besonders wichtig für Regionen mit komplexen hydrologischen Gegebenheiten, bei
denen es entscheidend ist, das gesamte Spektrum der hydrologischen Interaktionen für
genaue Abflussvorhersagen zu erfassen. Solche sind zum Beispiel Regionen mit mehreren
Nebenflüssen oder verzweigten Flussnetzen sowie solche mit einem dichten Netzwerk
von Überwachungsstationen oder einer hohen Dichte an Stauseen.

Neben diesen Fortschritten in der Einzugsgebietsrepräsentation untersucht die Dis-
sertation den Einsatz von maschinellem Lernen (ML) zur Verbesserung der Simulation
von Abflüssen unterhalb regulierter Stauseen. Stauseen haben das Potenzial, erhebliche
Diskontinuitäten in den natürlichen Abflussmustern zu verursachen. Diese Diskonti-
nuitäten sind oft schwer mit traditionellen hydrologischen Ansätzen zu modellieren.
Die Forschung stellt eine auf maschinellem Lernen basierende Methode zur Vorhersage
des nicht-konsumptiven Bedarfs an Wasserkraftstauseen unter Verwendung von Ab-
flussbeobachtungen als Kontrollpunkt vor. Das ML-Nachfragemodell ermöglicht es dem
hydrologischen Modell, den täglichen Abfluss unterhalb von 31 globalen Stauseen ge-
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nauer zu simulieren. Dies ist besonders wichtig für FEWS, da regulierte Flüsse aufgrund
der Variabilität des Stauseebetriebs in Abhängigkeit vom Wasserbedarf häufig erhebliche
Herausforderungen bei der Vorhersage darstellen. Die verbesserten Simulationen wür-
den es FEWS ermöglichen, genauere Vorhersagen zu treffen, was dazu beitragen kann,
Hochwasserrisiken für Gemeinschaften stromabwärts großer/ disruptiver Stauseen zu
mindern. Während sich das aktuelle ML-Modell auf nicht-konsumptive Stauseen konzen-
triert, könnte seine Methodik auf konsumtive Nutzungen wie Bewässerung ausgeweitet
werden, wenn zuverlässige Daten verfügbar sind.

Ein weiterer neuartiger Aspekt dieser Forschung ist die Untersuchung der Rolle der
Stauseebathymetrie – der Unterwassertopographie der Stauseen – auf die Verduns-
tung an der Seeoberfläche. Stauseen tragen erheblich zur globalen Verdunstung bei,
doch ihre Formen werden in GHMs oft stark vereinfacht dargestellt. Die Dissertation
quantifiziert die Auswirkungen bathymetrischer Annahmen auf Verdunstungs- und Ab-
flussvorhersagen und stellt fest, dass Vereinfachungen zu erheblichen Überschätzungen
der Verdunstung führen können. Eine neue Funktion zur Abschätzung der Reflexivität
der Stauseeoberfläche basierend auf Breitengrad und dem Sonnenhöhenwinkel wird
eingeführt, die einen physikalisch genaueren Ansatz zur Modellierung der Verdunstungs-
dynamik von Stauseen in GHMs bietet. Diese Erkenntnisse verbessern die Genauigkeit
der Verdunstungsschätzungen und optimieren die fluvialen Randbedingungen für FEWS,
um Hochwasserrisiken stromabwärts besser vorhersagen zu können.

Der letzte Beitrag der Dissertation befasst sich mit den rechentechnischen Herausfor-
derungen großskaliger hydrologischer Modellierung. Die aktuelle globale Datenbank
enthält 38.000 georeferenzierte Staudämme. Da die Simulation jedes Stausees in einem
großen Modellgebiet aufwendig ist, wird in dieser Studie eine Priorisierungsmethode
eingeführt, die auf der „Disruptivität“ der Stauseen basiert, das heißt dem Ausmaß, in
dem ein Stausee die natürlichen Abflussmuster verändert. Durch die Festlegung von
Schwellenwerten für den Ausschluss weniger disruptiver Stauseen aus den Simulationen
bietet die Dissertation einen Weg, die Rechenkosten zu senken und gleichzeitig die
Genauigkeit in GHMs zu erhalten. Dies ist besonders wertvoll für regionale FEWS, bei de-
nen die Echtzeitvorhersage ein Gleichgewicht zwischen Genauigkeit und Recheneffizienz
erfordert.

Zusammenfassend leistet diese Dissertation bedeutende Beiträge zur Entwicklung
genauerer, effizienterer und zuverlässigerer Hochwasservorhersagesysteme. Durch die
Integration schneller 2D-hydrodynamischer Modelle, die Einführung der SCC-Methode
und die Untersuchung von Methoden zur Stauseedarstellung verbessert die Forschung
die Fähigkeiten von GHMs, FEWS für die Vorhersage von Hochwasserauswirkungen
in kleinen Einzugsgebieten und regulierten Flüssen zu initialisieren. Die in dieser Dis-
sertation erzielten Fortschritte liefern übertragbare Werkzeuge und Methoden, die die
Grundlage für zukünftige Arbeiten in der globalen hydrologischen Modellierung und
Hochwasservorhersage bilden und die Möglichkeit eröffnen, die Auswirkungen von
Hochwasserereignissen auf globaler Ebene zu reduzieren.
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Imagine yourself as a baby. You would look at that baby and think they lacked nothing. That baby
came complete. Their value did not depend on external things like wealth or appearance or politics

or popularity. It was the infinite value of human life. And that value stays with us, even as it
becomes easier to forget it. We stay precisely as alive and precisely as human as we were the day

we were born. The only thing we need is to exist. And to hope. — Matt Haig (2021)
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. . . 140

Figure B.4 CDFs comparing streamflow performance across 25 km to 100 km
model resolutions, and subgrid stream network upscaling using
SCC and D8, for the . . . 141

Figure B.5 Hydrographs resulting from SCC and D8 across 1 km to 100 km
model resolutions at three different streamflow stations in the
Rhine: . . . 142

Figure C.1 Albedo of still water for reservoir evaporation. Grishchenko mea-
surements taken from Cogley (1979) 146

Figure C.2 Percolation in mHM 150

Figure C.3 Schematics for half pyramid 155

Figure C.4 Performance evaluation of RF and mHM simulations at Trés Marias
reservoir. Rows 1 to 3 show . . . 157

Figure C.5 Sensitivity of reservoir shape on streamflow, volume, elevation,
surface area and evaporation for Trés Marias reservoir. 158

Figure C.6 hV plots comparing the surveyed bathymetry to Y2018, L2005 and
Linear shape approximations at (a) H-reservoirs, and (b) 88 Texan
reservoirs. The . . . 160

xxvi



L I S T O F TA B L E S

Table 1.1 Selected notable small catchment floods of the 21st century 9

Table 2.1 Existing State-of-the-Art FEWS around the World 21

Table 2.2 Comparison of impact-based forecasted damages to buildings,
railways, and roads to benchmark. A 100% percentage indicates
that the damage . . . 30

Table 3.1 A non-exhaustive list comparing the stream network represen-
tation of recent studies assessing streamflow hydrology at large
scale 39

Table 4.1 Comparison with the state-of-the-art of reservoir representation 76

Table 4.2 Predictors used in constructing random forest model for estimat-
ing non-consumptive demand at reservoirs . . . 86

Table C.1 Parameters of LM 144

L I S T O F A L G O R I T H M S

Algorithm 1 Delineation of basins at points of interest 137

Algorithm 2 Node initialisation 138

Algorithm 3 Setting the upscaled stream network 138

Algorithm 4 Streamflow routing 139

Algorithm 5 Overall Algorithm for mHM-LM 143

Algorithm 6 Reservoir Water Balance Solution 147

Algorithm 7 Random Forest based Prediction of Non-consumptive Demand149

xxvii



xxviii list of algorithms

D E F I N I T I O N O F K E Y T E R M S

Lead time to exceed 100-yr flood

The return period HQ100, or 100-year return period flood, refers to a statistical estimate
of the frequency at which a certain flow magnitude (discharge) is expected to be equaled
or exceeded on average once every 100 years. Lead time to exceed 100-yr flood is the
time remaining for the water level at a particular location to exceed the water level
corresponding to HQ100. Greater the lead time the more time there is for evacuation.

Impact based flood forecasts

An eminent flood event inundates the flood plains, which may impact infrastructure
such as (residential) buildings, roads, railways, etc. Prediction of flood outcomes as
maps, continuous in space (i.e., 2D), is intuitive and are called impact based forecasts. In
comparison, the traditional flood forecasting only includes forecasting of water level at
an observation gauge upstream of an area of interest. Inferring impacts to area of interest
from such point forecast has been found to be non-intuitive, hence the need of impact
based flood forecasts.

Hydrodynamic modeling

Hydrodynamic modeling is the numerical simulation of water movement in natural
or engineered environments based on fluid dynamics principles. It aims to predict the
spatiotemporal behavior of water flow, such as water levels, velocities, and discharges,
under varying boundary and forcing conditions. The Saint-Venant equations, a depth-
averaged, simplified form of the Navier-Stokes equations, are the core mathematical
foundation of hydrodynamic modeling, especially for surface water systems (rivers,
floodplains, canals).

Fluvial boundary conditions

To simulate riverine floods using a hydrodynamic (inundation) model, it is essential
to define the fluvial boundary conditions, which specify the volume of water entering
the modeling domain. These conditions are typically provided as discharge time series
at upstream or lateral inflow points and can be derived from observed streamflow
data or simulated outputs from hydrological models. Accurate specification of fluvial



boundary conditions is critical for representing the timing, magnitude, extent, and depth
of inundation, and directly affects the reliability of the model’s flood predictions.

Forecast persistency

Operational flood early warning systems (FEWS) provide instances of forecasts at a
particular interval in time. Exceedance of an impact criteria, say 100 year return period
flood water level, by consecutive forecast instances is valuable for decision-making in
situations where reliability is prioritized over lead time. Forecast persistency is the count
of the consecutive forecast hits, and helps to quantify the uncertainty in the forecasting
system.

Disruptivity index

Not all reservoirs are built the same or in the same hydrological and geographical context.
Their influence on the natural streamflow regime varies significantly depending on
factors such as storage capacity, the draining catchment, and operational rules. Therefore,
quantifying a reservoir’s potential to alter the natural flow patterns of the river it regulates
is useful, and the metrics that quantify this potential are disruptivity indices.
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O V E R A R C H I N G I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 a mythological perspective of floods

The Ganges River, or Ganga, is held in high regard in Hindu mythology, particularly
in the context of floods. According to the Ramayana, an ancient hindu text, Ganga was
a celestial river residing in the heavens. King Bhagiratha performed intense penance
to bring Ganga down from the heavens to earth to purify the ashes of his ancestors.
However, the force of Ganga descending from the heavens would have been catastrophic,
causing a widespread flood on earth. Bhagiratha sought help of Lord Shiva, who with his
immense power, caught Ganga in his matted hair, controlling her mighty flow, slowing
her descent. This act by Shiva ensured that Ganga could fulfill her purpose of purifying
the earth without causing destruction (Figure 1.1).

Figure 1.1: Artistic representation of the
“Descent of Ganga” featuring Shiva
(middle), Ganga (top), and King
Bhagiratha (left). (source: https://
blog.sagarworld.com/itihaas/)

Floods in mythology not only symbol-
ize physical destruction but also serve as
metaphors for the emotional and spiritual
turmoils we face. In spiritual traditions,
water often represents the subconscious
mind, and floods signify the overwhelm-
ing surge of suppressed emotions or un-
resolved issues. Just as Shiva tamed the
powerful Ganga, we are reminded of the
need to control and channel our emotions
constructively.

The “Descent of Ganga” also offers a
compelling parallel to modern humanity’s
efforts to manage and control floods. Just
as Shiva subdued the mighty Ganga, care-
fully channeling her powerful flow, trans-
forming chaos into calm, contemporary
societies construct dams and other infras-
tructures to regulate river flows and mit-
igate seasonal flooding. Just as the gods
foresaw the potential catastrophic impact
of Ganga’s descent, modern FEWS stand at
the forefront of humanity’s defence against
floods.

3
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4 introduction

1.2 the socio-economy of floods since time immemorial

Long before human civilization took root, the Earth experienced cataclysmic floods
that shaped its geology and topography. One of the most dramatic of such ancient
floods took place in North America circa 13 000 BCE. The Missoula Floods, triggered by
the breach of ice dams holding back glacial lakes, created the Channeled Scablands of
Washington state, characterized by deep channels, and massive erosion patterns through
basalt deposits (Bretz, 1923), some of which were up to 15 m tall (Baker, 2009) (Figure 1.2).
The corresponding flow rate of the flood is estimated to have been ten times the flow of
all current rivers combined (Bjornstad, 2006).

Figure 1.2: An abandoned homestead is dwarfed by giant current ripples formed by the Missoula
Floods that occurred c.a. 15 000 years ago. Flow direction is toward the camera, looking
upstream to the north. (Bjornstad, 2021)

Relationship between human civilization and floods has been complex and often
fraught with challenges. Early human civilizations often settled along fertile river valleys
prone to seasonal flooding. For instance, the ancient Egyptians settled along the banks
of the Nile River. Similarly, Mesopotamian civilizations flourished between the Tigris
and Euphrates rivers. The unpredictability of floodwaters posed severe risks to ancient
societies, sometimes leading to the collapse of entire civilizations such as the Sumerian
city of Ur in Mesopotamia (c. 2000 BCE), Mohenjo-Daro in the Indus Valley (c. 1900 BCE),
and the ancient Egyptian Old Kingdom in the Nile Delta (c. 1150 BCE).

Recent history, too, has not been spared by floods. Prolonged heavy rainfall and the
overflow of the Yangtze, Yellow, and Huai rivers led to the Great Flood of 1931 in China,
one of the deadliest floods on record (Courtney, 2018). The 1970 Bhola cyclone brought
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Figure 1.3: Implications of natural disasters in the 21st century. Subplots illustrate the (a) median
annual death toll, (b) median annual affected toll, and (c) median annual damage,
attributed to each natural disaster type. Data source: EM-DAT (https://www.emdat.
be). The implications of storms and floods are differentiated based on the primary
cause of damage. Impacts from strong winds are included under storms while those
from river overflowing are included under floods.

devastating floods that led to a humanitarian crisis in Bangladesh (WMO, n.d.). Similarly,
Hurricane Katrina in 2005 brought catastrophic flooding to New Orleans (Daniels et al.,
2006). In 2021, a 8600 years return period (Vorogushyn et al., 2022) catastrophic flood in
the Ahr River, Germany, took life of 134 people (LfU, 2022) with the total economic loss
surmounting in excess of 40 billion EUR (Szönyi et al., 2021).

Flood risk is global and flood impacts are significant and profound. According to
Mazzoleni et al. (2022), globally 1.81 billion people are exposed to medium-level flood
risk, facing inundation depths greater than 0.15 meters in the event of 100 year return
period flood. The EM-DAT database, which tracks disasters globally, indicates that floods
have been the most consistently deadly and disruptive natural disaster, with nearly 5 000
fatalities and affecting 55 million people each year since 2000 (refer to Figure 1.3a-b). In
terms of annual damage, floods are only surpassed by storms in the 21st century, with
inflation-adjusted losses over 34 million USD each year (Figure 1.3b). This makes floods
the most enduringly fatal and one of the most persistently costly natural disasters. The
sustained and deeply consequential global impacts of floods highlight the urgent need to
improve current flood management and disaster response strategies (Daniels et al., 2006;
Najafi et al., 2024).

https://www.emdat.be
https://www.emdat.be
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In figure 1.3, a storm is a meteorological event involving intense atmospheric conditions
like heavy rainfall, strong winds, or lightning, while a flood is a hydrological event where
water overflows onto normally dry land. Storms can cause floods, particularly when
rainfall exceeds the land’s or drainage system’s capacity to absorb or convey water.
However, floods can also result from other factors such as snowmelt, dam failure, or tidal
surges. In essence, storms are a cause, and floods are often a consequence.

Climate change increases the risk and severity of flooding through several key mecha-
nisms. According to the Clausius-Clapeyron relation, warmer air holds about 7% more
moisture per degree Celsius of warming, leading to more intense and frequent rainfall
events that can overwhelm drainage systems and cause flash or riverine floods. In colder
regions, rising temperatures cause snow to melt earlier and more rapidly, resulting
in sharper spring flood peaks. Additionally, sea-level rise driven by melting ice and
thermal expansion of sea water amplifies coastal flooding and storm surges, especially
during high tides and storms. Warmer ocean temperatures also fuel more powerful
tropical storms and hurricanes, which bring intense rainfall and storm surges that can
cause widespread inland and coastal flooding. All of this underscores how a warming
climate intensifies the hydrological cycle, making flood events more frequent, severe, and
unpredictable across diverse regions.

1.3 impact based forecasting for fews

Throughout history, humanity has actively sought solutions to flooding, ranging from
basic stilt houses in Southeast Asia (c.a. 3000 BCE) to advanced flood control systems
in the Netherlands that can withstand up to 10 000 year floods (Rentschler et al., 2022).
This evolution spans concepts such as adaptation, control, protection, minimization, and
more recently sustainability (Katyal and Petrisor, 2011). But with climate change, the
extreme and unprecedented flood events are expected to occur more often than in the
past (Gründemann et al., 2022). As flood defences often fail to cope with these extremes,
the role of FEWS in safeguarding lives and reducing financial losses has become widely
acknowledged (UNDRR, 2015) and applied (Schumann et al., 2013; Pappenberger et al.,
2019; Samaniego et al., 2019; Gomez et al., 2019; Ivanov et al., 2021). However, the general
public (Quiggin et al., 2021) and the media (Harrabin, 2021) speculate why these scientific
advances do not translate into reductions in socioeconomic and human costs (Najafi et al.,
2022).

The traditional FEWS provide river gauge water levels or discharge, which is hard to
translate to impact of the imminent flooding (Najafi et al., 2022). Post event analysis has
revealed that early warnings solely on water level at a gauge site resulted in misinformed
actions, delayed responses, and at times, no action at all (Szönyi et al., 2021). Therefore,
the communication baton pass between flood forecasting and decision-making is yet to
achieve perfect synchrony. There is a need for a system that delivers flood depth and
flow velocities not only at a few gauge locations, but continuously and consistently in
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space. Such information would enable quantification of affected assets, and anticipated
losses, thus, improve the richness of “impact forecasting”, the significance of which has
been recently addressed by the UK MET office (Harrowsmith et al., 2020) and the WMO
(Zhongming et al., 2020).

2D hydrodynamic models are key tools to simulate the spatio-temporal dynamics
of flood inundation. While high-resolution models offer precision, they come with
substantial computational demands and has long been considered unfeasible for ensemble
forecasting (Wu et al., 2020). Operational FEWS, hence, are yet to integrate flood impact
forecasting at the local scale via the utilisation of 2D hydrodynamic modelling (Ivanov
et al., 2021). To circumvent this limitation, FEWS systems worldwide have adopted various
approaches. For instance, GloFAS (Alfieri et al., 2013) interpolates pre-calculated flood
hazard maps to provide an estimate of potential inundation areas. However, these
estimates are spatially inconsistent and do not retain continuity (Najafi et al., 2022). State-
of-the-art FEWS would, thus, benefit from incorporating fast, real-time hydrodynamic
modeling, enhancing the impact-based forecasts and ensuring a more seamless transfer
of information to the decision-makers.

1.4 the elusive eagle vision in large scale streamflow modelling

Nearly one in four people worldwide are exposed to medium-level flood risk (Rentschler
et al., 2022). As shown in Figure 1.4a, this exposed population and flood-prone areas
are distributed globally. Tellman et al. (2021) estimated the proportion of the global
population exposed to floods to have increased from 2000 to 2015 by 20-24%. While
Mazzoleni et al. (2022) indicated a general rise in the annual maximum flood extent
across 106 perennial river basins worldwide. The takeaway is clear: Flood risk is, and will
continue to be, a global issue – along with the need for flood forecasting.

Flood Early Warning Systems (FEWS) with inundation simulation capability requires
fluvial boundary conditions to its hydrodynamic model with streamflow time series
at upstream river reaches. The Hydrological Model (HM) generates these boundary
conditions within the FEWS. Setup and maintenance of individual HMs for FEWS at various
location on globe is challenging and computationally inefficient due to overlapping
coverage between the individual setups. GHM, with its continental scale streamflow
simulations, helps address this issue and thus holds great value for generating fluvial
boundary conditions for FEWS on-demand, globally.

While there have been plenty of work involving state-of-the-art GHMs accurately simu-
lating streamflow at large catchments (Polcher et al., 2023; Hou et al., 2023; Grogan et al.,
2022; Aerts et al., 2022; Eilander et al., 2021; Stacke and Hagemann, 2021; Harrigan et al.,
2020; Burek et al., 2020; Droppers et al., 2020; Müller Schmied et al., 2020; Thober et al.,
2019; Hanasaki et al., 2018; Sutanudjaja et al., 2018; Zhao et al., 2017; Li et al., 2015), none
have demonstrated the ability to maintain that accuracy at local-scale using continental
domains, commonly setting a catchment cutoff at 10 000 km2. Table 1.1 provides historical
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Geographic and urbanization patterns are driving the high
flood exposure relative to countries’ population size. Considering
exposure to different flood types highlights these factors
(Fig. 3c–e). Fluvial flood risks dominate in areas where large
population shares are concentrated in low-lying river basins, such
as the Brahmaputra (Bangladesh), Euphrates and Tigris (Iraq),
Irrawaddy (Myanmar), Indus (Pakistan), Mekong (Cambodia,
Laos, Vietnam), and Nile (Egypt, South Sudan). Pluvial flooding
drives risks in mountainous regions where natural drainage
capacity is more limited and flash flood risks are heightened (e.g.,
Nepal, Andorra), or in climates with intense rainy seasons that
exceed drainage and soil absorption capacity (e.g., Bangladesh,
Guyana, Myanmar, Suriname). Coastal flooding dominates in
countries with expansive coastal urbanization (e.g., Guyana,
Vietnam) and islands countries (e.g., The Bahamas, Fiji).

Flood exposure at subnational level. A spatially disaggregated
view of flood exposure estimates highlights that, within countries,
risks are concentrated in specific areas, such as the coast or river
basins. Several subnational regions stand out with large, exposed
populations (Fig. 4a). In the Indian states of Bihar, Uttar Pradesh,
West Bengal—all located along the Ganges River—a combined
196 million people live in high-risk flood zones, accounting for
33–53% of the states’ respective populations. In Pakistan, ~48
million of Punjab’s 120 million people live in high-risk flood
zones, corresponding to 38% of the province’s total population.
Located at the confluence of the Ganges and Brahmaputra Rivers,
almost two-thirds of the population of Bangladesh’s Dhaka
Division are directly flood-exposed. In China, exposed popula-
tions are largest in provinces along the coast and Yellow River
Valley.

a)

b)

c)

d)

Fig. 2 Population exposed to floods. a shows the percentage of population exposed to at least medium-level flood risk at the subnational level. b displays
the percentage of population exposed to different levels of flood risk in each region. c, d show the total number of people exposed to at least medium-level
flood risk based on geographical region and countries’ income classification, respectively. EAP East Asia and Pacific, ECA Europe and Central Asia (ECA),
SAR South Asia region, SSA Sub-Saharan Africa, MNAMiddle East and North Africa, LAC Latin America and the Caribbean, CAN & USA United States and
Canada, HIC high-income countries, UMIC upper middle-income countries, LMIC lower-middle-income countries, LIC low-income countries.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30727-4

4 NATURE COMMUNICATIONS | ��������(2022)�13:3527� | https://doi.org/10.1038/s41467-022-30727-4 | www.nature.com/naturecommunications

Figure 1.4: Percentage of population exposed to at least medium-level flood risk at the sub-
national level. Medium-level flood risk corresponds to an inundation of 15 cm or more
during 100-year return period flood. Map source: Rentschler et al. (2022)

.

evidence that floods in local small catchments can also result in significant losses. Consid-
ering small catchments to produce smaller flood extents compared to large catchments,
the EM-DAT database reveals floods affecting areas of 10,000 km! or less made up 24%
of the flood events in the 21st century, accounting for 18% of flood-related deaths and
19% of the damages – figures that are far from insignificant. It is clear that local floods at
smaller catchments needs FEWS just as much as larger basins. Yet the state-of-the-art GHM
remain ineffective for generating boundary conditions for FEWS at local-scale. Therefore,
it is imperative to develop solutions that enhance GHMs with “eagle vision”, enabling
them to produce accurate streamflow simulations for small catchments as well.

1.5 (in-)accurate representation of reservoirs in large scale modeling

According to the GRanD v1.3 (Lehner et al., 2011), one in five reservoirs worldwide serves
flood control as one of its purposes, with half of these primarily built for this specific
function. In comparison, natural dams are more commonly associated with the triggers
of flooding. For example, glacial lakes and their sudden outbursts are frequently linked
to catastrophic flooding and downstream destruction (Mool et al., 2011). Additionally, the
interplay of heavy rainfall and terrain can give rise to landslide dams that, when breached,
release severe floodwaters, as witnessed in the Melamchi flood of 2020 (Adhikari et al.,
2023). Thus, flood-prone regions are generally characterized by the presence of dams,
whether natural or artificial, and the reservoirs they impound. In order to effectively
support Flood Early Warning Systems (FEWS) in such flood-prone regions, it is crucial for
Global Hydrological Model (GHM)s to accurately represent these reservoirs.
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Table 1.1: Selected notable small catchment floods of the 21st century

Year Flood event Catchment of
the flooding
rivers (km2)

Hydrometeorolgical
conditions

Aftermath Source/s

2004 Boscastle flood,
UK

20 τr: 400 yr
200 mm rain in 5 hr

70+ properties Fenn et al. (2005) and
Ross (2012)

2004 Caribbean floods,
Haiti, Dominican
Republic

500 – 9 500 250 mm in 24 hr 3353 dead Flood Disaster Hits His-
paniola (2004); EM-
DAT

2009 The Philippines
floods

340 – 3 800 442 mm in 12 hr
2x typhoons: Ondoy,
Pepeng

241 dead
12 563 homeless

Yumul et al. (2013)
and Sato and Nakasu
(2011)

2010 Leh floods,
Ladakh, India

103 356 mm rain in 2 hr
Cloudburst in high al-
titude cold desert

193 dead
945 houses

Bhatt et al. (2011) and
Mueller et al. (2019)

2010 Madeira floods,
Portugal

8.8 – 40.9 333 mm rain in 24 hr 45 dead Fragoso et al. (2012)

2012 Krymsk flood,
Krasnodar Krai,
Russia

11 – 179 τr: 500 – 1000 yr
156 mm rain in 12 hr

172 dead
5500 homeless

Kotlyakov et al.
(2013); EM-DAT

2013 Uttarakhand
floods, India

50 – 11 800 595 mm in 48 hr 4 190 dead
110 000 stranded
30+ hydropower
plants damaged

Patel et al. (2022) and
Champati Ray et al.
(2016); EM-DAT

2017 Freetown floods
Sierra Leone

10 622 1 040 mm rain in 45 d 1 141 dead
3 000 homeless

World Bank Group
(2017)

2020 Melamchi flood,
Nepal

958 τr: 1000 yr
landslide dam break

46 dead
539 houses

Adhikari et al. (2023);
EM-DAT

2021 Ahr flood,
Germany

746 τr: 8000 yr
119 mm rain in 14 hr

196 dead
44.9 billion USD

Najafi et al. (2024)
and Vorogushyn et al.
(2022); EM-DAT

τr – estimated return period of the flood event

Telteu et al. (2021) highlighted that only six out of 16 GHMs included reservoirs in their
comprehensive review, indicating a lack of sufficient attention to reservoir representation
by global hydrologic and land surface modelers. Models that have tried to incorporate
reservoirs have typically relied on overly simplified representations (Turner et al., 2021).
A common simplification involves modeling reservoir catchments at the scale of the
model grid, which can lead to significant discrepancies with coarse model resolutions.
The “one grid leads to one reservoir” strategy imposes a limit of one reservoir per grid,
which becomes a constraint when multiple reservoirs are located within the same grid
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cell (Haddeland et al., 2006a; Haddeland et al., 2006b; Biemans et al., 2011; Terink et al.,
2015; Zhao et al., 2016; Zajac et al., 2017; Sutanudjaja et al., 2018; Shin et al., 2019; Shin
et al., 2020; Dang et al., 2020). Alternatively, some studies have categorized reservoirs
into different types (e.g., “major” and “minor”) and treated them accordingly (Wisser
et al., 2010; Hanasaki et al., 2018; Burek et al., 2020; Müller Schmied et al., 2020; Gharari
et al., 2024), leading to a partial representation of reservoirs. The problem of reservoir
catchments mirrors the small catchment problem, as discussed in Section 1.4.

Evaporation from reservoir lakes is another commonly overlooked topic in GHMs. Some
large-scale hydrological applications that include reservoirs have neglected lake surface
evaporation, even in recent work such as Salwey et al. (2024). Many studies oversimplify
the issue due to inaccurate assumptions about reservoir shapes as pointed out by Shrestha
et al. (2024). For instance, studies employing well established GHMs like CWatM (Burek
et al., 2020), WaterGAP (Döll et al., 2003), and LISFLOOD (Zajac et al., 2017), have made
unrealistic assumption – reservoirs are rectangular prisms with time-invariant water
surface area. Addressing these inadequate representation of reservoir catchment, shape,
and evaporation in large-scale HMs and GHMs is essential to ensure their suitability to
track floods using FEWS in managed river basins.

1.6 subject of the dissertation

This dissertation contributes towards the idea of deploying a single global hydrological
model, incorporating realistically represented reservoirs, for efficient, accurate, and
on-demand fluvial boundary conditions for impact-based FEWS, at any location of the
world.

Challenges such as hydrological modelling of entire earth’s land surface and incorpora-
tion of anthropogenic interventions are not the foci of this study, nor is the hydrodynamic
modeling of floods. These topics have already been covered by pioneering works such
as Vörösmarty et al. (2000), Alcamo et al. (2003), Haddeland et al. (2006a), Hanasaki
et al. (2006), Feldhaus et al. (1992), Bates et al. (1995), Bates et al. (1998), and Bates and
De Roo (2000). The subject of this dissertation work are rather the niches discussed in
Sections 1.3, 1.4, 1.5, which are also shown in Figure 1.5. The first subject examines the
potential for real-time impact-based flood forecasting using a hydrodynamic model. The
second subject involves a novel method to accurately extract streamflow from GHMs,
irrespective of catchment size, grid size, and number of gauges on the grid. The third
subject of this work is improving the state-of-the-art representation of reservoirs in GHMs,
especially regarding the reservoir catchment, shape, and evaporation.

Another noteworthy contribution of this dissertation is the development of open-source
codes, mainly the new reservoir module and the novel stream network upscaling method.
The latter is integrated to the routing model of mHM. This implies the gridded runoff
from any HM or Land Surface Model (LSM) can be routed by the routing model of mHM
to benefit from the new stream network upscaling method.
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Figure 1.5: Overview of the dissertation subject

1.7 structure of the dissertation and the research statements

This dissertation consists of four chapters – three publication chapters, and a closing
chapter for synthesis and outlook. Out of the three publication chapters, two are published
open-access, while the third one is a preprint and currently under consideration for open-
access publication in Water Resources Research journal. The sequence of the chapters,
the three subjects shown in Figure 1.5, follows local to global scale transition, where a
local-scale, impact-based FEWS is evaluated in the first chapter, while the second and the
third chapters together improve GHMs for better accuracy of regulated streamflow at local
scale, in order to generate reliable fluvial boundary conditions for the FEWS. The second
chapter introduces a novel method for accurate catchment estimation and invariance to
multiple points per grid which benefits the reservoir modeling in the third chapter, hence
the logical order.

It is worth noting that the sequence of the published chapters may not be in chronolog-
ical order. This is partly due to the timing of the funding and partly due to the length of
the peer-review process. The corresponding Appendix and Supporting Information for
the three chapters are compiled as Appendices A, B, and C.

Below is a summary of the three publication chapters along with their primary research
statements. The research statements are denoted hereafter with the letter Rp.i. The index
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p denotes the publication chapter and i a running number. Each chapter has its own
research hypotheses which have undergone rigorous testing and peer-review.

Chapter 2 Impact-based early warning system for local floods

Najafi, H., Shrestha, P. K., Rakovec, O., Apel, H., Vorogushyn, S., Kumar, R., Thober, S., Merz, B.,
& Samaniego, L. (2024). High-resolution impact-based early warning system for riverine flooding.
Nature Communications, 15(1), 3726.

The primary aim of this paper is to demonstrate that state-of-the-art FEWS can deliver
more sophisticated, impact-based flood information, thereby improving disaster pre-
paredness. To showcase our system’s capabilities, we present a floodplain inundation
hindcast ensemble for the 2021 European Summer Flood. This study acts as a proof-of-
concept, establishing the foundation for the development and testing of prototypes for
impact-based operational systems.

The main thesis put forward in this study is:

R1.1: 2D hydrodynamic models can be incorporated in FEWS for production of
near-real-time flood inundation maps and other relevant impact indicators with
associated uncertainties.

Chapter 3 Integrating small catchments in global hydrological models

Shrestha, P. K., Samaniego, L., Rakovec, O., Kumar, R., Mi, C. X., Rinke, K., & Thober, S.
(preprint). Enhancing Global Streamflow Modeling to Enable Locally Relevant Simulations. ESS
Open Archive.

This paper presents, for the first time, global-scale simulations with locally relevant
streamflow at catchments as small as 1 km2. Catchment area is fundamental to correctly
estimating streamflow, which is the basis for Subgrid Catchment Contribution (SCC), a
novel stream network upscaling scheme we developed for the routing of river flow in
mHM. We test streamflow simulations using SCC against D8 at 5 256 measurement stations,
distributed over 62 large-scale domains for global coverage, across model grid size of 1
km to 100 km.

The main theses put forward in this study are:

R2.2: SCC preserves the catchment area at predefined points of interest.

R2.3: SCC eliminates the catchment size problem and enables locally relevant stream-
flow simulations in gridded hydrological models.

R2.4: SCC enables streamflow estimation at multiple points of interest within a grid
cell.
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Chapter 4 Improved regulated streamflow in global hydrological models

Shrestha, P. K., Samaniego, L., Rakovec, O., Kumar, R., & Thober, S. (2024). Toward Improved
Simulations of Disruptive Reservoirs in Global Hydrological Modeling. Water Resources Research,
60(4).

In this study, we augment the mHM with a newly developed Lake Module (LM) and
modified an existing reservoir regulation scheme (Hanasaki et al., 2006) for the module.
With a set of 31 global reservoirs, we tested the utility of non-consumptive demand
predictions from random forest, evaluated the sensitivity of reservoir simulations to its
shape, and propose criteria for in-/exclusion of reservoirs in the model. We compared
our results with the state-of-the-art modeling approaches for capturing daily streamflow
regulations, reservoir shape representation, and reservoir in-/exclusion strategy.

The main theses put forward in this study are:

R3.5: Machine learning based demand improves the reservoir regulated streamflow
simulation.

R3.6: The bathymetry of the reservoir is critical for the lake surface fluxes.

R3.7: Only a subset of global reservoirs are disruptive enough to add value to the
modelled streamflow.

1.8 contribution to publications

Following are my contributions to the publication chapters that are part of this cumulative
dissertation. Please note that the contributions correspond to those reported in the
published articles themselves.

Najafi, H., Shrestha, P. K., Rakovec, O., Apel, H., Vorogushyn, S., Kumar, R., Thober, S., Merz,
B., & Samaniego, L. (2024). High-resolution impact-based early warning system for riverine
flooding. Nature Communications, 15(1), 3726.

• Provided input to the first author for coding the forecasting system.

• Led the development of the flood impact indicator processing program

• Conducted the analyses and produced graphs, alongside the first author

• Added functionality in the mHM code base for sub-daily analysis, alongside a
co-author.

• Contributed to interpreting results and the revision of the manuscript, together
with the co-authors.
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Shrestha, P. K., Samaniego, L., Rakovec, O., Kumar, R., Mi, C. X., Rinke, K., & Thober, S.
(preprint). Enhancing Global Streamflow Modeling to Enable Locally Relevant Simulations. ESS
Open Archive.

• Conceptualization – lead

• Formal analysis – lead

• Investigation – lead

• Data curation – lead

• Software – independent

• Validation – independent

• Visualisation – independent

• Writing – original draft and all revisions thereafter

Shrestha, P. K., Samaniego, L., Rakovec, O., Kumar, R., & Thober, S. (2024). Toward Improved
Simulations of Disruptive Reservoirs in Global Hydrological Modeling. Water Resources Research,
60(4).

• Conceptualization – lead

• Formal analysis – lead

• Investigation – lead

• Methodology – lead

• Software – lead

• Validation – independent

• Visualisation – independent

• Writing – original draft and all revisions thereafter
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summary

Despite considerable advances in flood forecasting during recent decades, state-of-the-art,
operational flood early warning systems (FEWS) need to be equipped with near-real-time
inundation and impact forecasts and their associated uncertainties. High-resolution,
impact-based flood forecasts provide insightful information for better-informed decisions
and tailored emergency actions. Valuable information can now be provided to local au-
thorities for risk-based decision-making by utilising high-resolution lead-time maps and
potential impacts to buildings and infrastructures. Here we demonstrate a comprehensive
floodplain inundation hindcast of the 2021 European Summer Flood illustrates these
possibilities for better disaster preparedness, offering a 17-hour lead time for informed
and advisable actions.

2.1 introduction

Flooding affects more people worldwide than any other natural hazard does (UNSIDR
and CRED, 2018) and represents one of the four key climate change hazards (Inter-
governmental Panel on Climate Change, 2021). Approximately 1.81 billion individuals,
constituting 23% of the global population, are found to be directly exposed to 100-year
floods (Rentschler et al., 2022). Anthropogenic climate change, inadequate investments of
governments and the private sector, and cognitive biases in human perception and deci-
sion making are usually blamed for disastrous flood impacts (Merz et al., 2021; Lahsen
and Ribot, 2022). Since the 1990s, the observed number of record-breaking rainfall events
has deviated substantially from a stationary climate and this deviation has occurred
at an increasing rate (Robinson et al., 2021). The rarest rainfall events are projected to

17
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experience the most substantial relative increase in magnitude under future climate
change (Gründemann et al., 2022). Extreme and even unprecedented rainfall events, and
the associated flooding, are thus expected to occur much more often than in the past. As
flood preparedness and defences are often overwhelmed by such extremes, forecasting
and early warning systems are perceived as crucial tools to safeguard human life and
reduce monetary losses (UNDRR, 2015).

For decades, science and state agencies have been developing hydro-meteorological
monitoring and forecasting systems (Pappenberger et al., 2019; Samaniego et al., 2019).
Recent improvements in model resolution, process representation, parameterisation, data
assimilation, and computational efficiency have advanced numerical weather prediction
(Numerical Weather Prediction (NWP)) and hydrological forecasting, and early warning
systems have benefited from that alike (Pappenberger et al., 2015). Efforts to enhance the
monitoring of atmospheric variables and hydrological fluxes and conditions have also
contributed to achieving more accurate initial conditions within the forecasting chain.
However, the general public (Quiggin et al., 2021) and the media speculate why these
scientific advances do not translate into similar reductions in socio-economic and human
costs once a catastrophic event occurs – even in developed countries with advanced flood
early warning systems (FEWS) as demonstrated by the floods in Western Europe in July
2021.

The components of the forecasting chain for a technologically advanced FEWS are
depicted in Figure 2.1. First, observed meteorological data is needed for generating
hydrological initial conditions. The next component is the NWP system. The skill of NWP
models is constrained by several factors, including intrinsic atmospheric chaos, errors in
the initial conditions, the spatiotemporal resolution of the model, limited knowledge of
physical processes, model errors, and limited computational power. However, with the
steady progress of forecasting technology and skill over the past 40 years (Bauer et al.,
2015), NWP systems now provide improved quantitative precipitation forecasts because
of the increased resolution to the scale of convective-permitting schemes (1-4 km), incor-
porating several sources of uncertainties and better representation of physical processes
(Emerton et al., 2016). A substantial challenge in NWP pertains to the uncertainties in
precipitation forecasts, particularly for rare events (Boelee et al., 2019). These uncertainties
propagate throughout the model chain and require quantification.

NWP model outputs are then passed to hydrological models to forecast discharge/wa-
ter levels. Hydrological forecasting technology has also seen substantial progress. A
decade ago, producing global hydrological forecasts from land surface models at a
hyper-resolution of 0.1-1 km was viewed as a formidable challenge (Wood et al., 2011b).
Achieving the high-resolution hydrological forecasting is still ongoing within the research
field. Delivering it would be possible with the availability of input data at high resolu-
tion and with the implementation of methods that derive seamless parameter fields as
well as downscaled forcings and initial conditions (Samaniego et al., 2017). Despite the
widespread application of ensemble forecasting in NWP, ensemble flood forecasting is
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considered to be in its infancy even in countries with advanced operational FEWS (Adams
and Pagano, 2016; Wu et al., 2020). This is mainly related to the challenges of transferring
ensemble forecasts into operational decision-making and flood management (Wu et al.,
2020). Large-scale operational FEWSs that provide ensemble forecasts (e.g., the European
Flood Awareness System-EFAS (Smith et al., 2016)) do not often satisfy the expectations of
regional flood managers requiring hydro-meteorological forecasts at river gauge locations
with high spatio-temporal resolutions and update frequencies (LfU, 2022).

Flood warnings are usually provided for river gauge locations. Extending flood fore-
casts from streamflow and water levels at selected river gauges to spatially distributed
information on inundation, flow velocities and further impacts has been considered un-
feasible for many years (Wu et al., 2020) because of two main reasons: first, the extensive
runtime required by fine-resolution (high-fidelity) hydrodynamic models to produce
an ensemble forecast in real-time, and second, the lack of river cross-section data at a
reasonably high resolution along the river network (Bates, 2022). Despite the existing
computational and operational challenges, flood managers need forecasted impact maps
in real-time for issuing more targeted flood warnings and for better emergency response
(Merz et al., 2020). By extending the forecast model chain with high-resolution (1-10 m
grid size) hydrodynamic and impact forecasting, shown in Figure 2.1, it would be possible
to provide essential information for emergency response downstream of the river gauge.
For examples, expected consequences of imminent flooding impacts, extending beyond
traditional hazard data like river gauge water levels, affected assets and anticipated losses
can be delivered. It holds a considerable promise for enhancing disaster risk management
by considering physical characteristics of the event, as well as socio-economic systems
affected.

Local authorities and civil protection agencies benefit from impact forecasting, gaining
actionable insights for initiating safety measures and evacuation protocols during floods.
However, operational FEWS still need to integrate flood impact forecasting at the local
scale of disaster management, particularly through the utilisation of 2D hydrodynamic
modelling (Ivanov et al., 2021). Table 2.1 provides an overview of the key components
within existing state-of-the-art FEWS. Notably, both GloFAS (Alfieri et al., 2013) and EFAS
employ an approach to inundation and impact forecasting, relying on the interpolation of
pre-calculated flood hazard maps for a limited set of return periods (Dottori et al., 2017).
This provides a rough estimate of potential inundation areas, and the so-produced flood
maps are spatially inconsistent and do not retain continuity. This integration presents
two major challenges:
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Numerical  
weather prediction

Hydrological forecasting

Hydrodynamic modeling 
and impact forecasting

Daily  
updates

Technology 
readiness level

Spatial 
Resolution

1 - 8

Not yet 
operationalized

7 - 9

4 - 6

1 - 4 km

1 - 10 m

Ensemble 
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10 - 51
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Figure 2.1: A holistic end-to-end impact-based flood forecasting modelling chain. The state-of-
the-art flood early warning system is extended with components of quasi-real-time
hydrodynamic and impact forecasting. Observational initial conditions are obtained
based on data from ground, radar, satellite, and reanalysis. The Technology Readiness
Level (Technology Readiness Level (TRL)) (Technology Readiness Level (TRL) n.d.) serves
as a scale for evaluating the developmental stage and maturity of a technology. At TRL
1, the technology is in the initial scientific research phase, while TRL 9 signifies that
the system has been successfully demonstrated in a real-world operational environ-
ment. Data sources: OpenStreetMap (OSM) rivers, roads and buildings: OpenStreetMap
(OpenStreetMap, 2017) contributors 2021, distributed under the Open Data Commons
Open Database License (Open Database License (ODbL)) v1.0. National German bound-
ary: Global Administrative Areas database (GADM). Meteorological stations (Deutscher
Wetterdienst)



2.1 introduction 21

Ta
bl

e
2.

1:
Ex

is
tin

g
St

at
e-

of
-t

he
-A

rt
FE

W
S

ar
ou

nd
th

e
W

or
ld

Pl
at

fo
rm

/S
ys

te
m

Sc
al

e
A

tm
os

ph
er

ic
M

od
el

A
tm

os
ph

er
ic

M
od

el
R

es
ol

ut
io

n
H

yd
ro

lo
gi

c
M

od
el

H
yd

ro
lo

gi
c

M
od

el
R

es
ol

ut
io

n

Fo
re

ca
st

U
pd

at
e

R
ef

.N
o.

G
lo

FA
S

G
lo

ba
l

Eu
ro

pe
an

C
en

tr
e

fo
r

M
ed

iu
m

-R
an

ge
W

ea
th

er
Fo

re
ca

st
s

(E
C

M
W

F)
-I

nt
eg

ra
te

d
Fo

re
ca

st
Sy

st
em

(IF
S)

18
km

H
yd

ro
lo

gy
Ti

le
d

EC
M

W
F

Sc
he

m
e

fo
r

Su
rf

ac
e

Ex
ch

an
ge

s
ov

er
La

nd
(H

TE
SS

EL
)-

Li
sfl

oo
d

0.
1↑

-0
.0

5↑
12

-h
ou

rl
y

A
lfi

er
ie

ta
l.

(2
01

3)

EF
A

S
C

on
tin

en
ta

l
(E

ur
op

e)

C
on

so
rt

iu
m

fo
r

Sm
al

l-s
ca

le
M

od
el

in
g

(C
O

SM
O

)-
Li

m
ite

d
A

re
a

En
se

m
bl

e
Pr

ed
ic

tio
n

Sy
st

em
(L

EP
S)

/I
C

O
N

/I
C

O
N

-E
U

6.
5

-1
3

km
Li

sfl
oo

d
5

km
6-

ho
ur

ly
D

ot
to

ri
et

al
.

(2
01

7)

Fl
oo

d
ea

rl
y

w
ar

ni
ng

sy
st

em
↓

N
at

io
na

l
(G

er
m

an
y)

IC
O

N
-D

2/
IC

O
N

-D
2-

En
se

m
bl

e
Pr

ed
ic

tio
n

Sy
st

em
(E

PS
)

2.
2

km
La

rg
e

A
re

a
R

un
of

f
Si

m
ul

at
io

n
M

od
el

(L
A

R
SI

M
)

Sp
at

ia
lU

ni
ts

of
0.

25
-1

0
km

2
3-

ho
ur

ly
Lf

U
(2

02
2)

A
dv

an
ce

d
H

yd
ro

lo
gi

c
Pr

ed
ic

tio
n

Se
rv

ic
e

(A
H

PS
),

H
yd

ro
lo

gi
c

En
se

m
bl

e
Fo

re
ca

st
Se

rv
ic

e
(H

EF
S)

,
N

W
M

†

N
at

io
na

l
(U

SA
)

A
dv

an
ce

d
W

ea
th

er
In

te
ra

ct
iv

e
Pr

oc
es

si
ng

Sy
st

em
(A

W
IP

S)
‡

3
-2

5
km

C
om

m
un

ity
H

yd
ro

lo
gi

c
Pr

ed
ic

tio
n

Sy
st

em
(C

H
PS

)
10

0
m

/2
50

m
an

d
1

km
††

1-
12

ho
ur

A
da

m
s

an
d

Pa
ga

no
(2

01
6)

H
yd

ro
lo

gi
ca

lF
or

ec
as

tin
g

Sy
st

em
(H

yd
ro

lo
gi

c
Fo

re
ca

st
in

g
Sy

st
em

(H
yF

S)
)

N
at

io
na

l
(A

us
tr

al
ia

)

A
us

tr
al

ia
n

C
om

m
un

ity
C

lim
at

e
an

d
Ea

rt
h-

Sy
st

em
Si

m
ul

at
or

(A
C

C
ES

S)
(A

us
tr

al
ia

n
C

om
m

un
ity

C
lim

at
e

an
d

Ea
rt

h-
Sy

st
em

Si
m

ul
at

or
)

4-
40

km

U
ni

fie
d

R
iv

er
Ba

si
n

Si
m

ul
at

or
(U

ni
fie

d
R

iv
er

Ba
si

n
Si

m
ul

at
or

(U
R

BS
))

,
G

én
ie

R
ur

al
à

4
pa

ra
m

èt
re

s
Jo

ur
na

lie
r

(G
R

4J
)‡‡

Se
m

i-
di

st
ri

bu
te

d
at

le
as

t
da

ily

A
da

m
s

an
d

Pa
ga

no
(2

01
6)

an
d

H
ap

ua
ra

ch
ch

i
et

al
.(

20
22

)

↓
(H

oc
hw

as
se

rf
rü

hw
ar

ns
ys

te
m

)T
he

de
sc

ri
be

d
m

od
el

ch
ai

ns
ar

e
im

pl
em

en
te

d
in

flo
od

fo
re

ca
st

in
g

ce
nt

re
s

in
th

e
G

er
m

an
Fe

de
ra

lS
ta

te
s

of
Ba

de
n-

W
ür

tt
em

be
rg

,B
av

ar
ia

,H
es

se
,N

or
th

er
n

R
hi

ne
-W

es
tp

ha
lia

,R
hi

ne
la

nd
-P

al
at

in
at

e,
an

d
Sa

ar
la

nd
A

da
m

s
an

d
Pa

ga
no

(2
01

6)
.F

lo
od

fo
re

ca
st

in
g

ce
nt

re
s

in
ot

he
r

G
er

m
an

Fe
de

ra
lS

ta
te

s
ar

e
us

in
g

si
m

ila
r

ap
pr

oa
ch

es
.

†,
‡

Fl
ex

ib
le

,s
pe

ci
fie

d
by

U
se

r
(f

ro
m

H
R

R
,N

A
M

,G
FS

,R
A

M
,a

nd
EC

M
W

F)
††

Th
e

N
at

io
na

lW
at

er
M

od
el

3
pr

ov
id

es
18

-h
ou

r
de

te
rm

in
is

tic
sh

or
t-

ra
ng

e
fo

re
ca

st
th

e
co

nt
ig

uo
us

U
ni

te
d

St
at

es
(C

O
N

U
S)

.
‡‡

SW
IF

T
(G

R
4H

-h
ou

rl
y)

is
us

ed
as

pa
rt

of
Sh

or
t-

te
rm

W
at

er
In

fo
rm

at
io

n
Fo

re
ca

st
in

g
To

ol
s

(S
W

IF
T)

hy
dr

ol
og

ic
m

od
el

lin
g

pa
ck

ag
e

fo
r

7-
da

y
st

re
am

flo
w

fo
re

ca
st

.



22 impact-based early warning system for local floods

1. Computational Efficiency Challenge: Computationally efficient FEWS are imperative
for promptly generating inundation and impact information, including associ-
ated uncertainties. Several studies have developed prototypes of flood forecasting
modelling chains that include probabilistic flood inundation forecasting (see e.g.,
(Schumann et al., 2013; Gomez et al., 2019; Ivanov et al., 2021)). While high-fidelity
models offer precision, they come with substantial computational demands. Strate-
gies such as non-physics-based (simplified) methods (Teng et al., 2017) and model
emulation, as demonstrated by Ivanov et al. (Ivanov et al., 2021) and Fraehr et
al. (Fraehr et al., 2023), seek to strike a balance between computational efficiency
and prediction accuracy. Sustaining prediction accuracy requires accounting for a
wide range of flooding scenarios and inundation behaviours (Fraehr et al., 2023).
However, these approaches may encounter challenges when adapting to diverse
flood scenarios or diverse landscape contexts (Bout et al., 2023). Simplified methods,
for instance, are particularly suitable for applications where dynamic effects play
a minimal role, and the focus is primarily on the final or maximum flood extent
and water levels (Teng et al., 2017). Moreover, surrogate models may struggle when
faced with inputs outside their training scope or complex, non-linear interactions
among flood drivers (Schubert et al., 2022). Notably, they may also face difficulties
accurately simulating unprecedented extremes compared to high-fidelity models
(Schubert et al., 2022).

2. Propagation and representation of uncertainties in probabilistic impact forecast for
better informed disaster management: Recent research demonstrates the potential
usefulness of probabilistic forecasts for emergency managers facing real-world
constraints. However, the exact impact of these forecasts on user decision-making
remains unquantified (Fundel et al., 2019). The challenge resides in propagating the
uncertainties along the entire forecast model chain and represent the uncertainty of
impact indicators in a suitable way.

To address these challenges, the advancements in inundation and impact-based fore-
casting are demonstrated by comparing the common practice of pre-calculated/flood
hazard maps with our proposed forecasting chain. Utilizing real-time forecasts as an extra
layer enriches pre-calculated hazard maps by considering antecedent conditions (Speight
et al., 2021). In addition, fast hydrodynamic modeling captures real-time flood dynamics,
overcoming the limitation of pre-calculated maps assuming seamless connection between
real-time forecasting models and static inundation and impact assessments, potentially
leading to inaccuracies, especially for unusual flood events. Furthermore, these maps rely
on several factors which might not be valid for all flood events (Speight et al., 2021). We
leverage fast and real-time hydrodynamic modeling while transparently communicating
uncertainties for decision-makers. Our method, featuring dynamic simulation, provides
crucial timing information for effective emergency responses. Additionally, it offers im-
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proved adaptability in flood hazard map resolution, particularly with high-resolution
Digital Elevation Models, ensuring accuracy without sacrificing computational efficiency.

The need for impact-based warnings for disaster risk management has been addressed
recently in various guidelines and studies (Kox et al., 2018; Harrowsmith et al., 2020).
For instance, the shift from weather forecasts and warnings to impact-based forecasts
and warning services is outlined by the World Meteorological Organization (World
Meteorological Organization (WMO)) guidelines (Zhongming et al., 2020). This shift also
underlines the need for decision-making protocols tailored to align with the distinct
dynamics of specific hazards, geographical locales, institutional capabilities, and cultural
nuances. The initiative on impact-based early warnings is gaining global support, as
more national hydro-meteorological services align their strategies and investments with
this approach.

The effectiveness of an experimental impact-based flood early warning system is
showcased in this study by utilising the catastrophic flood event that occurred in the
Ahr River, Germany in 2021. During the July 2021 flood event, 134 people in the Ahr
Valley lost their lives (LfU, 2022). The total economic loss in Germany exceeded 40 billion
EUR (Szönyi et al., 2021). The return period of the event based on observed annual peak
discharge gauge data between 1946-2019 and four historical floods between 1888 and 1920
is estimated to about 8600 years (Vorogushyn et al., 2022). The magnitude of the flood
and its damage to buildings and infrastructure required the most extensive response and
recovery operation in German history (Szönyi et al., 2021). The German Weather Service,
Deutscher Wetterdienst (DWD), predicted a heavy precipitation event several days prior
to the event (DWD–Deutscher Wetterdienst, 2021). In addition, the official hydrological
forecasts indicated unprecedented water levels at several gauges. Post-event analysis has
revealed that early warnings solely on hazard metrics such as maximum local rainfall
depths or maximum water level at a gauge site resulted in misinformed actions, delayed
responses, and at times, no action at all (Szönyi et al., 2021). Local weather and civil
protection officials underscored that their limited knowledge to understand about the
potential impacts of 150 mm or 200 mm of rainfall, or a gauge level of 6 m, prevented
them from giving clear guidance on the specific problems or damage expected from the
forecasted rainfall or water levels (Szönyi et al., 2021).

Here, we show how a state-of-the-art flood forecasting modelling chain can provide
more sophisticated information, enhancing disaster preparedness. To illustrate the ca-
pabilities of our system, we provide a floodplain inundation hindcast ensemble for the
2021 European Summer Flood. The proposed approach allows for a more dynamic
and responsive early warning system, offering enhanced insights into potential flood
impacts and facilitating more effective decision-making. By employing high-resolution,
object-based impact forecasting techniques, we are able to generate near-real-time flood
inundation maps and other relevant impact indicators with associated uncertainties. This
serves as a practical example to highlight the potential of our approach in accurately
predicting and visualising flood impacts for better decision-making and preparedness in
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the face of such devastating events. It provides lessons that contribute to the improved
management of future events and highlight why users need to put rare but severe events
into perspective (Fundel et al., 2019). The current study serves as a proof-of-concept,
laying the groundwork for the further development and testing of prototypes for such
operational systems.

2.2 results

2.2.1 Ensemble precipitation and probabilistic water level forecasts

Here, we use the DWD’s latest NWP limited area ensemble prediction system (ICON_D2_EPS)
for generating ensemble forecasts of water level for the event. The operational NWP en-
semble prediction system generates 20 ensemble forecasts at a spatial resolution of 2.2 km.
It considers different sources of forecast uncertainty arising from initial conditions and
model error, in addition to the uncertainty in the boundary conditions for limited area
ensembles (Reinert et al., 2020). For the hindcast experiment, ensemble forecasts were
retrieved for every 3-h initialisation between 13 July 2021 (02:00 CEST) and 14 July 2021
(23:00 CEST), thus covering a window of opportunity of 47 h to 2 h prior to the flood peak.

Probabilistic forecasts are considered much more valuable than deterministic forecasts
especially for extreme and rare events (Cloke and Pappenberger, 2009). Therefore, to
evaluate the predictability of the flood event in Ahr Valley, with the catchment area
of 746 km2, the mHM (Samaniego et al., 2010) is forced with 320 ensemble predictions
(16 initialisations ↔ 20 members) from ICON_D2_EPS to generate streamflow and water
level predictions at the gauge Altenahr. The mHM has been evaluated as a prospective
choice for a continental-scale operational flood forecasting in Europe (Kauffeldt et al.,
2016). Ensemble medians and the water level forecasts for all 16 initialisations are
depicted in Figure 2.2. Hydrological predictions for each initialisation can be elaborated
in Supplementary Figure S1.

The Altenahr gauge was wrecked by the flood; therefore, water levels reconstructed
by the responsible authority (Rhineland-Palatinate (RP) State Office for the Environment;
Landesamt für Umwelt (LfU)) are used for the evaluation of the ensemble water level
predictions (refer to Figure 2.2). The probabilities of exceeding warning levels are shown
in Figure 2.2 for each initialisation as well, assuming that all ensemble members have
an equal likelihood (Cloke and Pappenberger, 2009). The classification of official flood
notification levels varies across Germany’s federal states. In Rhineland-Palatinate (RP),
the categorisation of flood situations hinges on the concept of return periods. Specifically,
flood occurrences with return periods equal to or exceeding that of a 50-year flood are
labeled as extreme events. The 100-year flood (HQ100) serves as the critical benchmark for
potential risks to life, property (Cloke and Pappenberger, 2009), and infrastructure.

Figure 2.2 displays a considerable variation in water level predictions among the
ensemble members. This wide range of predictions can be attributed to the inherent
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Figure 2.2: Ensemble of precipitation and water level forecasts from the ICON_D2_EPS-mHM chain.
Ensemble forecasts initialised every 3-hour before the reconstructed flood peak at
Altenahr gauge. The probabilities of exceeding the 50-year (50 years return period
flood (HQ50)) and 100-year (HQ100) flood thresholds are displayed for 16 forecast ini-
tialisations (See Supplementary Figure S1 for more details). The range of 48-hour
areal precipitation forecasts for the Ahr basin is shown as whisker plots for each
initialisation from ICON_D2_EPS. The whisker plots of precipitation forecast for each
initialisation represent the minima, maxima, the bounds of the box (25 and 75 per-
centiles) and the center (median) based on 20 ensemble members. The uncertainty of
quantitative precipitation estimation for the event is shown for the target period of
07/14 07:00 to 07/14 21:00 CEST (LfU, 2022)
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uncertainties in the flood forecasting modelling chain, primarily stemming from ensemble
precipitation predictions (Cloke and Pappenberger, 2009). The precipitation forecasts
derived from the ICON_D2_EPS (shown in Figure 2.2) reveal substantial variations.
These variations can reach up to 80 mm among distinct NWP ensemble members and
across diverse forecast initialisations. The quantitative estimation of precipitation for the
event exhibits uncertainty. The most realistic estimate indicates 119 mm of precipitation
between the period 07/14 07:00 to 07/14 21:00 CEST (LfU, 2022). This amount surpasses
the ensemble median forecasts, sometimes even doubling them. Because this flood was an
exceptionally rare event, and the calibration period has not had many such extreme events
to tailor the model parameters, precipitation amounts higher than 119 mm were necessary
to accurately predict the flood peak. For these reasons, water level ensemble forecasts
are substantially lower than reconstructed water level at gauge Altenahr. Despite the
discrepancies in ensemble precipitation forecast, the primary focus remains on assessing
the exceedance probability of the warning threshold as key variable (Alfieri et al., 2019).

The expected precipitation amounts from high-resolution and convection-permitting
NWP (ICON_D2_EPS) differentiate largely depending on the forecast time (LfU, 2022).
This uncertainty is propagated to water level forecasts and finally to the probability of
exceedance of warning thresholds. This complicates the task for flood managers, making
it challenging to arrive at a confident decision (LfU, 2022). For example, the probability of
exceeding HQ100 increased by 30% from the forecast initialisation 20 h prior to the flood
peak to that of 17 h but dropped by 20% in the next issued forecast.

For all water-level forecasts issued within the lead-time of 17 h to the flood peak,
the probability of exceeding HQ100 is greater than 50% (PWL > HQ100 ↗ 50%) based on
the Icosahedral Nonhydrostatic - 2 km resolution model for Germany (ICON-D2)_EPS-
mHM forecast chain. Additionally, at the 11-hour mark in advance (14 July, 14:00 CEST
initialisation), the probability of a flood exceeding the HQ100 threshold surged to 90%
(Figure 2.2). This dramatic increase in probability further emphasises the urgency for
appropriate flood response measures and is a confirmation of the adequacy of the
modelling chain.

2.2.2 Comparison between the official and experimental water level forecasts

Ten official deterministic water level forecasts were published by LfU within a time
window ranging of 22 h to 1 h prior to the reconstructed maximum level for Altenahr
(LfU, 2022). LfU forecasts ranged from 225 cm in the morning of July 14 to 707 cm in the
late evening. This wide range of predicted maximum levels illustrates the uncertainty
associated with atmospheric forecasts, and observation errors of the rain gauges and
water levels at gauge Altenahr (LfU, 2022). LfU uses the LARSIM water balance model
(Ludwig, 2006) as an operational forecast model. The Ahr catchment is represented by
561 sub-basins in their model. The real-time forecasts on July 14 2021 were generated
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based on a LARSIM calibration from the period ranging between 1993 and 2016 (LfU,
2022).

In the post-assessment report by LfU (LfU, 2022), an ensemble forecast was provided
based on the ICON_D2_EPS for the 14 July 2021 (14:00 CEST) initialisation. The ensemble
water-level forecasts based on the ICON_D2_EPS – mHM are quite similar to the offi-
cial forecasts for the same initialisation. Ensemble median water levels based on the
ICON_D2_EPS – mHM were approximately 1 m lower than the deterministic water-level
forecasts of the LfU within the window of 5 h to the flood peak. Differences between
water-level forecasts may be due to the post-processing method used in the radar-
adjusted quantitative precipitation estimate, the structural and parameter uncertainty,
and the initialisation of the hydrologic model. In our proposed modelling chain, the LfU
reconstructed hydrograph is used as a reference for the hindcast experiment.

2.2.3 Lead-time maps and impact-based warning

Probabilistic water level forecasts at a gauge location do not provide sufficient information
for emergency measures downstream. To address this shortcoming, the provision of lead-
time maps to reach critical levels, along with high-resolution near-real-time inundation
maps, and flow velocities are crucial and may ultimately save human lives and reduce
socio-economic impacts (Weyrich et al., 2018; Campbell et al., 2018; Kreibich et al., 2021).

Here, we demonstrate that near-real-time impact forecasting for floods is possible, even
for comparatively small and fast-reacting rivers. The NWP-hydrologic forecasting chain
is extended with the high-resolution (10 m grid) hydrodynamic model RIM2D, which
proved to reliably simulate inundation for the Ahr valley (Apel et al., 2022). In this
study, the uncertainty along the modelling chain is considered, which is the added value
compared to studies which have used only a single forecast (e.g., see Apel et al. (Apel
et al., 2022)). The near-real-time forecasts of inundation depth are compared first to HQ100
raster-based water depth map to identify regions with extreme flood hazard. For the grid
cells, for which the water depth forecast exceeds HQ100, the lead-time is calculated based
on forecast outputs from hydrodynamic modelling. By running the ensemble inundation
prediction, information on the most likely estimate of flood impacts can be derived
from the ensemble mean. In addition, the ensemble members that have generated the
minimum and maximum water levels can provide the uncertainty of inundation extent
in each forecast initialisation.

In the presence of considerable uncertainties within the forecasting chain, effectively
communicating forecast persistency is imperative for informed decision-making. Commu-
nication with local authorities should encompass the persistent impacts of flood forecasts,
providing guidance for effective emergency response operations. Here, the selection of
three consecutive forecast initialisations is considered. The lead-time is calculated for
each grid cell across consecutive forecast initialisations (Pappenberger et al., 2015) when
the water level surpasses the HQ100 threshold. To account for prediction uncertainty,
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Figure 2.3: The maximum flood lead-time warning based on the ICON_D2_EPS-mHM-RIM2D FEWS
chain. A maximum lead-time raster-based flood warning map is a geospatial repre-
sentation that highlights the maximum available time for flood preparedness and
response. The lead time is calculated downstream Altenahr gauge based on water
levels (Water Level (WL)) exceeding HQ100. Panel (a) displays the lead time map derived
from 16 ensemble median water levels (i.e., median over 20 members for each NWP
initialisation). Panel (b) shows the same but obtained with 16 maximum water levels.
These lead time maps are obtained when three consecutive initialisations exceed the
HQ100 for a given 10 m grid cell. Please refer to the Forecast Persistency section in the
2.4 for additional details. The red extent delineates the inundation area mapped by the
LfU of Rhineland-Palatinate. Suplementary data sources: OSM river, roads and build-
ings: OpenStreetMapOpenStreetMap (2017) contributors 2021 distributed under the
Open Data Commons Open Database License (ODbL) v1.0. Hillshade: Digital Terrain
Model (DTM) v0.3 (CC BY)Hengl et al. (2021)
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we select ensemble members that produce the lowest and highest water levels at the
gauge, in addition to the ensemble median, as well as the 25th and 75th percentiles.
In Figure 2.3(a) and Figure 2.3(b), lead-time maps for the ensemble median and max-
imum are presented for the river reach downstream of the Altenahr gauging station,
covering multiple settlements. The high-resolution raster-based lead-time map shows
a time-window ranging from 6 to 30 h, which could have been used for on the most
likely outcome (i.e., ensemble median). The maximum water level predictions indicate a
lead-time map ranging from 24 to 48 h before the forecasts exceed the HQ100 warning
threshold. The predicted inundation extent from the ensemble median underestimates the
actual flood extent mapped by LfU. The maximum ensemble member, i.e., one member
out of 20, matches well with this estimate, (Figure 2.3(b)). For this specific event, the
assessment of the predicted inundation areas suggests that the flood extents generated
by the maximum rainfall estimate from the ICON_D2_EPS model could closely resemble
the actual conditions. This conclusion is confirmed by a recently published report (LfU,
2022), which shows that the observed precipitation was predominantly within the range
of the maximum values of the ensemble forecast. Relying on lead-time estimation from a
single forecast can extend the window of the opportunity for response, yet it may also
elevate the occurrence of false alarms. Supplementary Figure S2 and S3 present lead-time
maps for median and maximum water levels without considering forecast persistence.

To validate the impact forecasts, we compared the affected buildings footprint as well as
road and railway length to those estimated from the Copernicus Emergency Management
Service (Copernicus Emergency Management Service (CEMS)) Rapid Mapping as a
benchmark. The service activated by the German Joint Information and Situation Centre
(Geoinformation und Monitoring bei Landnutzung und Zivil- und Katastrophenschutz
(GMLZ)). The figures are compared for different ensemble members related to different
percentiles (Table 2.2). For example, the maximum ensemble member, issued 47 hours in
advance of the flood peak, overestimated inundated building footprint by 10% compared
to Copernicus Rapid Mapping. Notably, the maximum ensemble member for several
forecast initialisations closely aligns with the benchmark for several forecast initialisations.
Our estimates for the number of affected buildings and infrastructure often turn out to
be less severe compared to the post-event surveys. This aligns with the underestimation
of water levels and consequently of the inundation areas.
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2.2.4 Enhancing Flood Forecast Communication for Informed Decision-Making and Risk Man-
agement

Decision-makers frequently encounter the task of issuing deterministic directives based on
inherently probabilistic data (Pappenberger et al., 2015). Although FEWS capabilities may
limit the provision of high-resolution flood impact forecasts and introduce uncertainties,
effective communication of this information can still enhance user trust (Anderson
et al., 2022). In the domain of emergency response, theoretical models and decision
analysis methods abound, with notable contributions like the Protective Action Decision
Model (PADM) (Lindell and Perry, 2012) and cumulative prospect theory (Tversky and
Kahneman, 1992). In cases where official risk thresholds are not defined by relevant
agencies, decision-makers often need to set their own probability thresholds that align
with their specific needs and organizational goals, as illustrated by Fundel et al. (2019)
(Fundel et al., 2019). In this respect, Figure 2.4 provides a useful visualization of how
probabilistic information, based on lead-time, can support flood managers. The whisker
plot visually represents the predicted inundated area downstream of the Ahr river, with
an estimated coverage of 8.37 km2. Visual representations like this effectively contextualize
infrequent yet severe events, providing valuable perspective (Fundel et al., 2019).

The convergence line in Figure 2.4 falls short when compared to the 11.33 km2 extent
mapped by LfU due to the uncertainties inherent in forecasting rainfall, which subse-
quently impacts the predicted water levels and inundation extent. Nevertheless, the
ensemble median inundation map has revealed that the affected area would potentially
match or surpass the the most extreme scenario of the flood (HQextreme) level. Regarding
Figure 2.4, the ensemble median consistently surpassed the inundation areas of HQ100
and HQextreme by 20 and 17 lead-hours, respectively. This time frame provides a potential
warning lead-time for preparation and response in the face of impending floods. For
this particular event, it was demonstrated that the maximum forecast ensemble member
was more closely aligned with the post-event inundation area mapping compared to the
median forecast. However, more events should be investigated to better understand how
to use the full ensemble for decision making. We advise flood managers to adjust the
thresholds based on their daily experience in making warning decisions, as proposed by
Fundel et al. (Fundel et al., 2019), or in accordance with national regulations.

2.3 discussion

We demonstrate that recent advancements in hydrologic and hydrodynamic models
and computational capabilities enable high-resolution flood inundation and impact
forecasting within operational FEWS even for comparatively small and fast-reacting rivers.
These forecasts encompass probabilistic inundation maps and identify buildings and
transportation infrastructure at risk of flooding. Operational inundation and impact
modelling provides much richer information on the space and time dynamics of flooding
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Figure 2.4: Uncertainty representation of the forecasted inundated area downstream of the Al-
tenahr gauge. Uncertainty is quantified based on 16 initialisations issued 47 h to 2 h
prior to the 2021 European Summer Flood. The uncertainty of the atmospheric fore-
cast t based on 20 ensemble members (n=20) is propagated through the modelling
chain to the hydrological and inundation prediction. The whisker plots of inundation
prediction for each initialisation represent the minima, maxima, the bounds of the box
(25 and 75 percentiles) and the center (median) based on this ensemble.

and its effects. Flood depth and flow velocities are not only available at a few gauge
locations, but continuously and consistently in space. Time-varying characteristics such
as lead time to specific depth thresholds or the rate of water rise can be provided during
the course of the entire event. At last, the prediction of affected buildings and critical
infrastructure are compared against emergency mapping products derived from satellite
data. This multi-faceted information is very instrumental for more targeted and tailored
emergency response. Current satellite inundation maps, given their prioritization of rapid
mapping over quality, should not be regarded as absolute truth, leading to inherent
uncertainties (Bates, 2023). Depending on Synthetic Aperture Radar (Synthetic Aperture
Radar (SAR)) for emergency mapping introduces limitations, such as misclassification
and timing issues. This highlights the need for caution and an acknowledgment of the
upper limits of SAR-based flood detection methods when identifying affected areas and
assessing damages (Ajmar et al., 2017).

The feasibility of the operational flood impact forecasting was demonstrated in the
hindcast of the 2021 European Summer Flood event in the Ahr basin in this study.
Several challenges, however, remain as we progress in adopting impact-based FEWS:
1) An increasing number of national hydro-meteorological services are investing in a
paradigm shift from traditional FEWS to high-resolution, impact-based FEWS. However,
implementing real-time services on a national scale poses challenges, given the trade-
offs involving computational power, operational service scheduling, and data storage
archiving. 2) Availability of quality data and computational resources is crucial for
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implementing near-real-time flood impact forecasting. Many regions, especially flood-
prone areas, lack essential datasets such as high-resolution soil and terrain data, real-time
meteorological observations, and high-resolution atmospheric forecasts. Continuous
and long-term discharge measurements are also essential for flood monitoring, model
calibration and warning threshold establishment. 3) NWPs still have uncertainties due to
factors like ensemble size, model structure, and how e.g., small-scale convection processes
are represented. Real-time quantitative precipitation by radar systems is underestimated
and needs further post-processing. 4) The complexity of data integration and validation
poses an additional challenge. The integration of workflow managers like ECMWF’s
workflow management system (ecFlow) (Bahra, 2011), complemented by a user-friendly
graphical interface, streamlines the scheduling of operational services. This not only
enhances user engagement and accessibility but also contributes to the optimisation of
service delivery in real-time hydrodynamic modelling and forecasting. 5) Evaluating
the performance of FEWS can be difficult, especially when hindcast data is not available
and NWP models have limited operational history. Ensuring the reliability of FEWS is
critical to respond quickly to predicted events. It helps avoid the cry wolf effect, where
too many false alarms make people and authorities less likely to act promptly during
real flood threats. 6) The prediction of rare, extreme flood events with return periods of
more than a century is a challenge due to the limited data available, which emphasises
the need for comprehensive training of flood-managers. 7) The introduction of real-time
impact-based warnings should go along with the development of specific customised
warning messages, action instructions and emergency decisions. In order to tackle
this problem effectively, interdisciplinary cooperation with social and psychological
sciences is required. 8) In a world where the likelihood of unprecedented rainfall and
subsequent flooding is increasing, impartiality in the communication of information is
critical. Ongoing calibration of hydrological component of operational FEWS is important
to better anticipate flood events. Moreover, there is a growing demand to account for
the most extreme events to avoid surprises of megafloods similar to the 2021 European
Summer Flood (Bertola et al., 2023). The shift in thinking beyond national flood risk
assessment and removal of cognitive biases are necessary to prevent unexpected surprises
(Bertola et al., 2023; Merz et al., 2021).

Finally, more attention needs to be paid to the effective communication of forecast un-
certainties. Uncertainties need to be propagated along the entire forecast chain delivering
the plausible ranges of flood impact indicators. We believe that better informed decisions
can be made given transparently presented uncertainties rather than single deterministic
values. Future studies are needed to find out how the proposed impact-based FEWS can
be used for better communicating the flood impacts to users, decision makers and the
public. A subsequent investigation could involve seeking input from decision makers
regarding their preferences for ensemble ranges.
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2.4 methods

2.4.1 Extended warning chain

The extended warning chain (ICON_D2_EPS-mHM-RIM2D) is illustrated in Supplementary
Figure 4. This model chain produces high-resolution impact forecasts indicating inunda-
tion depth and flow velocity at buildings and infrastructure. The four components of this
chain are described below.

Meteorological inputs: The regional ensemble prediction system ICON-D2 EPS pro-
vides operational forecasts for a 48-h forecast horizon, covering the entire German
territory. High-resolution forecasts of ICON-D2 (2.2 km) are initialised every 3 h with a
convection-permitting model set-up suitable for early warning of local heavy rainfall
events. Hydrological initial conditions are derived from near-real-time radar adjusted
gridded hourly precipitation data provided by the DWD. The gridded fields of tempera-
ture were generated by using the External Drift Krigging (EDK) method (Zink et al., 2017)
using variograms derived from DWD station observations.

Ensemble Hydrological forecasting: Streamflow and water level forecasts are gen-
erated based on mHM at a resolution of 1.1 km. The mHM uses multiscale parameter
regionalisation for estimating distributed parameter fields (Samaniego et al., 2010) and
is forced with real-time forecasts from DWD-ICON_D2_EPS for hindcast evaluation and
hydrological predictability of the Ahr flood.

Hydrodynamic forecasting: The RIM2D hydrodynamic model was set-up and valida-
tion are described in a recent flood inundation simulation of the 2021 flood event for
the Ahr valley (Apel et al., 2022). Flood inundation depth for HQ100 was mapped first
by running RIM2D. Then, the lead-time of water level forecasts exceeding the HQ100 level
was calculated for each raster cell at 10 m resolution downstream of the gauge Altenahr.
The locations of buildings, roads and railways were extracted from the OpenStreetMap
(OSM) layers. Hydrodynamic forecasts are triggered only upon reaching or exceeding
pre-established warning thresholds customised for selected percentiles based on the
user’s specific interest. This automated trigger mechanism enhances the responsiveness
and adaptability of the system accommodating real-time services easier. The RIM2D
simulations are executed on the Graphical Processor Units (GPUs) to achieve high com-
putational performance. Each ensemble run is allocated to a single Graphics Processing
Unit (GPU) device allowing for parallel processing. While 20 ensemble members are
available, our real-time forecasting focuses on selected percentiles with respect to peak
discharge at the upstream boundary (minimum, 25%, median, 75%, and maximum).
This approach ensures timely forecasts every 3 hours and is able to accommodate larger
ensembles if needed.

Quantitative impact forecasting: Several criteria can be provided for impact forecasting
including the object-based forecasting (e.g., buildings footprint), the length of roads and
railways. This information are calculated based on the synthesis of data extracted from
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open geographic database such as OSM (OpenStreetMap, 2017), and hydrodynamic
forecasting outputs.

Copernicus Emergency Management Service (EMS) Mapping products: The Coperni-
cus Emergency Management Service (CEMS) employs satellite imagery and additional
geospatial data to respond to natural disasters, including floods. CEMS offers a variety of
products that provide insights into the impact and reach of the event, including overall
flood extent and detailed assessments of damage severity (Copernicus EMS Mapping prod-
ucts, EMSR517 2023). It provides information on affected buildings and infrastructures
based on several detection methods such as semi-automatic and automatic extractions.
We utilised the standard spatial datasets (vector data) from CEMS, which are publicly
available free of charge (Copernicus EMS Mapping products, EMSR517 2023).

Comparison between forecasts of inundated building footprint with a benchmark: In
this research, we analysed the number of affected building footprints, as well as the total
lengths of roads and railways from RIM2D inundation forecasts by benchmarking them
against established data sources. Our study utilised datasets from OSM and CEMS. The
CEMS dataset provides valuable information on the extent and severity of flood impacts
based on damage grades (ranging from damaged to potentially damaged and destroyed),
their spatial distribution. The processing of this data involved several key steps: (1) CEMS
data points corresponding to OSM building centroids were linked to the respective OSM
building footprints; (2) in cases where multiple CEMS data points reported damage to the
same OSM building, the OSM footprint was counted only once to eliminate duplication;
and (3) CEMS data points lacking corresponding OSM building polygons were excluded
from the analysis. We leveraged OSM data to furnish building footprints for structures
affected according to the CEMS dataset. The processing and analysis were carried out
using a combination of Python and R scripts, encompassing geospatial matching, damage
statistics, and assessments of spatial distribution. Moreover, we compared the predicted
inundation impact on building footprints for each initialisation with the total building
footprint within the flood extent, as mapped by the LfU. This comparative analysis
allowed us to thoroughly evaluate the accuracy and reliability of our predictive models.

2.4.2 Hydrological model setup and calibration

The mHM setup used in this study is based on Bodenübersichtskarte 1:200,000 (BUEK200)
soil dataset (BGR, 2020). Soil layers are vertical discretized in four layers (0–5, 5-25, 25-60
cm and 60 cm - variable) in the mHM. More details regarding the mHM setup is described
by Boeing et al. (Boeing et al., 2022). The corresponding mHM global parameters were
calibrated using the Dynamically Dimensioned Search (DDS) (Tolson and Shoemaker,
2007) algorithm with 500 iterations, against observed hourly time series of river discharge
at Altenahr gauge. A detail description of the procedure for calibrate mHM can be
found in Rakovec et al. (Rakovec et al., 2019b). In the present case, we considered a
10-year simulation period (1.1.2011–31.12.2020) with five years of warm-up; thus the
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July 2021 flood peak was excluded from the calibration exercise. Hourly Radar Online
Aneichung (RADOLAN) grids of precipitation (Bartels et al., 2004; Winterrath et al., 2012)
are adjusted to 24-h total precipitation (Rauthe et al., 2013) and used for model calibration.
The mHM historical performance is provided in Supplementary Figure S5.

2.4.3 Computational resources and data requirements

The implemented near-real-time flood impact forecasting chain is applicable to other
region around the world contingent upon the availability of specific quality data and
appropriate computational resources. To ensure effective operation, it is necessary to
generate frequent NWPs of precipitation and temperature. Near real-time access to hourly
precipitation and temperature observations is required for the regular reinitialisation
of the mHM model. For the RIM2D hydrodynamic model, a high-resolution DEM and
land-use information is required. We tackled the computational challenge inherent in
real-time inundation forecasting through the utilisation of the massively parallelised
Graphical Processing Units (GPUs) (Apel et al., 2022). Using the state-of-the-art NVIDIA
Tesla P100 device, we achieved a 22-minute runtime for a 48-hour event simulation (one
ensemble member) for the entire domain of about 30 km river length with a spatial
resolution of 10 m by 10 m. We would like to emphasis here that all the underlying
datasets and modelling tools which have been used in this study are available freely. To
develop a similar system in other regions, high-resolution terrain information (DEM) along
with morphological datasets (e.g., soil, vegetation, etc) would be needed. Additionally,
access to near-real-time meteorological forcings and river gauge station data for model
calibration can be acquired from responsible agencies. To this end, growing availability
of remote-sensing and satellite based information can provide additional opportunities
to reliably establish the FEWS in data-scarce regions.

2.4.4 Definition of forecast persistency

Probability of exceedance of a predefined warning threshold can rapidly change with
subsequent forecast initialisations. A definition is provided for the confidence in the
forecast information across different initialisations. Once three consecutive forecast
initialisations show water levels above HQ100 for a given grid cell, the time span between
the time point of the forecast initialisation and model time step corresponding to WL ↗
HQ100 for the third forecast is calculated as the lead-time. Definition of lead-time with
and without confidence is provided in Supplementary Figure S6. Selecting the ideal
number of forecast initialisations to establish forecast persistency can be determined by
balancing the frequency of operational NWPs and the required preparedness time.
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summary

Large-scale hydrological models are advancing towards sub-kilometer resolutions, aiming
to achieve “locally relevant hydrological simulations”. However, grid-based domain
representations create significant errors in small catchments, underscoring the catchment
size problem, a conundrum unsolved by the state-of-the-art modelling schemes (e.g,
D8). Here, we equip the grid-based mesoscale Hydrologic Model (mHM) with a novel
stream network upscaling scheme called Subgrid Catchment Conservation (SCC) that
preserves the subgrid catchment area, and allow for a seamless predictions of water
fluxes and storage at different spatial resolutions and across a variety of catchment sizes.
We employ a global setup with 62 domains encompassing 5 256 streamflow measurement
stations, and a regional setup encompassing 187 stations in the Rhine river basin. SCC
produces consistent performance over various catchment sizes globally, outperforming
the D8 and other state-of-the-art routing schemes. The widely used D8 scheme’s efficacy
diminishes drastically for catchments under 30 times the grid size, while SCC excels when
D8 area errors exceed 1%. SCC demonstrates remarkable streamflow scalability in the
regional experiment with nine out of 10 stations exceeding the mean flow benchmark
across 1 km to 100 km model resolutions (and eight out of 10 stations in the global setup
across 25 km to 100 km). In addition to the improved streamflow scalability, SCC’s ability
to resolve multiple points of interests in a grid leads to greater modelling flexibility.
By addressing the catchment size problem, SCC marks a significant advancement for
global-scale simulations producing locally relevant streamflow.

3.1 introduction

Global hydrological models (GHMs) are predominantly gridded (Bierkens, 2015). The
gridded simulation of hydrological states and fluxes enables distributed analyses at

37
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any point in the domain (Kumar et al., 2010; Rakovec et al., 2016b), which is a major
advantage of gridded hydrological models over others. Moreover, input data typically
come in grid format (Sood and Smakhtin, 2015), encompassing a wide array of sources
including remote sensing products, reanalysis datasets, climate change projections, and
(sub-)seasonal forecasts. Gridded hydrological models, thus, eliminate the need for
extensive aggregation or manipulation of data, streamlining the modeling processes.

In spite of the advances such as incorporation of reservoirs (Hanasaki et al., 2006;
Haddeland et al., 2006a; Shin et al., 2019; Sadki et al., 2023; Shrestha et al., 2024),
water use (domestic, irrigation, industrial)(Döll and Siebert, 2002; Alcamo et al., 2003;
Wada et al., 2013; Flörke et al., 2013), groundwater abstraction (Wada et al., 2010),
hydrodynamic routing (van Beek et al., 2011), floodplain inundation (Yamazaki et al.,
2011), and streamflow temperature (Wanders et al., 2019), global hydrological models
have not been able to abolish the “catchment size problem” (Fekete et al., 2001; Hanasaki
et al., 2006; Yamazaki et al., 2008; Wu et al., 2011; Thober et al., 2019; Eilander et al., 2021;
Aerts et al., 2022; Polcher et al., 2023):

While modeling a large domain with multiple catchments, grid based representation incurs
errors in modelled catchment area, the magnitude of which might be hardly noticeable for large
catchments and beyond acceptable for smaller catchments, simultaneously. Compounding the
issue, the size of the catchment is relative to the grid size. The catchment size problem
hampers continental-scale streamflow modeling, constraining analyses to larger basins
and resulting in diminished accuracy for smaller catchments in global hydrological
models. Ironically, the majority of the discharge stations worldwide are small e.g., 75%
of Global River Discharge Centre (GRDC) stations have a drainage area of 10 000 km2 or
less (GRDC, n.d.). It is undeniable that accurate streamflow simulations are as important
at the local points of interest as at the outlets of large basins. Achieving locally relevant
streamflow (Bierkens et al., 2015a) is akin to, thus, possessing “eagle vision” in global
streamflow modeling – a capability that the current GHMs lack.

Table 3.1 provides insight into recent studies on large-scale streamflow applications,
highlighting three major characteristics of the state-of-the-art. Firstly, to circumvent
the catchment size issue, the majority of studies predominantly exclude small catch-
ments, commonly setting a cutoff at 10 000 km2. Second, none of the referenced studies
demonstrate scenarios where multiple streamflow stations fall within the same grid. This
absence is largely anticipated, given the substantial cutoff values applied to catchment
areas, inherently preventing such occurrences. Thirdly, the majority of cited works involve
analyses relying on streamflow simulations at a single routing resolution. Notably, Thober
et al. (2019) was among the first to conduct multiscale routing experiment at large-scale
(Europe) which was then followed by more recent works (Eilander et al., 2021; Aerts et al.,
2022; Polcher et al., 2023). Scalability of streamflow simulations in adopted modelling
schemes, however, hugely depends on the precision of catchment area modelled across
the spatial resolutions, thereby reiterating the connection back to the catchment size
problem.
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To minimize errors at the smallest of the catchments and, thus, achieve locally relevant
(streamflow) simulations, the global hydrological modeling community has seen recent
efforts in the direction of high resolution simulation, ushering the era of hyperresolution
modeling at global scale (Wood et al., 2011a; Bierkens et al., 2015a). However, computa-
tional cost remains as the major bottleneck in hyperresolution streamflow modeling, a fact
underscored by the constrained geographical coverage evident in the few applications
observed thus far (1↑x 1↑ block, USA (Chaney et al., 2021), and Kyushu, Japan (Hanasaki
et al., 2022)).

This begs the question: Is there an alternative to hyperresolution modeling for achieving
locally relevant streamflow simulations?

The answer to the above question lies in the manner in which river networks are
represented, a sub-field of hydrological modeling which has undergone a long and
evolving history of development (refer Figure 3.1). O’Callaghan and Mark (1984) coined
the concept of eight flow directions (D8) whereby all runoff from a grid has to flow to
one of it’s eight neighboring grids i.e., a grid-to-grid routing method. D8 formed the
basis for lateral flow directions in major large-scale routing models such as TRIP (Oki
and Sud, 1998), mRM (Samaniego et al., 2010; Kumar et al., 2010; Thober et al., 2019),
LISFLOOD (Burek et al., 2013), MOSART (Li et al., 2013), and is still the de-facto method
in many state-of-the-art applications (refer Table 3.1). There have been many versions
of the D8 over the years (Döll and Lehner (2002), double maximum method (Olivera
et al., 2002), cell outlet tracing with an area threshold (Reed, 2003; Paz et al., 2006),
effective area method (Yamazaki et al., 2008)), all of which can be traced back to one
of the three pioneering D8 methods: O’Donnell et al. (1999), Wang et al. (2000), and
Fekete et al. (2001). One of the common drawback of the D8 methods is the need for
manual correction wherever an automatic upscaling algorithm leads to breaking of the
upstream-downstream grid relationships, especially at the small catchments. The iterative
hydrography upscaling approach (Eilander et al., 2021) automatized this correction
through a 12-step iterative procedure. Yamazaki et al. (2009), however, argued such
correction weakened the connection between the upscaled river network map and the
original flow direction map, consequently nullifying the fine-resolution information. The
issue was circumvented by the introduction of methods such as the flexible location of
waterways method (Yamazaki et al., 2009) and the dominant river tracing method (Wu
et al., 2011) that deviated from the traditional D8, allowing non-neighboring grids to be
related as upstream-downstream, giving a “jumping” impression on the upscaled stream
network map (refer to Sect. 3.2.3 for further discussions).

Despite of the improvements, the major drawback of the grid-to-grid methods re-
mained – the least count of the modelled catchment area is the grid size. This lead to
vector based routing concepts and models like Routing Application for Parallel com-
putatIon of Discharge (RAPID) (David et al., 2011), unit catchment (Yamazaki et al.,
2013), HydroROUT (Lehner and Grill, 2013), HighlY Parallelizable and scalablE Routing
scheme (HYPERstream) (Piccolroaz et al., 2016), MizuRoute (Mizukami et al., 2016), and
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Fekete et al.
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Figure 3.1: Genealogy of stream network upscaling methods in hydrological modeling. DMM –
double maximum method, COTAT – cell outlet tracing with an area threshold, Effective
Area Method (EAM) – effective area method, FLOW – flexible location of waterways,
Dominant River Tracing (DRT) – dominant river tracing, IHU – iterative hydrography
upscaling, SCC – subgrid catchment contribution.

more recently, HydroBlocks (Chaney et al., 2021). These vector-to-vector methods rout
the gridded runoff from a vector shape to the downstream vector shape, thus, completely
preserving the basin shape and drainage area at the vector outlets. However, this meant
vector-to-vector methods had to decouple from the grid system of global hydrological or
land-surface models.

It became increasingly clear that tackling the catchment size issue and preserving grid
compatibility would necessitate the development of methods enabling multiple outflow
directions from a grid i.e., multiple downstream connectivity (Mateo et al., 2017). Wu
et al. (2011) highlighted such multiple flow direction algorithm could be the best way
to preserve subdominant rivers. Early attempts of multiple downstream connectivity
allocated flow fractions from a grid to downstream grids with the help of slope (Quinn
et al., 1991; Freeman, 1991) or aspect angle (Costa-Cabral and Burges, 1994). Guo et al.
(2004) proposed to use accumulated contribution area of outlet pixels on each of the four
edges of a grid to allocate flow fractions to the cardinal flow directions. Nguyen-Quang
et al. (2018) improved this approach, renamed the accumulated contribution area as
hydrological transfer units (HTUs), and check the HTUs for user defined threshold
for size and minimum count per grid. These (grid-)fraction-to-(grid-)fraction methods
have shown improved scalability and preservation of small catchments relative to the
grid-to-grid methods (Guo et al., 2004; Liang et al., 2004; Wen et al., 2012; Nguyen-Quang
et al., 2018; Polcher et al., 2023).
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Streamflow spatially and temporally integrates the range of meteorological variables
and basin characteristics (Burek and Smilovic, 2023), has an extensive history of mea-
surement, is the focal point of seminal hydrologic research over the years, making it
the fundamental variable in hydrological modeling. Consequently, it is imperative for
GHMs to possess flexibility in accurately predicting streamflow at predefined “points of
interest” in a range of model applications, such as seasonal flood forecasting at particular
sets of river reaches (Copernicus Climate Change mULti-model hYdrological SeaSonal
prEdictionS system (ULYSSES) project, https://www.ufz.de/index.php?en=47367) or eval-
uating the state of global water resources based on specific basin outlets (WMO, 2023a).
From this perspective, the current fraction-to-fraction methods still present two major
drawbacks. First, runoff partitioning is either system generated or user controlled, as
fractions per grid. This means the catchment areas at predefined locations are again
dependent on the resolution of the fractions, leading us back to the catchment size
problem. Vector-to-vector methods share this drawback since the vector outlets are also
system generated. Second, unnecessary partitioning of grids elsewhere in the domain by
employing four (Guo et al., 2004) or eight grid fractions (a minimum as recommended by
Nguyen-Quang et al. (2018)) substantially escalates the overall routing runtime.

Motivated by these gaps identified, we developed Subgrid Catchment Contribution
(SCC) technique which leverages subgrid catchment at predefined locations, such as
streamflow stations and dams, to partition grid runoff. SCC can be considered as a
user-driven enhancement of the D8 technique, enabling contiguous representation of
streamflow network schemes for a seamless streamflow predictions across a variety
of spatial resolutions and catchment sizes. In summary, the modeller has now the
possibility to provide as many points of interest as necessary to obtain accurate streamflow
simulations regardless of the modeling resolution of the hydrological model. SCC is
model agnostic and can be easily integrated in any routing algorithm. The user-driver
enhancement of the upscaled stream network ensures perfect catchment conservation
while minimizing grid partitioning, thereby, optimizing computational cost of routing for
any given set of points, at any model resolution. We test the following three hypotheses
in this study:

1. SCC preserves the catchment area at predefined points of interest across all model
resolutions.

2. Maintaining the catchment area results in improved and consistent model perfor-
mance across all resolutions and catchment sizes. Therefore, SCC effectively eliminates
the catchment size problem in gridded hydrological models.

3. By preserving the catchment area, it becomes possible to estimate streamflow at
multiple gauging stations or points of interest within a grid cell, regardless of the
resolution.

https://www.ufz.de/index.php?en=47367
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It is important to clarify that the error in the modeled catchment area comprises of
two components. The first component is the error in the catchment area as modeled
by the upscaling scheme at the model resolution, relative to the DEM-based catchment
area, which is the model input at the subgrid resolution. The second component is the
error in the DEM-based catchment area relative to the reference catchment area, such
as the reported values in the GRDC database. Numerous past studies have focused on
this second error component, leading to improved global-scale DEM products like MERIT
Hydro (Yamazaki et al., 2019) and the forthcoming HydroSHEDS version 2 (Warmedinger
et al., 2023). However, the focus of this study is on evaluating the ability of upscaling
schemes to model the input DEM-based catchment. Therefore, errors in the input DEM
itself fall outside the scope of this study.

We integrate SCC into the mesoscale Hydrologic Model (mHM) (Samaniego et al., 2010;
Kumar et al., 2013; Thober et al., 2019), as an enhancement to the default D8 (Döll
and Lehner, 2002) method. The user has the option to activate SCC and conserve the
catchment at input locations of interests such as streamflow gauges and dams. In this
study, mHM internally upscales a high resolution DEM (220 m) (level-0) and we validate
the resulting streamflow simulations globally, at 5 256 locations, across 25 km to 100 km
grids. Additionally, we conduct regional validation in the Rhine River Basin, examining
187 locations, across 1 km to 100 km grids. The catchment sizes of the locations span
from 1 km2 to 4 680 000 km2. It should be noted that the higher the resolution of the
level-0 DEM, the greater the accuracy of the catchment delineation, and the higher the
computational cost for the river network upscaling. This task however can be done a
single time and stored in the restarting file of mHM.

3.2 methods

3.2.1 mHM – the mesoscale Hydrological Model

The mHM (Samaniego et al., 2010; Kumar et al., 2013; Thober et al., 2019) is a fully
distributed hydrologic model developed to provide seamless prediction of hydrological
fluxes and storages at multiple spatial resolutions and locations (Samaniego et al., 2017)
across the globe (Zink et al., 2016; Thober et al., 2018; Rakovec et al., 2019a; Saha et al.,
2021). The model includes process representations for canopy interception, snow accu-
mulation and melt, soil moisture and evapotranspiration, surface and subsurface runoff
generations, deep percolation and baseflow, flood routing along with a river network,
and reservoirs and lakes. mHM uses the Multiscale Parameterization Regionalization
technique (Samaniego et al., 2010) which includes the regionalization and spatial scaling
approaches to generate a set of regionalized model parameter fields at required model-
ing resolutions, while explicitly accounting for the sub-grid variability of the fine-scale
information on terrain, soil, vegetation, and other landscape properties (Kumar et al.,
2013; Rakovec et al., 2016a; Samaniego et al., 2017).
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mHM has four different resolutions for data and simulations (refer B.2). The subgrid data
and the meteorological data are represented by ω0 and ω2, respectively. The two remaining
model resolutions, ω1 and ω11, are hydrological and routing resolutions, respectively. ω1
and ω11 are user-prescribed where ω11 could be set greater or lesser than ω1 depending
on whether we want to reduce runtime resulting from streamflow routing or enhance
the intricacy of streamflow representation. mHM uses the ω1 cell as a primary hydrologic
unit for water balance. Prior to this study, mHM considered the ω11 cells as the primary
routing unit for streamflow. In this previous approach, ω0 stream network was upscaled
to ω11 by the multiscale routing model, mRM (Samaniego et al., 2010; Thober et al., 2019)
following the nomenclature of the D8 method (O’Callaghan and Mark, 1984), employing
the method of Döll and Lehner (2002) i.e., the flow direction at ω11 is equal to the flow
direction in the underlying ω0 with the highest flow accumulation (Thober et al., 2019).

3.2.2 SCC – a novel stream network upscaling scheme

In this study we equip the multiscale Routing Model (mRM), the routing module of mHM,
with the newly developed Subgrid Catchment Contribution (SCC) upscaling scheme. SCC
was initially tested in Shrestha et al. (2024) for delineating water bodies and estimating
the inflow. Figure 3.2 is a schematic representation showing the difference between SCC
and the D8. The figure includes two points of interest, π1 and π2, and their corresponding
catchments at subgrid (ω0) level. For simplicity, here we select four grids, G1 to G4, as
representation of the modeling grid system, G, at ω11 resolution.

For the D8, the stream network, N , is comprised of nodes N and links L as depicted in
Figure 3.2. Each ω11 grid can only have a single node located at its centre. Furthermore, a
given link routes the runoff generated within a grid towards its neighboring cell, which
is also represented by a single node. The concentration time within a grid is neglected
considering that the resolution of the cells is nowadays less than 100 km (this a common
assumption in D8 implementations). It should be noted that the routing algorithm need to
adjust the routing time for the corresponding spatial resolution (see Thober et al. (2019)).
The direction of the link goes in the direction of the edge at which the maximum flow
accumulation is at the ω0 level. The catchments at the points of interest π1 and π2 do not
have any effect on N for the D8 scheme.

In contrast, the SCC allows a ω11 grid to have more than one node based on the
catchments at π1 and π2. For instance, grid G2 has three nodes, two corresponding to the
points π1 and π2 and one that is not flowing towards any of the input points denoted
here by π0. Each of these nodes, ε1

2, ε2
2, and ε0

2, route water individually to neighboring
node. Similar to the D8, the links ϱ1

1, ϱ2
3, and ϱ0

5 follow the edge containing the maximum
flow accumulation at ω0 level. In this sense, SCC can be considered as an improved version
of the D8, where the nodes N are split into ε s and links L are split into ϱ s, based on the
catchments at π s, to form the stream network N . In general, εk

i denotes a split node at
grid i originated by the point of interest k. Likewise for ϱk

l , l indicates a running index
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Figure 3.2: Schematic representation illustrating the differences between the D8 and SCC stream
network upscaling schemes. π - user-provided points of interest, Ω - (fraction of)
catchments at π s, G - model grid structure, ω0 - subgrid resolution, ω11 - model
resolution, N - upscaled (model) stream network comprising of nodes and links.
N & L - nodes and links for D8, ε & ϱ - nodes and links for SCC. p - number of points
of interest.

for the network and k is the point of interest that generates the link. It should be noted
that in the SCC scheme, all points of interest πk, except for π0, are user-provided.

It is noteworthy that the nodes at the grids contributing solely to π0 (e.g., G4) remain
intact with SCC, and behave exactly as it would with D8. We would also like to point out
that the following two relationship always holds true for SCC:

(
Ωk ↘ G

)
!
=

n

∑
i=1

Ωk
i (3.1)

Gi
!
=

m⋃

k=0

{
Ωk

i

}
, (3.2)

where, i is the index for each model grid, k is the index for each user-provided point of
interest. Ωk is the catchment shape at πk, and Ωk

i is the fraction of this catchment shape
at grid i. G denotes the overall modeling domain, and Gi denotes a given individual grid
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i. m is the number of nodes in Gi, which could be one or more, and n is the total number
of model grids in G. Relationship 3.1 ensures the intersection of the catchment shape
of πk and model grid to be equal to the sum of all grid fractions corresponding to πk,
across the model domain. Relationship 3.2 ensures the area of each ω11 grid to be equal
to the union (sum) of all fractions within a given grid i.

SCC internally upscales the subgrid (ω0) stream network to the routing resolution (ω11)
specified by the user. We illustrate the procedure with a real world example shown in
Figure 3.3. This example domain consists of four points of interest consisting in four
streamflow gauge stations, D1 to D4. Using ω11 as the routing unit leads to several
challenges in this domain. Firstly, the points D1, and D3 fall under the same ω11 grid,
leading to both being assigned the same streamflow value (refer to panel e). Secondly,
the catchment at point D4 is smaller than a single ω11 grid, resulting in an overestimated
outflow at D4. Lastly, the inherent irregular shapes of all catchments deviate significantly
from regular grids, introducing varying degrees of error in the estimated catchment area.
By permitting routing units to be fractions of the ω11 grid (refer to panel h), SCC ensures
the preservation of catchment drainage areas (at the prescribed locations), resolving the
aforementioned challenges. This refined approach results in individual outflows being
accurately issued at points D1 and D3. The outflow at small catchments such as D4 is
generated from an unbiased drainage area, mitigating overestimation. Furthermore, all
irregular shapes of the catchments are preserved, ensuring the correct contribution of the
drainage area to outflows at each streamflow gauge.

Generally, SCC upscales the ω0 stream network as follows. The first step is to produce a
map (M→) of catchments delineated at all the points of interest (Figure 3.3a-d). Special care
is taken to preserve smaller upstream catchments in this map. It’s worth highlighting that
the correct location of the points of interest on the ω0 flow accumulaiton, Fa, is crucial for
accurate catchment delineation. To ensure this alignment, we employ Basinex (Developers,
2022) (see the Software Availability section) to associate the station locations to the nearest
stream that would give the least error in the recorded catchment area. The second step
includes initialization of the routing units denoted by the nodes depicted in Figure 3.3e-f.
The node geometries are derived from the features resulting from the spatial union of ω11
grid and M→. Hence, each sub-catchment, i.e., the fraction of catchment at each grid, is
established as a node geometry. The final step finds the upstream-downstream pairs of
nodes and connects them in the direction of flow (Figure 3.3g-h). These upscaled flow
direction forms the upscaled stream network of the domain. The detailed procedure for
these three steps are provided by the algorithms in B.3. It should be noted that for a grid
cell where no point of interest is prescribed (see panel h top left cell), the standard mRM
(D8) procedure is still applied as was originally in mHM (Samaniego et al., 2010) and in
mRM (Thober et al., 2019) as stand alone routing algorithm.
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Figure 3.3: Example showing upscaling of subgrid streamflow (skyblue lines) to model streamflow
network (black arrows) using SCC. (a-d) delineation of catchment at GRDC stations and
merging of the catchments in the order of subgrid flow accumulation at the stations.
(e) overlaying of the map of catchments, M→, with the ω11 grid. (f) establishing of
nodes shapes with node ID shown as labels. (g) identification of subgrid outlets at
each node shape. (h) upscaled streamflow shown as flow direction arrows joining
the upstream and downstream nodes. Note: the centroids represent nodes for linking
the upscaled flow direction. The centroids of nodes with irregular shapes could fall
outside the node geometry.
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Once the upscaled stream network is ready, mRM routes the streamflow through the
links connecting the subgrid outlets of the upstream and downstream nodes. The routing
scheme employed could be the Muskingum-Cunge or the kinematic wave equation. In
both cases, there link parameters are regionalized as explained in (Thober et al., 2019).
The step-by-step algorithm for routing streamflow is provided in B.4.

3.2.3 Visualizing the advantages of the SCC scheme in a real case

Figure 3.4 compares the stream network upscaled to 1↑ using D8, Flexible LOcation of
Waterways (FLOW) (Yamazaki et al., 2009; Yamazaki et al., 2013), and SCC against the
base map of subgrid stream network, at the Hengduan Mountain region. Both FLOW and
SCC are seen to preserve the subgrid river network e.g., the Mekong starts from pixel
A1 and ends at pixel J6. At 1↑ routing resolution, D8 incorrectly drains the upstream
areas of Mekong and Salaween to the Yangtze. Similarly, both FLOW and D8 incorrectly
allocate all the runoff generated at pixel E4 to the Salaween river, at the given resolution.
A notable aesthetic issue in visualisation with FLOW is the unnatural “jumping” artifact.
For example, FLOW requires external specification on the stream network to jump from
pixel D4, over neighbouring grids, to reach pixel G5 and preserve the continuity of the
Mekong river in the model. In contrast, SCC stands out and distributes the streamflow
from the E4 pixel to the Irrawady, Salaween, Mekong and Yangtze rivers alongside
the corresponding routed streamflow from upstream. By doing so, SCC automatically
delineates and conserves the subgrid catchments of Mekong in the D4, E4, F4, and F5
pixels as individual nodes, connecting each node to the corresponding downstream node
to finally arrive at pixel G5. Hence, SCC produces a more realistic catchment-continuum
over the neighboring grids – a capability not attainable with FLOW.

3.2.4 Data and modeling procedure

The mHM model input includes subgrid data, meteorological forcings, and the streamflow
data. All the subgrid input were pre-processed at ω0 = 1/512↑ resolution. This includes
the Global Multi-resolution Terrain Elevation Data (GMTED) (USGS and NGA, 2018) as the
DEM. The ω0 flow direction (Fd), flow accumulation (Fa), and other DEM derivatives were
based on GMTED. We use the SoilGrids (ISRIC - World Soil Information, 2017) soil maps
and Global Lithological Map (GLiM) (Hartmann and Moosdorf, 2012) geological maps to
derive the subsurface properties. The land cover is based on GlobCover (European Space
Agency (ESA), Universit Catholique de Louvain, 2009) with monthly leaf area index
climatology from Global Inventory Modeling and Mapping Studies (GIMMS) (Tucker
et al., 2004). The model is forced with daily ERA5 (Copernicus Climate Change Service,
2017) meteorological forcings at ω2 = 1/4↑. The daily streamflow observation time series
are taken from the Global River Discharge Centre (GRDC)(http://www.bafg.de/GRDC/),

http://www.bafg.de/GRDC/
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Figure 3.4: Hengduan Mountains at one degree resolution, with the Irrawady, Salaween, Mekong,
and Yangtze rivers running parallel to each other. Comparison of (a) the base
map subgrid stream network (source: HydroRIVERS, https://www.hydrosheds.org/
products/hydrorivers downloaded on 27.08.2023 ©HydroSHEDS), against the stream
network upscaled by the (b) D8, (c) FLOW, and (d) SCC schemes. (e) Zoom-in of the pixel
E4 showing the multiple outflowing links using SCC. The stream network upscaled
using FLOW is an adapted version of Figure 6 in Yamazaki et al. (2009).

and Centro de Estudios y Experimentación de Obras Públicas (CEDEX). The records of the
station coordinates and catchment area are also taken from the corresponding database.

The hydrologic model parameters are set to default values, which are previously
obtained from Kumar et al. (2013). We evaluate the performance of mHM using the
streamflow observations available between 1961 and 2020, while keeping the preceding

https://www.hydrosheds.org/products/hydrorivers
https://www.hydrosheds.org/products/hydrorivers
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ten years as spin up to stabilize relevant states of mHM (e.g., root-zone soil moisture). The
availability of daily streamflow data is presented in Figure B.1a.

3.2.5 Modeling domain and experiment design

This paper presents two sets of experiments. First, the regional scale experiment that
involves testing the model at seven different resolutions of 1/64↑, 1/32↑, 1/16↑, 1/8↑,
1/4↑, 1/2↑, and 1↑. For simplicity, from this point onwards, these resolution will be
referred to as 1 km, 3 km, 6 km, 12 km, 25 km, 50 km, 100 km, respectively. This
experiment focused on the Rhine River basin and incorporated 187 (internal) streamflow
gauging stations (refer to Figure 3.5b). The second experiment focused on the global
scale analysis that is conducted at resolutions of 25 km, 50 km, and 100 km. This
encompasses 5 256 streamflow stations distributed across 62 model domains defined
by the HydroBASINS (Lehner and Grill, 2013) level 2 classification (see Figure 3.5a).
This approach enables the examination of the effects of SCC both globally and at a fine
resolution of 1 km.

The choice of HydroBASINS level 2 classification for the global scale setup was
deliberate, ensuring computational feasibility for upscaling the 220 m subgrid stream
network to a 25 km model resolution within the largest domain. The Rhine basin, on the
other hand, contains a wide range of catchment sizes at provided streamflow stations
(1 km2to over 150 000 km2). Some of the stations are in close proximity to each other
which helps to test SCC’s ability to resolve streamflow at multiple stations within a grid.
Further more, the data availability on average is 47 years, making the Rhine basin an apt
case for the regional scale experiment.

The streamflow stations included in this study meet the criteria of having daily
measurements for a minimum span of five years since 1961 (see Figure B.1a). For
approximately 90% of these stations, the DEM based catchment area (Ad) is within ±
10% of the GRDC or CEDEX reference values (Ar) (see Figure B.1b). Nevertheless, as our
primary focus is on evaluating the model’s ability to preserve subgrid details of the DEM
and the error in the DEM is merely a side note. In other words, we use the DEM catchment
area (Ad) as the reference for evaluating the modelled area (Â).

To examine the first hypothesis – that “SCC preserves the catchment area at predefined
points of interest across all model resolutions” – we conduct a comparative analysis
between the modeled catchment areas and the DEM based catchment areas within the
context of the global-scale experiment. We compare the results against the reported results
of the state-of-the-art stream network upscaling schemes including FLOW (Yamazaki et al.,
2009; Yamazaki et al., 2013) and IHU (Eilander et al., 2021).

Testing the first part of the second hypothesis – “Maintaining the catchment area
results in improved and consistent model performance across all resolutions” – we check
the hydrographs at selected stations of the regional scale experiment to see the effect of
scalability across 1 km to 100 km. Finally, we inspect the CDFs of performance metrics
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Figure 3.5: a) The global scale experiment domain comprising of 62 hydrological domains and
5 256 streamflow stations. b) The regional scale experiment domain of the Rhine river
basin consisting of 187 streamflow stations.

for consistency of streamflow simulations, across model resolutions, for both the global
and the regional scale setup.

Addressing the second part of the second hypothesis – “Maintaining the catchment
area results in improved and consistent model performance across all catchment sizes i.e.,
SCC effectively eliminates the catchment size problem in gridded hydrological models” –
involves assessing the consistency in the model performance across the stations, regardless
of the geographical location, especially whether model performance is compromised at
small catchments. We evaluate the hydrographs at selected stations with catchment area
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ranging from 1 km2to over 100 000 km2. Subsequently, we analyze model performance
globally to elucidate the relationship between performance, catchment size, and the
method of stream network upscaling. Special attention is given to the model performance
at small catchments (<1 000 km2).

For the investigation of the third hypothesis – “By preserving the catchment area, it
becomes possible to estimate streamflow at multiple gauging stations or points of interest
within a grid cell, regardless of the resolution” – we employ the regional scale 25 km
setup focused on the Rhine basin and analyze the mean annual streamflow simulated at
stations that are situated within the same modeling grid.

3.3 results and discussion

3.3.1 Solving the “catchment size problem”

SCC emerges as the most successful method in accurately representing catchment sizes,
demonstrating its successful application, regardless of model resolution. The scatterplots
in Figure 3.6, panels a to f , depict the agreement between the modeled catchment area
(Â) and the DEM based catchment area (Ad), the latter being the reference. The first three
subplots represent a global comparison taken from Yamazaki et al. (2009), utilizing three
stream network upscaling methods: FLOW (Yamazaki et al., 2009), Döll and Lehner (2002),
and Double Maximum Method (Olivera et al., 2002), at a 50 km model resolution. Panels
d, e, and f correspond to this study and compare D8 and SCC globally at resolutions of 25
km, 50 km, and 100 km, respectively. FLOW exhibits satisfactory agreement only in the
catchments larger than 100 000 km2, while the performance of the remaining methods,
including D8, shows poorer alignment between Ad and Â. Panels d to f , also highlight
how majority of the Â for D8 (the default in mHM) is constrained by the grid size limit
of the modeling resolution (ω11 – the area of one grid pixel at the modelling resolution).
In contrast, SCC proves to be independent of the grid boundary (blue dots along the 1:1
line). In fact, the error in the estimation of the basin area by SCC is only given by the
area of the DEM resolution, i.e., ±ω2

0 m2. Consequently, it is almost negligible for most
practical applications. Interestingly, for some catchments, the error with D8 is quite low
in panels d to f , even below the grid limit. This is likely due to chance, particularly if
the catchment is situated at the boundary of the domain such that the domain mask
favorably clips the grid resulting in improved Â. Figure B.6 shows similar plots, but with
the area values reported in the GRDC/CEDEX database (Ar) used as the reference instead.
Overall, inaccuracies from the upscaling scheme, such as the D8 method, can be orders of
magnitude higher than the error in the DEM if not properly addressed.

Panel g and h present boxplots illustrating the error in Â. Panel g, sourced from
Eilander et al. (2021), compares the Double Maximum Method (DMM), Effective Area
Method (EAM), and Iterative Hydrography Upscaling (IHU) methods for upscaling stream
networks across approximately 1 km, 12 km, and 25 km model resolutions, globally. The
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boxplots in panel h are outcomes of this study, comparing SCC and D8 across 25 km, 50 km,
and 100 km resolutions globally. SCC is again the most consistent method, demonstrating
absolute scalability in modeling Ad. Among the other methods, IHU effectively conserves
Ad at 1 km resolution but struggles to maintain this level of performance at coarser
resolutions.

Similar demonstration of the catchment size problem has been included in the past
literature, even before Yamazaki et al. (2011) and Eilander et al. (2021) (Fekete et al., 2001;
Reed, 2003; Hanasaki et al., 2006; Yamazaki et al., 2008). Despite of improvements, the
problem had not been eradicated by the state-of-the-art as seen in Figure 3.6. Vector-based
methods also lead to errors in Â at local point (of interest), as the catchment areas and
outlets are generated by the system. SCC is the first stream network upscaling method
capable of achieving absolute conservation and scalability of Â, for systems with pre-
decided points of interests. SCC also makes it possible to recalculate the discharge at other,
originally unspecified points of interest. In this case, the gridded simulated discharge
only needs to be post-processed with mRM, without the need for time-consuming start-up,
warm-up and calibration procedures.

3.3.2 Error and performance regimes for D8

The suitability of D8 is highly conditional and dependent on the combination of the model
resolution size (Ag) and the DEM based catchment size (Ad), as evident in Figure 3.6d-h.
Granted SCC’s superiority over the D8, the latter is still seen as the go-to method for
stream network upscaling in the latest large-scale streamflow modeling studies (see
Table 3.1). Therefore, it is important to examine the conditions under which D8 is suitable
(or unsuitable) for modeling purposes.

The shapes of the points in Figure 3.7 represent error in modelled catchment area (εA)
at the streamflow stations of the regional experiment, across the modelled resolutions,
using D8. Here, εA is calculated as the absolute difference between Ad and the modeled
catchment area Â. We utilize the results from the regional experiment owing to the wider
range of model resolutions included. Three distinct error regimes appear based on the
values of εA. The large error regime (upper left) for D8 is bounded by the 1:1 line to
its right and includes catchments smaller than the grid limit or grid size. In this error
regime, large εA is virtually guaranteed. We delineate the small error regime (bottom
right) for the D8 such that εA is limited to 10% at 80% of the catchments, at a particular
model resolution. It is worth noting that the maximum width of the transition regime is
about one and a half order of magnitude of Ad. Thus, the gist of this graph can be put
into a thumb rule as:

Ad





< 101.5Ag ≃ 30Ag, D8 small error regime

> Ag, D8 large error regime,
(3.3)
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Figure 3.6: Scatterplots of input catchment area on x-axis and modeled catchment area on y-
axis evaluating performance of (a) FLOW, (b) Döll and Lehner (2002), and (c) Dou-
ble Maximum Method at 50 km model resolution (source: Figure 8 in Yamazaki
et al. (2009)). Similar scatterplots with DEM based catchment area (Ad) on x-axis and
modeled catchment area (Â) on y-axis evaluating SCC vs D8 (this study) at model
resolutions of (d) 25 km, (e) 50 km, and (f) 100 km corresponding to the 5 256 stream-
flow stations worldwide. The goodness of fit of Â on Ad is given by the Model
Efficiency (ME)(dimensionless) and Root Mean Square Error (RMSE) ( km2) normalized
using standard deviation. The grid limit represents the area of the model grid (ω11)
and is estimated at the equator. Boxplots showing error in the upscaled catchment
area using (g) DMM, EAM, and IHU schemes across individual model grids, globally
(source: Figure 4 in Eilander et al. (2021)), (h) SCC and D8 schemes across the 5 256
streamflow stations (this study). The kilometers approximation is added in panel g for
comparability. The box represents the 25th–75th percentiles, the whiskers depict the
1st–99th percentiles, the diamonds depict the 0.1th–99.9th percentiles. Additionally, the
dots represent the minimum and maximum errors in panel g.
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Figure 3.8: (a) Performance improvement regimes, on replacement of D8 with SCC, as a function of
the DEM based catchment area (Ad) and the model resolution size (Ag). The dashed line
is the 1:1 relationship i.e., the grid size limit. The improvement regimes are developed
based on ∆Kling-Gupta Efficiency (KGE) at the data points. (b) Scatterplot between
performance gain (∆KGE) using SCC instead of D8, and the catchment area error (εA)
while using D8. The bivariate colors represent three groups each of the DEM based
catchment size (Ad) and the model resolution (Ag). Both (a) and (b) belong to the
regional experiment (187 stations x 7 model resolutions).
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Figure 3.8a shows the improvement regimes for replacing D8 by SCC in the model
performance for streamflow (Q) simulations. We use ∆KGE (refer B.5) of 0.1 and 0.5 as the
thresholds to quantify the significance of performance improvement. These performance
improvement regimes are virtually identical to the error regimes in Figure 3.7, which
implies the Equation 3.3 is valid for the performance improvement regimes as well. This
correlation is further explored in the scatterplot of Figure 3.8b, which reveals ∆KGE to be
linearly correlated to εA as long as the error in catchment area estimated by D8 is larger
than 1%. The bivariate colors, which represent the combination of sizes of catchment
area and model resolution, spotlights larger model improvements with coarser model
resolution, for each catchment size. The small catchments at fine resolution (the brown
cluster) is seen to depart from the otherwise linear relationship, with large performance
gains with SCC even if D8 introduced small εA (around 0.1%). This could be attributable to
the fact that, for very small catchments, in addition to the size, the shape of the catchment
plays a significant role in model performance. For instance, a 18 km2catchment can be
modelled by D8 with two 3 km pixels resulting in a small value for εA and yet there could
be drastic performance gains with SCC, simply due to the accuracy in catchment shape
and the resulting routing.

To the best of our knowledge, our analyses on the applicability of D8 is first of its
kind. These outcomes are evidently useful for modellers, employing the D8 method,
to determine the appropriate spatial resolution using the regime maps and the rule of
thumb derived herein.

3.3.3 Improved scalability of streamflow simulations

The condensed view of model performance (KGE and its components) from the regional
experiment is showcased in Figure 3.9. The near conformity of the CDFs for SCC across a
range of spatial resolutions (1 km to 100 km) highlights its ability to produce scalable
Q. It can be stated that the absolute scalability previously demonstrated by SCC in
modeling the DEM based catchment (Ad) extends to the scalability of Q simulations. This
remarkable streamflow scalability results in nine out of 10 stations exceeding the mean
flow benchmark, KGE = -0.41 (Knoben et al., 2019), across all model resolutions. In contrast,
D8 barely manages to outperform the mean flow benchmark at 50% of the stations at
12 km model resolution. Moreover, the significant nonconformity of the CDFs for D8
exhibits its disability to produce scalable Q. Analysis of the KGE components reveals that
the significant gain in the model performance primarily stems from improvements in the
variability (α) and the mean (β), while the correlation (r) is the least influenced. This is
plausible since erroneous catchment area (Â) might still produce strong Q correlation but
would struggle to accurately capture the variability and the mean. Similar conclusions
can be drawn from Figure B.4 in B.7, corresponding to the global experiment, where
SCC enables eight out of 10 stations to outperform the mean flow benchmark, across 25
km to 100 km model resolutions. Figure B.4 of B.7 shows the scalability of hydrograph
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simulations with SCC at three streamflow stations from the regional experiment, across
1 km to 100 km model resolutions. Overall, the results underscores the significance of
scalable process representation in hydrological modeling, a principle that SCC adheres to.

Sutanudjaja et al. (2018) compared the streamflow at 3 597 GRDC stations globally,
across 5→ and 30→ model resolutions. They employed D8 upscaled stream network to
obtain median KGE difference of ≃0.15, across the two resolutions, at gauges below
1000 m elevation and ≃0.45 at gauges above 1000 m. Aerts et al. (2022) tested the D8
across 454 stations of the USA, at model resolutions of 3 km, 1 km, and 200 m. Surprisingly,
even with a hyperresolution model of 200 m, 18% of the stations failed to surpass the
mean flow benchmark using the D8 method, which indicates potential deficiencies in
process representation. Eilander et al. (2021) shows significant reduction in median errors
in flood peak magnitude timing using IHU (1.8%, 2 h) relative to EAM (2.8%, 3 h) and
DMM (14.2%, 5 h), using model resolutions of 30→→, 15→, and 30→. Polcher et al. (2023)
partitioned runoff from grids of varying resolutions (11 km, 20 km, and 0.25↑) into up
to 55 hydrological transfer units (HTUs), per grid, for downstream routing. While their
approach demonstrated improved scalability in evaluating streamflow at 35 locations
compared to earlier studies, there is tremendous escalation in computational load from
this approach. Other land-surface or hydrological models could, thus, benefit from the
scalability provided by SCC, which is integrated into mRM. Such coupling exercises have
been successfully carried out in the past by Wanders et al. (2019) and in the Copernicus
Climate Chante ULYSSES project where mRM has been coupled to route the simulated
runoff from PCR-GLOBWB, VIC, Noah-MP, JULES, and HTESSEL.

3.3.4 Locally relevant streamflow simulations

The “catchment size problem” inherent in global hydrological models restricts their
application primarily to large catchments in continental-scale modeling (see Table 3.1).
Figure 3.10 illustrates the hydrograph comparison at the outlet of six catchments, from
the 6 km regional experiment. The catchments are selected such that each successive
catchment is approximately one order of magnitude larger than the previous one. D8
produces large discrepancies between Â and Ad on panels a and b i.e., catchments which
are smaller than the grid limit for 6 km model resolution. These discrepancies in catch-
ment area are translated to simulated streamflow, posing challenges in sustaining model
performance across different catchment sizes while utilizing D8. On the contrary, SCC is
seen to generate reasonable hydrograph match, at all locations, from large catchments
exceeding 100 000 km2 in panel f , down to small catchments spanning just 1 km2 in panel
a. Interestingly, panels c and d display superior KGE values for D8 compared to SCC. This
is evidently due to the overestimation of Ad compensating for the underestimation of
streamflow, exemplifying a common scenario of achieving right results for the wrong reasons.
A similar occurrence is observed in Aerts et al. (2022) where three hydrographs showed
the best performance (KGE) with three different model resolutions (3 km, 1 km, 200 m),
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Figure 3.10: Hydrographs resulting from the upscaling of subgrid stream network to 6 km
employing SCC and D8. The catchment areas of the selected locations span over six
orders of magnitude and are taken from the regional experiment. (a) Rappengraben
at Wasen, Switzerland (CH), (b) Ferrerabach at Trun, CH, (c) Bregenzer Ach at Au,
Austria (AT), (d) Moselle River at Epinal, France (FR), (e) Main at Trunstadt, Germany
(DE), and (f) Rhine River at Lobith, The Netherlands (NL). Each graph displays the
recorded catchment area (Ar) and the DEM based catchment area (Ad). The modeled
(upscaled) catchment area (Â) and the KGE values for SCC and D8 are provided next
to the corresponding legends. Note: The KGE values correspond to the full evaluation
period (1961 – 2020) while the graph viewport zooms to the years 1981 – 1982.



60 integrating small catchments in global hydrological models

using the D8. Nevertheless, the study did not investigate the potential association between
these results and inaccuracies in the modeled catchment area.

Figure 3.11 shows the spatial distribution of model performance (KGE) for the global
experiment, for 25 km model resolution. The SCC map (panel a) in comparison to the D8
map (panel b) has darker shades of blue as well as greater number of small catchments
outperformaing the mean flow benchmark (87% with SCC compared to 24% with D8).
This is more evident in the Western and the Central Europe (zoom-in insets), where a
large number of small catchments, underperforming with D8 (light green in panel b),
improve and exceed the mean flow benchmark with SCC (shades of blue in panel a).

The CDFs in Figure 3.11 summarize the model performance, categorizing catchments
as either small or large using a threshold area of 1 000 km2. The threshold split the total
gauges into 2168 (41%) small and 3088 (59%) large catchments. The global Cummulative
Distribution Function (CDF) illustrates a notable improvement in KGE for small catchments,
with a 63% increase in small catchments surpassing the meanflow benchmark upon
transitioning from D8 to SCC. This significantly narrows the performance gap between
small and large catchments, reducing the difference in meanflow exceedance from
nearly 40% with D8 to just 6% with SCC. Individual CDFs across the continents show
similar reductions in performance disparities between the catchment sizes. These findings
underscore two key points: Firstly, streamflow at small catchments are disproportionately
affected by errors stemming from catchment area upscaling with D8. Secondly, SCC
effectively mitigates this issue, enabling distributed models like mHM, to produce locally
relevant streamflow at catchments as small as 1 km2, in a global-scale setup.

Previous studies, employing the D8, have reported variations in model performance
across catchment size groups. Sutanudjaja et al. (2018) found performance disparity
where the fraction of small catchments decreased with KGE. Burek et al. (2020) also
noted that better performance was predominantly evident for larger basins in their study,
which encompassed 1366 GRDC stations. The results from Harrigan et al. (2020) also
concur, where they observed median KGE skill score to be better than 0.5 for catchments
larger than 10 000 km2and 0.21 for catchments smaller than 2 000 km2. Interestingly, the
GloFAS observation database, used in their analysis, contains only 7% of stations with
catchments smaller than 10 000 km2, contrasting with our study where 77% of the 5 256
locations fall into this category (refer Figure B.1c). An alternative method to SCC involves
manually employing a mask for each catchment, a technique already available in mHM
and demonstrated in Thober et al. (2019). The study managed to achieve acceptable
performance for catchments as small as 100 km2 using the multi-domain basin setup.
The study also includes a brief analysis of catchment area errors using a single-domain
setup, though limited to catchments larger than 100 000 km2. However, the study did
not demonstrate any enhanced scalability for multiple stations in one catchment, as is
frequently the case for large scale applications. In contrast to these studies using D8,
Polcher et al. (2023) employed HTUs and demonstrated performance invariance across
catchment size comparable to this study. Despite its limited inclusiveness, analyzing
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(a) Stream network upscaled with SCC

(b) Stream network upscaled with D8
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Figure 3.11: Comparison of daily model performance at 5 256 streamflow station catchments,
worldwide, with subgrid stream networks upscaled to 25 km using (a) SCC, and (b)
D8 methods. Global and continent-wise CDFs depict the KGE distribution of small
(< 1 000 km2), and large (> 1 000 km2) catchments. The light green fill indicate sub
meanflow benchmark (KGE = -0.41) performance.
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only 35 catchments, all surpassing 2 500 km2, the study mirrors the findings of our study
and underscores the effectiveness of multiple downstream connectivity methods (e.g.,
SCC and HTUs) over single downstream connectivity methods (e.g., D8) for ensuring
geographic performance consistency.

Continental-scale (or single-domain) setups are pivotal in global hydrological modeling
for several reasons. Firstly, they significantly reduce computational burden primarily by
avoiding redundancies in upstream catchments i.e., eliminating the need to simulate the
same catchment areas multiple times, as would be the case with multi-domain approach
at each basin outlet location. This efficiency translates to reduced storage requirements
and simplified output management – a critical consideration in large-scale hydrological
modeling. Moreover, employing single-domain promotes seamless analyses compared to
managing multiple, geographically overlapping setups.

Despite of these advantages, it would still be insightful to know the computational
cost of SCC and break-evens, if any, with respect to single-domain D8 (no catchment
conservation) as well as the multi-domain D8 (catchment conservation) as shown in
Figure 3.12. Here, the computational nodes are calculated for the three routing approaches
by incrementally adding 20 streamflow stations in each run, in the Rhine. In order to
mitigate the influence of the ordering of the stations, we applied ten iterations for
shuffling the station order, resulting in the ensemble spread. All the iterations converge
at n = 187 where the ensemble becomes a point. The ensemble spread is not observed for
single-domain D8 as the number of nodes is not affected by the number of the stations in
the model for the method.

SCC is expensive than the single-domain D8 at all times (refer Figure 3.12). This is
expected as SCC is also a single-domain approach and, with increase in points of interest,
the SCC will result in additional computational nodes than the single-domain D8. The
computational expense increases with the number of stations, but the range of variability
reduces drastically as the model resolution increases (100 km to 1 km). In contrast, the
multi-scale D8 retains this variability at all model resolutions; around one and half order
of magnitude on average. Considering a conservative break-even by comparing the
ensemble minimum of multi-domain D8 against the ensemble maximum of the SCC,
a break-even is observed roughly around 60 stations at all model resolutions. Thus,
for the domain size of the Rhine and the given streamflow stations, SCC would be
the more efficient choice to conserve catchment for n ↗ 60. The maximum contrast in
computational size between SCC and the multi-domain D8 occurs at n = 187 at 1 km
model setup, where SCC is approximately five times faster. Notably, the multi-domain D8
is more efficient than single-domain D8 for a small number of points of interest, especially
at fine resolutions. This is because the multi-domain D8 requires minimum bounding
domain extent for each catchment, the sum of which can be smaller than the overall
domain for small number of catchment outlets. However, this benefit vanishes as soon as
the number of points of interest increases due to redundancies in modelled area.
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Figure 3.12: Comparison of computational cost (x-axis) among SCC, multi-domain D8, and single-
domain D8, showing variation with number of streamflow stations (y-axis) and
model resolution (variation in shades) in the regional experiment or The Rhine. The
ensemble spread and median (dotted line) for SCC and multi-domain D8 are derived
from ten iterations for shuffling the station order. A bin size of 20 stations was applied
for the calculation.

3.3.5 Resolving multiple stations in a model grid

Large-scale hydrological models often encounter the issue of multiple streamflow stations
within a single grid cell. Figure 3.13 shows the map of the Rhine basin, the 187 streamflow
stations, and their corresponding catchments. At 25 km modeling resolution, there are
several grids with multiple stations. The bar plots show the mean streamflow Q̄ at
selected grids.

In grid C4, one station each is positioned on the major stream (station 1) and a minor
stream (station 2). D8 simulates the entire grid as a single node, following the main
stream’s path. However, this approach leads to a significant overestimation of Q̄ for
station 2 due to its smaller catchment area compared to that of the major stream. SCC, by
adhering to catchment conservation principles, offers more realistic estimates of Q̄.

Similarly, grid F7 accommodates two stations each on major (stations 1 and 2) and
minor streams (stations 3 and 4). D8’s catchment area error becomes evident at stations
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Figure 3.13: Map of the Rhine basin showing 187 stations (red dots), their corresponding catch-
ments, and the 25 km modeling grid. The bar plots, beneath the zoom-in insets
for selected grids (C4, F7, J6, and J9), show the mean streamflow values (Q̄) for
observations, SCC, and D8 across stations falling in the grids.

3 and 4, where only SCC produces meaningful Q̄ estimates. Likewise, in grid J6, D8
substantially overestimates Q̄ at stations 2, 3, 4, and 5, all located on minor streams,
unlike SCC.

In J9, containing 10 stations, the major stream briefly flows in and loops back to J10.
The D8 streamflow simulation, which is based on the catchment area of the major stream,
significantly overestimates Q̄ at all stations. Since none of the stations are situated directly
on the main stream, even the largest catchment among them receives a positive bias
of over ten-fold. In summary, SCC effectively handles varying complexities of multiple
stations within grid conditions, while D8 consistently introduces positive bias at stations
not situated on the major stream within the grid.

Most large-scale streamflow modeling studies set a large catchment area cutoff (Ta-
ble 3.1), inherently excluding multiple streamflow stations within a grid (Burek et al.,
2020; Hou et al., 2023; Droppers et al., 2020; Sutanudjaja et al., 2018; Zhao et al., 2017;
Li et al., 2015). Single downstream connectivity methods, such as the D8 and IHU, by
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definition, can only resolve single streamflow value in a grid at a time. Whereas, vector
based methods like the unit catchment (Yamazaki et al., 2013) with a lower limit on
area impedes the ability of the method in resolving multiple points in a grid. Existing
multiple downstream connectivity methods (Guo et al., 2004; Nguyen-Quang et al., 2018)
can potentially resolve multiple points per grid, though this capacity has not yet been
demonstrated (Liang et al., 2004; Wen et al., 2012; Polcher et al., 2023).

In global hydrological modeling, multiple lakes or reservoirs within a grid present
similar challenges. Existing literature, primarily using the D8, either classify reservoirs
into categories (e.g., “major” and “minor”) and process them differently (Wisser et al.,
2010; Hanasaki et al., 2018; Burek et al., 2020; Müller Schmied et al., 2020; Gharari et al.,
2024) or limit to one reservoir per grid (Haddeland et al., 2006a; Haddeland et al., 2006b;
Biemans et al., 2011; Terink et al., 2015; Zhao et al., 2016; Zajac et al., 2017; Sutanudjaja
et al., 2018; Shin et al., 2019; Shin et al., 2020; Dang et al., 2020). Like with streamflow
stations, SCC can resolve multiple lake outlets or reservoir dams within a grid (Shrestha
et al., 2024).

3.4 conclusions and outlook

In this study, we developed a new stream network upscaling scheme, Subgrid Catchment
Contribution (SCC), for grid based hydrological models with the aim of conserving the
catchment at specified points of interest. Applying the SCC in the mesoscale Hydrologic
Model (mHM), we conducted extensive testing at 5 256 streamflow stations worldwide,
spanning model resolutions from 25 km to 100 km, and compared its performance against
the widely-used D8 scheme of Döll and Lehner (2002). Additionally, we conducted a
regional-level comparison in the Rhine River basin, utilizing 187 streamflow gauges
across model resolutions ranging from 1 km to 100 km, encompassing catchments as
small as 1 km2 in size.

The newly developed SCC scheme features several distinctive attributes. It includes
automated delineation of catchment boundaries within the model establishment frame-
work. SCC, being integrated into mHM, enables on-the-fly upscaling of the stream network
tailored to the scale of interest. This scheme ensures absolute conservation of input
catchment areas at the subgrid level at all modeling resolutions. This not only allows
seamless streamflow simulations across a range of spatial resolutions, but also results in
performance consistency across catchments of varying sizes. Furthermore, SCC possesses
the capability to resolve multiple streamflow stations or lake/reservoir outlets within
each grid.

The proposed SCC scheme and underlying algorithms are transferable to any land-
surface or hydrological model through the utilization of the multiscale routing model,
mRM, (Samaniego et al., 2010; Thober et al., 2019), mHM’s routing module, to channel the
simulated runoff. It is possible since the mRM is stand-alone module that can work with
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any gridded model that generates runoff (Thober et al., 2019; Samaniego et al., 2019).
This capability is fundamental for the digital twin initiatives.

SCC is a significant advancement over the existing fraction-based methods, like the
hydrological transfer units (HTU), in terms of optimizing the number of routing nodes
required for conserving catchment at given set of points. This allows us to process
and perform computationally demanding tasks of river routing more efficiently. SCC
also surpasses the vector based methods since the routing of a catchment in SCC is the
culmination of routing through all the catchment fractions and not instantaneous like in
the the vector based methods. This accounts for time-delay, resulting in a more realistic
representation of in-stream routing processes.

We generated a regime map of area error for the D8 and a regime map of performance
gained by substituting D8 with SCC, across a range of catchment sizes and modelling
resolutions. Based on the extensive analysis, we introduce a thumb rule suggesting that
the effectiveness of D8 diminishes for catchments smaller than 30 times the grid size.
These regime maps and the proposed thumb rule are valuable findings for streamflow
modelers, aiding in the design of experiments and selection of model resolutions when
utilizing the D8 method.

Our demonstration of SCC revealed its capability to generate scalable streamflow, with
nine out of ten locations surpassing the mean flow benchmark consistently across all
model resolutions in the regional experiment (eight out of ten in the global experiment).
In comparison, D8 exhibited inferior performance and lack of scalability.

Beyond scalability, SCC offers consistency in performance across catchment sizes,
effectively addressing the “catchment size problem” in gridded hydrology (Fekete et al.,
2001; Hanasaki et al., 2006; Yamazaki et al., 2008; Wu et al., 2011; Thober et al., 2019;
Eilander et al., 2021; Aerts et al., 2022; Polcher et al., 2023). The disparity in the percentage
of locations exceeding the mean flow benchmark between small and large catchments
decreased significantly from 40% with D8 to just 6% with SCC, demonstrating substantial
performance enhancements, particularly in smaller catchments. This study demonstrates
SCC’s ability to resolve catchments as small as 1 km2 marking a significant milestone for a
large-scale gridded hydrological model to accurately simulate locally relevant streamflow.

The locally relevant streamflow using SCC has two fold implications in the calibration
of single domain hydrological model. Firstly, by incorporating small catchments into the
model calibration process, parameters can be trained to capture headwater hydrology
alongside large-scale hydrological processes. This effect contributes to the notion of
distributed hydrological modeling at all scales. Secondly, the improved accuracy at
small catchments means parameters are less involved in compensating for modeling
errors in catchment areas. For instance, if the area of a 10 km2 catchment is modelled as
20 km2 then the model parameters will compensate to fit the observed hydrograph at the
catchment outlet given there is twice as much water than reality. Therefore, SCC holds
the key to more robust model calibration in single domain hydrological modeling.
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We further demonstrated SCC’s ability to handle the issue of multiple stations falling
within a single grid cell. The novel aspect of SCC not only enables the simulation of clusters
of streamflow stations but also facilitates the modeling of closely situated lake outlets
and cascades of reservoir dams. In other words, SCC bypasses the constraint of model
grid size for given set of points of interest, offering greater flexibility in hydrological
modeling.

We also report the computational efficacy of SCC, in comparison to the single- and multi-
domain D8, at the regional experiment set. Such accounting aligns with the contemporary
recommendations made on the environmental impact of computational science research
in order to promote a more sustainable future (“The Carbon Footprint of Computational
Research” 2023). Development of “green algorithms” (Lannelongue et al., 2021a), such as
SCC, contributes towards digital carbon footprint reduction (Lannelongue et al., 2021b;
Lannelongue and Inouye, 2023).

In its current implementation, SCC exclusively partitions the routing grids within mHM,
leaving the hydrological grids as regular grids. This means the runoff routed by the
routing nodes is estimated as a fraction of the average grid-specific runoff production,
assuming uniform runoff production for all areas over a given grid cell. Future work can
focus on addressing this “averaging effect” by explicitly resolving sub-grid processes (e.g.,
soil moisture, evapotranspiration, runoff production) in cells that fractionally contribute
to different rivers.

Accurate streamflow simulation is fundamental to flood forecasting. SCC enables
models to simultaneously produce accurate and reliable streamflow not only at the basin
outlet but also at every desired sections of headwater catchments. This advancement
is pivotal for supporting decision-making during local floods, such as the Summer
flood of 2021 in Germany (Najafi et al., 2024). This capability holds significant value
for large-scale hydrological forecasting systems such as Copernicus Climate Change
ULYSSES project, operating globally at 10 km regular grids. Leveraging SCC, these systems
can generate flood forecasts at local level, improving their early warning efficiency. The
local streamflow simulations with SCC also align with the ambitious target of reliable
forecasts from the global scale hyper-resolution hydrologic modelling (Wood et al., 2011a;
Beven et al., 2015; Bierkens et al., 2015a) and the initiatives on the digital twin of Earth
(Bauer et al., 2021). The annual State of Global Water Resources report by WMO (2023a)
could also benefit from SCC with the inclusion of basins smaller than 10 000 km2. It
is noteworthy that this newfound “eagle vision” in global streamflow modeling and
forecasting extends its utility beyond water quantity to areas such as river temperature
and water quality (Tang et al., 2019; Wanders et al., 2019; van Vliet et al., 2023; Jones et al.,
2023), among others. This broader applicability underscores the transformative potential
of SCC in diverse fields of hydrology.
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summary

Accurate simulation of reservoirs has been a challenge for global hydrological models
due to highly discontinuous water management and uncertainties in reservoir shape
representation. In addition, at a global scale, it is crucial to consider those reservoirs
that disrupt the downstream flow regime. We augment mesoscale Hydrologic Model
(mHM) with a newly developed lake module that incorporates an existing reservoir
regulation scheme with non-consumptive demand predictions from random forest. We
also evaluate the sensitivity of reservoir shape on streamflow and evaporation for three
shape approximations of varying complexities. We tested the lake module across 31
non-consumptive reservoirs covering an extensive range of hydroclimatic characteristics
and demonstrate the applicability by using freely available global reservoir information.
Streamflow simulations with reservoirs and model calibration show a median Kling-
Gupta Efficiency (KGE) improvement of +0.94 (calibration) and +0.77 (validation) when
compared against model simulations without reservoirs and default parameter set.
We find reservoir evaporation highly sensitive to reservoir shape with half-pyramid
approximation consistently resulting in best fit at reservoirs with surveyed bathymetry.
In contrast, the linear approximation (rectangular prism) produced a median bias of
+114% relative to half-pyramid, for estimating evaporation, across all the reservoirs.
Streamflow simulations were insensitive to the reservoir shape. Our analysis shows that
30% of the non-consumptive hydropower reservoirs of the Global Reservoirs and Dam
database (GRanD) dataset are non-disruptive and can be excluded without loss to model
realism. Further work is necessary for testing the regulation approach in reservoirs with
consumptive water usage.
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4.1 introduction

In the era of hyper-resolution earth system modelling (Wood et al., 2011a; Beven et
al., 2015; Bierkens et al., 2015b; Vergopolan et al., 2020; Hanasaki et al., 2022), and
initiatives on digital twins for the best possible estimate of the hydroclimatic state of the
Anthropocene (Bauer et al., 2021), reservoirs are prerequisites in earth system simulations.
Global reservoirs are estimated to hold three times of the annual average water storage
in river channels (Baumgartner and Reichel, 1975; van Beek et al., 2011), which, in
turn, it is estimated to have tripled the residence time of the water circulation in the
terrestrial water cycle (Vörösmarty et al., 2003; Wisser et al., 2010). Moreover, man-made
reservoirs have increased the global terrestrial water surface area by approximately
305,000 ↔106 m2(Lehner et al., 2011; Zhao and Gao, 2019). This area represents the
combined area of the Great Lakes and Lake Victoria. Despite their significant contribution
to the water cycle, reservoirs and the losses they incur due to evaporation have received
insufficient attention from global hydrologic and land surface modelers, as noted by
Telteu et al. (2021). Even among the few models that have attempted to include these
features, the representations of lake geometry and water dynamics have been overly
simplistic (Turner et al., 2021). This lack of attention towards water reservoirs in the global
hydrology modelling community highlights the need for more research and development
in this area.

Incorporating reservoirs in large-scale hydrologic models presents several challenges.
The first challenge is the intricacies of modeling and predicting the highly dynamic,
anthropogenic-driven, and often ad-hoc decisions involved in reservoir regulation. The
other conundrum is to accurately estimate the bathymetry of the reservoir and its cor-
responding elevation-area-volume relationships (i.e., the Elevation Area Volume (hAV)

Table). The challenge (and opportunity) to identify the degree of disruptivity of man-made
reservoirs so that models only include those that add value to hydrologic simulations is
another one. The final challenge is to make all these modeling components scalable and
transferable. Due to the complexity of the latter, this publication will focus on the first
three challenges and address the latter in a follow-up publication.

Man-made reservoirs alter the natural streamflow regime, with the degree of alteration
dependent on the specific regulations implemented (Biemans et al., 2011; Gutenson et al.,
2020; Haddeland et al., 2006a; Wisser et al., 2010; Zajac et al., 2017). The regulations may
include rules around water release, water diversion, and water level management, among
others, which can result in significant changes to the timing, volume, and variability
of downstream flows. The reservoir regulations depend on availability of water and
demand. Demand is the human response to highly variable events and eventualities that
very often can not be forecasted. In general, demand of water from a reservoir can be
grouped into consumptive and non-consumptive. The water supplied to consumptive
demand from the reservoir (e.g., irrigation, domestic, and industrial) are not registered at
the downstream gauge (control point), a distinction from non-consumptive water use
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(e.g., hydropower, flood control, navigation, and recreation). Non-consumptive reservoir
with control point as downstream streamflow observations is thus an ideal (and basic)
setting, especially for testing newly developed reservoir module and evaluating methods
to estimate non-consumptive demand.

Table 4.1 shows a non-exhaustive list of twenty-four previous studies on reservoir
modeling. This overview unveils the diverse strategies employed in representing reg-
ulation at reservoirs, their streamflow disrupting capacity, and the characterization of
their underwater topography. The column header “regulation” depicts the evolution of
reservoir regulation in HMs. The most basic regulation representation was introduced
by Meigh et al. (1999) and later followed by Coe (2000), Döll et al. (2003), and Terink
et al. (2015) where reservoir release is a simple function of storage or water level. Neitsch
et al. (2011) and the following studies: Burek et al. (2013), Burek et al. (2020), Dang et al.
(2020), Yassin et al. (2019), and Zajac et al. (2017), and Zhao et al. (2016), introduced
the approach where the release is conditioned based on reservoir levels and discharge
thresholds. Wisser et al. (2010), for instance, calculated the release by comparing the
simulated inflow with the long-term mean inflow. Other studies proposed the regulation
approach by estimating the target release or the storage at the start of of a given year
(Haddeland et al., 2006a; Sutanudjaja et al., 2018; van Beek et al., 2011).

Hanasaki et al. (2006) presented a popular method for incorporating reservoirs in large-
scale hydrologic models with little or no reservoir data (Biemans et al., 2011; Hanasaki et
al., 2008; Pokhrel et al., 2012; Shin et al., 2019; Vanderkelen et al., 2022). This formulation
recognizes the variability in reservoir behavior, which can range from inflow-driven to
demand-driven. The ratio (c) of reservoir capacity to mean annual inflow is used to
make the distinction where inflow-driven (c < 0.5) reservoirs are those that regulate
their discharges primarily in response to fluctuations in inflows, while demand-driven
reservoirs (c ↗ 0.5) are those that regulate their discharges based on the demand for
water downstream. Further, Hanasaki et al. (2006) distinguishes formulation for fulfilled
(hedged) demand (refer to Table 4.1) for reservoirs with an irrigation purpose as they
will alter their release timing based on the timing of irrigation demands downstream.
A similar concept to that proposed by Hanasaki et al. (2006) has been used in other
studies (Biemans et al., 2011; Müller Schmied et al., 2020; Shin et al., 2019; Shin et al.,
2020; Vanderkelen et al., 2022; Sadki et al., 2023), and is also used in the present study.
Shin et al. (2019) further improves the method of Hanasaki et al. (2006) to avoid full-
empty oscillations in small reservoirs. Both Hanasaki et al. (2006) and Shin et al. (2019)
depend on empirical values in their corresponding formulations of regulation. In contrast,
Sadki et al. (2023) introduced these empirical values as parameters and optimized them.
Hereafter, we refer to this improved version of Hanasaki et al. (2006) as S2023.

Virtually all of the studies mentioned above have primarily focussed on decoupling
seasonality in the water regime, but have not fully examined the specific and often
significant variability that can be induced by reservoir operations. Sadki et al. (2023) (S2023)
and its predecessors estimate demand, a major source of the regulation variability,
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through heuristic modeling which is quite uncertain. Demand is a complex human
response and is therefore less amenable to being modeled as a continuous function
like other hydrological processes. For this reason, we postulate that techniques such
as Machine Learning (ML) could improve estimation of non-consumptive demand and
thereby refining the fit of hydrographs below non-consumptive reservoirs, at daily
temporal resolution.

Reservoir operation signal can be defined as the difference between the regulated and
natural streamflow time series, where the latter would have been measured without the
reservoir (Brunner and Naveau, 2023). There are numerous works that reconstruct the
reservoir operation signal from observed streamflow time series measured downstream
of a reservoir, such as the use of wavelet transform (Shiau and Huang, 2014; White
et al., 2005), artificial neural networks (Ehsani et al., 2016; Qie et al., 2022), fuzzy rules
(Coerver et al., 2018), harmonic regression models (Turner et al., 2021), Random Forest
and Support Vector Machines (Qie et al., 2022), generalized additive models (Brunner
and Naveau, 2023), among others. With this in mind, it remains to be seen how useful
the S2023 would be in conjunction with ML techniques in HMs.

Reservoirs can exacerbate the disruption of the natural hydrologic cycle by significantly
increasing evaporation rates, as highlighted by several studies (Friedrich et al., 2017;
Shiklomanov, 2009; Zhao and Gao, 2019). This is notable because evaporation is the
second most significant component of the global hydrological cycle after precipitation
(Beer et al., 2018; Jansen and Teuling, 2020). Zhao and Gao (2019), for example, estimated
that the long-term averaged annual evaporation volume from 721 reservoirs in the
contiguous United States is equivalent to the 93% of the annual public water supply of
the country in 2010. The rate of evaporation in a reservoir is closely tied to its water
surface area, as demonstrated by Shin et al. (2019), which, in turn, depends on the
reservoir’s bathymetry. Bathymetry refers to the underwater topography of a reservoir
that shapes its characteristics and influences its behavior, acting as a unique fingerprint
for the reservoir.

Despite its importance for reservoir simulations, there is still no global inventory of
the actual bathymetry of reservoirs. To date, the gap has been managed with disparate
reservoir geometric approximations, as indicated in Table 4.1 under the column header
entitled “bathymetry”. The range of geometries varies from a linear area-volume rela-
tionship (Meigh et al., 1999), to a linear height-volume relationship with constant area
i.e., rectangular prism (Döll et al., 2003; Zajac et al., 2017; Burek et al., 2020). Other
studies used empirical relationships (Sutanudjaja et al., 2018; Müller Schmied et al.,
2020), half-pyramid geometry (van Beek et al., 2011; Shin et al., 2019), and use regression
analysis to estimate the height-area-volume relationships at individual reservoirs (Neitsch
et al., 2011; Zhou et al., 2016). Some studies even neglected the reservoir evaporation and
other lake surface fluxes (Hanasaki et al., 2006; Wisser et al., 2010) while many have not
specified their reservoir bathymetry considerations (Haddeland et al., 2006a; Biemans
et al., 2011; Burek et al., 2013; Terink et al., 2015; Dang et al., 2020; Shin et al., 2020;
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Vanderkelen et al., 2022). Yassin et al. (2019) used the actual bathymetry at 37 reservoirs,
which is a data-driven approach with limited applicability.

A significant amount of recent research has focused on using satellite altimeters to
estimate the bathymetry of reservoirs (Li et al., 2020; Bacalhau et al., 2022; Chen et al.,
2022). The GRanD (Lehner et al., 2011) version 1.3 consists of 7320 global georeferenced
dams with attributes of the dam and the reservoir (e.g., volume of the reservoir, height
of the dam, etc.) Out of all the new products that have been developed, only ReGeom
(Yigzaw et al., 2018) and Global Reservoir Bathymetry dataset (GLOBathy) (Khazaei et al.,
2022) offer bathymetry curves for the complete range of reservoirs in the GRanD database.
ReGeom utilizes an iterative process to select the optimal geometric shape that minimizes
the error in estimated total storage and surface area, and derives bathymetric relationships
based on this shape (Yigzaw et al., 2018). In contrast, GLOBathy uses polynomial functions
to fit bathymetry relationships to a bathymetry generated using the distance method in a
Geographical Information System (GIS) (Khazaei et al., 2022).

This state-of-the-art raises two fundamental questions: First, how realistic is it to oversim-
plify reservoir bathymetry, e.g., as a rectangular prism with constant surface area for estimating
daily reservoir evaporation? Second, given the numerous approximation options available, how
sensitive are reservoir simulations to the chosen bathymetry approximations?

In addition to the reservoir bathymetry, the method used to calculate the evaporation
rate also affects the modelled reservoir evaporation. In a comprehensive review of 16
global hydrologic models conducted by Telteu et al. (2021), it was found that reservoir
storage was included in only six models, and of those, only four models accounted for
reservoir evaporation as part of their hydrologic processes. For example, PCR-GLOBWB
uses Potential Evapotranspiration (PET) for reservoir evaporation rate (E), while Water-
GAP2 uses PET formulation with albedo (α) = 0.08. CWatM and LPJmL use observed pan
evaporation observations, a method that is not applicable when models need to run
in forecast mode. Therefore, in addition to over-simplified bathymetry approximations,
simplified estimations such as E = PET and/or spatio-temporally fixed albedo raises
the question on the credibility of reservoir evaporation simulations from state-of-the-art
global HMs.

It should be noted, however, that not all reservoirs are capable of disrupting the natural
flow regime of rivers, which means that their impact on streamflow can vary greatly.
As a matter of fact, among the 7320 reservoirs of the GRanD database, the top 1% of the
highest volume reservoirs account for 50% of the total reservoir volume in the database
(Lehner et al., 2011). Nevertheless, size can be relative as the impact of a reservoir can
vary significantly depending on the size of the catchment area. In a smaller catchment, a
medium-sized reservoir may have a greater disruptive impact because it can store a large
portion or even a several times of the annual runoff. A significant alteration of the natural
flow regime can have far-reaching consequences, for example, a change in the river
temperature regime (Casado et al., 2013; Erickson and Stefan, 2000; Olden and Naiman,
2010) and the damage of its aquatic ecosystem (Lessard and Hayes, 2003). In a larger
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catchment, on the contrary, the capacity of the same medium-sized reservoir may have a
negligible effect on the total annual runoff at the dam. Meaning, reservoirs that do not
disturb the natural streamflow regime (i.e., nondisruptive) may unnecessarily increase
the computational effort of hydrological simulations without, however, contributing
significantly to improving model accuracy.

Quantification of reservoir disruptivity goes back to Dynesius and Nilsson (1994) (see
column header “disruptivity” in Table 4.1) who described “flow regulation” for a river
basin as the sum reservoir capacities, interbasin diversions and irrigation consumption
expressed as percentage of the mean annual discharge. Another measure of reservoir
disruptivity is the Amended Annual Proportional Flow Deviation (AAPFD) index (Gehrke
et al., 1995; Ladson and White, 1999) which is a hydrologic indicator for streamflow
alteration where monthly observations are compared with natural conditions. Biemans
et al. (2011) calculated AAPFD at every grid cell (0.5↑) to get a spatial overview of the river
stretches most affected by reservoirs and irrigation. Vörösmarty et al. (1997), Nilsson
et al. (2005), Lehner et al. (2011), Zajac et al. (2017), and Yassin et al. (2019) used the ratio
of reservoir capacity to mean annual inflow for the same purpose but denominated as
“degree of regulation” or “regulation scale”. Hanasaki et al. (2006) used the same ratio
for comparing seasonality of outflow and inflow, although, without explicitly using it as
a measure for disruptivity.

Identifying non-disruptive reservoirs from global reservoir databases opens up the
possibility of determining locations with strong anthropogenic impact, which is crucial
for prioritizing reservoir modelling activities in large-scale hydrological models. For
instance, in mHM, each reservoir adds three or eight parameters to optimisation space
depending on whether the reservoir is modelled as a natural lake or a regulated reservoir,
respectively. While considering all existing reservoirs would yield the most accurate
simulation, prioritizing disruptive reservoirs for modeling optimizes computational
resources while still accounting for the substantial impact on the streamflow regime. Yet
the literature does not provide clear guidelines for appropriate “exclusion” thresholds
for disruptivity indices.

We hypothesize the following about the key challenges in large-scale reservoir model-
ing:

1. The use of machine learning for modeling the non-consumptive demand improves
the streamflow simulation in river networks with reservoirs on a daily time scale.

2. The shape of reservoir (geometry) is of critical importance for reservoir simulations,
especially for water level and evaporation fluxes.

3. Only a subset of global reservoirs are disruptive and essential for improving the
efficiency of hydrologic models with respect to observed streamflow simulations.

To test these hypotheses, we developed a new lake/reservoir module (Section 4.2.1-
4.2.2) for the mesoscale hydrological model (mHM, https://mhm-ufz.org) (Samaniego

https://mhm-ufz.org
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et al., 2010; Kumar et al., 2013; Thober et al., 2019), which has been shown to be capable
of capturing natural hydrologic systems. To test the first hypothesis, we use the random
forest technique (Breiman, 2001) to generate the non-consumptive demand use as input
for the S2023 formulation (Section 4.2.3). To test the second hypothesis, we generated
bathymetry curves using two different approximations: a simplified rectangular prism
and a more accurate half-pyramid (Liebe et al., 2005). We then compared reservoir
simulation outputs from these two approximations to simulations based on ReGeom
(Yigzaw et al., 2018) and observed bathymetry, where available. For the third hypothesis,
we relate the AAPFD index of reservoirs with a couple of practical disruptivity indices and
try to find globally applicable thresholds to distinguish reservoirs that cause disturbance
from those that do not. We conducted three experiments covering 31 reservoirs, across
the globe exhibiting different hydroclimatic conditions to test these three hypotheses.
Reservoirs utilized for consumptive water usage (e.g., irrigation, domestic, and industrial)
were excluded from our analysis. Streamflow observations downstream of the dam, the
control points in this study, do not register the consumptive water supplied from the
reservoir. In absence of measurements for consumptive water use from reservoirs, we
specifically focused on reservoirs designed solely for non-consumptive demands for
evaluating the efficacy of the new lake module and testing of the above hypotheses.
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(Ī

⇐
I )

,
I
<

Ī
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4.2 methodology

4.2.1 Establishment of a Lake Module for mHM

The mHM (www.ufz.de/mhm) (Samaniego et al., 2010; Kumar et al., 2013; Thober et al.,
2019) is a process-based, grid-based distributed hydrologic model, which was developed
for operational hydrologic applications at scales ranging from 1 km to 50 km (Zink et al.,
2016; Samaniego et al., 2018; Samaniego et al., 2019). Despite of accounting for most of the
major hydrological processes (e.g., canopy interception, snow accumulation and melting,
soil moisture dynamics, infiltration and surface runoff, evapotranspiration, subsurface
storage and discharge generation, deep percolation and base flow, and flood routing)
(Rakovec et al., 2016b), mHM has not included reservoirs. Here we augment mHM with
a new reservoir/Lake Module (LM) (https://git.ufz.de/shresthp/mhm) to account for
the anthropogenic effect of natural lakes and man-made reservoirs on hydrological
simulations. The overall algorithm and the parameters of LM are provided in C.1 and C.2,
respectively.

mHM-LM distinguishes between reservoirs and natural lakes with an input flag. Natural
lakes are a consequence of the development of the earth’s crust, glacial processes, chang-
ing water balance (Shugar et al., 2020), etc. and therefore always exist during a simulation.
Artificial lakes (i.e., reservoirs), on the contrary, are created by the construction of a dam
that interrupts the natural course of a river, so they require the date of commissioning
as input, and appear dynamically in the simulation according to these dates. Further,
mHM-LM allows water abstractions (e.g., irrigation, domestic use) from natural lakes to
represent regulated natural lakes. mHM-LM represents the bathymetry of the reservoir (or
lake) based on the user inputted relationship between elevation (h), surface area (A) and
volume (V), which we refer to as the hAV table.

A key feature of the mHM-LM module is that it automatically delineates the reservoir
catchment area during run time given the high-resolution Digital Elevation Model (DEM)
(at resolution ω0) that forms the basis for the mHM configuration and the user-entered
dam location coordinates. A runtime performance test was carried out for mHM where
catchment delineation was tested at 169 locations using a 220 m DEM, on a large-scale
domain (The Rhine river basin, 160,000↔106 m2, system specifications = Dell PowerEdge
R940xa 4x 28-Core Intel(R) Xeon(R) Platinum 8280L CPU @ 2.70GHz and 6TB RAM,
compiler = GFortran, compiler flags = -O3). The catchment delineation completed in 0.05
s for one location and 12 s for 169 locations which, when extrapolated, would inflate to
≃ 10 minutes for the full set of 7320 GRanD reservoirs. Meaning, catchment delineation
of large number of reservoirs is not a computational bottleneck for mHM. Besides, the
configuration would be part of the mHM restart files, which then would not matter for
subsequent runs (e.g., in forecast mode). After determining the catchment area of the
reservoir, mHM-LM simulates the maximum possible inundation area using a specified
Dam Crest Level (DCL) as input. If the user does not specify the DCL, mHM-LM estimates

www.ufz.de/mhm
https://git.ufz.de/shresthp/mhm
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this parameter from the DEM so that the corresponding lake area would be approximately
the maximum inundation area in the hAV table.

mHM-LM uses the delineated spatial extent of the reservoir to find lake inlets and
outlets, as shown in Figure 4.1a. By definition, any node that touches the maximum
extent of the lake is a lake inlet node. The node that includes the dam is the lake outlet
node. mHM-LM assumes the lake has the same number of lake inlet nodes throughout the
simulation, i.e., the reservoir boundary remains fixed even though the lake states h, A and
V vary. This module also uses the delineated extent of the reservoir catchment to preserve
reservoir inflow. The new approach of SCC routing allows model grids with multiple
subgrid contribution to be partitioned into multiple nodes based on the catchment area
of the reservoir. In other words, with SCC, the model grids can now have multiple outlets
as shown by the flow direction arrows in Figure 1a. This ensures the area drained by
the reservoir is preserved at each modelling scale, preventing under- or overestimation
of lake inflow, thus preserving subgrid contribution (specified at the resolution ω0) and
model efficiency across scales. This feature is consistent with the Multiscale Parameter
Regionalization (MPR) paradigm built into mHM (Samaniego et al., 2010; Kumar et al.,
2013; Schweppe et al., 2022) which promotes preservation of subgrid information. We
intend to demonstrate the impact of the novel SCC upscaling scheme in distributed HMs
in a future article.

mHM-LM, currently, does not have an in-built demand estimation or modeling proce-
dure. Consequently, mHM requires demand data as model input for modeling reservoir
regulation. This could be records, estimates, or forecasts of demand (e.g., domestic, irriga-
tion, non-consumptive, etc.), either as point or grid time series. Additional information on
how mHM processes the input consumptive water demand is available in Supplement S5.

At each model time step, once the inflow from all the lake inlets are accounted, the
change in lake volume, area and water level are assumed to be instantaneous. This
assumption is based on the fact that the time required for a lake to reach a new water
level is less than the integration time step of the model (= 1 hour). In next step, the lake’s
flux exchanges are estimated and the new water balance i.e., new reservoir states are
found (refer Section 4.2.2).

The final process of the lake module consist of routing the outflow from the lake (like
any other node) to the lake outlet node, as shown in Thober et al. (2019). The equation
used for the routing the lake outflow is the same as the original mHM formulation
presented in Samaniego et al. (2010) and further developed (e.g., dynamic time stepping)
in Thober et al. (2019). For more details refer to the Supplement S1.

4.2.2 Reservoir Water Balance

The proposed mHM-LM module simulates the water balance of a reservoir by treating it
as a single entity located in a node of the river network rather than a spatially distributed
element. This is advantageous because the presence of a lake or reservoir should be
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Figure 4.1: (a) Computational grid map of Trés Marias reservoir (as an example) in mHM-LM
showing the delineated reservoir lake, reservoir catchment, lake inlet nodes, and
lake outlet node. Upscaled flow direction arrows at the level ω1 show how a single
modelling grid can be split into multiple computational nodes that route water to
more than one downstream node. ω0 (≃ 220 m) and ω1 (≃ 25 km) denote the resolution
of the level-0 and level-1 of mHM, i.e., the input and the modeling level. (b) Schematics
showing Water balance components of reservoir and the lake aquifer beneath the
reservoir. Here, the following definitions are use: I [m3/s] denotes inflow, E [m/s] is
lake evaporation, P [m/s] is lake precipitation, L [m/s] is percolation at lake’s bed,
V [m3] is lake volume, Qs [m3/s] is reservoir spill. Qi [m3/s], Qm [m3/s], Ql [m3/s],
and Qn [m3/s] are irrigation, domestic, industrial, and non-consumptive abstractions,
respectively. Qu [m3/s] is unregulated reservoir outflow, D̂ represents the reservoir
regulation and the demand hedging, G [m3] is groundwater storage beneath the lake,
and Qb [m3/s] is shallow groundwater baseflow from G. Qg [m3/s] is the streamflow
observations at a gauge downstream of the dam.
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independent of the modeling resolution (ω1). Most of the models listed in Table 4.1 do
not have this property and therefore these HMs can not be labeled as scale independent.

The key state variables and fluxes components of the water balance of a typical
reservoir are shown in Figure 4.1b. The finite difference approximation of the water
balance equation for this simplified representation is given by:

dV
dt

≃ ∆V
∆t

=
Vt ⇐ Vt⇐1

∆t
≃

(
Pt ⇐Et ⇐ Lt

)At + At⇐1

2
+ It⇐1 ⇐Qs

t ⇐Qi
t ⇐Qm

t ⇐Ql
t ⇐Qn

t ⇐Qu
t

(4.1)
Subscripts t and t ⇐ 1 denote the current and previous time step, respectively. ∆t is set

here to 1 h, which corresponds to the integration time of the routing algorithm. V [m3] is
the reservoir storage at a point of time. P [m/s] and E [m/s] are the precipitation on the
surface of the reservoir and the evaporation from that surface, respectively. L [m/s] is
the seepage from the lake bed, and G [m3] is the groundwater aquifer beneath the lake.
A [m2] represents the simulated surface of the lake, which is also the horizontal projection
surface of the lake bottom. The semi-area used is an approximation of the truncated
pyramid. I [m3] is the inflow to the reservoir, which is composed of the inflow from the
reservoir catchment and interbasin transfer (from adjacent catchment), if any. Qs [m3/s]
is the spill from reservoir during overflowing conditions. Qi , Qm and Ql [m3/s] are the
consumptive outflows from the reservoir for irrigation, domestic, and industrial use,
respectively. Qn [m3/s] is the non-consumptive outflow pertaining to hydropower use,
flood control, navigation, and recreation. Qu [m3/s] is the unregulated outflow from
the reservoir. Qb [m3/s] is the shallow groundwater baseflow generated by the aquifer
beneath the reservoir.

Pt is estimated by area weighing the input precipitation grids overlaying the delineated
lake mask (refer Sect. 4.2.1). Et is estimated using an implementation of Penman-Monteith
equation for potential evaporation (Shuttleworth, 1996), as shown in C.3. The meteorolog-
ical input required for calculation of E (2-m temperature (T) [↑C], incident shortwave ra-
diation (Si) [W/m2], incident longwave radiation (Li) [W/m2], 2-m windspeed (U2) [m/s],
and 2-m dew point temperature (Td) [↑C]) are taken from the ERA5 (Copernicus Climate
Change Service, 2017) reanalysis database and downscaled to lake representative values
by area weighing the input grids overlaying the delineated lake mask. We also introduced
dynamic reflectivity of still water, α, which is a function of latitude and the hourly varia-
tion of solar elevation angle (refer Eq. C.3). The conceptualization of the percolation flux
(Lt) occurring at the bottom of the lake uses a distributed approach using a variable water
head and spatially varying soil percolation parameters estimated by the core of the model
mHM using the MPR technique. More detail on the procedure to estimate the total water
seepage Lt is presented in the Supplement S2 and illustrated in Figure S1. In the current
version of this module, the generation of the groundwater flow from the underlying
lake aquifer is done via a linear reservoir. We plan to develop a full groundwater model
coupled to the mHM-LM in the future. The simplified water balance equations (for G and
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Qb) of the underlying lake aquifer are shown in Supplement S3. LM utilizes the reservoir
inflow, collected by the routing model of mHM, from previous time step for the lake
water balance. This is because, in mHM, the water balance is followed by the routing at
each time step. Equations for Qs

t are provided in Supplement S4. The regulation scheme
employed to estimate Qi, Qm, Ql , Qn, and Qu is described in Sect. 4.2.5.

For the sake of simplicity, we assume Qn
t to be released to the immediate downstream

of the reservoir i.e., hydropower station (if any) is located at the base of the dam. The
total reservoir outflow leaving the lake, which is then routed to the downstream node,
can then be calculated with the following equation:

Qd
t = Qn

t + Qu
t + Qs

t + Qb
t (4.2)

For the initial conditions the lake states (h, A, V) are initialized using the input water
level if present, otherwise a half-full reservoir is assumed. The procedure for initializing
the aquifer storage (G) beneath the reservoir is described in Supplement S3.

Once all the fluxes are known, Vt and At remain unknown in Eq. 4.1 which can be
rewritten as:

∆V = Vt ⇐ Vt⇐1 = f (At)∆t (4.3)

mHM-LM updates the reservoir states (V, A, and h) at each modelling time step using
the secant method (Booth, 1966) root finding algorithm. The corresponding algorithm is
presented in C.4.

4.2.3 Estimating Non-consumptive Demand with a Surrogate Model

Non-consumptive use of reservoir water refers to applications where the water remains or
is immediately returned to the location in a stream from which it was extracted. Examples
of non-consumptive use of water include hydropower generation, flood control, naviga-
tion, and recreational uses. Although the non-consumptive water use is returned back
without consuming, the timing of water use and return could have significant deviations
from reservoir inflow due to reservoir regulation. The management of reservoir is a highly
intricate process that relies on numerous external variables, including hydropower energy
demands, real-time weather predictions for flood control dams, tourism requirements,
etc.

Modelling non-consumptive demand is extremely challenging due to several reasons.
Firstly, the data on non-consumptive demand is typically not readily available as open-
source. Secondly, often non-consumptive reservoirs are used for more than one non-
consumptive applications, making it challenging to disentangle the individual signals.
Thirdly, unlike irrigation and domestic demand for which service area can be estimated,
once the hydropower produced by a reservoir enters the national grid mix, it is virtually
impossible to track the service area. Lastly, the non-consumptive outflow (and reservoir
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outflow in general) from a disruptive dam usually bears high degree of discontinuities
originating from highly discontinuous regulation decisions. For these reasons, developing
an explicit process-based demand model driven by demands from various sectors is
outside of the scope of this study.

Despite the lack of readily available data on non-consumptive demand or supply,
streamflow gauge observations at a location downstream of dams (Qg,o) are available in
publicly accessible databases. Non-consumptive water use from a reservoir eventually
gets registered downstream at the streamflow gauge. This includes reservoir water
released for hydropower use, to maintain water depth for navigation and recreation, and
the release corresponding to reservoir level drawdown prior to flood season for flood
control. Here, we propose to employ random forest (Breiman, 2001) as a surrogate model
to inverse estimate the combined non-consumptive demand from the streamflow gauge
observations, Qg,o. Random forest (RF) model is a powerful machine learning tool that is
highly effective in generating discontinuous functions, which are essential for accurate
estimation of non-linear relationships such as reservoir regulation decisions. RFs are
an ensemble learning method i.e., they combine the predictions of multiple individual
models or decision trees. This ensemble approach often means RFs are less prone to
overfitting and less sensitive to outliers, leading to more accurate and stable predictions
compared to other multivariate regression approaches (Li et al., 2016; Bachmair et al.,
2017; Schoppa et al., 2020; Desai and Ouarda, 2021).

The predictors utilized in this study to construct the RF model, their usage proxy and
their ranks across the reservoirs based on permutation accuracy importance (Strobl
et al., 2007), are shown in Table 4.2. These type of predictors have been widely used
in the literature e.g., Qie et al. (2022) and Tounsi et al. (2022). Optimized RF models
were obtained for each reservoir of the experiment. The predictors related to the inter-
annual water cycle (i.e., year, Pre365, Pet365, Pre365lag365, Pet365lag365) were within
the top six predictors across 75% of the reservoirs. This suggests that, for the majority of
these reservoirs, regulatory mechanisms are predominantly influenced by a year-by-year
planning approach. Notably, predictors such as Pet30, Pre30, and Pre7 exhibited an
inter-quartile range exceeding five ranks and an overall range surpassing 10 ranks. This
implies the short to medium-term decision-making strategies to be dominant in only a
subset of reservoirs.

The RF-model predicted the streamflow at the dam (Qd,RF) with KGE values of 0.60 or
higher at 90% of reservoirs in both the calibration and validation periods. This suggests
that the RF model is a good surrogate for estimating Qd. The algorithm to predict Qd

using RF and then the non-consumptive reservoir demand from Qd is presented in C.5.
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Table 4.2: Predictors used in constructing random forest model for estimating non-consumptive
demand at reservoirs, their explanation (proxy), and the predictor importance ranking
across the reservoirs of the experiment.

Predictor Meaning Proxy Predictor rank across reservoirs

Pet365
lag365

Annual PET with 1
year lag

Storage-related decisions.
For example, if the past
month (or year) was wetter
than the corresponding
calendar average, this will
result in a higher than
normal storage. In such
case, an above-average
release is to be expected in
the current month (or year).

doy

woy

month

year

Pre3

Pet3

Pre7

Pet7

Pre30

Pet30

Tavg30

Pre365

Pet365

Pre30lag30

Pet30lag30

Pre365lag365

Pet365lag365

5 10 15

predictor rank based on permutation accuracy importance

p
r
e
d
ic

t
o
r
s

Pet365
lag365

Annual Precipitation
with 1 year lag

Pet30
lag30

Monthly PET with 1
month lag

Pre30
lag30

Monthly Precipitation
with 1 month lag

Pet365 Annual PET
Decisions based on
long-term meteorological
conditions, e.g., current year
being wetter or drier than
the climatological average.Pre365 Annual Precipitation

Tavg30 Average Monthly
Temperature

Decisions based on
medium-term
meteorological conditions,
e.g., current month being
wetter or drier than the
monthly long-term average.

Pet30 Monthly PET

Pre30 Monthly Precipitation

Pet7 PET over last 7 days
Short-term decisions made
in response to extreme
meteorological conditions,
such as flash floods.Pre7 Precipitation over last

7 days

Pet3 PET over last 3 days

Pre3 Precipitation over last
3 days

Year Year of current date Inter-annual variability of
operation decisions.

Month Month of current date
[1, 12] Seasonal variability of

operation decisions.
Woy Week of year for the

current date [1, 52]

Doy Day of year for the
current date [1, 365]

5 10 15

Rank
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4.2.4 Demand Hedging

It is not realistic to fulfill all the demand from the reservoir, at all times. mHM-LM follows
the formulation given in Shin et al. (2019) for hedging the demand:

D̂T
t =






ω Ī +
(1 ⇐ ω)
D̄T/ Ī

DT
t , D̄T/ Ī > 1 ⇐ ω

Ī + DT
t ⇐ D̄T, D̄T/ Ī < 1 ⇐ ω

(4.4)

where, DT
t = Di

t + Dm
t + Dl

t + Dn
t (4.5)

D̂T
t [m3/s] is the total hedged demand for the reservoir. DT

t [m3/s] is the total demand
and is the sum of the irrigation demand (Di

t), domestic demand (Dm
t ), industrial demand

(Dl
t), and non-consumptive demand (Dn

t ), all in m3/s. D̄T [m3/s] is the mean annual total
demand. Ī [m3/s] is the mean annual inflow rate. Ī is estimated in advance by running
the model with the default parameter set. ω is a fraction that ensures minimum value of
D̂T to be at least ω Ī (Shin et al., 2019; Sadki et al., 2023). Hanasaki et al. (2006) used ω =
0.5, Shin et al. (2019) proposed ω = 0.1, while Sadki et al. (2023) optimized ω. We follow
Sadki et al. (2023) and include ω as a model parameter (refer C.2).

The long-term expected value of D̂T in Eq. 4.4 is mathematically equal to Ī. Hanasaki et
al. (2006) advocated for D̂T to be constrained in this way so that the algorithm can flexibly
generate reservoir outflow for biased inflow and argued it to be an essential feature in
global river discharge simulations, where inflow can have bias and uncertainties.

The first condition in Eq. 4.4 is comparable with demand hedging rule that preserves
some water to meet the future demands because high D̄T/ Ī makes a reservoir susceptible
to drought conditions (Shin et al., 2019). The second condition is applied for reservoirs
with lesser demand where DT

t is not curtailed (Sadki et al., 2023). The analytical derivation
of the demand hedging criterion D̄T/ Ī > 1 ⇐ ω can be found in Shin et al. (2019).

It is noteworthy that this study deviates from Hanasaki et al. (2006) and the following
studies by incorporating non-consumptive demand in Equation 15 and using this for-
mulation for all reservoir usage. Hanasaki et al. (2006) assumes non-irrigation reservoirs
to have constant demand at all times, the sum of which is always equal to mean inflow,
which is a crude assumption.

The experiment set for this study is described in Sect. 4.3.1 wherein reservoirs with
only non-consumptive use are considered. Using the non-consumptive demand estimated
from Eq. C.17 (i.e., Dn = D̃n), Eq. 4.4 reduces to:

D̂n =






ω Ī +
(1 ⇐ ω)

¯̃Dn/ Ī
D̃n, ¯̃Dn/ Ī > 1 ⇐ ω

Ī + D̃n ⇐ ¯̃Dn, ¯̃Dn/ Ī < 1 ⇐ ω

(4.6)
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4.2.5 Estimating Reservoir Outflow Components

mHM-LM estimates the regulated outflows Qi
t, Qm, Ql , and Qn

t and the unregulated
outflow Qu

t following a regulation scheme similar to Sadki et al. (2023), which is the
revised version of Hanasaki et al. (2006) and Shin et al. (2019). According to the scheme,
for reservoirs below a threshold size (c↓), the total outflow constitutes of a fraction
(ρ) from the (total hedged) demand and a fraction (1 ⇐ ρ) from the inflow. While for
reservoirs larger than c↓, the outflow is solely governed by the demand:

QT
t =





κtρD̂T

t + (1 ⇐ ρ)It, 0 ⇒ c < c↓

κtD̂T
t , c ↗ c↓

(4.7)

where QT
t [m3/s] is the total outflow, and It [m3/s] is the reservoir inflow. κt [-] is

a time varying release coefficient. As ρ [-] varies from 0 to 1, the reservoir regulation
changes from run-of-the-river to demand-controlled regulation (Shin et al., 2019). c [-] is
the ratio of reservoir capacity (Vf )[m3] to mean annual reservoir inflow volume ( Īv)[m3]
and indicates the size of reservoir relative to the catchment. c↓ is a threshold above which
a reservoir is deemed to be fully demand controlled and is set as a model parameter
(refer C.2).

The demand hedging procedure to obtain D̂T
t (refer Eq. 4.4) doesn’t include any checks

with prevailing reservoir storage. When the reservoir is in drought conditions, D̂T
t may

require further hedging. κt regulates fulfillment of D̂T
t based on the current reservoir

storage. ρ and κt are calculated as:

ρ = min
[

1,
( c

c↓
)β

]
, (4.8)

κt =

(
Vt⇐1

γVf

)ϱ

, (4.9)

where β, γ, and ϱ are model parameters and dimensionless (ref C.2). Vt⇐1 [m3] is the
reservoir volume from previous time step. κ aims to keep the long-term reservoir volume
at γVf . In contrast to Hanasaki et al. (2006) and Shin et al. (2019) who used γ = 0.85, we
follow Sadki et al. (2023) by considering γ as a model parameter as different reservoirs
may have different long-term storage goals. ϱ inhibits the sensitivity of κ to the time
varying V. Eqns. 4.7 and 4.8 comprise the generalized form of the regulation scheme
originally proposed by Hanasaki et al. (2006). Hanasaki et al. (2006) and Shin et al. (2019)
are specific cases where (c↓, β) are set to (0.5, 2) and (1/γ, 1), respectively. In summary,
κt “regulates” the demand fulfillment whereas ρ and c↓ “partition” the contribution of
regulated and unregulated outflows in the total outflow from the reservoir.

Hanasaki et al. (2006) and subsequent studies assume release of the total reservoir
outflow downstream, while the water abstraction module was responsible for accounting
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for various water uses along the river reaches downstream. Essentially, the reservoir in
Hanasaki et al. (2006) served as a regulatory mechanism for the rivers rather than a water
usage reserve. Given that the mHM model does not currently include a water abstraction
module, we propose an alternative approach for this study. The first term on the R.H.S.
of Eq. 4.7 is based on demand, demand hedging, and the evolving reservoir conditions
i.e., the regulated outflow from the reservoir. The remaining term is based on the inflow
i.e., the unregulated outflow. For reservoirs with only non-consumptive use, D̂T

t = D̂n
t ,

and we can thus write:

Qn
t =





κtρD̂n

t , 0 ⇒ c < c↓

κtD̂n
t , c ↗ c↓

(4.10)

Qu
t =





(1 ⇐ ρ)It⇐1, 0 ⇒ c < c↓

0, c ↗ c↓
(4.11)

For consumptive reservoirs including irrigation, domestic, and/or industrial use,
individual regulated outflows (Qi

t, Qm, Ql , and Qn
t ) are calculated by decomposing the

total regulated component (κtρD̂T
t or κtD̂T

t ) with the ratio of individual demand to total
demand. In other words, if the consumptive demands (irrigation (Di

t), domestic (Dm
t ), and

industrial (Dl
t)) are known and provided as input, mHM holds the capacity to simulate

the regulation at consumptive/ multipurpose reservoirs as well. Finally, the reservoir
outflows are checked for feasibility with following condition:

Qj
t =






0, Vt⇐1 = 0

Vt⇐1, Vt⇐1 < Qj
t∆t

Qj
t, Vt⇐1 > Qj

t∆t

(4.12)

where index j can be i, w, n, or r. The second condition includes compromise of the
regulated outflows when reservoir volume is near depletion. The the order of compromise
of outflow is considered to be Qn

t , Qu
t , Qi

t, Ql , and Qm.

4.2.6 Reservoir Disruptivity

Reservoirs can significantly impact the natural streamflow patterns of rivers, leading
to varying levels of disturbance depending on their disruptive characteristics. Here we
employ three indices, two simple and one more complex, to measure reservoir disruptivity.
The simple indices, c [-] and c→ [m], are defined as:

c =
Vf

Īv
and c→ =

Vf

AC
, (4.13)
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where Vf [m3] denotes the reservoir capacity, Īv [m3] the mean annual inflow volume,
and AC [m2] the reservoir catchment area. c = 1 means that a reservoir can hold one
year’s runoff from the upstream basin. c→ is the equivalent water depth of Vf distributed
over the catchment area. The higher the values of c and c→, the more disruptive a reservoir
is. The third indicator is the Amended Annual Proportional Flow Deviation (AAPFD)
(Gehrke et al., 1995; Ladson and White, 1999) defined as:

AAPFD =
1
k

k

∑
j=1

(
12

∑
i=1

( oij ⇐ nij

n̄j

)2
) 1

2

, (4.14)

where, oij is the actual flow, in our case the streamflow observations at a location
downstream of dams (Qg,o), for month i of year j, nij is the natural flow, at the same
location, for month i of year j, n̄j is the average monthly flow for year j, and k is the
number of evaluation years. AAPFD is zero for an unregulated river and the value increases
with streamflow alteration. The selection of AAPFD over other regulation indicators is
grounded on its valuable properties that include independence of scale, sensitivity to
changes in flow seasonality, sensitivity to changes in flow volume, sensitivity to changes
in the shape of the hydrograph (Gehrke et al., 1995) and applicability for ephemeral
rivers (dry most of the year) and intermittent rivers (dry during dry season) (Ladson and
White, 1999).

AAPFD, although reliable, determines disruption level based on observed and natural
hydrographs, which in itself is a constraint for global application. In this context, the
value of the modest indicators c and c→ becomes more significant. It is therefore necessary
to identify thresholds (τ) for these practical indices (i.e., cτ and c→τ) that can be used to
determine which reservoirs around the world (e.g., those listed in the GRanD database),
are or are not disruptive with respect to the hydrological regime.

To identify the disruptivity thresholds (τ), we apply the K-Means clustering (MacQueen,
1967) to find two disjoint sets that minimizes the sum of the intra-cluster variances of
AAPFD in correlation to c (and c→). The natural flow (nij) in the calculation of AAPFD
(Eqn. 4.14) is estimated using the optimized M simulations, but without the reservoirs.
Values smaller than (cτ) indicate locations where the inclusion of the existing reservoir
does not improve the model performance significantly. Values larger than (cτ) indicate
that reservoirs significantly disrupt the downstream streamflow regime. This is an
important finding that will help the hydrological community improve the performance
of the existing global hydrological models (e.g., those use in the Copernicus Climate
Change Service (C3S) ULYSSES Project, GLOFAS (ECMWF), ISI-MIP, among others).
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4.3 experiment design

4.3.1 Data and Setup

This study is carried out on two sets of reservoirs: ones for which high-quality (H) reser-
voir information is available, and another set for which freely (F) available global reservoir
information is used. The main features of the H-reservoirs (coordinates, capacity, dam
crest level, maximum surface area, catchment area, commission date) and the time series
data of reservoir water elevation and release were obtained from the corresponding local
authorities. The H-reservoirs provide the opportunity to test mHM-LM with maximum
data certainty. H-reservoirs consist of the Rappbode reservoir in Germany and the Trés
Marias reservoir in Brazil (Figure 4.2).
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Figure 4.2: (a) Global map showing the geographical distribution of n = 31 reservoirs considered
for the experiment. Red dots - H-reservoirs, Blue dots - F-reservoirs. Hydrological
setting of the (b) Trés Marias reservoir, and (c) Rappbode reservoir
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The Rappbode reservoir, Germany’s largest drinking water reservoir, lies downstream
of two pre-dams that reduce its nutrient and sedimentation loading, receives a significant
volume of interbasin transfer inflow from the Königshutte reservoir of the adjacent basin
and is used mainly for water supply and flood control (Rinke et al., 2013). For Rappbode,
the observed inflow data (which includes upstream regulations) was used as a boundary
condition. The interbasin transfer and domestic water supply point time series data were
model inputs. The hAV table for the Rappbode reservoir was derived from the actual
elevation map of the reservoir bed (refer to the Software Availability Statement).

Trés Marias is the largest headwater reservoir of the São Francisco basin in North East
Brazil, mainly used for hydropower (Lehner et al., 2011). Streamflow data at three inflow
gauges were used as a boundary condition. In the case of the Trés Marias reservoir, we
acquired the hAV table from Fundação Cearense de Meteorologia e Recursos Hídricos
(FUNCEME).

We explored 7320 reservoirs of the GRanD (version 1.3) database for F-reservoirs using
the following screening criteria:

• A reservoir should be exclusively used to fulfill non-consumptive demands (i.e.,
hydroelectricity, recreation, navigation and flood control). Reservoirs with irrigation,
domestic and industrial water use were avoided as estimating consumptive demand
or using model-based demand inherits significant uncertainties at daily resolution
(Biemans et al., 2011; Voisin et al., 2013b; Voisin et al., 2013a; Zhao et al., 2016)
which is not suitable for testing performance of the LM. GRanD consisted of 1513
hydroelectric reservoirs without consumptive use.

• A reservoir should have a GRDC streamflow station available downstream from the
dam for applying a Random Forest model for non-consumptive demand estima-
tion/prediction. The search distance downstream was limited to twice the reservoir
catchment area in order to get the reservoir regulation signals on the streamflow.

• A reservoir should not have additional reservoirs upstream interfering the inflow
to the reservoir for simple hydrological setting.

• The catchment area of the reservoir should be between 5,000 to 100,000 ↔106 m2

in order to avoid very small (non-disruptive) ones and to ensure feasible runtimes
during optimization, respectively.

Only 31 GRanD reservoirs fulfilled these criteria (see Figure 4.2). The geographical
coordinates and other key features of the F-reservoirs are taken from the GRanD database
(Lehner et al., 2011) and tabulated into the Table S1. We ensured the dams are located on
the flow accumulation grid at the nearest catchment area values (refer to the Software
Availability Statement). We estimate the effective spillway length of the selected F-
reservoirs using Google Earth. The hydrologic model mHM-LM requires a high resolution
DEM (and its derivatives), soil maps, geological maps, leaf area index (LAI), land cover
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and meteorological forcings as described in Table S2. These data sources were also used
in Saha et al. (2021).

4.3.2 Modelling Procedure

C.5 provides the steps followed for estimating Dn using RF. Forwards runs in mHM-LM use
the RF surrogate D̃n as input and simulates reservoir outflow using its regulation scheme.
We calibrate mHM-LM using streamflow observations at gauge location downstream (Qg,o)
of the dams. Each reservoir catchment is setup and modelled as an individual domain.
First, each mHM-LM model spins up for ten years. This stabilizes the catchment soil
moisture, eventually stabilizing reservoir inflow and storage. The simulation period
corresponds to the period for which Qg,o is available which could vary across the
reservoirs (refer to Table S1). The first two third of the simulation period is considered
for calibration, while the remaining serve for validation. For F-reservoirs, we optimize
the full set of parameters of mHM-LM by maximizing the KGE (Gupta et al., 2009), of
simulated streamflow at the gauge location. While for H-reservoirs, we use inflow
observations as boundary conditions upstream of reservoir. Since we have observations at
both the reservoir (water level) and the downstream gauge location, the objective function
was set to utilize both set of observations which was to maximize KGE of reservoir
volume (derived using water level observations and the hAV table) and streamflow at the
gauge location, with equal weights. We employed the DDS (Tolson and Shoemaker, 2007)
algorithm to optimize the mHM-LM parameters across 1000 iterations. We set the model
resolution to 0.25↑ (≃ 27 km at the equator).

4.3.3 Experiments

We conducted three experiments to test the hypotheses of this study. The first experiment
relates to the performance evaluation of mHM-LM that uses the surrogate RF demand
model. We evaluate the simulation of streamflow decoupling at reservoirs on the daily
time scale. The added value of reservoirs is then analyzed by comparing the performance
of the mHM-LM against naturalized streamflow obtained wmHMalone. To ensure accu-
rate evaluations with minimal data uncertainty, we initially utilize the H-reservoirs for
evaluation. Once mHM-LM successfully passes the performance test at the H-reservoirs,
we assess the streamflow simulations at the F-reservoirs with freely available global dam
information such as reservoir shape and streamflow.

In the second experiment, we analyze the sensitivity of reservoir shape on reservoir
simulations because it is known that the reservoir shape affects the variability of reser-
voir surface area and elevation with time. We use three approximations of reservoir
bathymetry. 1) The most basic approximation is called linear. As its name indicates, here
it is assumed that the relationship between reservoir volume and water level vary linearly.
The reservoir area is kept constant and equal to the area A f corresponding to reservoir
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Figure 4.3: Schematics of bathymetry approximations for rectangular prism (Linear), half-pyramid
(L2005), and ReGeom shapes (Y2018)

capacity Vf . This means the maximum depth is the ratio of Vf to A f (refer Figure 4.3).
These assumptions are unrealistic because of two reasons. First, reservoirs are impounded
on natural terrain where the water surface area changes with reservoir depth and is not
constant. Secondly, the average cross-section of reservoirs are generally closer to a conical
cross-section than a rectangle. Which means, with rectangular cross-section of the linear
bathymetry approximation, we would end up greatly underestimating the maximum
depth of the reservoir. Still, we include the linear approximation in this experiment
because it is commonly used in literature. 2) The second approximation is denoted as
L2005 (Liebe et al., 2005), where the reservoir shape is assumed as a half pyramid with a
square base cut diagonally at the base (refer Figure 4.3). This shape approximation gives
variability in water surface area with depth as well as variability in the cross-section with
distance away from the dam/ outlet, which is more realistic compared to Linear. The
derivation of hAV equations for L2005 is provided in Supplement S6 and Figure S2. For
L2005, the reservoir is allowed to extend to any distance upstream to achieve a surface area
of A f at maximum capacity, Vf . The GRanD database provides four different keys with
four different entries of surface area for each reservoir. Out of the four keys, we use the
“AREA_REP” key as A f for the Linear and L2005 shape approximations since it is defined
as the “most reliable reported surface area of reservoir”. 3) The third approximation is the
ReGeom dataset (Yigzaw et al., 2018) denoted as Y2018 which is essentially the hAV tables
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corresponding to the reservoirs of the GRanD database. The five candidates of shapes
used in Y2018 are shown in Figure 4.3. Y2018 iteratively selects the optimal geometric
shape out of the candidate shapes by minimizes the error in estimated total storage and
maximum surface area (Yigzaw et al., 2018). Yigzaw et al. (2018) use GRanD database
entries from the key “AREA_SKM” as the surface area during the optimisation. The
simulation performance of the three bathymetry approximations are then put to test at
both H and F-reservoirs.

In the third experiment, our aim is to explore potential correlations between perfor-
mance improvement (i.e., the added value of reservoirs) and disruptivity indices. This
analysis specifically focuses on F-reservoirs, which are non-consumptive hydropower
reservoirs. By establishing thresholds, we can effectively differentiate potentially disrup-
tive reservoirs from those that are likely to be non-disruptive. These thresholds are then
extrapolated to a broader range of reservoirs, such as the non-consumptive hydropower
reservoirs in the GRanD dataset, enabling us to offer valuable insights into identifying
reservoirs with significant disruptive impacts on the hydrological regime.

4.4 results and discussion

4.4.1 Performance Evaluation of mHM-LM and RF Model

The performance results at two high-quality (H) reservoirs are shown in Figure 4.4
for the Rappbode and in Figure S3 for the Trés Marias reservoir. We compare the
streamflow simulations from mHM-LM simulations with full set of parameters optimized
with reservoirs (M) with mHM simulations with default parameters without dams (N).
Since the streamflow observation (black dashed line) for both the reservoirs are located
immediately downstream of the dam, we additionally include Qd,RF fitted by random
forest model (RF) in the comparison. For Rappbode, the RF predicts the streamflow at
the dam with a Kling-Gupta Efficiency (KGE) of 0.72 and 0.93 during calibration and
validation periods, respectively. Similarly, this efficiency metric for Trés Marias are 0.84
and 0.89, respectively. The variability in the performance of RF across the years originates
from the randomized distribution of modelling years across training and testing of the
RF model.

The streamflow simulation efficiency, KGE, during calibration of the mHM with the lake
module (M) compared with the default mHM runs (N), increased by +0.47 (0.16 to 0.63)
and +1.19 (-0.43 to 0.76) for the Rappbode and the Trés Marias reservoirs, respectively.
The dampened seasonality of the observed streamflow with diminished peaks is well
matched with inclusion of the reservoirs, especially at the Trés Marias reservoir. Apart
from the improved seasonality, mHM-LM is able to explain the daily reservoir regulation
signatures in conjunction with non-consumptive demand predictions obtained with a
Random Forest (RF) model. mHM-LM simulation shows satisfactory fit of water level
at both reservoirs. We want to mention that model evaluation based on a one-to-one
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Figure 4.4: mHM-LM prediction efficiency at the Rappbode reservoir compared against observed
streamflow. (a) mHM without dam (N), (b) Qd,RF fitted by RF, (c) mHM-LM with a dam
(M), (d) reservoir water level performance in mHM-LM, (e) daily change in volume
performance in mHM-LM. The performance metrics for the calibration period are
followed by the performance during validation period in parentheses.

comparison of water elevation simulations and observations, although necessary, may
not be fair. In Figure 4.4d, the overestimated outflow in second half of 2008 results in an
underestimation of water level h. This underestimation of the water level is carried over
the next three years, although the reservoir outflow was well simulated. This result stems
from the fact that the water level is a state variable and thus cumulative. We test the
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performance evaluation based on ∆V which is the difference between reservoir volume
of current day and the previous day. Unlike water level, ∆V excludes any carryover of the
errors from 2008 to the next three years (see Figure 4.4e). This proves metrics based on
daily change in volume to be a fair evaluation of reservoir model performance and should
be used in conjunction with absolute values such as water elevation or reservoir volume.
Since we strip seasonality off while calculating ∆V, we evaluate ∆V with variability
ratio α instead of KGE. It is also noteworthy how, in comparison to water level, the
Nash-Sutcliffe Efficiency (NSE) of ∆V correctly represents the good model performance
during the validation years.

Figure 4.5 illustrates the cumulative distribution functions (CDFs) of KGE at streamflow
gauges downstream of F-reservoirs. We obtain a median KGE performance of 0.82 for
mHM-LM (M) with a median improvement of +0.88 over mHM without the lake model (N)
for the calibration period (figure 4.5a). During the validation (figure 4.5b), the median
KGE performance for the M-simulations is 0.67, with a median improvement of +0.84
over the N-simulations. It is important to note that the performance of former reflects
the combined effects of optimizing both the LM and mHM parameters. To disentangle
the two effects and see the added value of reservoirs, we exclusively calibrated the LM
parameters (refer C.2), while maintaining the remaining mHM parameters at their default
values. We refer to this simulation as M0. M0-simulations produced median KGE values
of 0.51 and 0.47 for calibration and validation periods, respectively, which still gives an
improvement of greater than +0.50 over the N-simulations for both periods.

The CDFs for the KGE components provided in Figure 4.5 shows M0 to have large
contribution in improvement of streamflow variability (αday) over the N-simulations
while the M-simulations primarily reduces bias (βday). This observation is sound because
the introduction of a reservoir (LM parameters) leads to matching the artificial regulation
signatures on streamflow while including non-LM parameters leads to improvements of
the reservoir inflow.

Figure 4.6 shows how actual evapotranspiration (aET) simulations in the upstream
catchment for the M-simulation leads to improvement in mean annual streamflow at
the gauge downstream, compared to the lake-model simulations with default mHM
parameters (M0). Overall, these outcome emphasize the added value of reservoirs in
hydrological modeling and underscores the potential of the mHM parameters to improve
the streamflow simulations downstream of dams or natural lakes.

The majority of large-scale hydrological modeling studies have mainly focused on
matching streamflow seasonality change brought by a reservoir rather than the fine scale
(daily to weekly) discontinuities added to the hydrograph, although the performance
assessment are made at daily resolution in some cases (Solander et al., 2016; Wada et al.,
2016; Zajac et al., 2017; Hanasaki et al., 2018; Shin et al., 2020; Vanderkelen et al., 2022;
Sadki et al., 2023). The newly proposed mHM-LM model not only improves the median
daily KGE of the streamflow simulations from a negative value to 0.82 in 31 globally
distributed reservoirs, but also is able to match fine scale reservoir disruption seen in
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Figure 4.5: CDFs depicting the streamflow performance at downstream gauges (n = 31, F-
reservoirs) with LM and mHM parameters optimized (M), only LM parameters op-
timized (M0), and default parameters without dams (N). Panels (a) – (d) correspond
to the calibration period, and panels (e) – (h) correspond to the validation period. The
KGE and its three individual components (r – correlation, β – mean bias, α – variability
bias) are estimated against observations downstream of the dams.

hydrographs. It should be noted that the best KGE obtained without the LM is less than
the median KGE of the model with the LM. Recent studies, in contrast, obtained inferior
results to those obtained here when reservoirs were included in a hydrological model.
For example, Sadki et al. (2023) obtained a median monthly C2M (a bounded version
of NSE, see (Mathevet et al., 2006)) of 0.52, Zajac et al. (2017) got a median daily KGE of
0.20, and Hanasaki et al. (2018) present negative monthly NSE at four out of six cases
detailed. Its only Yassin et al. (2019) who demonstrated KGE (daily) greater than 0.75 for
59% reservoirs for dam inclusive simulations, which is comparable to our study, albeit
using surveyed bathymetry, observations for water level, inflow and environmental flow.
In comparison, we demonstrate the abilities of mHM-LM and RF with freely available
global reservoir information. We admit that these comparison are not 1:1 since most of
the aforementioned studies include irrigation reservoirs and the methodology introduced
in this study is for non-consumptive hydropower reservoirs having a streamflow station
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Figure 4.6: Comparison of the mean annual values of M0 and M simulations for (a) runoff at
the location of gauge downstream of the reservoir, and (b) aET from the reservoir
catchment across F-reservoirs. M included all parameters in optimization while in
M0 only the reservoir parameters were optimized i.e., simulation from upstream
catchment was based on default parameter set. Runoff corresponding to the observed
streamflow (Qg,o) at the gauge is also included in the subplot (a). The reservoirs are
sorted by the aridity index (ratio of PET to P) of the reservoir catchment, which are
also enclosed in the parenthesis alongside the name of the dam in the x-axis.

downstream of the reservoir. Still, the results show HMs can match daily reservoir
disruption signals by leveraging machine learning techniques.
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4.4.2 Sensitivity of Reservoir Shape on Reservoir Simulations
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Figure 4.7: Sensitivity of the reservoir shape on streamflow, volume, elevation, surface area and
evaporation at the Rappbode reservoir. ∆Ē is the difference in mean annual evaporation.
Note: * derived from actual hAV table using observed elevation. (A corresponding graph
for the Trés Marias reservoir is presented in Figure S4.)

Figure 4.7 shows the sensitivity of the reservoir shape at the Rappbode reservoir. We
initialize all simulations with the same water elevation to ensure comparability between
runs. Results indicate that the streamflow downstream (Q) of this dam is virtually
unaffected by the shape of the reservoir. This is because the regulations are based on
reservoir volume (V), and the latter is not affected by the shape as long as the mean
annual evaporation (Ē) is comparatively small compared to the reservoir capacity (Vf ).
The ratio of Ē/Vf for Rappbode is 2.3%. The errors in the volume simulations V for
Y2018 and the linear assumption originate from the start of the modelling period, where
different h-V relationships lead to different volume initialization for same elevation.

In contrast to simulated V and Q, simulations for the water level (h), the surface area
(A) and the evaporation (E) are very sensitive to reservoir shape. The dynamics of h
and A are best fit by the L2005. Consequently, the evaporation E obtained with L2005
exhibits the closest fit to that obtained with the actual bathymetry of the reservoir. In
comparison to the surveyed bathymetry, Y2018 and the Linear shape approximation lead
to ten times the error in mean annual evaporation ∆Ē. This error is around 1% of the
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reservoir capacity of Rappbode. Considering the water level h, the Y2018 approximation
is the worst one for the Rappbode Dam.

The corresponding figure for Trés Marias (Ē/Vf = 7.6%) is provided in Figure S4 and
leads to similar conclusions. The reservoir shape has no significant effect on streamflow
Q, but impacts evaporation estimates substantially. For this dam, L2005 yields better shape
approximation while Linear bathymetry leads to ∆Ē of ≃ +2.5% of reservoir capacity
in comparison to surveyed bathymetry. This can be explained by Figure 4.8a which
compares the actual hA relationship for the H-reservoirs against the linear, L2005 and
Y2018 approximations. The optimal surface and profile shapes of the Y2018 are based on
matching the capacity and maximum surface area of reservoirs (Yigzaw et al., 2018).
Although the goodness of fit of hV curve is discussed, the work excludes any verification
of the increments of surface area with elevation i.e., the hA curve. Figure 4.8a clearly
shows L2005 being the best option at matching the evolution of surface area with elevation,
which is obviously important for the temporal dynamics of model simulation.

In order to verify these findings, we acquired surveyed bathymetry for 88 reservoirs in
Texas, USA, which overlapped with the GRanD dataset and the Y2018 bathymetry dataset.
These surveyed data are made publicly available by the Texas Water Development Board
(http://www.twdb.texas.gov/surfacewater/surveys/completed/list/index.asp). Fig-
ure 4.8b compares the hA plots for L2005, Linear and Y2018 bathymetry approximations to
the surveyed bathymetry at the Texan Reservoirs. Based on visual match, L2005 is found to
be the better approximation at 72 out of 88 reservoirs i.e., majority of the locations. Linear
approximation completely misses the graph dynamics with a constant value. While, Y2018
is seen to be the better option at only few reservoirs (e.g., Anahuac, Kurth, White Rock,
etc.).

Y2018 produced downward concave hA relationship in virtually every location although
most of the reservoirs have upward concave relationship. The verification of the estimated
hA relationship, which was missing in Y2018, would have helped to spot this issue. L2005
approximation gives a better fit to the hA relationship. It is noteworthy that L2005 and
Linear are based on the “CAP_REP” and “AREA_REP” (keys from the GRanD dataset),
defined as the most reliable reported values for reservoir capacity (Vf ) and corresponding
surface area (A f ), respectively. In contrast, Y2018 utilizes “CAP_MCM” and “AREA_SKM”
(alternative set of keys from the GRanD dataset) as Vf and A f for the shape optimization.
We compared these values from GRand to the surveyed values of A f and Vf at the
Texan reservoirs (Figure 4.9a and 4.9b). We found the median absolute error for the
key “AREA_SKM” to be much higher (26.3%) than that for values given in the key
“AREA_REP” (6.9%). This elucidates the substantial conformity to surveyed values of A f
and Vf achieved by L2005 and Linear approximations, as opposed to Y2018. There is an
overall underestimation of A f and an overestimation of Vf by the keys “AREA_SKM” and
“CAP_MCM”, respectively, in the GRanD v1.3. This finding resonates with the observation
made by Steyaert et al. (2022) while comparing “CAP_MCM” to the observed maximum
storage volume at 679 major reservoirs across the US. We also noted that the entries

http://www.twdb.texas.gov/surfacewater/surveys/completed/list/index.asp


102 improved regulated streamflow in global hydrological models

0

250

500

750

1000

500 520 540 560
elevation [m a.s.l.]

su
rfa

ce
 a

re
a 

[ x
10

6  m
2 ]

0

1

2

3

4

5

340 360 380 400 420
elevation [m a.s.l.]

su
rfa

ce
 a

re
a 

[ x
10

6  m
2 ]

Rappbode (3195) Trés Marias (2375)
(a)

(b)

0

5

10

02040

Alan Henry (1165)

0

10

20

05

Anahuac (1303)

0

10

020

Aquilla (1245)

0

5

10

01020

Arlington (1190)

0

50

010

Arrowhead (1139)

0

5

10

010

Athens (1228)

0

10

01020

Bardwell (1220)

0

50

0510

B. A. Steinhagen (1279)

0

50

02040

Belton (1273)

0

10

01020

Benbrook (1194)

0

2

4

010

Bonham (1146)

0

50

020

Bridgeport (1159)

0

20

020

Brownwood (1248)

0

2

4

010

Bryan (1284)

0

50

100

02040

Buchanan (1280)

0

20

050

Canyon (1302)

0

100

01020

Cedar Creek (1230)

0

10

02040

Cherokee (1209)

0

50

100

020

Choke Canyon (1316)

0

5

01020

Coleman (1234)

0

50

01020

Conroe (1295)

0

100

01020

Corpus Christi (1317)

0

2

4

0510

Crook (1141)

0

10

010

Diversion (1136)

0

20

020

Eagle Mountain (1177)

0

5

10

01020

Fairfield (1250)

0

50

100

01020

Fork (1182)

0

10

01020

Fort Phantom Hill (1198)

0

10

010

Gibbons Creek (1288)

0

5

10

01020

Graham (1161)

0

10

020

Granger (1285)

0

20

020

Grapevine (1171)

0

20

40

010

Houston (1300)

0

5

010

Houston County (1261)

0

50

020

Hubbard Creek (1179)

0

2

4

01020

Hubert H. Moss (1138)

0

2

01020

Inks (1283)

0

20

40

020

J. B. Thomas (1201)

0

50

01020

Jim Chapman (1152)

0

20

020

Joe Pool (1197)

0

50

020

Kemp (1140)

0

10

20

010

Kickapoo (1145)

0

2

0100200

Kurth (1260)

0

50

01020

Lavon (1170)

0

5

01020

Leon (1210)

0

50

100

020

Lewisville (1164)

0

50

010

Limestone (1266)

0

200

020

Livingston (1287)

0

10

20

010

Martin (1219)

0

20

02040

Medina (1305)

0

50

050

Meredith (1055)

0

5

10

01020

Miller's Creek (1150)

0

20

40

010

Monticello (1163)

0

10

010

Murvaul (1233)

0

5

0510

Nasworthy (1262)

0

50

01020

Navarro Mills (1237)

0

2

0510

New Terrell City (1189)

0

5

01020

Nocona (1133)

0

50

020

O' the Pines (1186)

0

50

100

01020

Palestine (1231)

0

5

10

01020

Palo Pinto (1196)

0

5

01020

Pat Cleburne (1218)

0

10

20

020

Pat Mayse (1134)

0

50

02040

Possum Kingdom (1176)

0

10

20

01020

Proctor (1236)

0

50

100

010

Ray Hubbard (1183)

0

50

100

02040

Ray Roberts (1151)

0

100

01020

Richland Chambers (1238)

0

200

400

020

Sam Rayburn (1275)

0

20

40

01020

Somerville (1296)

0

10

02040

Squaw Creek (1216)

0

20

01020

Stamford (1166)

0

20

050

Stillhouse Hollow (1277)

0

5

10

0510

Striker (1240)

0

100

01020

Tawakoni (1181)

0

20

40

01020

Texana (1312)

0

100

050

Travis (1294)

0

10

20

010

Tyler (1229)

0

20

02040

Waco (1254)

0

2

010

Waxahachie (1212)

0

2

4

01020

Weatherford (1185)

0

5

010

Welsh (1169)

0

5

01020

White River (1148)

0

2

4

0100

White Rock (1180)

0

50

100

02040

Whitney (1247)

0

2

010

Winters/ Elm Creek (1239)

0

10

010

Worth (1184)

0

50

100

020

Wright Patman (1153)

depth [m]

su
rfa

ce
 a

re
a 

[ x
10

6  m
2 ]

Y2018 L2005 Linear Surveyed

0

5

10

02040

Alan Henry (1165)

0

10

20

05

Anahuac (1303)

0

10

020

Aquilla (1245)

0

5

10

01020

Arlington (1190)

0

50

010

Arrowhead (1139)

0

5

10

010

Athens (1228)

0

10

01020

Bardwell (1220)

0

50

0510

B. A. Steinhagen (1279)

0

50

02040

Belton (1273)

0

10

01020

Benbrook (1194)

0

2

4

010

Bonham (1146)

0

50

020

Bridgeport (1159)

0

20

020

Brownwood (1248)

0

2

4

010

Bryan (1284)

0

50

100

02040

Buchanan (1280)

0

20

050

Canyon (1302)

0

100

01020

Cedar Creek (1230)

0

10

02040

Cherokee (1209)

0

50

100

020

Choke Canyon (1316)

0

5

01020

Coleman (1234)

0

50

01020

Conroe (1295)

0

100

01020

Corpus Christi (1317)

0

2

4

0510

Crook (1141)

0

10

010

Diversion (1136)

0

20

020

Eagle Mountain (1177)

0

5

10

01020

Fairfield (1250)

0

50

100

01020

Fork (1182)

0

10

01020

Fort Phantom Hill (1198)

0

10

010

Gibbons Creek (1288)

0

5

10

01020

Graham (1161)

0

10

020

Granger (1285)

0

20

020

Grapevine (1171)

0

20

40

010

Houston (1300)

0

5

010

Houston County (1261)

0

50

020

Hubbard Creek (1179)

0

2

4

01020

Hubert H. Moss (1138)

0

2

01020

Inks (1283)

0

20

40

020

J. B. Thomas (1201)

0

50

01020

Jim Chapman (1152)

0

20

020

Joe Pool (1197)

0

50

020

Kemp (1140)

0

10

20

010

Kickapoo (1145)

0

2

0100200

Kurth (1260)

0

50

01020

Lavon (1170)

0

5

01020

Leon (1210)

0

50

100

020

Lewisville (1164)

0

50

010

Limestone (1266)

0

200

020

Livingston (1287)

0

10

20

010

Martin (1219)

0

20

02040

Medina (1305)

0

50

050

Meredith (1055)

0

5

10

01020

Miller's Creek (1150)

0

20

40

010

Monticello (1163)

0

10

010

Murvaul (1233)

0

5

0510

Nasworthy (1262)

0

50

01020

Navarro Mills (1237)

0

2

0510

New Terrell City (1189)

0

5

01020

Nocona (1133)

0

50

020

O' the Pines (1186)

0

50

100

01020

Palestine (1231)

0

5

10

01020

Palo Pinto (1196)

0

5

01020

Pat Cleburne (1218)

0

10

20

020

Pat Mayse (1134)

0

50

02040

Possum Kingdom (1176)

0

10

20

01020

Proctor (1236)

0

50

100

010

Ray Hubbard (1183)

0

50

100

02040

Ray Roberts (1151)

0

100

01020

Richland Chambers (1238)

0

200

400

020

Sam Rayburn (1275)

0

20

40

01020

Somerville (1296)

0

10

02040

Squaw Creek (1216)

0

20

01020

Stamford (1166)

0

20

050

Stillhouse Hollow (1277)

0

5

10

0510

Striker (1240)

0

100

01020

Tawakoni (1181)

0

20

40

01020

Texana (1312)

0

100

050

Travis (1294)

0

10

20

010

Tyler (1229)

0

20

02040

Waco (1254)

0

2

010

Waxahachie (1212)

0

2

4

01020

Weatherford (1185)

0

5

010

Welsh (1169)

0

5

01020

White River (1148)

0

2

4

0100

White Rock (1180)

0

50

100

02040

Whitney (1247)

0

2

010

Winters/ Elm Creek (1239)

0

10

010

Worth (1184)

0

50

100

020

Wright Patman (1153)

depth [m]

su
rfa

ce
 a

re
a 

[ x
10

6  m
2 ]

Y2018 L2005 Linear Surveyed

Figure 4.8: hA plots comparing the surveyed bathymetry to Y2018, L2005 and Linear shape approxi-
mations at (a) H-reservoirs, and (b) 88 Texan reservoirs. The title of individual plot
displays the name of the reservoir with GRanD ID in the parentheses. The correspond-
ing figure for hV plots are provided in Figure S5.
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in the key “AREA_SKM” were updated by more than ten percent at 521 reservoirs
in GRanD v1.3 compared to the GRanD v1.1, while the entries in the key “CAP_MCM”
didn’t receive such large updates (Figure 4.9c and 4.9d). Y2018 was based on GRanD
v1.1. From the Figures 4.9a and 4.9c, it is evident that A f in GRanD v1.1 incurred even
greater degree of underestimation than GRanD v1.3. This adds to the reason for Y2018’s
inability to outperform a less complex method like L2005. These comparisons underscore
the significance of accurate A f and Vf while making bathymetry approximations. To
summarize, L2005 is by far the better alternative to surveyed bathymetry for large-scale
hydrological modeling. We employ L2005 to evaluate the simulation performance of
mHM-LM at F-reservoirs (Section 4.4.1, Figure 4.5.)

Figure 4.10 shows the CDFs of the KGE metric and its components at freely (F) available
reservoirs for the Y2018 and the linear bathymetry approximations. In these experiments
the simulations obtained with the L2005 approximation is used as the reference for
the estimation of the KGE metric, because it performed best in the reservoirs with
high quality reservoir data (H-reservoirs) as well as in conforming to the surveyed hAV

relationship at 88 other reservoirs. As in H-reservoirs, it is observed that the streamflow
Q downstream of the dams of the F-reservoirs is insensitive to the reservoir shape.
The simulations for lake volume exhibit a median KGE of at least 0.95 for both the
Y2019 and the linear approximations. This result indicates that volume is, in most cases,
insensitive to the reservoir shape. Low KGE values for simulated volume may stem from
a poor estimation of the reservoir evaporation at an specific location. The KGE for the
simulations for water level, surface area and evaporation (h, A and E) show, on the
contrary, a substantial sensitivity to reservoir shape. The KGE for simulated surface areas
A with the linear geometry approximation is less than zero at all basins. Instead, with
the Y2018 approximation, a median KGE of 0.56 is obtained. The mean KGE efficiency for
the simulated evaporation E with the Y2018 and the linear approximations were found to
be 0.59 to -0.38, respectively.

The F-reservoirs shown in Figure 4.11 are ranked in ascending order by the ratio of
mean annual reservoir evaporation to mean annual reservoir capacity (Vf ). In Figure 4.11a,
the evaporation obtained with the L2005 reservoir shape assumption is used.

The ratio of maximum reservoir surface area to reservoir capacity (A f /Vf ) shown in
panel (b) of this figure, correlates very well with the index ĒL2005/Vf (panel (a)), indicating
the close relationship between between surface area A f and reservoir evaporation Ē, and
thus the importance of good bathymetry for reservoir modeling. It can also be generalized
that a smaller ratio A f /Vf reflects a narrower shape of the reservoir shape, while a larger
ratio reflects a shallower shape of the reservoir. As a result, reservoirs with shallower
shape lead to more evaporation, i.e., higher contribution of the reservoir evaporation
to the overall basin water balance. These relationships explain the exceptionally high
simulated evaporation (> 20% of Vf ) at Kettle Falls dam, even though the aridity index
(PET/P) of the White River (with a very small ratio of ĒL2005/Vf ) dam is much higher
(2.75) than that of the former (0.8). To summarize, the shape of the reservoir, in addition to
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than 10% change in the value.

local climatic conditions such as the aridity index, play an important role in determining
the contribution of the share of evaporation to the water balance of the entire basin.

The ratio of mean annual evaporation (Ē) of either the Y2018 or the linear shape
approximation, to that obtained with the L2005 approximation (ĒL2005) for every reservoir
in the F set is shown in Figure 4.11c. From this result, it can be concluded that both shape
approximations overestimate evaporation compared to L2005. The largest overestimation
factor is observed for reservoirs with smaller values of ĒL2005/Vf . This could be due to
the fact that narrow reservoirs have smaller surface area relative to volume, so errors
in estimating area have a greater impact. In general, the linear approximation is the
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Figure 4.10: Cumulative distribution functions of the mHM lake module performance in 31 reser-
voirs (F) using two distinct reservoir shape approximations (Y2018 and linear V-h). The
KGE metric use the L2005 bathymetry approximation as the reference. (a) streamflow
downstream of the dam, (b) reservoir volume, (c) reservoir water level, (d) reservoir
surface area, and (e) reservoir evaporation.

worse of all cases, resulting in an overestimation of at least 100% (w.r.t to L2005) in
60% of the selected reservoirs. The Y2018 approximation, on the other hand, leads to an
overestimation in the same proportion for only 6% of the reservoirs in the sample.

This in-depth investigation is the first of its kind to explore the effect of reservoir shape
on model simulation, especially on reservoir evaporation. A comprehensive review of
existing literature (refer Table 4.1) reveals a notable absence of studies addressing this
particular aspect. This could be attributed to the fact that large-scale studies with reser-
voirs primarily focus on control points such as observed streamflow. Basic examination
of “inner states”, like reservoir evaporation, is missing in majority of the studies enlisted
in Table 4.1. In fact, none of these studies involve model simulations employing more
than one bathymetry approximation. This is alarming, given our findings that streamflow
is virtually insensitive to reservoir shape. In essence, if we limit the focus to streamflow,
reservoir evaporation can act as a “silent sink”, giving right results for the wrong reasons.
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Figure 4.11: (a) Barplot depicting the ratio of mean annual evaporation using L2005 shape approx-
imation (Ē2005) to reservoir capacity (Vf ). Larger the ratio of Ē2005/Vf, greater the
contribution of evaporation in the lake water balance. (b) Barplot depicting the ratio
of surface area at reservoir capacity (A f ) to Vf . Larger the ratio of Af/Vf, flatter the
reservoir shape. (c) Barplot depicting the ratio of the mean annual evaporation (Ē) to
the mean annual evaporation of L2005 (ĒL2005) for the linear and Y2018 approximations
across F-reservoirs. The dotted lines indicate the median values.
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4.4.3 Reservoir Disruptivity Analysis

Figure 4.12, panels (a) and (b) depict the relationships of the disruptivity indices c and
c→ (Eqn. 4.13) versus the indicator that reliability assesses the value of having a given
reservoir in a hydrological simulation, namely AAPFD (Eqn. 4.14). These results indicate
that both c and c→ are covariates and linked to AAPFD in a non-linear way. We identify that
the thresholds cτ and c→τ are 0.08 and 60 mm, respectively. That is, inclusion of reservoirs
with c < cτ does not improve significantly the model performance (median AAPFD is low
(1.1)). While inclusion of reservoirs with c > cτ should significantly improve the model
performance (median AAPFD of 2.16).

Figure 4.12c shows the non-linear dependence of the two modest disruptivity indicators
(i.e., c and c→) for the non-consumptive hydropower reservoirs listed in the GRanD database
(note that both axis are logarithmic). The blue dots in this figure are the F-reservoirs
selected in this study as a representative sample for this database. To estimate c for
the reservoirs not selected in this study, we used dam inflow Īv simulated by WaterGAP
and routed with the HydroSHEDS flow routing scheme (Döll et al., 2003). The variables
for estimating c are provided directly in the GRanD database. Results show that c and
c→ are strongly correlated for both the F-reservoirs and the GRanD reservoirs, which is
expected as inflow is related to catchment area. The 95% prediction intervals (grey lines)
enclose most of the non-consumptive hydropower reservoirs contained in the database
and entirety of those selected in this study. The thresholds for c and c→ still apply to the
non-consumptive hydropower reservoirs of the GRanD dataset.

With these indicators, we can identify disruptive non-consumptive hydropower reser-
voirs at a global scale. This, in turn, opens up the possibility of determining locations
with strong anthropogenic impact, which is crucial for prioritizing reservoir modelling
activities in large-scale hydrological models. Our analysis of the GRanD reservoir dataset
revealed following findings. Out of the 1513 non-consumptive hydropower reservoirs
examined, we categorized them into four quadrants based on the thresholds found
before, cτ = 0.08 and c→τ = 60 mm, as shown in Figure 4.12c. In quadrant I, we find 944
reservoirs with strong potential for disturbing the streamflow regime and the possibility
to significantly improve model performance, as shown by the poor KGE values without
the F-reservoirs (dark blue points) in the model (e.g., Serebrianka 1 in Figure 4.12d).
Quadrant III encompassed 447 reservoirs, which were classified as non-disruptive with
little to no space for performance improvement, which is also understood from the higher
KGE values without the F-reservoirs (e.g., Virdnejavri and Genissiat in Figures 4.12e and
4.12f, respectively). Quadrant II and IV contain 98 and 16 reservoirs, respectively, where
the disruptivity assessment was inconclusive due to conflicting indices. In summary,
this result shows that around 30 % non-consumptive hydropower dams in the GRanD
dataset can be excluded from a global hydrologic model without a significant decrease
in streamflow prediction skill. In this sense our study went beyond previous studies
(Dynesius and Nilsson, 1994; Nilsson et al., 2005; Zajac et al., 2017; Biemans et al., 2011)
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Figure 4.12: Scatterplots between (a) AAPFD vs c, (b) AAPFD vs c→, and (c) c vs c→. Dark blue dots
in (a), (b) and (c) are the F-reservoirs, light blue dots in (c) are non-consumptive
GRanD reservoirs with hydropower use. The data labels in (c) are the KGE metric
between the observations and the naturalized streamflow simulations. AAPFD is an
indicator of streamflow regulation (refer Eqn. 4.14). c is the ratio of reservoir capacity
to mean annual reservoir inflow volume. c→ is the reservoir capacity in terms of
the depth of water in the reservoir catchment. Sample size of the non-consumptive
hydropower reservoirs in the GRanD without missing values is n = 1513. Observed
versus naturalized hydrograph comparison at (d) Serebrianka 1, (e) Virdnejavri, and
(f) Genissiat reservoirs.
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which only identified disruptive reservoirs in the respective modelled regions. Similarly,
our analysis supersedes previous studies Biemans et al. (2011), Yassin et al. (2019), and
Vanderkelen et al. (2022) that found a relationship between a disruptivity index and
model skill for streamflow, but didn’t explore thresholds for distinguishing reservoirs for
their added value in the model.

It is noteworthy that the disruptivity thresholds proposed here provides a sound
justification for excluding less disruptive or non-disruptive reservoirs in a large-scale
hydrological modeling. In contrast, previous studies such as Hanasaki et al. (2006) have
used thresholds (c = 0.5) for parameterisation, which this study includes inherently by
following an updated version of the same from Sadki et al. (2023) (refer Eq. 7). The
thresholds provided in this study, however, are only tested for non-consumptive hy-
dropower reservoirs and may not be applicable for consumptive reservoirs. Irrigation
reservoirs have a distinct disruptive character by supplying water downstream during
dry seasons and thereby significantly altering the seasonal pattern of streamflow. Con-
sumptive reservoirs may thus have a notable impact despite their relatively small storage
capacity. Identifying “exclusion thresholds” for consumptive reservoirs, thus, remains to
be explored.

4.5 conclusions and outlook

In this study, we presented a novel implementation of a Lake Module (LM) for the mHM
model and tested its applicability over two sets of reservoirs worldwide. One set consists
of reservoirs with detailed data (e.g., surveyed bathymetry, water level time series, etc.),
and the other one consists of reservoirs with limited data (e.g., downstream streamflow
gauge and shape approximations from global dataset and the literature). The LM features
the following characteristics:

1. The reservoir lake and the reservoir catchment are automatically delineated based
on the input dam coordinates and reservoir capacity elevation.

2. The lake is modelled as a single entity such that the lake water balance is not
affected by modelling resolution.

3. The reservoir catchment area and inflow are preserved at any modelling resolution.

4. Lake evaporation is estimated based on an energy-based formulation and includes
time-varying albedo for the water surface.

5. The default shape of the reservoir is half-pyramid. The user can also specify the
bathymetry of the reservoir as elevation, surface area, and volume relationship (hAV)
table.
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6. The reservoirs are modelled based on the period of commission and decommis-
sioning, i.e., a dam can dynamically appear or disappear depending on the model
simulation time-period.

The integration of machine learning techniques, such as random forest, into hydro-
logical modeling has the potential to elucidate complicated non-linear processes, such
as reservoir hydropower demand. This approach has shown remarkable potential for
refining the fit of hydrographs at daily temporal resolution, and therefore improving the
skill of mHM.

While the shape of a reservoir has minimal impact on runoff simulation, care must be
taken when reservoir shape approximations are used because they may lead to significant
errors in “inner states” like evaporation and the overall water balance of the reservoir.
In the absence of observed bathymetry information, the half-pyramid approximation
is a more reasonable representation of reservoir bathymetry. In comparison to the half-
pyramid shape, the (commonly used) rectangular prism with a constant surface area (or
linear shape) simulated unrealistic reservoir surface area dynamics and overestimated
evaporation by a factor of two. Despite having the most sophisticated approximation
procedure, Y2018 (ReGeom) dataset fell short of being the optimal bathymetry shape for
simulating reservoir evaporation. It is essential for efforts such as ReGeom to verify the
maximum surface area estimates and the overall shape of the elevation vs. surface area
curve, with the half-pyramid shape serving as the benchmark.

There is a non-linear relationship between the streamflow alteration at non-consumptive
hydropower reservoirs and the disruptivity indices c (and c→). c and c→ are modest yet
practical indicators as they are based on easily acquirable information. We postulate that
the exclusion of reservoirs (30% of the non-consumptive hydropower reservoirs of the
GRanD) based on the proposed thresholds of c and c→ do not lead a loss to model realism.
This finding represents one of the first attempts to determine “exclusion thresholds” for
reservoirs based on their degree of disruptivity of the hydrologic regime.

We demonstrated the potential of employing a Random Forest (RF) surrogate model as
a useful intermediate step in understanding non-consumptive demand for hydrological
modeling of reservoirs. The demand estimation procedure, however, necessitates stream-
flow observations downstream of the dam as a control point for training the RF model.
Assessing the transferability of RF models for water demand in ungauged reservoirs,
therefore, presents an intriguing opportunity. Besides, although not explore in the present
study, RF models can be applied for consumptive demand if a reliable control point of
the latter can be obtained. Such an investigation could consider using estimates from
the existing global demand models (Wada et al., 2014) or demand inferred through
satellite soil moisture (Brocca et al., 2018) as first alternatives to missing control points for
irrigation and other consumptive demands. Apart from meteorology and time predictors,
crop type, cropping calendar, irrigation command area, etc. are the obvious nominations
for predictors in such a RF model. If proven successful, the estimation of demand at
multipurpose reservoirs, encompassing both non-consumptive and consumptive water
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use, could be achieved using multiple RF models simultaneously. This also opens the
avenue for exploring possible exclusion thresholds, and/or testing the validity of the
ones obtained in this study, for consumptive (e.g., irrigation) reservoirs.

A RF model for non-consumptive demand, once trained, can be used in the forecast
mode as it is but a function of time and meteorological predictors, the latter being
extracted from the given meteorological forecasts. Yet, it would not be wrong to argue that
such one-time-trained RF model, although applicable, would lack the ability to estimate
the demand in the changing conditions of the future. A more reliable approach for
future simulations would thus be to “recursively” train the RF model up to initialization,
provided the updated control data (i.e., streamflow time series) is available. Still, this
strategy may remain applicable solely for the short-term forecasts, extending up to the
seasonal horizons. Long term forecasts (e.g., decadal horizons) could include much varied
changes in the reservoir regulation protocol which may not be possible to predict easily
and thus becomes a limitation with the proposed methodology of estimating demand.

The data necessary for large-scale application of mHM with reservoirs includes the
coordinates of the dam, reservoir capacity, elevation and surface area corresponding to
reservoir capacity, and time series of demand. Although the non-consumptive demand
(e.g., hydropower) is better estimated with use of RF model, non-consuptive demand
at ungauged reservoirs and consumptive demands can still be generated using exist-
ing approaches (e.g., global water demand model from Wada et al. (2014)). Observed
streamflow downstream of (some) reservoirs in the domain is sufficient for the model
calibration, although some form of validation of reservoir states (water level, surface area,
volume) and/or fluxes (evaporation) is highly recommended. The reservoir parameters
(Table B1 in C.2) could be set to default at reservoirs where calibration and verification
data is not available.

Employing mHM for large-scale simulations with reservoirs has diverse applications
across various fields. mHM provides the opportunity for partitioning the reservoir dis-
ruption in the hydrological cycle attributable to evaporation, which together with inflow
simulations, facilitates in the reservoir budget planning. Likewise, quantifying the dis-
tortion of reservoir evaporation from a constant albedo assumption (Shuttleworth, 1996;
Wanders et al., 2019) would be another compelling experiment. In hydrological extremes,
mHM can be utilized in climate change hotspot regions like the Iberian peninsula, where
the drought of 2022 left the average water level in the reservoirs in Catalonia and An-
dalusia to around 25% (“Severe Drought Spreads in Portugal, Officials Seek EU Help”
2023). mHM can be used to track the impact of such regional droughts on the reservoirs
by developing a regional reservoir drought monitoring system. Speaking of depleting
reservoirs, the fate of the endoheric lakes (e.g., Lake Urmia of Iran) is another contem-
porary topic where mHM simulations could play a vital role in scenario analyses for
lake sustainability. An application of this nature could leverage cutting-edge satellite
technology, like Cyclone Global Navigation Satellite System (CYGNSS) (Al-Khaldi et al.,
2021; Wang et al., 2022; Carreno-Luengo et al., 2024), to verify lake surface area evolution
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with time. For floods, the other end in the spectrum of the hydrological extremes, mHM
allows the possibility to deploy hypothetical reservoirs where its dimensions and flood
control regulation scenarios can be played around for optimizing the flood attenuation in
future occurrence of an event. In the realm of large-scale ecological studies, mHM enables
the investigation of possible connection between reservoir disruptivity and ecological
disturbance downstream of reservoirs, and decipher possible thresholds. If proven ef-
fective, such straightforward yet effective measures could serve as a starting point for
formulating guidelines for designing “eco-friendly” reservoir dams in the future.



5
S Y N T H E S I S A N D O U T L O O K

5.1 synthesis and conclusions

Flood is the most persistently deadly and disruptive natural disaster, affecting one in
four people worldwide. Small catchment floods have resulted in catastrophic outcomes in
the past and should not to be ignored. Global scale Flood Early Warning Systems (FEWS)
with timely and effective communication on flood impacts, on-demand in space and
time, could, in principle, reduce the death toll and damage attributed to floods, from
regional to local scales, every year. This dissertation contributes to this idea and includes
some progress demonstrated in the directions of near real-time impact forecasting via
inundation modeling and improved streamflow simulation at small and/or regulated
catchments in Global Hydrological Model (GHM)s. In the following, the main findings
corresponding to each of the seven research statements outlined in Section 1.7 are
synthesized and concluded.

R1,1: 2D hydrodynamic models can be incorporated in FEWS for production of near-real-time flood
inundation maps and other relevant impact indicators with associated uncertainties.

Rapid map and warning generation is critical for FEWS. But flood inundation modeling
has traditionally been computationally demanding. To circumvent this problem, widely
recognized FEWS (e.g., GloFAS, EFAS) interpolate pre-calculated flood hazard maps that are
spatially inconsistent and do not retain continuity. These methods can be inaccurate, espe-
cially when simulating inundation for unprecedented extreme scenarios. Moreover, FEWS
that only provide local rainfall depth or gauge water levels often lead to misinformed
actions, delayed responses, or no action, highlighting the relevance of impact indicators.
The feasibility of the ICON-D2_EPS-mHM-RIM2D operational FEWS is demonstrated in hind-
cast for the 2021 European Summer Flood event in the Ahr valley. Parallelized RIM2D
10 m by 10 m flood inundation ensemble runs on GPUs cuts the overall runtime of the
FEWS to under three hours. The FEWS delivers probabilistic space-time maps, such as the
lead time to specific flood depth thresholds, incorporating the forecast uncertainty and
persistency. The forecasts also identifies buildings and transportation infrastructure at
risk of flooding. High-resolution DEM is necessary to transfer the system to other regions
on the world, while the remaining underlying datasets and modelling tools of the model
chain are available freely.

113
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R2,2: SCC preserves the catchment area at predefined points of interest.

The destructive potential of small catchment floods has been proven by past catas-
trophes and would greatly benefit from accurate impact forecasting via FEWS. State-
of-the-art Global Hydrological Model (GHM)s struggle to model contributing area at
small catchments accurately, making them unfit for generating boundary conditions of
hydrodynamic models in FEWS at local-scales. Existing stream network upscaling tech-
niques, including the widely used D8 method, are largely responsible for the inaccuracies
due to the constraint of single outflow direction from a grid. Having a single outflow
direction per grid cell makes each grid the smallest unit of the modeled area. The error
in the modelled catchment area is fundamentally due to the oversimplification of natural
boundaries and domain discretization with simple, geometric- and equally-shaped grids.
The novel stream network upscaling scheme, Subgrid Catchment Contribution (SCC),
allows model grids to have multiple contribution areas and flow directions, based on
subgrid catchments, enabling multiple downstream connectivity. Therefore, with SCC,
the model is no longer constrained to grids as the smallest spatial unit and grids fractions
can follow natural boundaries which resolves area-related inaccuracies. Regional (Rhine)
and global scale experiments show SCC to ensure absolute conservation of catchment
areas, at the predefined points of interest in the subgrid level, at all modeling resolutions
and catchment sizes. Furthermore, the established regime maps for single domain appli-
cation of D8 and proposed a thumb rule would aid modellers in their experiment design
and selection of model resolutions. Interestingly, SCC is up to five times faster than the
multi-domain D8 in the Rhine. The proposed SCC scheme can be employed by any Land
Surface Model or Hydrological Model by simply routing the simulated runoff via the
routing module of mHM. The improved catchment upscaling with SCC enables GHMs to
accurately represent small catchments, facilitating their application in FEWS.

R2,3: SCC eliminates the catchment size problem and enables locally relevant streamflow simula-
tions in gridded hydrological models.

The catchment size problem, which introduces significant errors to small catchments
within large modelling domains, is a long-standing challenge in gridded HMs. The
accurate catchment upscaling by the SCC abolishes the catchment size problem resulting
in locally relevant streamflow for catchments as small as 1 km2. A major implication
of SCC includes consistency in streamflow simulation across model resolutions of 1 km
to 100 km. These breakthroughs implies GHMs augmented with SCC are fit to generate
fluvial boundary conditions for hydrodynamic models in FEWS for small catchment floods
applications, regardless of the model resolution of the GHM. There are supplementary
benefits of SCC in streamflow calibration. Inclusion of small catchment gauges trains
parameters to account for headwater processes, in addition to large-scale hydrological
processes, promoting distributed modeling across scales. Furthermore, SCC keeps a check
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on parameter compensation due to inaccurate upscaling of small catchments, leading to
more robust model calibration.

R2,4: SCC enables streamflow estimation at multiple points of interest within a grid cell.

Existing literature does not demonstrate streamflow simulations that resolve multiple
stations within a single grid. Large-scale streamflow modeling studies typically set a
cutoff for large catchment areas, which inherently excludes multiple streamflow stations
within the same grid. This limitation arises because single downstream connectivity
methods, such as D8 and IHU, resolve only one streamflow value per grid cell at a
time. The multiple downstream connectivity of SCC addresses this issue, demonstrating
resolution of complex setting with up to 10 streamflow stations in a single grid. In
summary, SCC eliminates the need to adjust the model grid size for a given set of points
of interest, providing greater flexibility in hydrological modeling. This feature of SCC can
be leveraged for closely situated clusters of reservoir dams or any other type of points
of interest where preserving the catchment area is crucial. Thanks to this augmentation,
GHMs are now suitable for grids containing the convergence of multiple tributaries,
enabling FEWS application to any or all of the tributaries.

R3,5: Machine learning based demand improves the reservoir regulated streamflow simulation.

The available reservoir modeling studies have primarily focused on decoupling season-
ality in the water regime rather than the fine scale (daily to weekly) discontinuities in
regulated hydrographs. These fine scale regulations reflect demand, a complex human
response less amenable to being modeled as a continuous function like other hydro-
logical processes. Machine Learning (ML) based non-consumptive demand is input to
the newly developed LM of mHM which automatically delineates the reservoir and en-
ables large-scale hydrological modeling using globally available reservoir data. This
approach improves the daily fit of hydrographs downstream of 31 globally distributed
non-consumptive reservoirs. ML techniques shows remarkable potential for explaining
power for non-linear processes, such as reservoir hydropower demand. The method-
ology introduced here is designed for non-consumptive hydropower reservoirs with
downstream streamflow stations. While ML models could also be applied to consump-
tive demands (e.g., irrigation), this would require reliable control points, which are not
explored in this study. The improved simulation of reservoir regulations enables GHMs
to produce accurate streamflow downstream of managed catchments, facilitating their
application in FEWS.

R3,6: The bathymetry of the reservoir is critical for the lake surface fluxes.
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The reservoir surface area worldwide is equivalent to adding another set of the Great
Lakes and Lake Victoria, contributing to global evaporation. Despite the dependence of
reservoir evaporation on its underwater shape (or bathymetry), output corresponding to
multiple bathymetry approximations have not been compared. This in-depth investigation
is the first of its kind to explore the sensitivity of model simulation to reservoir shape.
In the absence of observed bathymetry, the half-pyramid approximation is a reasonable
proxy to reservoir shape. Oversimplified bathymetry can double the evaporation while
causing no alteration to the streamflow. It is critical to include complementary verification
of “inner states” like evaporation, in addition to integration variables like streamflow, in
order to get the right results for the right reasons. Existing global bathymetry estimates,
such as ReGeom, require further refinement, with the half-pyramid shape serving as the
benchmark. Furthermore, the Lake Module (LM) of mHM features improved estimation of
evaporation rate introducing a new general function for reflectivity of the water surface
accounting for latitude and the hourly variation of solar elevation angle. The attention to
reservoir bathymetry and evaporation enhances the physical integrity of GHMs and the
upstream boundary conditions they generate in FEWS.

R3,7: Only a subset of global reservoirs are disruptive enough to add value to the modelled
streamflow.

Top 1% of the largest reservoirs account for 50% of the global reservoir volume. Pri-
oritizing disruptive reservoirs for modeling optimizes computational resources while
still accounting for the substantial impact on the streamflow regime. Current literature
lacks clear guidelines for appropriate reservoir “exclusion” thresholds. The disruptivity
indices c and c→ are covariates and show a non-linear relationship with streamflow alter-
nation. Proposed exclusion thresholds for c and c→ indicates 30% of the non-consumptive
hydropower reservoirs of the GRanD database do not influence modelled streamflow.
The reduction of reservoirs has substantial consequences for large-scale HMs, easing
parameter calibration and minimizing the runtime needed for generating the boundary
conditions for the hydrodynamic model in FEWS. This is one of the first known attempts
to determine “exclusion thresholds” for reservoirs based on their disruptivity to the
hydrologic regime.

5.2 outlook

Implications of locally relevant streamflow from GHMs

The Copernicus Climate Change ULYSSES project provides multi-model seasonal predic-
tion system using state-of-the-art GHMs at 0.1↑ ≃10 km resolution (https://www.ufz.de/

https://www.ufz.de/index.php?en=47367
https://www.ufz.de/index.php?en=47367
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index.php?en=47367). The project, currently in its second phase, provides single forecast
values at each grids and is limited to forecasts at catchments that are well represented
in a 10 km global grid system i.e., 30 x 100 km2 = 3 000 km2 (refer to thumb rule of
Equation 3.3). Leveraging SCC, systems such as ULYSSES can generate streamflow forecasts
at small catchments (< 3 000 km2), in addition to the larger catchments, without having
to change the grid size of the running system. Such use of SCC aligns with the ambitious
target of reliable forecasts from the global scale hyper-resolution hydrologic modelling
(Wood et al., 2011a; Beven et al., 2015; Bierkens et al., 2015a).

The annual State of Global Water Resources report published by WMO offers another
contemporary opportunity for GHMs to leverage SCC. The latest edition of the report
(WMO, 2023a) represents global streamflow based on model output from eight GHMs
encompassing ≃1 000 basins, none of which are smaller than 10 000 km2, a limitation that
would not exist with SCC. It is noteworthy that this integration of small catchments using
the newfound “eagle vision” for the GHMs holds significance beyond water quantity to
areas such as river temperature and water quality (Tang et al., 2019; Wanders et al., 2019;
van Vliet et al., 2023; Jones et al., 2023), among others, underscoring the transformative
potential of SCC in diverse fields of hydrology.

Advancing reservoir demand predictions through machine learning techniques

Almost 80% of the 7320 reservoirs of the Global Reservoirs and Dam database (GRanD)
cater to at least one consumptive demand. Although not covered in this research, future
applications of ML techniques to consumptive demand are possible if a dependable
control point is identified. Estimates from the existing global demand models (Wada et
al., 2014) or demand inferred through satellite soil moisture (Brocca et al., 2018) can serve
as the first alternatives to the missing control points for irrigation and other consumptive
demands. Crop type, cropping calendar, irrigation command area, etc. are the obvious
nominations for predictors in such a ML model. Testing the transferability of ML models
to reservoirs without control points is another paradigm yet to be explored.

A RF model for demand, once trained, can be used in the forecast mode. Forecasting
application of ML techniques is yet to be evaluated, specifically answering the question:
Which of the sub-seasonal/seasonal/decadal time horizons would the RF models make sense?
Recursive training of the RF model could add to its longevity and realiability for future
simulations, provided the updated control data is available.

A call for comprehensive sensitivity analyses of reservoir simulations

Despite the long history of reservoir representation in large-scale modeling (Haddeland
et al., 2006a; Hanasaki et al., 2006), the state-of-the-art is virtually devoid of work
pertaining to sensitivity analysis of reservoir simulations. This oversight is especially

https://www.ufz.de/index.php?en=47367
https://www.ufz.de/index.php?en=47367
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concerning given the inherent assumptions in LSMs and GHMs, which ought to be
rigorously tested.

This study took the first step in this direction, evaluating the effect of reservoir shape
assumptions on evaporation estimations. Future work could include the sensitivity of
simulations to rate of change of the hAV (or bathymetry) curves. Majority of the observed
bathymetry curves examined in this study have upwards concavity. What would be the
implications of using the downward concavity shapes (e.g., the ReGeom dataset) on these reservoirs?
The simple reservoir shape proposed by Liebe et al. (2005) effectively corresponds to
upward concave hAV curves. What might be a similarly straightforward yet versatile shape for
reservoirs exhibiting downward concave hAV curves? A complementary research question
would then be: can the concavity orientation of the hAV be predicted from the observable
topography surrounding the reservoir?

The geomorphological processes involved in development of topography could help
to improve reservoir shape estimation. Steep valleys where fast-flowing water results
in the dominance of vertical erosion over lateral erosion lead to V-shape cross section.
Leftover valleys eroded by glaciers go through much uniform horizontal and vertical
erosion, resulting in flat floor and steep sides. Similarly, low-energy environments with
slow moving rivers and flatter gradient favors deposition rather than erosion, resulting
in broad and flat cross section. It would, therefore, be worth exploring these different
geomorphological mechanisms to find regional clusters at global scale where one shape
is more favorable than another while modeling reservoirs.

Another assumption in LSMs that remains largely unexamined is the time-space invari-
ance of the reflectivity (albedo) of water surface, e.g., in Wanders et al. (2019). Surprisingly,
even widely respected textbooks like Shuttleworth (1996) endorse this overly simplistic
approach. It is known for a fact that the albedo depends on the angle of the sun above the
horizon, which is neither constant in space nor in time (Cogley, 1979). Quantifying the
sensitivity of reservoir evaporation to different albedo assumptions is another compelling
experiment waiting to be demonstrated.

Reservoir monitoring and forecasting systems

In 2022, the Iberian peninsula, a climate change hotspot region, was severely impacted
by the European droughts. At the onset of the drought, the average water volume in
the reservoirs of Catalonia and Andalusia dropped to about 25% of their total capacity
(“Severe Drought Spreads in Portugal, Officials Seek EU Help” 2023), eventually falling
further to just 16% by February 2024 (Biella et al., 2024). Such large-scale events require a
regional overview for the decision makers, encompassing the whole reservoir system. The
mHM model, given its suitability for large-scale applications using freely accessible data,
is well-positioned to serve as the foundation for a regional reservoir drought monitoring
system. When enhanced with forecasting capabilities, accurate inflow predictions via SCC
can greatly assist reservoir managers in responding to extreme climatic events.
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Such systems would be equally useful to monitor the fate of the endoheric lakes around
the world, many of which are endangered ecosystems. Once the world’s fourth-largest
inland body of water, the Aral Sea largely dried up due to extensive irrigation projects
initiated during the Soviet era (Micklin, 2007). Lake Urmia in Iran is following the same
path, having lost 88% of its surface area with no signs of recovery (AghaKouchak et al.,
2015). The only natural way water exits an endoheric lake system is via evaporation from
the lake surface. The improved representation of evaporation in mHM could enhance lake
water balance simulations and play a vital role in scenario analyses for sustainability of
lakes such as Lake Urmia.

The 8000 year return period flood (Vorogushyn et al., 2022) of 2021 in the Ahr valley
brought huge loss of life and property. By leveraging mHM, planners can experiment
with hypothetical reservoirs and flood control regulations to improve flood attenuation
in future events of similar magnitude. In large-scale ecological research, mHM facili-
tates the exploration of links between reservoir disruptivity and downstream ecological
disturbances, helping to identify potential thresholds. Should these findings prove ac-
curate, they could act as a foundation for setting future standards for the design of
environmentally responsible reservoir dams.

Towards locally relevant global flood early warning system

The 18th World Meteorological Congress approved eight long term ambitions on global
water, first of which is – No one is surprised by floods (WMO, 2023b). Currently, only a third
of WMO members and territories report having multi-hazard monitoring and forecasting
system while only 56% of countries report using hazard, exposure and vulnerability
data in their forecasts, restricting the progress on impact-based forecasting and warning
(WMO, 2023c).

In 2023, WMO launched Flood Forecasting Initiative which aims to improve the capacity
of national meteorological and hydrological services in detecting flood-critical situations
and providing accurate and timely flood forecasting services. Flash Flood Guidance System
is another ongoing project from WMO aiming to implement guidance system at country
and regional scale, modelling basins as small as 150 km2 (HRC, 2019). In Germany, the
Hochwasserfrühwarnsystem is the national scale FEWS monitoring and predicting flood
events (LfU, 2022) while the National Water Prediction Services provides stage and
flow forecasts in the USA (NOAA, n.d.). The Delft-FEWS (https://oss.deltares.nl/
web/delft-fews/), a commercial software by Deltares, enables taylor-made hydrological
forecasting system for individual institutions or nations (e.g., the Australian hydrological
forecasting system, HyFs). At continental level, the EFAS provides early warning services
across Europe, integrating real-time meteorological data with the LISFLOOD hydrological
model at 5 km resolution.

National and regional systems introduce disparity in forecasting capabilities, with
developed members benefiting more from these advancements compared to developing

https://oss.deltares.nl/web/delft-fews/
https://oss.deltares.nl/web/delft-fews/
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and least developed countries due to limited resources (WMO, 2023b). Global FEWS
helps standardize and globalize flood early warning systems. GloFAS, part of the Coper-
nicus Emergency Management Service, integrates weather forecasts from ECMWF-IFS
with hydrological models HTESSEL-LISFLOOD to provide consistent and reliable flood
forecasting across borders. While the system impressively provides global flood alerts
up to 30 days in advance, the information is limited to catchments larger than 500 km2

(Harrigan et al., 2020).
The Fathom Global Flood Map (GFM) (Wing et al., 2024; Andreadis et al., 2022; Sampson

et al., 2015), produced with the Global Flood Inundation Model, is another global
scale inundation modeling effort. Recognizing the extravagant computational cost of
downscaling kilometer scale hydrological models to 30 m flood inundation resolution,
the system skips hydrological modeling altogether, choosing instead to apply Regional
Flood Frequency Analysis to infer historical boundary conditions by extending data from
gauged to ungauged sites. While for future simulations, the delta change or “change-
factor” approach is adopted to simulate the impact of climate change on flood hazard
(Wing et al., 2024). However, with the advent of SCC, these limitations of GFM and GloFAS
no longer apply. The next generation of GHM runs would be computationally feasible
enough to support GFM for 30 m inundation modeling, while GloFAS can generate flood
forecasts for catchments smaller than 500 km2.

While weather forecasts have become an integral part of daily life worldwide, flood
and inundation forecasts have yet to achieve similar widespread recognition. Windy
(https://www.windy.com/) is a forecasting platform which has gained popularity for its
user-friendly interface and its map-based display, allowing users to zoom in on specific
regions to see localized conditions, globally. Windy integrates data from several trusted
sources, such as ECMWF and the Global Forecast System (GFS). Despite its impressive
offering of 55 forecast variables (including droughts, see Figure 5.1), Windy currently
does not provide forecasts or warnings for flood. As future GHMs enhance their ability to
simulate local conditions with SCC for FEWS, platforms such as Windy may soon include
local flood forecasts powered by global flood early warning systems – GloFEWS.

5.3 the irony of myths : a final reflection

The mythical story of Shiva taming the mighty Ganga (the river Ganges, refer to Sec-
tion 1.1) portrays flood as a force that can be controlled or channeled by divine interven-
tion. The Uttarakhand floods of 2013, which ravaged the upper Ganges basin, defy such
celestial mastery and stand in stark contrast to the ancient narrative of control and order.

The relentless rain (up to 245 mm) from 15 to 17 June 2013, above the tree line,
unleashed torrents of water, boulders, debris, and moraine in the Upper Ganges Basin
(NIDM, 2015). The catastrophe, which coincided with peak tourist and pilgrimage season,
damaged 2134 km of roads and 112 bridges in the worst affected areas (NIDM, 2015).

https://www.windy.com/
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Figure 5.1: Screenshot showing global drought intensity forecasts (source: www.windy.com)

This left more than 110 000 people stranded in inaccessible hilly terrains (Kala, 2014)
eventually resulting in a death toll of 4 190, and damage to 19 726 houses (NIDM, 2015).

In the Kedarnath valley, a 50 km2 catchment nestled deep in the Himalayas, the post-
event destruction around the sacred Kedarnath temple (Figure 5.2b-c) ironically mirrored
the very myth of Ganga’s descent – a river once believed to be tamed by Shiva had
wreaked havoc upon the very lands dedicated to its worship (Note: Kedarnath is one of
many epithets of Shiva). The flood overwhelmed the town of Uttarkashi (4 609 km2) in
the Bhagirathi River catchment (Figure 5.2d) damaging 991 houses (NIDM, 2015). Further
downstream, the holy city of Rishikesh witnessed the submergence of its revered Shiva
statue, an iconic image of the 2013 floods (Figure 5.2e-f). As floodwaters rose, the statue
of the deity, symbolizing control over the Ganga located at the top of the matted hair,
was swallowed by the surging river herself, a grim reminder of flood’s untamable force.

This stark contrast between flood myth and reality underscores the essential purpose
of this research. While myth offers comfort through divine narratives of control, practical
flood management in river catchments, big and small, relies on accurate hydrological
models, and timely early warning systems. In the end, it is through human effort,
technological innovation, and proactive management, rather than divine interventions,
that we confront the ever-growing threat of floods in a changing climate.

www.windy.com
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Figure 5.2: The “Descent of Ganga” in the 21st century – the 2013 Uttarakhand floods in Northern
India. (a) Map illustrating the Upper Ganges Basin, with highlighted points referencing
accompanying photographs. (b) and (c) The Kedarnath valley and the temple of
Kedarnath (Shiva) (Firstpost, 2013; Adobe Stock, n.d.). (d) Flooding of a bridge at
Uttarkashi in the Bhagirathi catchment (India Today, 2013). (e) and (f) The statue of
Shiva at Rishikesh before and during the flood (Amma, 2013; Sommer, 2013).
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& Samaniego, L. (2024). High-resolution impact-based early warning system for riverine flooding.
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a.1 ensemble water level forecasts
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Figure A.1: Ensemble water level forecasts (n=20) at gauge Altenahr for 16 initialisations between
July 13, 2021 (02 CEST) and July 14, 2021 (23 CEST) based on ICON_D2_EPS - mHM.
Initialization timming from 47 h to 26 h before the event. Data Sources: Observed
streamflow: LfU. Observed rainfall (RADOLAN) and weather forecast (ICON_D2_EPS):
Deutscher Wetterdienst.



A.1 ensemble water level forecasts 127

Figure A.1: ... Cont. Ensemble water level forecasts. Initialization timming from 23 h to 2 h before
the event.
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Figure A.2: Raster-based lead-time map of water level downstream Altenahr gauge exceeding
HQ100 levels based on ensemble median from ICON_D2_EPS-mHM-RIM2D warning
chain. The red outlined areas indicate the inundation areas mapped by the State
Office for the Environment (LfU) of Rheinland-Pfalz. Suplementary data sources:
OSM rivers, roads and buildings: OpenStreetMapOpenStreetMap, 2017 contributors
2021 distributed under the Open Data Commons Open Database License (ODbL) v1.0.
Hillshade: DTMHengl et al., 2021v0.3 (CC BY).

a.2 ensemble median - without persistence
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Figure A.3: Raster-based lead-time map of water level downstream Altenahr gauge exceeding
HQ100 levels based on Maximum ensemble from ICON_D2_EPS-mHM-RIM2D warning
chain. The red outlined areas indicate the inundation areas mapped by the State
Office for the Environment (LfU) of Rheinland-Pfalz. Suplementary data sources:
OSM river, roads and buildings: OpenStreetMapOpenStreetMap, 2017 contributors
2021 distributed under the Open Data Commons Open Database License (ODbL) v1.0.
Hillshade: DTM v0.3 (CC BY)Hengl et al., 2021.

a.3 ensemble maximum - without persistence

a.4 forecasting chain for the impact-based fews
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Figure A.4: Schematic of the ICON_D2_EPS-mHM-RIM2D flood warning chain. Data sources: Ob-
served rainfall fields based on RADOLAN and ICON_D2_EPS (Deutscher Wetterdienst).
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a.5 mhm performance evaluation

Figure A.5: Time series of streamflow simulations and observation at (a) hourly, (b) daily, (c)
monthly time step for the Altenahr gauge. Monthly climatology is show in panel
(d) and daily flow direction curve is shown in panel (e). The respective Kling-Gupta
efficiency (KGE)Gupta et al., 2009 values with an optimal value of 1 and the three
components of KGE (i.e., alpha = ratio of variability, beta = ratio of bias, r = correlation)
are shown in the respective panels. Data source: observed streamflow from LfU.
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a.6 persistency map schematics
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Figure A.6: (a) Raster-based inundation forecast and water level shown for three forecast initial-
isations for a given pixel (b) Definition of maximum lead-time (with and without
persistency) for the given pixel and an ensemble member. In defining the term lead-
time with persistency, water level for three consecutive forecast initialisations exceed
the HQ100.



A.7 location map 133

a.7 location map

Figure A.7: Topographic map of the Ahr catchment
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This section includes the Appendix and the Supporting Information from the following
publication:

Shrestha, P. K., Samaniego, L., Rakovec, O., Kumar, R., Mi, C. X., Rinke, K., & Thober, S. (under
review). Enhancing Global Streamflow Modeling to Enable Locally Relevant Simulations. Water
Resources Research.

b.1 global distribution of data availability, catchment area error in
the dem , and catchment size
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(b)       Discrepancy between GRDC/CEDEX reference area and the DEM based area

(a)       Availability of streamflow data
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(c)       Distribution of GRDC/CEDEX reference catchment area
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Figure B.1: Attributes of 5 256 streamflow stations of the global experiment. (a) Temporal extent of
daily time series streamflow data between 1961 to 2020. n is the number of streamflow
stations. (b) Discrepancy between the GRDC/CEDEX reference catchment area (Ar) and
the DEM based catchment area (Ad) subsequent to the application of BasinEx. (c)
Distribution of the GRDC/CEDEX reference catchment areas (Ar). The insets shows the
same for the Rhine basins.
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b.2 schematics of the resolution levels in mhm
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Figure B.2: Resolution levels used in mHM with two possible cases between ω1 and ω11. Note that
there is a third possible case (not shown here) where ω1 and ω11 are equal.

b.3 algorithms for upscaling the stream network with scc

Algorithm 1 Delineation of basins at points of interest
(see Figure 3.3a-d)
1. Read the coordinates of a set of locations contained in the set D, numbered from

i = 1, N. Here, N denotes the number of streamflow stations where streamflow will
be estimated.

2. Delineate ω0 catchment at each point i using flow direction (Fd) at the ω0 level, with
the index i as the value, to obtain a vector M of catchment maps.

3. Co-locate the vector M into a single map (M→) such that each pixel is assigned the
index (i) corresponding to the catchment with minimum Fa (flow accumulation at ω0)
at the outlet (Fo

a ).

M→ = imin(Fo
a ) | M (B.1)
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Algorithm 2 Node initialisation
(see Figure 3.3e-f)
1. Intersect the catchment map M→ of Algorithm 1 with the ω11 grid (panel e).
2. Establish all unique sub-catchments within an ω11 grid (panel f ).
3. Assign unique IDs to each node.
4. Estimate the contributing area fraction ( f ) of each node (to be used in routing).

Algorithm 3 Setting the upscaled stream network
(see Figure 3.3g-h)
1. Walk along the border of each node to identify the ω0 cell with the maximum Fa i.e.,

the subgrid outlet.
2. Given the Fd of the subgrid outlet, determine the downstream node.
3. Connect each node to its downstream node by flow direction arrows to represent the

upscaled stream network. In Figure 3.3g (zoomed inset), node 2 is the downstream
node for node 3.

4. Store the routing order (to be used in routing).

b.4 routing flow using stream network upscaled by scc

mRM routes the streamflow through links connecting the subgrid outlets of the upstream
and downstream nodes. Once the stream network is upscaled by SCC to the user pre-
scribed routing resolution (ω11), mRM routes the streamflow through the links in the
routing order (see Algorithm 3), at each time step, in the following manner:
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Algorithm 4 Streamflow routing

1. Collect the inflow Qt
i at a link as sum of outflow Qt

o from the m upstream links at
time step t

Qt
i =

m

∑
k=1

Qk,t
o (B.2)

2. Add the fraction f (see Algorithm 2) of streamflow generated from the current node
(Qt

n) to Qt
i

Qt
i = Qt

i + f Qt
n (B.3)

3. Route the streamflow downstream (Samaniego et al., 2010; Thober et al., 2019) using
Muskingum-Cunge routing parameters (ν1 and ν2) regionalized by the multiscale
routing model, mRM (Thober et al., 2019).

Qt
o = Qt⇐1

o + ν1

(
Qt⇐1

i ⇐ Qt⇐1
o

)
+ ν2

(
Qt

i ⇐ Qt⇐1
i

)
(B.4)

4. Repeat steps 1 – 3 for all the links

b.5 equations for the benchmarks

We benchmark SCC against the D8 and other state-of-the-art upscaling methods. The
accuracy of the SCC modelled catchment area is benchmarked against D8 based on mod-
eling efficiency (ME) and root mean squared error normalized with standard deviation
(Normalized Root Mean Square Error (NRMSE)). The expression of ME as defined by
Yamazaki et al. (2009), which is equivalent to the Nash-Sutcliffe Efficienty (NSE) (Nash
and Sutcliffe, 1970), is:

ME =
∑k

i=1


Ād ⇐ Ai
d
2 ⇐ ∑k

i=1


Âi ⇐ Ai
d
2

∑k
i=1


Ād ⇐ Ai

d
2 , (B.5)

where, Ai
d is the DEM based catchment area at a streamflow station, Âi is the upscaled

catchment area at the station, and Ād is the DEM based mean catchment area across all
the stations (total = k). The expression of NRMSE is:

NRMSE =


∑k

i=1


Âi ⇐ Ai
d
2

k
σ

, (B.6)

where, σ is the standard deviation of the Ad values. We benchmark the streamflow
simulation of SCC against D8 based on change in model performance at individual stations
as:
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∆KGE = KGESCC ⇐ KGED8 (B.7)

Where, KGE is the Kling-Gupta Efficiency metric (Gupta et al., 2009) between daily
streamflow simulations and observations. KGESCC and KGED8 are calculated for SCC and
D8 streamflow simulations, respectively.

b.6 comparison of model upscaled catchment area with the grdc/cedex
reference catchment area
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Figure B.3: Scatterplots of GRDC/CEDEX reference area (Ar) on x-axis and model upscaled catch-
ment area (Â) on y-axis evaluating performance of SCC vs D8 at model resolutions
of (a) 25 km, (b) 50 km, and (c) 100 km corresponding to the 5 256 streamflow sta-
tions worldwide. The goodness of fit of Â on Ar is given by the model error (ME,
dimensionless) and RMSE ( km2) normalized using standard deviation. The grid limit
represents the area of the model grid (ω11) and is estimated at the equator. Together
with Figure 3.6, this figure highlights that inaccuracies from the upscaling scheme,
such as the D8 method, can be orders of magnitude higher than the error in the DEM if
not properly addressed. The inconsistencies of SCC against the reference area is thus
mainly limited to the errors in the DEM used in this study, which could be improved
with a finer resolution and/or better hydrography checks in the DEM (e.g., MERIT
Hydro).
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b.7 additional figures for the scalability hypothesis
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Figure B.4: CDFs comparing streamflow performance across 25 km to 100 km model resolutions,
and subgrid stream network upscaling using SCC and D8, for the global experiment.
(a) Global CDFs of KGE. (b) Global CDFs showing the corresponding improvements
gained by using SCC instead of D8 (i.e., ∆ KGE). (c) WMO region-wise CDFs for KGE
and its components namely variability measure (α), bias (β), and correlation (r). The
vertical lines in the CDFs for KGE correspond to the mean flow benchmark (KGE =
-0.41). The vertical line in the panel (b) corresponds to ∆KGE = +0.5.
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Figure B.5: Hydrographs resulting from SCC and D8 across 1 km to 100 km model resolutions at
three different streamflow stations in the Rhine: (a) Kinzig River (tributary of the Main
River) at Hanau, DE, (b) Moselle River at Pearl, DE, and (c) Rhine River at Düsseldorf,
DE. Ad – DEM based catchment area, Ag – model grid size estimated at the equator.
Note: The KGE values correspond to the full evaluation period (1961 – 2020) while the
graph viewport zooms to the years 1981 – 1982.
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This section includes the Appendix and the Supporting Information from the following
publication:

Shrestha, P. K., Samaniego, L., Rakovec, O., Kumar, R., & Thober, S. (2024). Toward Improved
Simulations of Disruptive Reservoirs in Global Hydrological Modeling. Water Resources Research,
60(4).

c.1 overall algorithm for mhm-lm

Algorithm 5 Overall Algorithm for mHM-LM

1. Estimate Pt as described in Sect.4.2.2.
2. Estimate Et as described in Sect.4.2.2 and C.3.
3. Estimate Lt as described in Supplement S2.
4. Collect It⇐1 from the routing model of mHM.
5. Estimate Qb

t as described in Supplement S3.
6. Update Gt as described in Supplement S3.
7. Estimate Qs

t as described in Supplement S4.
8. Estimate Di

t, Dm
t , and Dl

t, if any, as described in Supplement S5.
9. Estimate Qu

t using Eq. 4.11.
10. Use Dn

t = D̃n
t from Eq. C.17 as described in C.5 based on Random Forest.

11. Hedge the demand Dn
t to obtain D̂n

t using Eq. 4.6.
12. Adjust D̂n

t to obtain Qn
t using Eq. 4.10.

13. Check whether Qn
t can be fulfilled using Eq. 4.12.

14. Repeat steps 10–12 if Di
t, Dm

t , and Dl
t are given to obtain Qi

t, Qm
t , and Ql

t, respectively.
15. Solve Vt and At using Eq. 4.1 and hAV table as described in C.4.
16. Redistribute Qi

t, Qm
t , and Ql

t, if any, as described in Supplement S5.
17. Estimate Qd

t using Eq. 4.2.
18. Pass Qd

t and Qb
t to the routing model of mHM for further routing downstream.

19. Repeat 1–18 for all model time steps.
20. Optimize mHM and LM parameters for streamflow simulations at gauge location (Qg),

downstream of the reservoir, as described in Sect. 4.3.2.

143
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c.2 lake module parameters

Table C.1: Parameters of LM

Parameter Process Value Reference
Default Lower bound Upper bound

ω regulation 0.5 0 1 Eqn. 4.4
c↓ regulation 0.5 0.001 20 Eqn. 4.7
β regulation 2 0.5 5 Eqn. 4.7
γ regulation 0.85 0.6 0.95 Eqn. 4.9
ϱ regulation 0.5 0.1 1 Eqn. 4.9
ζ percolation 11 8 15 Supplement S2

Q̄b baseflow 1 0.001 1000 Supplement S3
Cd spill 3 2.64 3.95 Supplement S4

Note: The values for ω, c↓, β, and γ are taken from Sadki et al.

c.3 lake evaporation

The lake evaporation (E) is estimated using an implementation of Penman-Monteith
equation for potential evaporation (Shuttleworth, 1996):

E =

(
∆

∆ + γ

)
(Rn + Ah) +

(
γ

∆ + γ

)
µ0 (1 + µ1U2) (es ⇐ e)

ϱ
, (C.1)

where, ∆ is the slope of saturated vapor pressure versus temperature graph, γ is the
psychromatic constant, ϱ is latent heat of vaporization of water, Rn is the net surface
solar radiation, An is advection rate per unit area of lake, es is saturated vapor pressure,
and e is ambient vapor pressure. U2 is windspeed at 2 m above the lake surface and is a
model input. This parameterization used the following empirical coefficients: µ0 =6.43
and µ1 =0.536

The expression for Rn and its components are:

Rn = Sn + Ln

Sn = Si ⇐ αSi

Ln = Li ⇐ Lo

Lo = εσT4,

(C.2)
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where, S is shortwave radiation, L is longwave radiation and the subscripts n, i, and
o denote net, incident and outgoing, respectively. The last expression of equation set
C.2 is the Boltzmann’s formulation where ε is the emissivity of water (0.96) and σ is
Stefan-Boltzmann constant (5.67 ↔ 10⇐8 W m⇐2 K⇐4). Si and Li are model inputs. α is the
albedo i.e., reflectivity of still water.

The radiative term (first part) in equation C.1 is known to be larger than the aerody-
namic term (second part). Shuttleworth mentions the factor by which the radiative term
exceeds the aerodynamic term can range from 1.35 (arid locations) to as much as 3.84
(humid locations). The albedo or the reflectivity of water, α, in the radiative term thus has
much significance. α depends on the position of the sun above the horizon i.e., the solar
elevation angle, θ. θ varies with time of day, day of year and location on Earth. Figure C.1
shows how constant albedo assumptions such as Shuttleworth and Wanders et al. are
inaccurate compared to measurements taken from Cogley. Fresnel equation shows good
fit but overestimates α at lower values of θ. Here, we rather fit a Weibull type function on
the measurements of Figure C.1 which gives α (%) as a function of θ (degrees):

α = s




k
ϱ

(
θ/10

ϱ

)k⇐1
e
⇐




θ/10

ϱ




k



+ c , (C.3)

where k and ϱ denote shape and scale parameters, respectively. Here the following
values were adopted: k =1.517, ϱ =1.236, s =53.279, and c = 4.493.

θ is a function of hour of the day, day of the year and latitude, the procedure to
calculate which can be referred to from Cogley and Meeus. The expression for advection,
Ah, in equation C.1 is:

Ah = ρwcw


ITi ⇐ QrTo + PTp


, (C.4)

where, ρw is density of water and cw is specific heat capacity of water. T is temperature
while subscripts i, o and p denotes inflow, outflow and precipitation. Since temperature
routing through reservoirs is not included in current version of mHM-LM, we consider
all Ti, To and Tp to be equal to model input average daily air temperature, T. I denotes
reservoir inflow, Qr is the reservoir release, and P is precipitation on reservoir surface.

We refer to Teten’s formulations for calculating ∆, es and e in equation C.1:

∆ =
εes

e2 log(T+τ)
,

es = εe(
αT

T+τ ),

e = ε

(
αTd

Td+τ

)

,

(C.5)
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Figure C.1: Albedo of still water for reservoir evaporation. Grishchenko measurements taken
from Cogley (1979)

where, ε =0.61078, τ =237.3, α =17.27. Td is the dew point temperature which is a
model input. Although ϱ and γ can be taken as constants, for global experiment such
as this study, we opted to go with their temperature and altitude varying formulation
(Shuttleworth, 1996):

γ = γ0
P
ϱ

,

ϱ = β0 + β1Ts ,

P = ρ0

(
ζ0 + ζ1z

ζ0

)µ

,

(C.6)

where, P is atmospheric pressure, z is the altitude of the reservoir water surface,
Ts is the temperature of reservoir water surface, assumed to be equal to model input
average daily air temperature, T. This parameterization uses the following coefficients:
γ0 =0.0016286, β0 =2.501, β1 =-0.002361, ρ0 =101.3, ζ0 =293, ζ1 =-0.0065, µ=5.256.
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c.4 reservoir water balance solution

Algorithm 6 Reservoir Water Balance Solution
1. Given ht⇐1, At⇐1, and Vt⇐1 from previous time step (t ⇐ 1) in the lake model.
2. Set the initial conditions of the solver for states (k ⇐ 1) and (k ⇐ 2). Set k = 1 for the

1st iteration of the solver.

a. Estimate h (*), A, V (**), ∆V̂

h(⇐1)
t = ht⇐1 ⇐ 0.02

A(⇐1)
t = hAV(h(⇐1)

t )

V(⇐1)
t = hAV(h(⇐1)

t )

∆V̂(⇐1) = V(⇐1)
t ⇐ Vt⇐1

h(0)t = ht⇐1 + 0.01

A(0)
t = hAV(h(0)t )

V(0)
t = hAV(h(0)t )

∆V̂(0) = V(0)
t ⇐ Vt⇐1

(C.7)

b. Estimate ∆V from Eq. 4.3

∆V(⇐1) = f
(

A(⇐1)
t

)
∆t ∆V(0) = f

(
A(0)

t

)
∆t (C.8)

c. Estimate the volume error, ε

ε(⇐1) = ∆V̂(⇐1) ⇐ ∆V(⇐1) ε(0) = ∆V̂(0) ⇐ ∆V(0) (C.9)

3. Repeat following steps, for k = 1, 2, 3, . . . until |ε(k)| ⇒ 1 m3.

a. Estimate ∆V̂(k) using secant method

∆V̂(k) = ∆V̂(k⇐1) ⇐ ε(k⇐1) ∆V̂(k⇐1) ⇐ ∆V̂(k⇐2)

ε(k⇐1) ⇐ ε(k⇐2) (C.10)

b. Estimate V(k)
t

V(k)
t = ∆V̂(k) + Vt⇐1 (C.11)

c. Estimate A(k)
t

A(k)
t = hAV(V(k)

t ) (C.12)

d. Estimate ∆V from Eq. 4.3

∆V(k) = f
(

A(k)
t

)
∆t (C.13)
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Algorithm 6 (contd . . . )
3. Contd . . .

e. Estimate ε(k)

ε(k) = ∆V̂(k) ⇐ ∆V(k) (C.14)

f. Update the following variables

∆V(k⇐2) = ∆V(k⇐1)

∆V(k⇐1) = ∆V(k)

ε(k⇐2) = ε(k⇐1)

ε(k⇐1) = ε(k)

(C.15)

4. Estimate ht using solved Vt
ht = hAV(Vt) (C.16)

Notes:
* We set small fluctuations for the first two iterations of the solver [(k ⇐ 2) and (k ⇐ 1)]
as initial conditions for the solver for every time step t. As a rule of thumb, we fix the
elevation fluctuations to -2 and +1 cm respectively.
** A(k)

t and V(k)
t are estimated by linear interpolation in the hAV table using h(k)t .

c.5 random forest based prediction of non-consumptive demand

D̃n
t is input for the mHM-LM regulation scheme (refer Sect. 4.2.4 and 4.2.5) which then

estimates the model regulated non-consumptive outflow (Qn
t ).

c.6 routing of the reservoir outflow

The routing equation for a lake-node link i.e., reservoir/lake outflow follows Samaniego
et al. (2010) and Thober et al. (2019) as shown below:

Qo
t = Qo

t⇐1 + ν1

(
Qi

t⇐1 ⇐ Qo
t⇐1

)
+ ν2

(
Qi

t ⇐ Qi
t⇐1

)
(C.18)

Where Qo is streamflow exiting the link, Qi is streamflow entering the link, ν1 and ν2
are Muskingam-Cunge routing parameters regionalized in the stand-alone multiscale
routing model, mRM (Thober et al., 2019) that is based on the techniques proposed in
Samaniego et al. (2010) and later further developed and tested in Kumar et al. (2013).



C.7 percolation from reservoir bottom 149

Algorithm 7 Random Forest based Prediction of Non-consumptive Demand
1. Adjust Qg,o time series with the ratio of catchments at the gauge and the dam to

estimate the hypothetical streamflow observations immediately after the dam (Qd),
for available years (m).

2. Estimate the times series of the predictors described above.
3. Repeat following steps until min (1000, C[m, mt]) iterations

a. Randomly segregate m years into two equal-sized groups, one for training
(number of years = mt) and one for testing.

b. Fit a RF model on the training data.

c. Test the performance (KGE) of the fitted RF on the testing data.

4. Select the RF model with best performance (KGE) during testing.
5. Prepare the RF model prediction time series (Qd,RF) for the m years.
6. Inverse estimate the non-consumptive demand component from Qd,RF, on-the-fly

during model simulation, by rearranging Eq. 4.2 as

D̃n
t = Qd,RF

t ⇐ Qs
t ⇐ Qu

t ⇐ Qb
t (C.17)

c.7 percolation from reservoir bottom

The percolation, Lt [m/h], from a reservoir in mHM is calculated as -

Lt =
n

∑
i=1

Li
t (C.19)

Where n is number of slices in the input hAV table (refer Figure C.2). Li
t is the percolation

at lake bed for slice i given by -

Li
t = κpκc

t (ht⇐1 ⇐ h̄i
t⇐1)∆Ai

t⇐1/At⇐1 (C.20)

Where κp is the coefficient of percolation for lake bed. κc is a multiplier to control the
height of percolation water. ht⇐1 [m a.s.l.] is the elevation of water surface and h̄i

t⇐1 [m
a.s.l.] is average elevation of the slice. ∆Ai

t⇐1 [m2] is the area covered by the slice i, while
At⇐1 [m2] is the area of reservoir water surface.

Lt is based on reservoir depth and surface area from the previous time step as the
reservoir states for the current time step will only be known after the water balance.
κp is calculated using soil properties as predictors in a transfer function within MPR
(Samaniego et al., 2010) in mHM. The multiplier κc

t is calculated as:

κc
t= (ht ⇐ h̄b)/eı (C.21)
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Where h̄b is the average lake bed elevation and ı is a LM parameter that controls value
of κc.
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Figure C.2: Percolation in mHM

c.8 water balance for aquifer storage

The water balance equation for storage G underneath a reservoir in mHM is -

Gt = Gt⇐1 + Lt ⇐ Qb
t (C.22)

Where, the shallow groundwater baseflow, Qb, is calculated from G of previous time
step -

Qb
t = kb Gt⇐1 (C.23)

Here, kb is the baseflow recession coefficient (s⇐1). Soil properties are used as predictors
in a transfer function for calculating kb within MPR (Samaniego et al., 2010) in mHM. G is
initialized using equation C.23 -

G1 = Q̄b / kb (C.24)

Here Q̄b [m3/s] is long term baseflow from G and is a model parameter.

c.9 reservoir spill

The reservoir spill, Qs
t [m3/s], is estimated using the following generalized spill equation:
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Qs
t =





0, ht⇐1 ⇒ hd

ξ

ht⇐1 ⇐ hd1.5 , ht⇐1 > hd

(C.25)

Where ht⇐1 [m] is the elevation of reservoir water level and hd [m] is the elevation of
the dam crest level (DCL). The spill is based on reservoir elevation from the previous
time step as the reservoir elevation for the current time step will only be known after the
reservoir water balance. ξ is calculated as (USBR, 2011) -

ξ = Cd Ls (C.26)

Cd is the coefficient of discharge and Ls [m] is the effective spillway length. We ap-
proximated the value of Ls from Google Earth. Cd is a LM parameter. We looked for
smallest and largest values of Cd in the literature. We found broad-crested weirs to
have the smallest value of 2.64 (USBR, 2011) and 3.95 as maximum value attainable
for ogee-shaped weirs (USBR, 1997). We used these values to set bounds of Cd during
optimization.

c.10 consumptive water use at reservoir

At this stage, the mHM-LM does not include an internal water demand model for con-
sumptive use i.e., irrigation, domestic, and industrial use. Therefore, the user must
input the consumptive demand either measured or estimated. If consumptive demand
is provided as gridded input, the model calculates the domestic demand (Dm

t ) [m3/s],
industrial demand (Dl

t) [m3/s] and irrigation demand (Di
t) [m3/s] for current time step

by area weighing the input demand grids overlaying the delineated reservoir service area
mask. To delineate the reservoir service area mask, LM selects the pixels downstream of
the reservoir within an input supply service distance (Note: Sadki et al. (2023) optimizes
this service distance for each reservoir). If a downstream reservoir is within the supply
service distance of the upstream reservoir, the upstream reservoir’s service area is limited
to the water divide between the two reservoirs.

mHM-LM uses Di
t, Dm

t , and Dl
t to estimate the irrigation consumptive outflow (Qi

t [m3/s]),
domestic supply (Qm

t [m3/s]), and industrial supply (Ql
t [m3/s]), respectively. Qi

t, Qm
t ,

and Ql
t are then redistributed to the reservoir service area. If the input consumptive

demand was gridded, Qi
t, Qm

t , and Ql
t are redistributed using the reservoir service area

mask as overlay, weighed by the grid demand values. If the input consumptive demand
was point time series, Qi

t is redistributed using the reservoir service area mask as overlay,
weighed by input irrigation areas map. In case of Qm

t , and Ql
t, the weights are generated

from input population density map. The irrigation areas map and the population density
map were prepared from globally available datasets (refer Table S2). The redistributed
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irrigation outflow1 is incorporated as additional precipitation at model grids (ω1) where
it undergoes water balance processes. In other words, the soil moisture located in the
agricultural areas will be watered with constant rates over the vegetation growing season.
Future versions of this module will implement irrigation scheduling and soil moisture
validation capabilities using field-scale soil moisture sensors (e.g., cosmic-ray neutron
rover surveys (Schrön et al., 2018)). The redistributed domestic outflow2 skips the water
balance and gets directly routed by mRM to mimic the reservoir-to-household-to-river
movement of domestic return flow.

c.11 information on reservoirs used in the experiment

1 Assuming 50% conveyance and application losses (FAO, 1989)
2 Assuming 30% return flow. Similar return fractions are used in Wada et al. (2011), Wada et al. (2014), and

Shrestha et al. (2017)
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c.12 data sources

Data Type Dataset name Processed
Resolution

Author, Source

Dam
coordinates and
salient features

GRanD v1.3 point, - Lehner et al. (2011)

Reservoir
bathymetry
(Y2018)

ReGeom point, - Yigzaw et al. (2018)

Surveyed
Reservoir
bathymetry
(Texas)

– point, -
Texas Water Development Board http:
//www.twdb.texas.gov/surfacewater/
surveys/completed/list/index.asp

Streamflow
observations

GRDC point, daily The Global Runoff Data Centre
http://www.bafg.de/\ac{GRDC}/

DEM
(+ derivatives)

Global Multi-resolution Terrain
Elevation Data (GMTED2010)

1/512↑, static USGS and NGA (2018)

Soil SoilGrids 1/512↑, static ISRIC - World Soil Information (2017)

Geology Global Lithological Map (GLiM) 1/512↑, static Hartmann and Moosdorf (2012)

Land cover Global Land Cover (GlobCover) 1/512↑, static European Space Agency (ESA),
Universit Catholique de Louvain (2009)

LAI Global Inventory Modeling and
Mapping Studies (GIMMS)

1/512↑, monthly
climatology

Tucker et al. (2004)

P, T, U2, Li , Si ,
Td

ERA5 0.25↑, daily Copernicus Climate Change Service
(2017)

Irrigation areas Global Map of Irrigation Areas
(GMIA) v5

1/512↑, static Siebert et al. (2005)

Population
density

Gridded Population of the
World (GPW) v4, year 2000

1/512↑, static Center for International Earth Science
Information Network (CIESIN)

http://www.twdb.texas.gov/surfacewater/surveys/completed/list/index.asp
http://www.twdb.texas.gov/surfacewater/surveys/completed/list/index.asp
http://www.twdb.texas.gov/surfacewater/surveys/completed/list/index.asp
http://www.bafg.de/%5Cac%2520%7BGRDC%7D/
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c.13 derivation of bathymetric relationships for half of pyramid with
square base

b

b

c
h

h

h b

b

cl l

h

Pyramid with square base Base of pyramid Half pyramid

b b

l
l

A

h h

Figure C.3: Schematics for half pyramid

Let us consider a pyramid of height h, having a square base with edges b as shown in
Figure C.3. The volume of the full pyramid, Vp, is given by -

Vp =
1
3

b2c (C.27)

Here b can be replaced by h
⇑

2.

Vp =
2
3

h2c (C.28)

The volume of half pyramid, V, would then be half of Vp -

V =
1
3

h2c (C.29)

The half pyramid, which is cut diagonally at the square base, can be an approximation
of reservoir shape. Here, ω is known as the characteristic length and is expressed f times
depth i.e., f h. Expressing c in terms of h and ω, V further reduces to -

V =
1
3

h2

ω2 ⇐ h2 (C.30)

=
1
3

h2


f2h2 ⇐ h2 (C.31)

=
1
3

h3


f2 ⇐ 1 (C.32)

Similarly, the surface area A can be derived in terms of h and f as -



156 appendix c

A =
1
2

2h c (C.33)

= h

ω2 ⇐ h2 (C.34)

= h


f2h2 ⇐ h2 (C.35)

= h2


f2 ⇐ 1 (C.36)

Substituting A into expression of V, we get -

V =
1
3

h A (C.37)

When maximum values of V and A are known, maximum depth is obtained from
equation C.37. Once maximum depth is known, f can be determined using either equation
C.32 or C.36. Thereafter, equations C.32 and C.36 work as hAV or bathymetric relationship
for the reservoir shape.
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c.14 performance evaluation at tres marias

calibration validation
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(a) Streamflow for mHM without dam

0

1000

2000

st
re

am
flo

w
 [m

3 s−
1 ] obs RF

KGE  0.84 (0.89)
NSE  0.74 (0.84)

(b) Streamflow fitted by RF

0

1000

2000

st
re

am
flo

w
 [m

3 s−
1 ] obs mhm (M)

KGE  0.76 (0.53)
NSE  0.71 (0.65)

(c) Streamflow for mHM with dam

560

570

h 
[m

 a
.s

.l.
]

obs mhm (M)
KGE  0.95 (0.35)
NSE  0.89 (0.10)

(d) Water level of the reservoir

-250

0

250

1996 1998 2000 2002 2004 2006
Time

Δ
V 

[x
10

6 m
3 ]

obs mhm (M)
α  0.75 (0.73)

NSE  0.76 (0.69)
(e) Daily change in volume of the reservoir

Figure C.4: Performance evaluation of RF and mHM simulations at Trés Marias reservoir. Rows
1 to 3 show streamflow downstream of reservoir in mHM without dam (N), Qd,RF

fitted by random forest (RF), and mHM with dam (M), respectively. Rows 4 and
5 show performance of reservoir water level and incremental volume simulations,
respectively. The performance metrics for calibration is followed by those for validation
in parentheses.
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Figure C.5: Sensitivity of reservoir shape on streamflow, volume, elevation, surface area and
evaporation for Trés Marias reservoir.
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c.15 sensitivity of reservoir shape at tres marias

c.16 hv plots comparing the surveyed bathymetry to shape approxima-
tions
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Figure C.6: hV plots comparing the surveyed bathymetry to Y2018, L2005 and Linear shape approxi-
mations at (a) H-reservoirs, and (b) 88 Texan reservoirs. The title of individual plot
displays the name of the reservoir with GRanD ID in the parentheses. The correspond-
ing figure for hA plots are provided in Figure 8.
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