

This is the preprint of the contribution published as:

Shi, Z., He, C., Huang, H., Huang, X., Hu, T., He, Y., Yang, D., Xia, S., **Zhang, H.**, Deng, L. (2025):

A novel polydopamine-loaded copper sulfide (CuS@PDA) for activating H₂O₂ to eliminate tetracycline via ¹O₂ dominated oxidation pathway

J. Water Process Eng. **71** , art. 107223

The publisher's version is available at:

<https://doi.org/10.1016/j.jwpe.2025.107223>

1

2 A novel polydopamine-loaded copper sulfide (CuS@PDA) for
3 activating H_2O_2 to eliminate tetracycline via 1O_2 dominated
4 oxidation pathway

5

6 Zhou Shi^a, Chenxi He^a, Hao Huang^a, Xile Huang^a, Tong Hu^a, Yijia He^a, Dazhi Yang^a,
7 Simeng Xia^{a,*}, Haojie Zhang^{a,b,*}, Lin Deng^{a,*}

8

9

10 a. Hunan Engineering Research Center of Water Security Technology and Application,
11 College of Civil Engineering, Hunan University, Changsha 410082, China
12 b. Helmholtz Centre for Environmental Research-UFZ, Department of Technical
13 Biogeochemistry, Leipzig 04318, Germany

14

15

16 *Corresponding authors.

17 *E-mail addresses:* symeon@hnu.edu.cn (S. Xia); haojie.zhang@ufz.de (H. Zhang);

18 lindeng@hnu.edu.cn (L. Deng)

Abstract

20 The frequently detected antibiotics in aquatic environments can induce antibiotic-
21 resistance genes, thereby posing significant risks to both ecosystems and human health.
22 Thus, it is imperative to remove antibiotics from water environments. We constructed
23 a novel polydopamine-loaded copper sulfide (CuS@PDA) through a simple
24 hydrothermal method to activate H_2O_2 to degrade tetracycline (TC). Compared to
25 CuS/ H_2O_2 , the CuS@PDA/ H_2O_2 system not only achieved efficient TC removal with
26 kinetic rate constant of 0.20 min^{-1} , but also showed much lower Cu^{2+} ions leaching
27 (3.81 mg/L from CuS vs. 0.21 mg/L from CuS@PDA). Besides, CuS@PDA exhibited
28 remarkable recyclability with 93% removal in the fifth consecutive cycle. Mechanisms
29 analysis revealed that Cu and S contributed to the H_2O_2 activation and S promoted the
30 conversion of Cu(II) to Cu(I), beneficial for the production of reactive oxygen species.
31 1O_2 was found to play the dominant role in the degradation of TC on the basis of
32 quenching tests and electron paramagnetic resonance (EPR) analysis. PDA in
33 CuS@PDA composites facilitated easier complexation with H_2O_2 and conferred
34 stronger oxidation capability. Lastly, the TC degradation pathway by CuS@PDA/ H_2O_2
35 was proposed, and the ecotoxicity of its degradation intermediates was estimated. In
36 conclusion, this work presents an approach for synthesizing high efficient and
37 recyclable CuS-based catalysts that activate H_2O_2 to efficiently degrade organic
38 pollutants through a nonradical pathway predominantly mediated by 1O_2 .

40 **Keywords:** CuS; Polydopamine; H_2O_2 activation; Tetracycline degradation; 1O_2
41 dominated

43 **1. Introduction**

44 The presence of pharmaceutical and personal care products in aquatic environment
45 leads to severe ecological risks such as endocrine disruption and bioaccumulation [1].
46 Tetracyclines (TC), extensively used in aquaculture and veterinary medicine [2], has
47 been frequently detected in surface water, groundwater, and municipal wastewater due
48 to its hydrophilicity, weak volatility, and high adsorptive capacity [3]. This poses
49 serious threat to human health, induces bacteria resistance, and endangers the ecological
50 environment [4]. Conventional water and wastewater treatment methods such as
51 flocculation, precipitation, adsorption, and activated sludge process fail to efficiently
52 remove TC from aqueous solutions [5]. Thus, it's urgent to find effective and
53 environmental-friendly strategies to deal with the intractable problems of antibiotic
54 pollution.

55 In recent years, advanced oxidation processes (AOPs) that can generate reactive
56 oxygen species (ROS, such as $\cdot\text{OH}$, $\text{SO}_4^{\cdot-}$, etc.) have been considered as one of the
57 most promising techniques to eliminate refractory organic pollutants [6]. The high
58 oxidation ability of ROS can decompose the targeted pollutants into small molecules
59 with low-toxicity, and even mineralize them into CO_2 and H_2O [7]. The Fenton/Fenton-
60 like processes, based on H_2O_2 activation, has garnered increasing attention due to their
61 advantages of simplicity in operation, high effectiveness, mild reaction conditions, and
62 environmental friendliness [8]. The commonly employed activation approaches
63 encompass photocatalysis [9,10], electrocatalysis [11], transition metals (i.e. Fe [12],
64 Co [13], Cu [14], Mn [15], etc), carbon [16] and bimetallic metals catalysts activation
65 [17].

66 Due to the significantly higher reaction rate constant of Cu(I) with H_2O_2 (10^4 M^{-1}
67 S^{-1}) compared to Fe(II) ($76 \text{ M}^{-1} \text{ S}^{-1}$), various solid catalysts containing copper have

68 been employed as alternatives to iron-based catalysts [18], including zero valent copper
69 [19], copper oxides [20], and copper-based composites [21]. Copper sulfide (CuS) has
70 drawn considerable attention due to the weaker bonding energy between Cu and S
71 compared to Cu and O, which can effectively improve the catalytic reaction rate [22].
72 Additionally, sulfur species (S^{2-} , S_n^{2-}) present in CuS can facilitate the reduction of
73 high-valence Cu to low-valence Cu, thereby significantly enhancing the catalytic
74 activity as well [23]. However, the Cu^{2+} ions leakage from CuS during the catalytic
75 reaction in pollutants removal greatly inhibits its practical application.

76 Dopamine (DA) is a molecule containing amine and catechol functional groups
77 [24], which can undergo self-polymerization reaction in a simple environment to
78 produce polydopamine (PDA) [25]. PDA possesses abundant functional groups such as
79 carboxyl groups, amino groups, and π - π bond. These functional groups make it an
80 excellent in-situ reduction reagent for metal nanoparticles [26], as well as an anchorage
81 point for metal-based materials to construct various secondary reaction platforms.
82 Moreover, these groups can establish strong interactions including hydrogen bonding,
83 electrostatic interactions, and π - π interactions to enhance the adsorption properties of
84 carriers for catalysts and pollutants [27]. Besides, the π - π stacked PDA coating exhibits
85 favorable electrochemical property that significantly accelerate the electron transfer
86 rate [24,25]. Utilizing PDA as a modification carrier enables uniform distribution of
87 metal particles, increased surface area, and generation of nanostructured catalysts with
88 enhanced stability and catalytic efficiency [28].

89 Considering all the above-mentioned points, we speculated that the introduction
90 of PDA onto CuS to synthesize CuS@PDA composite could prevent the copper ions
91 leaching, making it a high-effective, structure stable and recyclable H_2O_2 activator.
92 Nevertheless, to the best of our knowledge, the application of CuS@PDA in H_2O_2

93 activation for refractory organic pollutants degradation has rarely been reported. Herein,
94 spherical CuS@PDA composites were synthesized via a hydrothermal method. The
95 morphology, crystal structure, and chemical composition of CuS@PDA were
96 systematically characterized. The catalytic activity of CuS@PDA in activating H₂O₂
97 for TC degradation was investigated with respect to several key parameters, including
98 initial pH, H₂O₂ concentration, CuS@PDA dosage, and co-existing inorganic anions.
99 Besides, electron paramagnetic resonance (EPR) analysis and quenching experiments
100 were performed to elucidate the production and contribution ratios of ROS to the
101 degradation. The mechanisms underlying TC degradation by CuS@PDA/H₂O₂ were
102 proposed, and the degradation intermediates and pathways were identified as well.

103 **2. Experimental methods**

104 **2.1. Chemicals**

105 Tetracycline (TC), Sulfadiazine (SDZ), carbamazepine (CBZ), Tris
106 (hydroxymethyl) aminomethane Hydrochloride (Tris-HCl), tert-butanol (TBA), L-
107 histidine (l-his), NaF, furfuryl alcohol (FFA) were provided by Macklin Biochemical
108 Technology Co. Ltd. (Shanghai, China). Sulfamethoxazole (SMX), coumarin (CM),
109 hydrogen peroxide (H₂O₂, 30%), ethyl alcohol (EtOH), methanol (MeOH), 1,4-benzo-
110 quinone (BQ), 5,5-Dimethyl-1-pyrroline N-oxide (DMPO), 2,2,6,6-tetra-methyl-4-
111 piperidone (TEMP) were obtained from Sigma-Aldrich Chemical Co. Ltd. (China).
112 Dopamine hydrochloride (DA) and CuCl₂•2H₂O were supplied by Aladdin Biological
113 Technology Co. Ltd. (Shanghai, China). Thiourea (CH₄N₂S), Potassiumperiodate
114 (KIO₄), NaOH, HCl, NaCl, NaNO₃, Na₂SO₄, NaHCO₃, NaH₂PO₄ were purchased from
115 Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All chemicals were of at
116 least analytical grade and used without further purification. Ultrapure water (18.2 MΩ
117 · cm) used throughout the study was prepared using a Millipore system (Bedford, USA).

118 2.2. Catalysts synthesis and characterization

119 The CuS@PDA composite was synthesized via a facile hydrothermal method, as
120 illustrated in [Figure 1a](#). Initially, a precise amount of Tris-HCl (10 mM) weighing 145
121 mg was dissolved in 80 mL of ultrapure water to prepare solution A. Subsequently,
122 solution B was prepared by dissolving 204 mg of CuCl₂•2H₂O accurately weighed in
123 40 mL of ultrapure water. Then, under magnetic stirring and pH adjustment to 8.5,
124 solution A was supplemented with 232 mg of DA while simultaneously introducing
125 CH₄N₂S weighing 91 mg into solution B with continuous stirring. After a reaction time
126 of 30 min, solution B was poured into solution A and the resulting mixture was stirred
127 for an additional duration of 24 h until it attained a grayish white coloration. The
128 reaction mixture was transferred to an autoclave and maintained at a temperature of
129 120°C for a period of 12 h. Upon cooling to room temperature, the solids were collected
130 by filtration and thoroughly rinsed multiple times with deionized water. Finally, the
131 solids were vacuum dried at 60°C for 12 h to obtain CuS@PDA composites. PDA and
132 CuS were prepared following the identical procedure as CuS@PDA but without adding
133 CuCl₂•2H₂O and DA, respectively.

134 The analytical and characterization methods are described in [Text S1](#).

135 2.3. Degradation tests of TC

136 The degradation experiments were conducted in a series of 100 mL glass beakers.
137 Typically, 5 mg of catalyst was mixed with 50 mL of a 40 µM TC solution and dispersed
138 ultrasonically for 1 min. Subsequently, 5 mM H₂O₂ was added to initiate the
139 degradation process. At predetermined time intervals, 0.5 mL of the solution was
140 withdrawn, followed by filtration through a 0.22 µm membrane filter and immediate
141 quenching with methanol (0.2 mL). The residual TC concentration in the solution was
142 analyzed using high-performance liquid chromatography (HPLC). The initial pH of the

143 TC solution was adjusted using HCl or NaOH if necessary. To ensure experimental
144 accuracy, all experiments were performed in triplicate and the results were reported as
145 mean values with standard deviations.

146 **3. Results and discussion**

147 **3.1. Characterization**

148 The microstructure and surface morphology of CuS, PDA, and CuS@PDA were
149 characterized using SEM and TEM images. As shown in [Figure 1b](#) and [e](#), CuS exhibits
150 a tubular flower-like morphology composed of nanosheets. On the other hand, PDA
151 possesses a uniform nanospherical structure with a smooth surface, having an average
152 diameter of approximately 200-500 nm ([Figure 1c](#) and [f](#)). In contrast, CuS@PDA
153 maintains its spherical structure but displays a rougher morphology with smaller
154 particle size and more pronounced agglomeration ([Figure 1d](#)). The TEM image in
155 [Figure 1g](#) clearly reveals that the prepared CuS@PDA consists of randomly assembled
156 nanorods. Additionally, the HRTEM image of CuS@PDA in [Figure 2h](#) exhibits
157 uniformly distributed lattice fringes measuring at 0.305, 0.190, and 0.281 nm,
158 corresponding to the (102), (110), and (103) crystal faces of the CuS nanocrystals
159 respectively [\[29,30\]](#). EDS elemental mapping also confirms that both Cu and S are
160 evenly distributed throughout the material as shown in [Figure 1i](#).

161 XRD patterns were utilized to analyze the crystalline structure of CuS, PDA, and
162 CuS@PDA as depicted in [Figure 2a](#). The characteristic peaks of CuS@PDA observed
163 at 2θ of 27.7° , 29.3° , 31.8° , 32.9° , 48.0° , 52.7° , and 59.3° can be indexed to the (101),
164 (102), (103), (006), (110), (108) and (116) planes of CuS (JCPDS 20-0534),
165 respectively. This indicates a well-defined crystalline structure of CuS grown on the
166 PDA matrix [\[31,32\]](#). The intensity of overlapped peaks for both (103) and (006) is much
167 weaker than that for (110), which suggests preferential growth along the direction (110)

168 and polysulfide formation in CuS [33]. Compared to the pure CuS, the intensity of some
169 diffraction peaks in CuS@PDA is slightly reduced, and this can be related to the surface
170 modification by PDA on specific crystalline surfaces of CuS [34]. The Brunauer-
171 Emmett-Teller (BET) and specific surface areas (S_{BET}) of CuS@PDA were examined
172 by N_2 adsorption/desorption isotherms. As shown in Figure 2b, CuS@PDA displays a
173 typical IV-type isotherm accompanied by a H3 hysteresis loop, indicating the presence
174 of mesoporous structure. The S_{BET} of CuS@PDA was calculated to be $55.67\text{ m}^2/\text{g}$, with
175 a total pore volume of $0.21\text{ cm}^3/\text{g}$ and average pore diameter of $\sim 15\text{ nm}$ (Figure 2c).
176 The surface functional groups of CuS, PDA, and CuS@PDA were analyzed by FTIR.
177 As depicted in Figure 2d, the pure PDA exhibits several characteristic absorption peaks
178 at 1290 , 1512 , 1618 , and $3100\text{--}3600\text{ cm}^{-1}$, corresponding to the C–O stretching
179 vibration, N–H shear vibration, N–H bending vibration [35], and O–H stretching
180 vibration of surface hydroxyl groups, respectively [36]. In the FTIR spectrum of CuS,
181 the absorption peak at 612 cm^{-1} can be assigned to the Cu–S stretching vibration [37],
182 and the peak centered at 1109 cm^{-1} is related to the S–O stretching vibration [38].
183 Obviously, the as-synthesized CuS@PDA possesses the characteristic peaks of both
184 CuS and PDA. Due to the encapsulation of PDA, the Cu–S bond weakens, and the S–O
185 bond disappears. The results indicate that CuS@PDA was successfully prepared. These
186 results demonstrate the successful synthesis of CuS@PDA.

187 **3.2. Catalytic activity tests**

188 The catalytic activity of CuS@PDA in activating H_2O_2 for TC degradation is
189 demonstrated in Figure 3. As shown in Figure 3a, the individual utilization of H_2O_2 or
190 PDA exhibited negligible TC removal within a 30 min timeframe, indicating that the
191 direct oxidation failed to achieve satisfactory TC removal and the adsorption capacity
192 of PDA was insignificant. The removal efficiency achieved by CuS reached 37.2%, and

193 it increased to 58.4% when using CuS@PDA as the adsorbent. As expected,
194 simultaneous addition of H₂O₂ (5 mM) and CuS@PDA (0.1 g/L) resulted in accelerated
195 TC removal. As shown in [Figure 3b](#), the pseudo-first-order kinetic rate constant (*k*)
196 obtained by CuS@PDA/H₂O₂ was determined to be 0.20 min⁻¹, higher than that
197 obtained by CuS/H₂O₂ (0.12 min⁻¹). Further, the presence of 0.1 g/L PDA in CuS/H₂O₂
198 system improved the *k* value from 0.12 to 0.15 min⁻¹, indicating its promotion effect to
199 degrade TC. Overall, the as-synthesized CuS@PDA exhibited the highest catalytic
200 activity while effectively mitigating Cu ions leaching compared to other catalysts tested
201 as illustrated in [Figure 3c](#). It's worth noting that the leaching concentrations of Cu²⁺
202 ions in the CuS@PDA/H₂O₂ system was only 0.2 mg/L, significantly lower than the
203 integrated tap-water standard of U.S. Environmental Protection Agency (1.3 mg/L).
204 While the leaching concentration of Cu²⁺ ions in the CuS/H₂O₂ system was 3.81 mg/L.
205 Obviously, the incorporation of PDA effectively alleviated the release of Cu²⁺ from CuS,
206 which is advantageous for practical application. [Table S2](#) compares the kinetic rate
207 constants of TC degradation by different catalysts in H₂O₂-based AOPs. As observed,
208 CuS@PDA demonstrates a much higher *k* value compared to the reported catalysts.

209 The recyclability of solid catalysts are crucial characteristics for their practical
210 application. In this study, five consecutive cycling tests were conducted to compare the
211 recyclability of CuS@PDA and CuS. After each cycle, the solid catalyst was collected,
212 washed with ethanol and ultrapure water, vacuum dried, and subsequently reused. As
213 shown in [Figure 3d](#), the degradation of TC reduced to 73% in the fifth run when using
214 CuS as the catalyst due to the reduced active sites caused by copper ions leakage from
215 CuS. In contrast, CuS@PDA consistently maintained a removal efficiency 93% after
216 five repeated cycles.

217 These findings demonstrated that CuS@PDA exhibited high efficiency,

218 exceptional recyclability and structural stability, thereby potentially reducing
219 environmental organic pollutants.

220 **3.3. Influencing factors on TC degradation**

221 The influences of operational parameters (i.e., CuS@PDA dosage, H₂O₂
222 concentration, initial pH, and coexisting anions) on TC removal by the CuS@PDA
223 activated H₂O₂ system are discussed in the following section. [Figure 4a](#) illustrates the
224 impact of catalyst dosage (0, 5, 8, 10, and 13 mg). It is evident that different catalyst
225 dosages have varying effects on the removal efficiency of TC. In the absence of
226 CuS@PDA in the solution, the removal was minimal, indicating that the self-
227 decomposition of H₂O₂ was ineffective. Conversely, when 5 mg of CuS@PDA
228 presented, 94.46% of TC was removed in 30 min. This was related to the surface active
229 sites on the catalyst that could rapidly activate H₂O₂ to produce high-effective active
230 substances to degrade TC [\[39\]](#). Yet, further increase in catalyst dosage from 10 to 13
231 mg led to a declined degradation rate, which was related to the self-quenching effect
232 caused by excess radicals and diffusion limitation caused by excess catalyst [\[40\]](#).
233 Considering the removal efficiency and cost control, the optimum dosage of 5 mg
234 CuS@PDA was selected in the subsequent tests. The H₂O₂ concentration also played a
235 pivotal role in the degradation of TC by CuS@PDA/H₂O₂. As shown in [Figure 4b](#), the
236 removal efficiency was limited to approximately 58.4% in the absence of H₂O₂.
237 However, with the addition of 1 mM H₂O₂, the degradation rapidly improved to 86.5%.
238 Furthermore, a gradual enhancement in degradation was observed as the H₂O₂
239 concentration increased from 1 to 10 mM. Ultimately, an optimum H₂O₂ concentration
240 of 5 mM was selected.

241 The initial solution pH also impacts the performance heterogeneous catalysis in
242 the degradation of organic pollutants. As shown in [Figure 4c](#), an extremely acidic

243 condition (pH=3) was found to be unfavorable for TC degradation. Nevertheless, a high
244 removal efficiency above 90% was maintained across a wide pH range of 5–11,
245 indicating that CuS@PDA can be practically utilized without requiring pH adjustment.
246 At low pH, H⁺ can serve as a scavenger for •OH via equation of H⁺ + •OH + e⁺ →
247 H₂O [41]. Additionally, literature reports suggest that the increasing electron density in
248 the TC[–] and TC^{2–} ring systems with rising pH promotes direct decomposition of TC
249 molecules through the direct attack of H₂O₂ and free radicals [42]. To gain a deeper
250 understanding of the influence of initial pH on TC removal, the zeta potential of
251 CuS@PDA at various pH levels was recorded as depicted in Figure S1. The surface
252 charge of CuS@PDA was negative within the tested pH range, which was primarily
253 induced by imine, quinone, and catechol groups on PDA [43]. Besides, the
254 deprotonation/protonation and reversible dissociation of catechol groups and amines
255 also contributed to the negative charge on CuS@PDA as reported previously [44].
256 These findings suggest that the electrostatic force might played a minor role in the
257 degradation of TC.

258 Considering the presence of various inorganic anions (Cl[–], NO₃[–], SO₄^{2–}, H₂PO₄[–],
259 and HCO₃[–]) in natural water, their impact on TC degradation was investigated as shown
260 in Figure 4d. The degradation was inhibited by 9% when 20 mM Cl[–] was present due
261 to the generation of less reactive ClOH[–] (•OH + Cl[–] → ClOH[–]) [45]. The inhibiting
262 effect of 20 mM NO₃[–] could be attributed to the competition between NO₃[–] and TC for
263 adsorption sites on CuS@PDA. SO₄^{2–} can be adsorbed on the catalyst surface and
264 compete with TC molecules for active site, thereby hindering TC degradation [39,46].
265 H₂PO₄[–] exhibits a quenching effect on •OH through the formation of low-active
266 H₂PO₄^{•–}, consequently impeding the degradation. Although HCO₃[–] is considered as a
267 scavenger of •OH ($k = 8.5 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$) [39,47], it actually promoted the degradation

268 in this study due to the production of $\cdot\text{OH}$ and $^1\text{O}_2$ from HCO_3^- [48]. Nevertheless,
269 even in the presence of excessive inorganic anions the $\text{CuS@PDA/H}_2\text{O}_2$ system still
270 achieved $\sim 80\%$ TC removal, suggesting its robustness and suitability for actual
271 application.

272 **3.5. Mechanisms understanding of TC degradation by $\text{CuS@PDA/H}_2\text{O}_2$**

273 **3.5.1. Identification of possible reactive species**

274 Quenching tests and electron paramagnetic resonance (EPR) were applied to
275 uncover the reactive oxygen species (ROS) responsible for TC degradation in the
276 $\text{CuS@PDA/H}_2\text{O}_2$ system. Tert-butanol (TBA) is an effective scavenger of $\cdot\text{OH}$ with
277 quenching rate of $(3.8\text{--}7.6)\times 10^7 \text{ M}^{-1} \text{ s}^{-1}$, while *p*-benzoquinone (BQ) and L-histidine
278 (L-his) can act as quenchers of $\text{O}_2^{\cdot-}$ $[(0.9\text{--}1.9)\times 10^7 \text{ M}^{-1} \text{ s}^{-1}]$ and $^1\text{O}_2$ $(3.2\times 10^7 \text{ M}^{-1} \text{ s}^{-1})$,
279 respectively [49,50]. NaF is a typical quenching agent for surface bound free radicals
280 on the catalyst surface in heterogeneous catalysis [49]. As shown in Figure 5a, in
281 contrast to the control group without scavengers addition, the presence of 200 mM TBA
282 inhibited a slightly inhibitory effect on the degradation. Even with an increased TBA
283 concentration of 1 M, TC removal only dropped to 77.4%, indicating that $\cdot\text{OH}$ played
284 a minor role in TC oxidation. Furthermore, instead of inhibition, the inclusion of 20
285 mM BQ demonstrated a promotional effect, suggesting that $\text{O}_2^{\cdot-}$ might not serve as the
286 primary active species for the degradation either. As illustrated in Figure 5b, the
287 introduction of 10 mM NaF had no impact on the degradation, implying that surface-
288 bound free radicals had negligible influence on the degradation of TC [51]. In
289 comparison, the addition of 100 mM L-his suppressed the degradation to 60%. Yet, the
290 inhibitory effect of L-his does not provide direct evidence for the involvement of $^1\text{O}_2$
291 as the main reactive species since L-his can readily form a complex with Cu(II), thereby
292 obstructing ROS formation [52]. A pronounced quenching effect was also observed for

293 furfuryl alcohol (FFA). This tentatively indicated that the degradation of TC did not
294 rely on free radicals, with ${}^1\text{O}_2$ being the major contributor.

295 To ascertain the production of Cu(III) in the CuS@PDA/H₂O₂ system, periodate
296 was used as a chemical probe for Cu(III) [40,53]. Surprisingly, the presence of 1 mM
297 periodate sharply expedited the degradation (Figure 5b). This observation suggested
298 that periodate did not complex with Cu(III), but rather functioned as an oxidizing agent
299 to facilitate the degradation. The formation of Cu(III) was excluded.

300 To further validate the quenching tests results, EPR analysis using DMPO and
301 TEMP as spin trapping agents were further conducted to identify the formed ROS in
302 the CuS@PDA/H₂O₂ system. As depicted in Figure 5c, d, and e, no signal was found
303 in the absence of H₂O₂, demonstrating that CuS@PDA itself can not produce ROS. In
304 contrast, characteristic peaks of DMPO-•OH (1:2:2:1), DMPO-O₂^{•-} (1:2:2:1), and
305 TEMP- ${}^1\text{O}_2$ (1:1:1) appeared with the coexistence of CuS@PDA and H₂O₂, further
306 validating the generation of •OH, O₂^{•-}, and ${}^1\text{O}_2$. As the reaction time prolonged, the
307 peak intensity enhanced gradually, verifying the continuously production of ROS by
308 CuS@PDA/H₂O₂. Thus, the above results conclusively indicated that ${}^1\text{O}_2$ plays a major
309 role in the degradation.

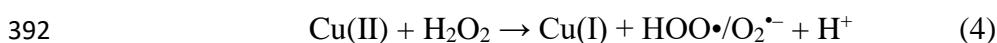
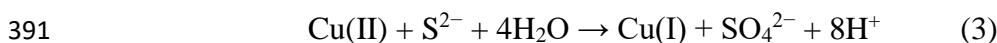
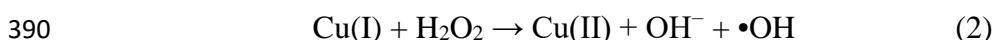
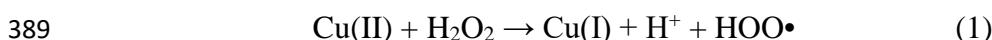
310 Further investigations into the generation of ${}^1\text{O}_2$ in the CuS@PDA/H₂O₂ system
311 was performed to understand the underlying processes as dissolved oxygen [54], light
312 irradiation [55] and O₂^{•-} reorganization [40] have been reported to be responsible for
313 ${}^1\text{O}_2$ production. As shown in Figure S2, the degradation was barely influenced under
314 continuous N₂ pumping and dark conditions, which ruled out dissolved oxygen as a
315 precursor of ${}^1\text{O}_2$. Combining with the result in Figure 5a that O₂^{•-} did not contribute to
316 the degradation, it was concluded that ${}^1\text{O}_2$ mainly originated from H₂O₂ and rather than
317 the recombination of O₂^{•-}.

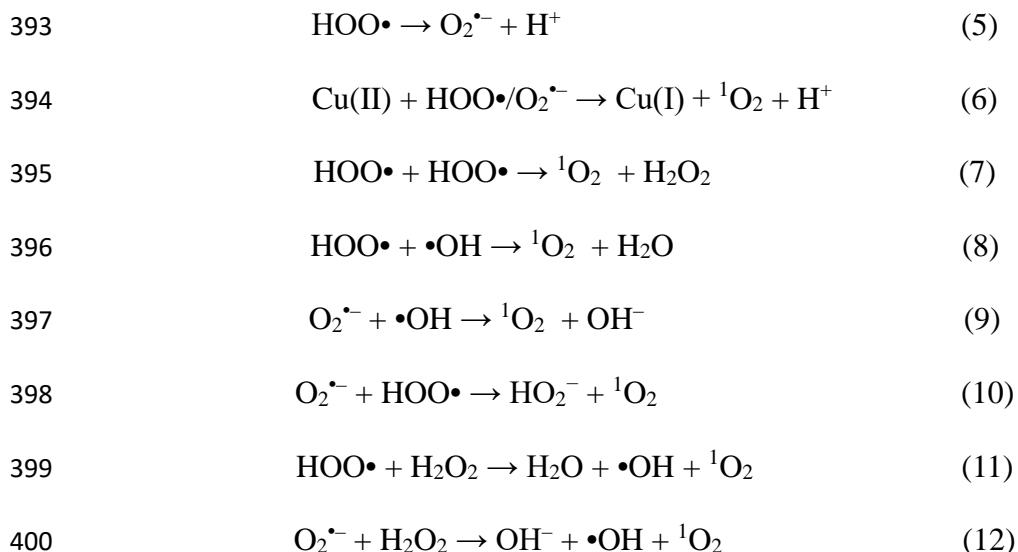
318 3.5.2. The role of PDA

319 To examine the role of PDA on the enhanced catalytic activity of CuS@PDA, the
320 electrochemical responses of PDA, CuS, and CuS@PDA towards H₂O₂ and TC were
321 recorded by determining the open-circuit potential (OCP), as shown in [Figure 5f](#). The
322 OCP values exhibited by PDA, CuS, and CuS@PDA were found to be 0.088, 0.26, and
323 0.24 V, respectively. The enhanced content of pyridinic and pyrrolic N in CuS@PDA
324 resulting from the introduction of PDA facilitated easier complexation with H₂O₂ and
325 conferred stronger oxidation capability [\[56\]](#). Thus, upon addition of H₂O₂, the OCP of
326 CuS@PDA abruptly improved from 0.24 to 0.43 V owing to the elevated potential
327 associated with formed H₂O₂ complexes. While, regarding to CuS, it only increased by
328 0.1 V (from 0.26 to 0.36 V). Subsequently, the OCP value gradually decreased by 0.016
329 V following TC injection due to the decomposition of surface complexes. The
330 CuS@PDA displayed a more pronounced decline in OCP, indicating that active
331 complexes formed on its surface possessed superior oxidation ability towards TC
332 compared to those formed on CuS.

333 Furthermore, the FTIR spectrum of the fresh and used CuS@PDA was recorded
334 to determine the change in surface functional groups. As shown in [Figure 6a](#), after the
335 catalytic reaction, the absorption peak corresponding to N–H bending vibration shifted
336 from 1618 to 1579 cm^{−1}, and the peak belonging to N–H scissoring vibration at 1439
337 cm^{−1} enhanced significantly, suggesting the participation of N–H in the catalytic
338 degradation of TC in the studied CuS@PDA/H₂O₂ system. The peak related to Cu–S
339 bond also shifted from 612 to 608 cm^{−1}, which evidenced the involvement Cu–S.

340 3.5.3. Mechanism investigation of TC degradation by CuS@PDA/H₂O₂





341 To further elucidate the mechanisms underlying TC degradation by
342 CuS@PDA/H₂O₂, XPS analysis was conducted to determine the chemical composition


343 and valence states of both fresh and used CuS@PDA. [Figure 6b](#) presents the full-scale
344 XPS spectra, which clearly indicates the presence of Cu, O, N, C, and S elements in the
345 as-synthesized CuS@PDA. The high-resolution N 1s spectrum ([Figure 6c](#)) was
346 deconvoluted into three distinct peaks corresponding to imino groups, substituted
347 amines, and amine groups at binding energies of 398.8, 399.8, and 400.7 eV,
348 respectively [31]. These peaks primarily originate from the indole or indoline structure
349 in PDA [57]. XPS analysis of Cu displays two main peaks at binding energies of 932.6
350 eV and 952.6 eV ([Figure 6d](#)), belonging to Cu 2p_{3/2} and Cu 2p_{1/2} spin orbitals,
351 respectively [58]. The Cu 2p_{3/2} spectrum is further resolved into two individual peaks,
352 with Cu(I) appearing at 932.2 eV and Cu(II) at 933.2 eV. As seen, the Cu 2p XPS
353 spectrum of CuS@PDA exhibits remarkable similarity to that of CuS, indicating the
354 relatively stability of copper element in CuS during the complexation process with DA.
355 Regarding the high-resolution S 2p spectrum ([Figure 6e](#)), the peaks observed at 161.5
356 eV and 163.4 eV can be assigned to sulfide ions (S²⁻) and polysulfide (S_n²⁻),
357 respectively [39,59]. The peaks centered at 164.4 eV and 168.6 eV correspond to
358 elemental sulfur (S⁰) and sulfate ions, respectively [39,59,60]. In contrast with CuS, the
359 absence of S⁰ peak and presence of sulfate ions peak in CuS@PDA may be attributed
360 to the oxidation of CuS during the self-polymerization process of DA [60].

361 Obviously, after activating H₂O₂ for TC degradation, the relative proportion of
362 Cu(II) in CuS@PDA reduced from 50.37% to 37.41%, accompanied by an increase in
363 the proportion of Cu(I) from 49.63% to 62.59%. This shift indicated a transition in
364 oxidation state from Cu(II) to Cu(I), providing evidence for the involvement of Cu(II)
365 in the catalytic process. On the other hand, there was a significant decline in the relative
366 proportion of S²⁻ from 84.46% to 19.82%, while varying degrees of increases were
367 observed in the S_n²⁻, S⁰, and sulfate content, suggesting the participation of S²⁻ in the

368 catalytic process. The XPS analysis revealed the involvement of both Cu and S, with S
369 exhibiting an accelerating effect on the conversion of Cu(II) to Cu(I) [61].

370 Based on the preceding discussion, a possible mechanism of TC degradation by
371 the CuS@PDA activated H₂O₂ system was proposed as schematically in Figure 7. As
372 H₂O₂ molecule reached the surface of CuS@PDA, the exposed Cu active site on which
373 underwent redox cycle with H₂O₂ according to Eqs. 1 and 2 [62,63]. However, the slow
374 reaction rate between Cu(II) and H₂O₂ greatly affected the regeneration of Cu(I) [64].
375 Fortunately, the presence of sulfur in CuS@PDA expedited the conversion of Cu(II) to
376 Cu(I) according to Eq. 3, thereby accelerating the production of •OH (Eq. 2) [62]. ¹O₂
377 was considered as the predominant ROS contributing to the degradation of TC. The
378 generation of ¹O₂ from H₂O₂ can occur via either a one-step two-electron or a two-step
379 one-electron transfer pathway [65]. Based on quenching tests and the Haber-Weiss
380 cycle theory, two-step one-electron transfer was supposed to be a reliable pathway for
381 ¹O₂ production [66]. The first one-electron pathway yielded HOO•/O₂•⁻ via Eq. 4, where
382 an electron was transferred from H₂O₂ to Cu(II) (Eq. 1). Subsequently, O₂•⁻ was
383 produced from HOO• through Eq. 5 [66]. The second one-electron pathway entailed
384 ¹O₂ generation from HOO•/O₂•⁻ and encompassed three possible routes: rapid oxidation
385 of spin-state Cu(II) by the generated HOO•/O₂•⁻ (Eq. 6), reactive species reactions
386 involving recombination of HOO• and reactions between HOO•, O₂•⁻, and •OH
387 according to Eqs. 7-10 [65,67], and reactions between H₂O₂ with HOO•/O₂•⁻ (Eqs. 11
388 and 12) [68].

401 **3.6. Degradation pathways and toxicity analysis of intermediates**

402 A total of eighteen intermediates of TC degradation by CuS@PDA/H₂O₂ were
 403 identified as shown in [Figure S3](#) and [Table S3](#). Three potential degradation pathways
 404 including terminal oxidation, dealkylation, deamination and ring-opening reactions
 405 were proposed in [Figure 8](#) [69]. In pathway 1, TC underwent terminal oxidation to
 406 generate the intermediate P7 (m/z=475), which was subsequently degraded into p9
 407 (m/z=360) through dealkylation and disruption of the benzene ring [70]. The ring
 408 cleavage under ¹O₂ attack led to the formation of P10, P11, and P12 [71]. In pathway
 409 2, nucleophilic reactions occurred to produce P1 (m/z=461) and P2 (m/z=477),
 410 followed by dehydrogenation under O₂^{•-} attack to form a downstream intermediate P3
 411 (m/z=459) [72]. In pathway 3, TC was attacked by ROS to produce P4 (m/z=417) via
 412 an N-demethylation process [73], which further underwent amide group destruction,
 413 demethylation, and dehydroxylation to produce P5 (m/z=339) and P6 (m/z=325).
 414 Thereafter, a ring-opening reaction occurred yielding P7 (m/z=171) [74]. Additionally,
 415 several small molecules including P13 (m/z=262), P14 (m/z=223) [72], P15 (m/z=132)
 416 [74], P16 (m/z=118) [75], P17 (m/z=90) and P18 (m/z=60) [73] were detected as well.
 417 All intermediates could be further decomposed into low molecular compounds such as

418 H_2O , CO_2 , and NO_3^- via subsequent reactions with $^1\text{O}_2$, $\cdot\text{OH}$ and $\text{O}_2^{\cdot-}$ [69,76,77].

419 The developmental toxicity and mutagenic toxicity of TC and main degradation
420 intermediates were predicted and assessed through Toxicity Estimation Software
421 (T.E.S.T.) based on quantitative structure-activity relationship (QSAQ) as shown in
422 [Figure S4](#). TC has significant developmental toxicity (0.86) and positive mutagenic
423 toxicity (0.6). Compared to the parent TC, the toxicity of most intermediates declined.
424 As shown in [Figure S4a](#), apart from P4 and P6, the developmental toxicity of other
425 intermediates was reduced. Similarly, most intermediates exhibited a reduction in
426 mutagenicity ([Figure S4b](#)). Thus, it could be deduced that the $\text{CuS@PDA}/\text{H}_2\text{O}_2$ system
427 not only efficiently eliminated TC, but also mitigated the toxicity of degradation
428 intermediates during the degradation. This was of great significance for the safety of
429 water environment.

430 **4. Conclusions**

431 In this study, CuS@PDA composite was synthesized via a simple hydrothermal
432 method using DA and CuS, aiming for activating H_2O_2 to remove TC from aqueous
433 solutions. The degradation tests results showed that a removal efficiency of 94.9% was
434 achieved within 30 min in the presence of 0.1 g/L CuS@PDA and 5 mM H_2O_2 . The as-
435 synthesized CuS@PDA not only exhibited excellent catalytic activity within a wide pH
436 range from 5 to 11, but also showed remarkable recyclability with 93% removal in the
437 fifth consecutive cycle. Quenching experiments and EPR analysis confirmed that $^1\text{O}_2$
438 played a crucial role in the degradation of TC. Mechanistic analysis revealed that S in
439 CuS@PDA facilitated the $\text{Cu(II)}/\text{Cu(I)}$ redox cycle, with H_2O_2 serving as the main
440 source for generating $^1\text{O}_2$. Further, the degradation pathways and intermediate toxicity
441 of TC were also studied. In conclusion, this study presents an efficient and recyclable
442 CuS@PDA composite to activate H_2O_2 for refractory organic pollutants removal in

443 water and wastewater treatments.

444

445 **Acknowledgments**

446 This work was financially supported by National Natural Science Foundation of China

447 (52270004).

448

449 **Reference**

450 [1] Current research trends on emerging contaminants pharmaceutical and personal care products
451 (PPCPs): A comprehensive review, *Sci. Total Environ.* 859 (2023) 160031.
452 <https://doi.org/10.1016/j.scitotenv.2022.160031>.

453 [2] J.J. López Peñalver, C.V. Gómez Pacheco, M. Sánchez Polo, J. Rivera Utrilla, Degradation of
454 tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma
455 radiation, *J. Chem. Technol. Biotechnol.* 88 (2013) 1096–1108. <https://doi.org/10.1002/jctb.3946>.

456 [3] R. Daghbir, P. Drogui, Tetracycline antibiotics in the environment: a review, *Environ. Chem. Lett.*
457 11 (2013) 209–227. <https://doi.org/10.1007/s10311-013-0404-8>.

458 [4] Y. Amangelsin, Y. Semenova, M. Dadar, M. Aljofan, G. Bjørklund, The Impact of Tetracycline
459 Pollution on the Aquatic Environment and Removal Strategies, *Antibiotics* 12 (2023) 440.
460 <https://doi.org/10.3390/antibiotics12030440>.

461 [5] K. Ming, F. Chen, L. Zhu, S. Xia, L. Yang, Z. Shi, L. Deng, H. Zhang, Perborate accelerated copper-
462 immobilized carbon nanofibers activating peroxymonosulfate process for sulfadiazine degradation:
463 Performance and mechanisms understanding, *Sep. Purif. Technol.* 324 (2023) 124587.
464 <https://doi.org/10.1016/j.seppur.2023.124587>.

465 [6] Z. Cheng, L. Ling, Z. Wu, J. Fang, P. Westerhoff, C. Shang, Novel Visible Light-Driven
466 Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water, *Environ.*
467 *Sci. Technol.* 54 (2020) 11584–11593. <https://doi.org/10.1021/acs.est.0c03170>.

468 [7] F. Ahmad, D. Zhu, J. Sun, Environmental fate of tetracycline antibiotics: degradation pathway
469 mechanisms, challenges, and perspectives, *Environ. Sci. Eur.* 33 (2021) 64.
470 <https://doi.org/10.1186/s12302-021-00505-y>.

471 [8] Y. Liu, Y. Zhao, J. Wang, Fenton/Fenton-like processes with in-situ production of hydrogen
472 peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects, *J. Hazard.*
473 *Mater.* 404 (2021) 124191. <https://doi.org/10.1016/j.jhazmat.2020.124191>.

474 [9] Y. Huang, M. Kong, S. Coffin, K.H. Cochran, D.C. Westerman, D. Schlenk, S.D. Richardson, L.
475 Lei, D.D. Dionysiou, Degradation of contaminants of emerging concern by UV/H₂O₂ for water reuse:
476 Kinetics, mechanisms, and cytotoxicity analysis, *Water Res.* 174 (2020) 115587.
477 <https://doi.org/10.1016/j.watres.2020.115587>.

478 [10] IJERPH | Free Full-Text | Removal of Sulfamethoxazole, Sulfathiazole and Sulfamethazine in their
479 Mixed Solution by UV/H₂O₂ Process, (n.d.). <https://www.mdpi.com/1660-4601/16/10/1797> (accessed
480 June 17, 2024).

481 [11] Y. Zhu, F. Deng, S. Qiu, F. Ma, Y. Zheng, R. Lian, Enhanced electro-Fenton degradation of
482 sulfonamides using the N, S co-doped cathode: Mechanism for H₂O₂ formation and pollutants decay, *J.*
483 *Hazard. Mater.* 403 (2021) 123950. <https://doi.org/10.1016/j.jhazmat.2020.123950>.

484 [12] Y. Qu, Z. Chen, Y. Duan, L. Liu, H₂O₂ assisted photocatalysis over Fe-MOF modified BiOBr for
485 degradation of RhB, *J. Chem. Technol. Biotechnol.* 97 (2022) 2881–2888.
486 <https://doi.org/10.1002/jctb.7199>.

487 [13] X. Long, Z. Yang, H. Wang, M. Chen, K. Peng, Q. Zeng, A. Xu, Selective Degradation of Orange
488 II with the Cobalt(II)-Bicarbonate–Hydrogen Peroxide System, *Ind. Eng. Chem. Res.* 51 (2012) 11998–
489 12003. <https://doi.org/10.1021/ie3013924>.

490 [14] C. Meng, Z. Wang, W. Zhang, L. Cui, B. Yang, H. Xie, Z. Zhang, Laminar membranes assembled
491 by ultrathin cobalt-copper oxide nanosheets for nanoconfined catalytic degradation of contaminants,

492 Chem. Eng. J. 449 (2022) 137811. <https://doi.org/10.1016/j.cej.2022.137811>.

493 [15] L. Chen, T. Maqbool, C. Hou, W. Fu, X. Zhang, Mechanistic study of oxidative removal of
494 bisphenol A by pristine nanocatalyst MnO/peroxymonosulfate34, Sep. Purif. Technol. 281 (2022)
495 119882. <https://doi.org/10.1016/j.seppur.2021.119882>.

496 [16] X. Zhang, P. Sun, K. Wei, X. Huang, X. Zhang, Enhanced H₂O₂ activation and sulfamethoxazole
497 degradation by Fe-impregnated biochar, Chem. Eng. J. 385 (2020) 123921.
498 <https://doi.org/10.1016/j.cej.2019.123921>.

499 [17] N. Li, X. He, J. Ye, H. Dai, W. Peng, Z. Cheng, B. Yan, G. Chen, S. Wang, H₂O₂ activation and
500 contaminants removal in heterogeneous Fenton-like systems, J. Hazard. Mater. 458 (2023) 131926.
501 <https://doi.org/10.1016/j.jhazmat.2023.131926>.

502 [18] J. Li, A.N. Pham, R. Dai, Z. Wang, T.D. Waite, Recent advances in Cu-Fenton systems for the
503 treatment of industrial wastewaters: Role of Cu complexes and Cu composites, J. Hazard. Mater. 392
504 (2020) 122261. <https://doi.org/10.1016/j.jhazmat.2020.122261>.

505 [19] S. Guo, M. Chen, L. You, Y. Wei, C. Cai, Q. Wei, H. Zhang, K. Zhou, 3D printed hierarchically
506 porous zero-valent copper for efficient pollutant degradation through peroxymonosulfate activation, Sep.
507 Purif. Technol. 305 (2023) 122437. <https://doi.org/10.1016/j.seppur.2022.122437>.

508 [20] Y. Li, J. Wang, Z. Wei, W. Li, W. Duan, X. Feng, Q. Ma, Q. Zhang, H. Chen, X. Wu, Effective
509 periodate activation by peculiar Cu₂O nanocrystal for antibiotics degradation: The critical role of
510 structure and underlying mechanism study, Appl. Catal. B Environ. 341 (2024) 123351.
511 <https://doi.org/10.1016/j.apcatb.2023.123351>.

512 [21] A. Fiorentino, R. Cucciniello, A. Di Cesare, D. Fontaneto, P. Prete, L. Rizzo, G. Corno, A. Proto,
513 Disinfection of urban wastewater by a new photo-Fenton like process using Cu-iminodisuccinic acid
514 complex as catalyst at neutral pH, Water Res. 146 (2018) 206–215.
515 <https://doi.org/10.1016/j.watres.2018.08.024>.

516 [22] Y. Fang, D. Luan, X.W. (David) Lou, Recent Advances on Mixed Metal Sulfides for Advanced
517 Sodium-Ion Batteries, Adv. Mater. 32 (2020) 2002976. <https://doi.org/10.1002/adma.202002976>.

518 [23] Y. Huang, L. Nengzi, X. Zhang, J. Gou, Y. Gao, G. Zhu, Q. Cheng, X. Cheng, Catalytic degradation
519 of ciprofloxacin by magnetic CuS/Fe₂O₃/Mn₂O₃ nanocomposite activated peroxymonosulfate:
520 Influence factors, degradation pathways and reaction mechanism, Chem. Eng. J. 388 (2020) 124274.
521 <https://doi.org/10.1016/j.cej.2020.124274>.

522 [24] B. Mao, Q. An, B. Zhai, Z. Xiao, S. Zhai, Multifunctional hollow polydopamine-based composites
523 (Fe₃O₄/PDA@Ag) for efficient degradation of organic dyes, RSC Adv. 6 (2016) 47761–47770.
524 <https://doi.org/10.1039/C6RA05954F>.

525 [25] S. Cheng, X. Pan, C. Zhang, X. Lin, Q. Zhuang, Y. Jiao, W. Dong, X. Qi, UV-assisted ultrafast
526 construction of robust Fe₃O₄/polydopamine/Ag Fenton-like catalysts for highly efficient micropollutant
527 decomposition, Sci. Total Environ. 810 (2022) 151182. <https://doi.org/10.1016/j.scitotenv.2021.151182>.

528 [26] B. Jin, D. Zhao, H. Yu, W. Liu, C. Zhang, M. Wu, Rapid degradation of organic pollutants by
529 Fe₃O₄@PDA/Ag catalyst in advanced oxidation process, Chemosphere 307 (2022) 135791.
530 <https://doi.org/10.1016/j.chemosphere.2022.135791>.

531 [27] Q.U. Ain, U. Rasheed, M. Yaseen, H. Zhang, Z. Tong, Superior dye degradation and adsorption
532 capability of polydopamine modified Fe₃O₄-pillared bentonite composite, J. Hazard. Mater. 397 (2020)
533 122758. <https://doi.org/10.1016/j.jhazmat.2020.122758>.

534 [28] W. Chen, T. Zhou, D. Gu, Y. He, Z. Zhang, J. Tian, F. Fu, Polydopamine-coated carbonized cotton
535 fabrics with β-FeOOH nanorods composites for highly efficient photo-Fenton degradation of organic

536 pollutants, *Appl. Surf. Sci.* 637 (2023) 157955. <https://doi.org/10.1016/j.apsusc.2023.157955>.

537 [29] Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C₃N₄ catalysts
538 under light and dark conditions, *J. Adv. Res.* 16 (2019) 135–143.
539 <https://doi.org/10.1016/j.jare.2018.10.003>.

540 [30] Z. Huang, L. Wang, H. Wu, H. Hu, H. Lin, L. Qin, Q. Li, Shape-controlled synthesis of CuS as a
541 Fenton-like photocatalyst with high catalytic performance and stability, *J. Alloys Compd.* 896 (2022)
542 163045. <https://doi.org/10.1016/j.jallcom.2021.163045>.

543 [31] T. Zhang, Y. Xiang, Y. Su, Y. Zhang, X. Huang, X. Qian, Anchoring of copper sulfide on cellulose
544 fibers with polydopamine for efficient and recyclable photocatalytic degradation of organic dyes, *Ind.*
545 *Crops Prod.* 187 (2022) 115357. <https://doi.org/10.1016/j.indcrop.2022.115357>.

546 [32] M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S.K. Jeong, A.N.
547 Grace, Hydrothermal growth of CuS nanostructures and its photocatalytic properties, *Powder Technol.*
548 252 (2014) 25–32. <https://doi.org/10.1016/j.powtec.2013.10.031>.

549 [33] H. Wu, V. W. Or, S. Gonzalez-Calzada, V. H. Grassian, CuS nanoparticles in humid environments:
550 adsorbed water enhances the transformation of CuS to CuSO₄, *Nanoscale* 12 (2020) 19350–19358.
551 <https://doi.org/10.1039/D0NR05934J>.

552 [34] Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion
553 performance, *Prog. Org. Coat.* 130 (2019) 124–131. <https://doi.org/10.1016/j.porgcoat.2019.01.059>.

554 [35] L. Shang, W. Li, X. Wang, L. Ma, L. Li, Q. Duan, Y. Li, Preparation of magnetic Fe₃O₄@PDA/CuS
555 core-shell nanocomposite as a green photocatalyst, *Synth. Met.* 292 (2023) 117230.
556 <https://doi.org/10.1016/j.synthmet.2022.117230>.

557 [36] X. Wang, C. Deng, Preparation of magnetic graphene @polydopamine @Zr-MOF material for the
558 extraction and analysis of bisphenols in water samples, *Talanta* 144 (2015) 1329–1335.
559 <https://doi.org/10.1016/j.talanta.2015.08.014>.

560 [37] K. Zhang, J. Zhang, A. Yang, Photoheating Effects of CuS@PEI_GQDs Nanoshells under Near-
561 Infrared Laser and Sunlight Irradiation, *Cryst. Growth Des.* 23 (2023) 1697–1708.
562 <https://doi.org/10.1021/acs.cgd.2c01274>.

563 [38] Preparation of photothermal alginate/chitosan derivative/CuS@polydopamine composite fibers and
564 application in desalination, *Int. J. Biol. Macromol.* 277 (2024) 134142.
565 <https://doi.org/10.1016/j.ijbiomac.2024.134142>.

566 [39] H. Zhang, C. Zhou, H. Zeng, H. Wu, L. Yang, L. Deng, Z. Shi, ZIF-8 assisted synthesis of magnetic
567 core–shell FeO@CuS nanoparticles for efficient sulfadiazine degradation via HO activation:
568 Performance and mechanism3422, *J. Colloid Interface Sci.* 594 (2021) 502–512.
569 <https://doi.org/10.1016/j.jcis.2021.03.057>.

570 [40] J. Zhang, H. Zeng, L. Bu, S. Zhou, Z. Shi, L. Deng, Cu₀ incorporated cobalt/nitrogen doped
571 carbonaceous frameworks derived from ZIF-67 (Cu@CoNC) as PMS activator for efficient degradation
572 of naproxen: Direct electron transfer and 1O₂ dominated nonradical mechanisms, *Chem. Eng. J.* 454
573 (2023) 139989. <https://doi.org/10.1016/j.cej.2022.139989>.

574 [41] X. Xie, Y. Hu, H. Cheng, Rapid degradation of p-arsanilic acid with simultaneous arsenic removal
575 from aqueous solution using Fenton process, *Water Res.* 89 (2016) 59–67.
576 <https://doi.org/10.1016/j.watres.2015.11.037>.

577 [42] Y.-Y. Chen, Y.-L. Ma, J. Yang, L.-Q. Wang, J.-M. Lv, C.-J. Ren, Aqueous tetracycline degradation
578 by H₂O₂ alone: Removal and transformation pathway, *Chem. Eng. J.* 307 (2017) 15–23.
579 <https://doi.org/10.1016/j.cej.2016.08.046>.

580 [43] F. Bernsmann, B. Frisch, C. Ringwald, V. Ball, Protein adsorption on dopamine–melanin films:
581 Role of electrostatic interactions inferred from ζ -potential measurements versus chemisorption, *J. Colloid*
582 *Interface Sci.* 344 (2010) 54–60. <https://doi.org/10.1016/j.jcis.2009.12.052>.

583 [44] R. Tejido-Rastrilla, S. Ferraris, W.H. Goldmann, A. Grünewald, R. Detsch, G. Baldi, S. Spriano,
584 A.R. Boccaccini, Studies on Cell Compatibility, Antibacterial Behavior, and Zeta Potential of Ag-
585 Containing Polydopamine-Coated Bioactive Glass-Ceramic, *Materials* 12 (2019) 500.
586 <https://doi.org/10.3390/ma12030500>.

587 [45] J.E. Grebel, J.J. Pignatello, W.A. Mitch, Effect of Halide Ions and Carbonates on Organic
588 Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline Waters,
589 *Environ. Sci. Technol.* 44 (2010) 6822–6828. <https://doi.org/10.1021/es1010225>.

590 [46] H. Liang, X. Li, Y. Yang, K. Sze, Effects of dissolved oxygen, pH, and anions on the 2,3-
591 dichlorophenol degradation by photocatalytic reaction with anodic TiO₂ nanotube films, *Chemosphere*
592 73 (2008) 805–812. <https://doi.org/10.1016/j.chemosphere.2008.06.007>.

593 [47] A. Jawad, X. Lu, Z. Chen, G. Yin, Degradation of Chlorophenols by Supported Co–Mg–Al Layered
594 Double Hydrotalcite with Bicarbonate Activated Hydrogen Peroxide, *J. Phys. Chem. A* 118 (2014)
595 10028–10035. <https://doi.org/10.1021/jp5085313>.

596 [48] Y. Zhang, J. Lou, L. Wu, M. Nie, C. Yan, M. Ding, P. Wang, H. Zhang, Minute Cu coupling with
597 HCO for efficient degradation of acetaminophen via HO activation^{2+3–22}, *Ecotoxicol. Environ. Saf.*
598 221 (2021) 112422. <https://doi.org/10.1016/j.ecoenv.2021.112422>.

599 [49] H. Zeng, L. Deng, H. Zhang, C. Zhou, Z. Shi, Development of oxygen vacancies enriched CoAl
600 hydroxide@hydroxysulfide hollow flowers for peroxyomonosulfate activation: A highly efficient singlet
601 oxygen-dominated oxidation process for sulfamethoxazole degradation, *J. Hazard. Mater.* 400 (2020)
602 123297. <https://doi.org/10.1016/j.jhazmat.2020.123297>.

603 [50] T. Peng, H. Zhang, S. Xia, S. Zhou, Z. Shi, G. Li, L. Deng, MoS₂ Nanosheets Anchored onto MIL-
604 100(Fe)-Derived FeS₂ as a Peroxyomonosulfate Activator for Efficient Sulfamethoxazole Degradation:
605 Insights into the Mechanism, *ACS EST Water* 3 (2023) 213–226.
606 <https://doi.org/10.1021/acsestwater.2c00501>.

607 [51] X. Liu, P. Xu, Q. Fu, R. Li, C. He, W. Yao, L. Wang, S. Xie, Z. Xie, Q. He, J.C. Crittenden, Ferric
608 ion promoted degradation of acetaminophen with zero – valent copper activated peroxyomonosulfate
609 process, *Chem. Eng. J.* 426 (2021) 131679. <https://doi.org/10.1016/j.cej.2021.131679>.

610 [52] F. Sun, T. Chen, Z. Chu, P. Zhai, H. Liu, Q. Wang, X. Zou, D. Chen, The synergistic effect of calcite
611 and Cu²⁺ on the degradation of sulfadiazine via PDS activation: A role of Cu(III), *Water Res.* 219 (2022)
612 118529. <https://doi.org/10.1016/j.watres.2022.118529>.

613 [53] Y. Wei, J. Miao, J. Ge, J. Lang, C. Yu, L. Zhang, P.J.J. Alvarez, M. Long, Ultrahigh
614 Peroxyomonosulfate Utilization Efficiency over CuO Nanosheets via Heterogeneous Cu(III) Formation
615 and Preferential Electron Transfer during Degradation of Phenols, *Environ. Sci. Technol.* 56 (2022)
616 8984–8992. <https://doi.org/10.1021/acs.est.2c01968>.

617 [54] X. Liu, M. Li, Z. Xie, P. Li, C. Du, Y. Su, Oxygen vacancy-enriched kaolinite/WO_{3-x}
618 nanocomposites exhibiting enhanced photo-synergetic H₂O₂ activation for tetracycline degradation
619 boosted by hydroxyl groups and exciton, *Sep. Purif. Technol.* 347 (2024) 127675.
620 <https://doi.org/10.1016/j.seppur.2024.127675>.

621 [55] X. Zhang, B. Yang, H. Quan, H. Pei, S.-Q. Guo, Surface methyl/methylene regulates WO
622 directional activation of molecular oxygen into singlet oxygen for the removal of organic pollutants in

623 water3, Sep. Purif. Technol. 346 (2024) 127559. <https://doi.org/10.1016/j.seppur.2024.127559>.

624 [56] J. Miao, W. Geng, P.J.J. Alvarez, M. Long, 2D N-Doped Porous Carbon Derived from
625 Polydopamine-Coated Graphitic Carbon Nitride for Efficient Nonradical Activation of
626 Peroxymonosulfate, Environ. Sci. Technol. 54 (2020) 8473–8481.
627 <https://doi.org/10.1021/acs.est.0c03207>.

628 [57] Y. Yu, J.G. Shapter, R. Popelka-Filcoff, J.W. Bennett, A.V. Ellis, Copper removal using bio-inspired
629 polydopamine coated natural zeolites, J. Hazard. Mater. 273 (2014) 174–182.
630 <https://doi.org/10.1016/j.jhazmat.2014.03.048>.

631 [58] M. Cheng, Y. Liu, D. Huang, C. Lai, G. Zeng, J. Huang, Z. Liu, C. Zhang, C. Zhou, L. Qin, W.
632 Xiong, H. Yi, Y. Yang, Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-
633 Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values, Chem. Eng. J. 362
634 (2019) 865–876. <https://doi.org/10.1016/j.cej.2019.01.101>.

635 [59] J. Peng, X. Lu, X. Jiang, Y. Zhang, Q. Chen, B. Lai, G. Yao, Degradation of atrazine by persulfate
636 activation with copper sulfide (CuS): Kinetics study, degradation pathways and mechanism, Chem. Eng.
637 J. 354 (2018) 740–752. <https://doi.org/10.1016/j.cej.2018.08.038>.

638 [60] S.-Q. Zhang, X. Liu, Q.-X. Sun, O. Johnson, T. Yang, M.-L. Chen, J.-H. Wang, W. Chen,
639 CuS@PDA-FA nanocomposites: a dual stimuli-responsive DOX delivery vehicle with ultrahigh loading
640 level for synergistic photothermal-chemotherapies on breast cancer, J. Mater. Chem. B 8 (2020) 1396–
641 1404. <https://doi.org/10.1039/C9TB02440A>.

642 [61] Can Cu₂ZnSnS₄ nanoparticles be used as heterogeneous catalysts for sulfadiazine degradation?, J.
643 Hazard. Mater. 395 (2020) 122613. <https://doi.org/10.1016/j.jhazmat.2020.122613>.

644 [62] H. Zhang, L. Deng, J. Chen, Y. Zhang, M. Liu, Y. Han, Y. Chen, H. Zeng, Z. Shi, How MoS₂
645 assisted sulfur vacancies featured Cu₂S in hollow Cu₂S@MoS₂ nanoboxes to activate H₂O₂ for efficient
646 sulfadiazine degradation?, Chem. Eng. J. 446 (2022) 137364. <https://doi.org/10.1016/j.cej.2022.137364>.

647 [63] S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cupric oxide (CuO) thin films prepared by
648 reactive d.c. magnetron sputtering technique for photovoltaic application, J. Alloys Compd. 724 (2017)
649 456–464. <https://doi.org/10.1016/j.jallcom.2017.07.061>.

650 [64] M. Cheng, Y. Liu, D. Huang, C. Lai, G. Zeng, J. Huang, Z. Liu, C. Zhang, C. Zhou, L. Qin, W.
651 Xiong, H. Yi, Y. Yang, Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-
652 Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values, Chem. Eng. J. 362
653 (2019) 865–876. <https://doi.org/10.1016/j.cej.2019.01.101>.

654 [65] Z. Yang, J. Qian, A. Yu, B. Pan, Singlet oxygen mediated iron-based Fenton-like catalysis under
655 nanoconfinement, Proc. Natl. Acad. Sci. 116 (2019) 6659–6664.
656 <https://doi.org/10.1073/pnas.1819382116>.

657 [66] A.U. Khan, M. Kasha, Singlet molecular oxygen in the Haber-Weiss reaction., Proc. Natl. Acad.
658 Sci. 91 (1994) 12365–12367. <https://doi.org/10.1073/pnas.91.26.12365>.

659 [67] B. Sheng, C. Deng, Y. Li, S. Xie, Z. Wang, H. Sheng, J. Zhao, In Situ Hydroxylation of a Single-
660 Atom Iron Catalyst for Preferential 1O₂ Production from H₂O₂, ACS Catal. 12 (2022) 14679–14688.
661 <https://doi.org/10.1021/acscatal.2c04484>.

662 [68] F. Xu, C. Lai, M. Zhang, B. Li, L. Li, S. Liu, D. Ma, X. Zhou, H. Yan, X. Huo, B. Wang, H. Yi, L.
663 Qin, L. Tang, High-loaded single-atom Cu-N₃ sites catalyze hydrogen peroxide decomposition to
664 selectively induce singlet oxygen production for wastewater purification, Appl. Catal. B Environ. 339
665 (2023) 123075. <https://doi.org/10.1016/j.apcatb.2023.123075>.

666 [69] Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped

667 Fe@Fe2O3: Mechanism and degradation pathway, *Chem. Eng. J.* 382 (2020) 122970.
668 <https://doi.org/10.1016/j.cej.2019.122970>.

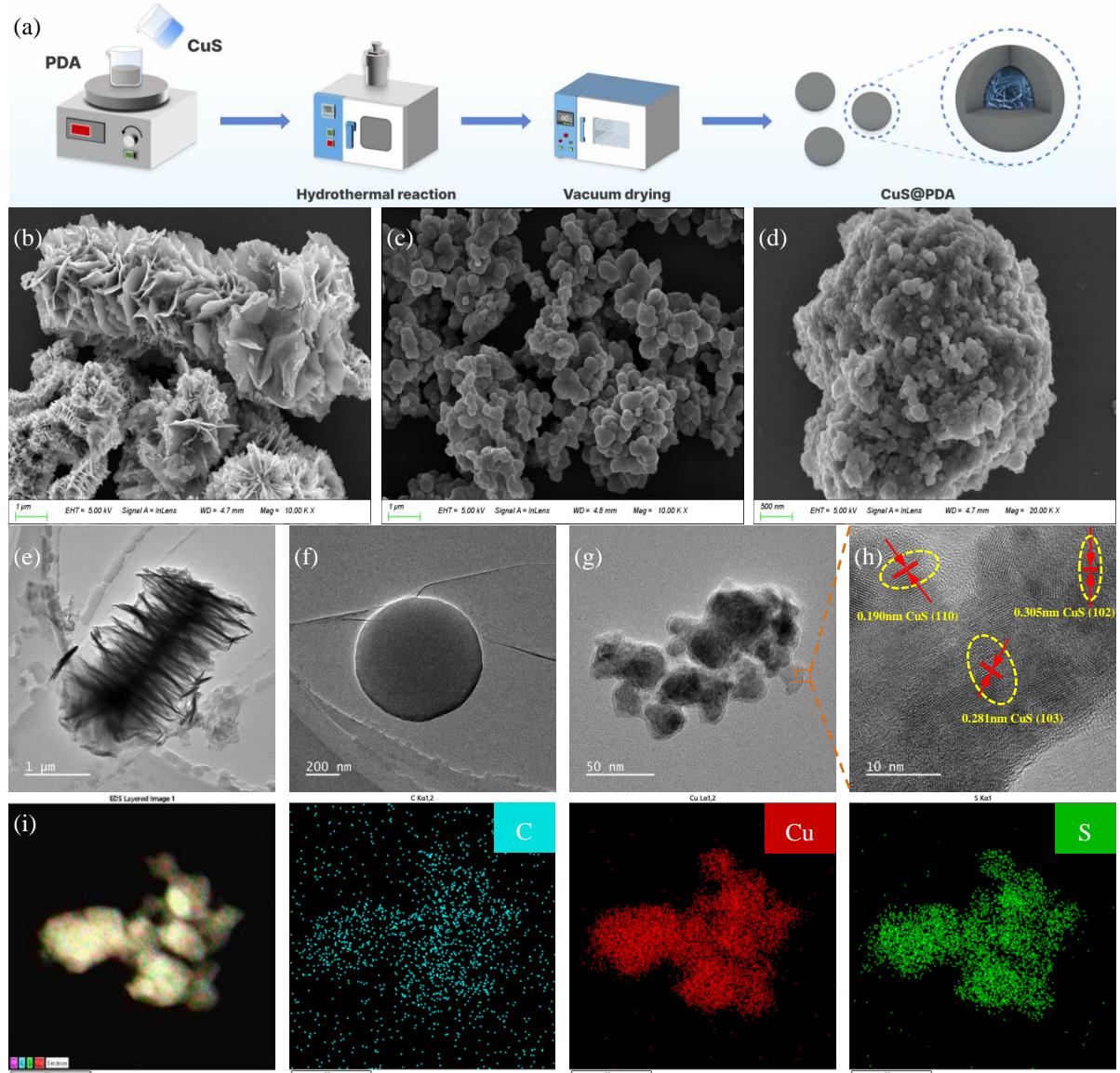
669 [70] Z. Yin, Y. Liu, S. Zhou, Z. Yang, W. Yang, Constructing zirconium based metal-organic frameworks
670 based electrically-driven self-cleaning membrane for removal of tetracycline: Effect of ligand
671 substitution, *Chem. Eng. J.* 450 (2022) 138100. <https://doi.org/10.1016/j.cej.2022.138100>.

672 [71] X. Li, T. Hou, L. Yan, L. Shan, X. Meng, Y. Zhao, Efficient degradation of tetracycline by CoFeLa-
673 layered double hydroxides catalyzed peroxyomonosulfate: Synergistic effect of radical and nonradical
674 pathways, *J. Hazard. Mater.* 398 (2020) 122884. <https://doi.org/10.1016/j.jhazmat.2020.122884>.

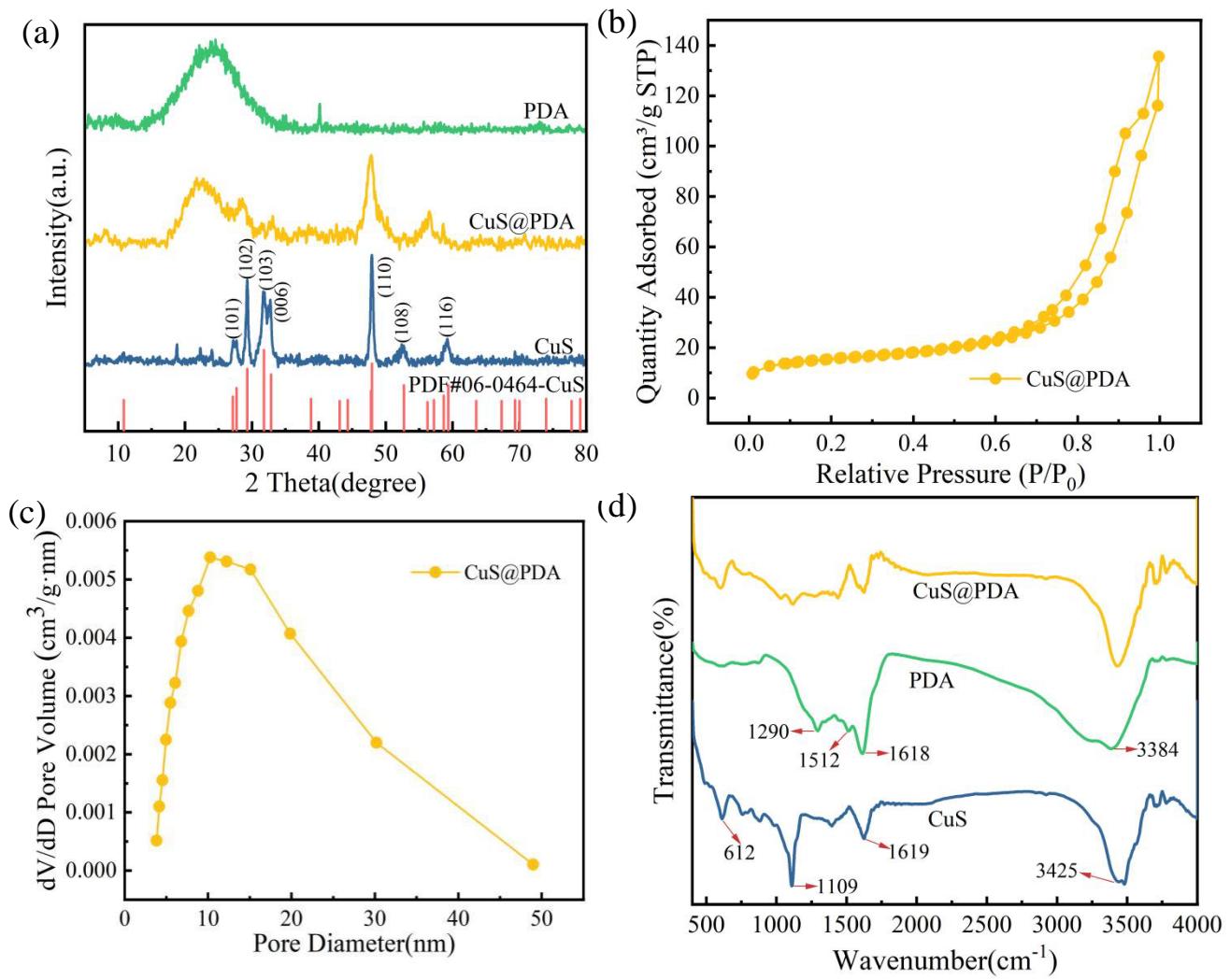
675 [72] M. Jiang, X. Wang, R. Han, P. Ning, I. Lynch, J. Ma, Establishing photocatalysis-self-Fenton system
676 over a S-scheme Fe/Fe2O3@CuBi2O4 for enhancing TC removal via in-situ generating H2O2 and Fe/Cu
677 dual-metal electron cycle: Radical and non-radical pathways, *Sep. Purif. Technol.* 354 (2025) 128675.
678 <https://doi.org/10.1016/j.seppur.2024.128675>.

679 [73] X. Li, Y. Jia, J. Zhang, Y. Qin, Y. Wu, M. Zhou, J. Sun, Efficient removal of tetracycline by H2O2
680 activated with iron-doped biochar: Performance, mechanism, and degradation pathways, *Chin. Chem. Lett.* 33 (2022) 2105–2110. <https://doi.org/10.1016/j.cclet.2021.08.054>.

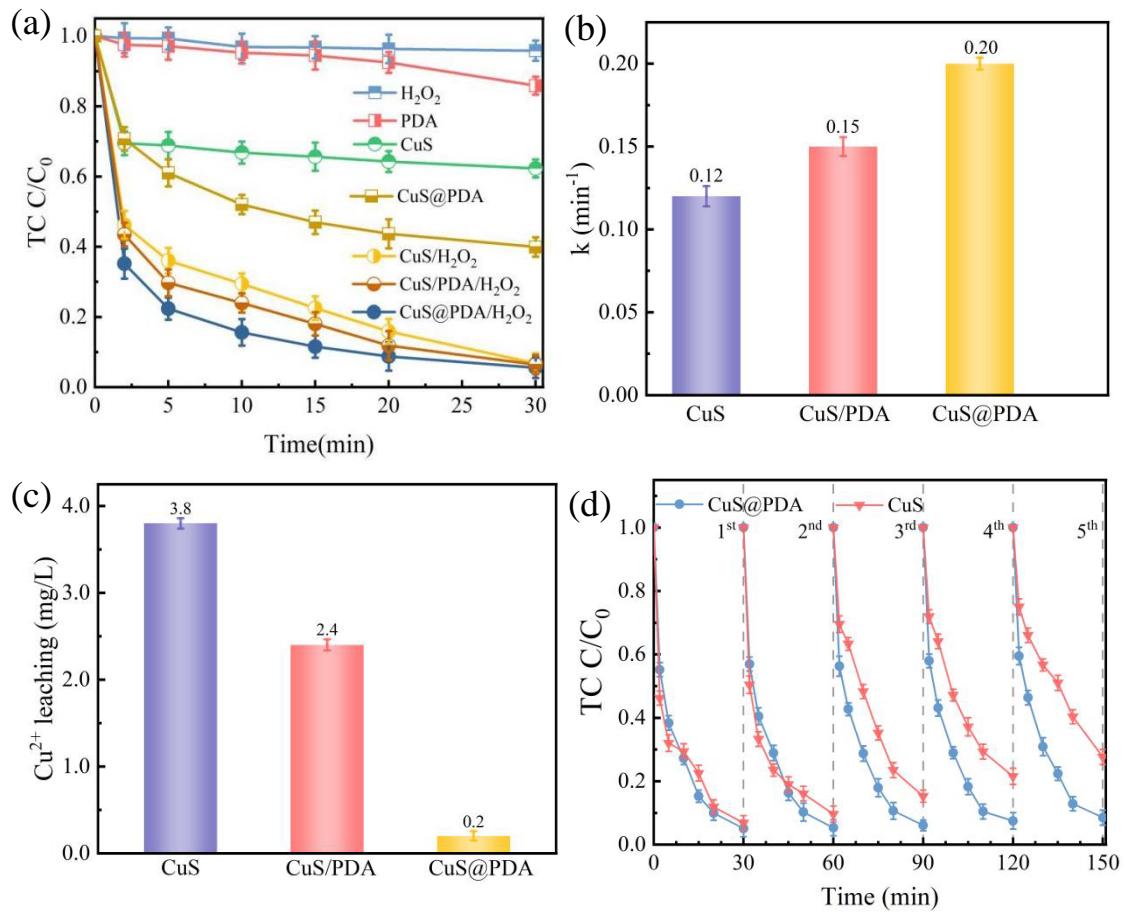
681 [74] M. Nie, Y. Li, L. Li, J. He, P. Hong, K. Zhang, X. Cai, L. Kong, J. Liu, Ultrathin iron-cobalt oxide
682 nanosheets with enhanced H2O2 activation performance for efficient degradation of tetracycline, *Appl. Surf. Sci.* 535 (2021) 147655. <https://doi.org/10.1016/j.apsusc.2020.147655>.

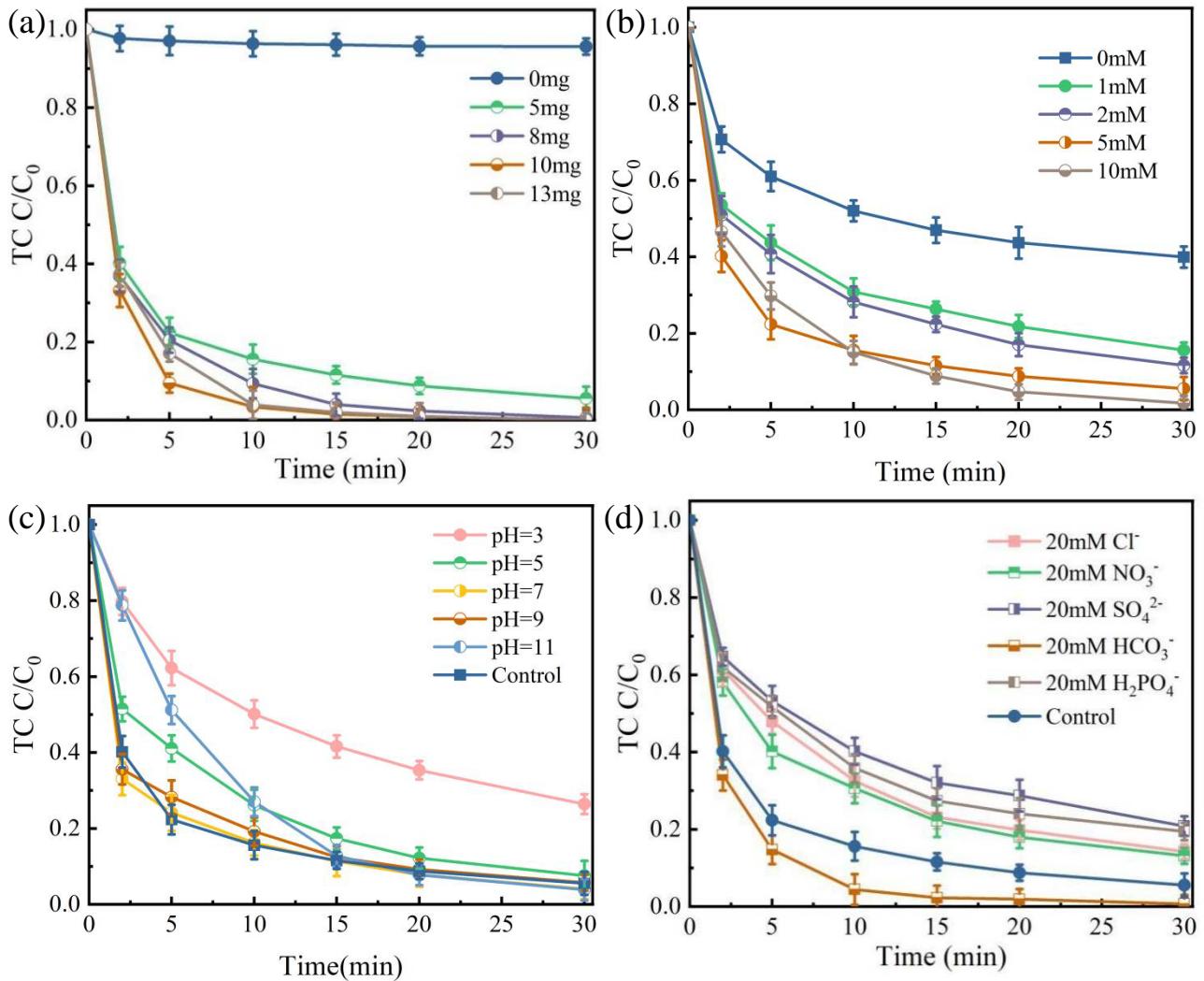

683 [75] S. Yang, Y. Feng, D. Gao, X. Wang, N. Suo, Y. Yu, S. Zhang, Electrocatalysis degradation of
684 tetracycline in a three-dimensional aeration electrocatalysis reactor (3D-AER) with a flotation-tailings
685 particle electrode (FPE): Physicochemical properties, influencing factors and the degradation mechanism,
686 *J. Hazard. Mater.* 407 (2021) 124361. <https://doi.org/10.1016/j.jhazmat.2020.124361>.

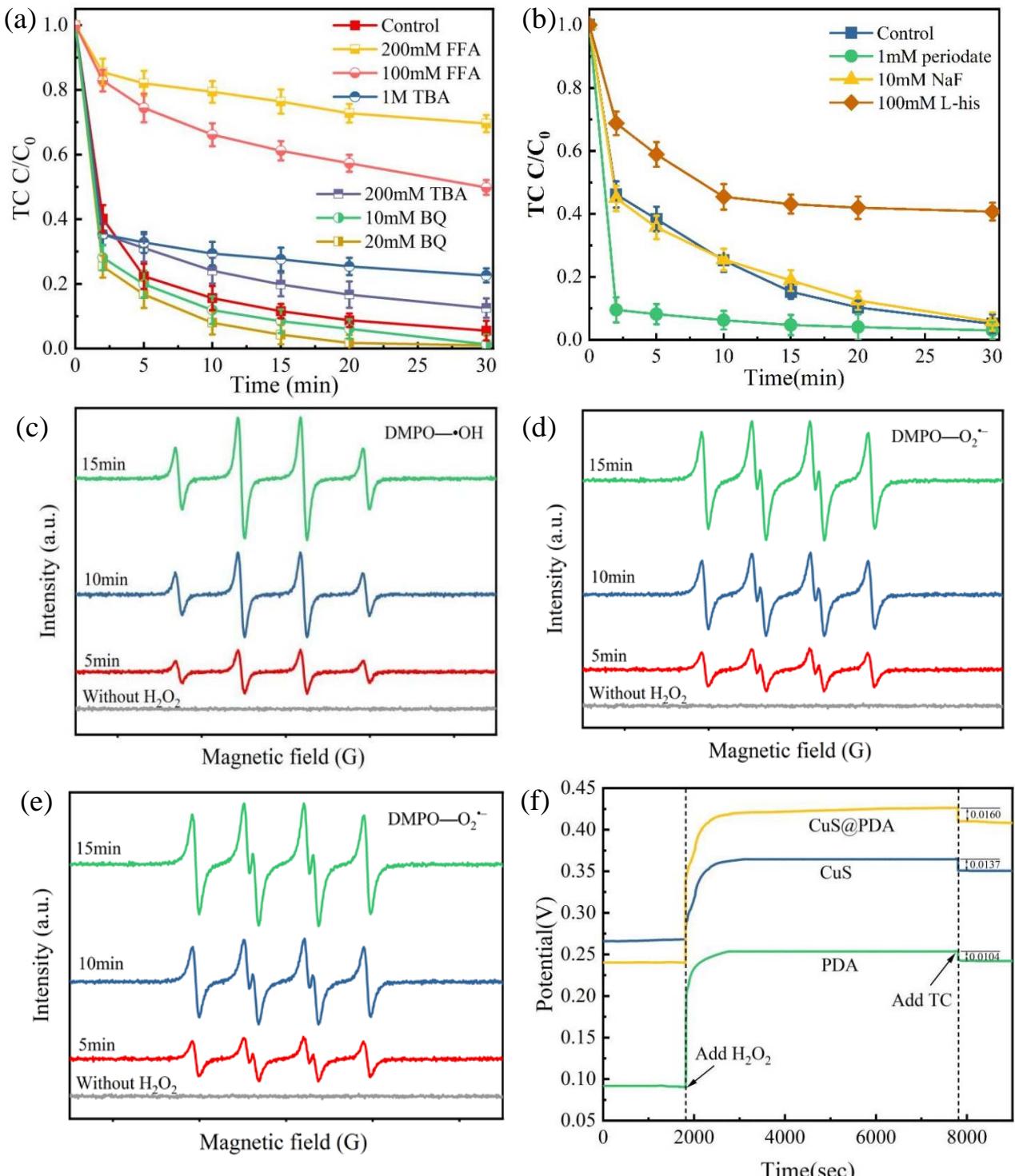
687 [76] Z. Li, C. Guo, J. Lyu, Z. Hu, M. Ge, Tetracycline degradation by persulfate activated with magnetic
688 Cu/CuFe2O4 composite: Efficiency, stability, mechanism and degradation pathway, *J. Hazard. Mater.*
689 373 (2019) 85–96. <https://doi.org/10.1016/j.jhazmat.2019.03.075>.


690 [77] D. Chen, Q. Bai, T. Ma, X. Jing, Y. Tian, R. Zhao, G. Zhu, Stable metal-organic framework fixing
691 within zeolite beads for effectively static and continuous flow degradation of tetracycline by
692 peroxyomonosulfate activation, *Chem. Eng. J.* 435 (2022) 134916.
693 <https://doi.org/10.1016/j.cej.2022.134916>.

694


695


Figure 1. (a) The schematic synthesis route of CuS@PDA; SEM images of (b) CuS, (c) PDA and (d) CuS@PDA; TEM images of (e) CuS, (f) PDA and (g, h) CuS@PDA; (i) EDX elemental mapping images of CuS@PDA.


Figure 2. (a) XRD patterns of CuS, PDA and CuS@PDA; (b) N₂ adsorption/desorption isotherm and (c) pore size distribution of CuS@PDA; (d) FTIR spectra of CuS, PDA and CuS@PDA.

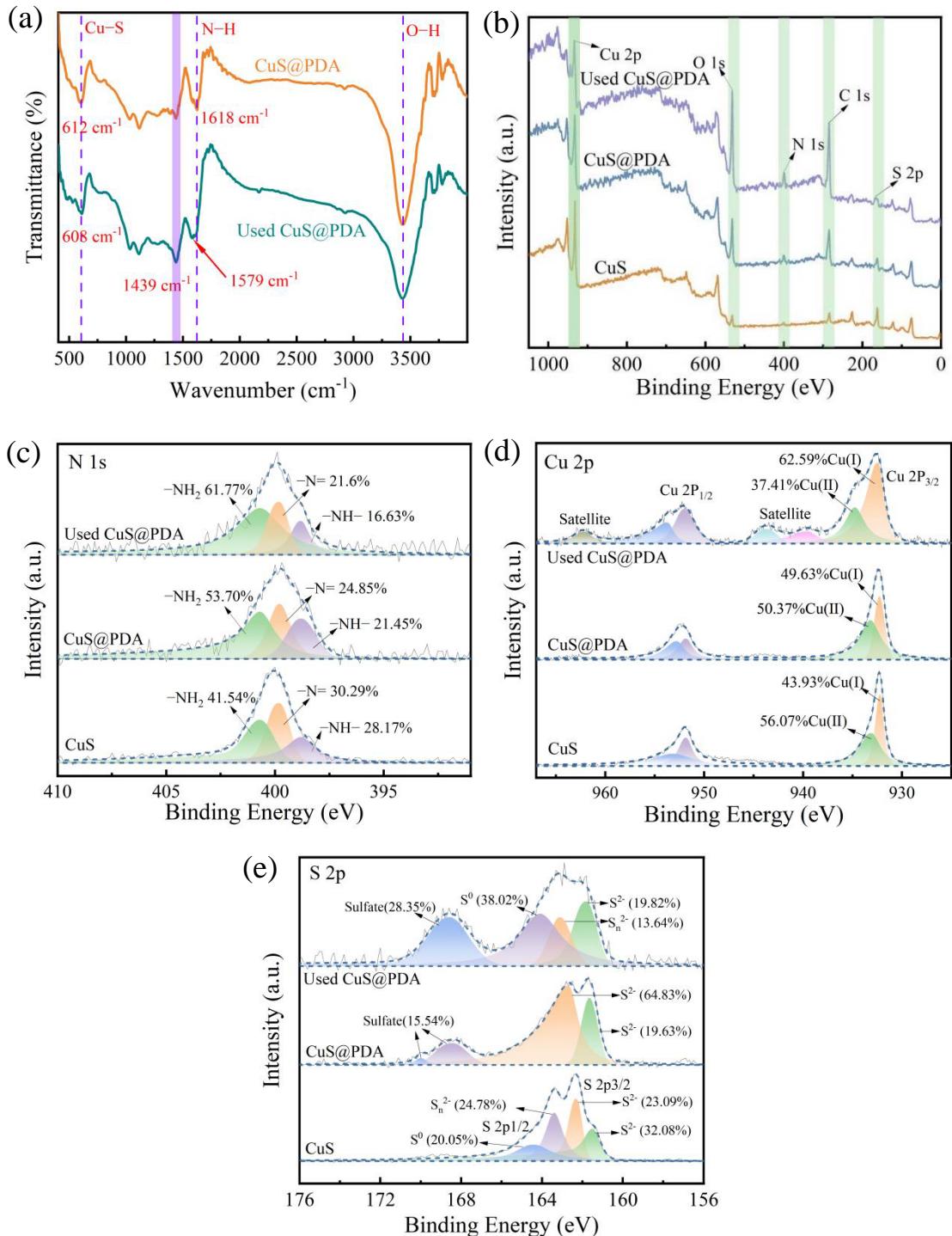

Figure 3. (a) TC removal in different systems; (b) the fitted kinetic rate constants of TC degradation by CuS, CuS/PDA, and CuS@PDA in the presence of H_2O_2 ; (c) Cu^{2+} leakage from different catalysts; (d) recyclability of CuS and CuS@PDA for activating H_2O_2 to degrade TC ($[TC] = 40\ \mu\text{M}$, [catalyst] = 0.1 g/L, $[H_2O_2] = 5\ \text{mM}$).

Figure 4. Influences of (a) catalyst dosage, (b) H_2O_2 concentration, (c) initial solution pH, and (d) coexisting ions on TC degradation ([catalyst] = 0.1 g/L (except a), $[H_2O_2]$ = 5 mM (except b), $[TC]$ = 40 μ M).

Figure 5. Effect of different radical scavengers (a), periodate, NaF and L-his (b) on the degradation of TC; EPR spectroscopy of (c) DMPO-•OH, (d) DMPO- $O_2^{\bullet-}$ and (e) TEMP- 1O_2 ; (f) open circuit potential contrast of working electrodes in different systems ($[TC] = 40\mu M$, $[catalyst] = 0.1g/L$, $[H_2O_2] = 5\text{ mM}$).

Figure 6. The FTIR spectrum of the fresh and used CuS@PDA; The XPS spectrum of CuS, CuS@PDA and used CuS@PDA: (a) survey, (b) N 1s, (c) Cu 2p, and (d) S 2p.

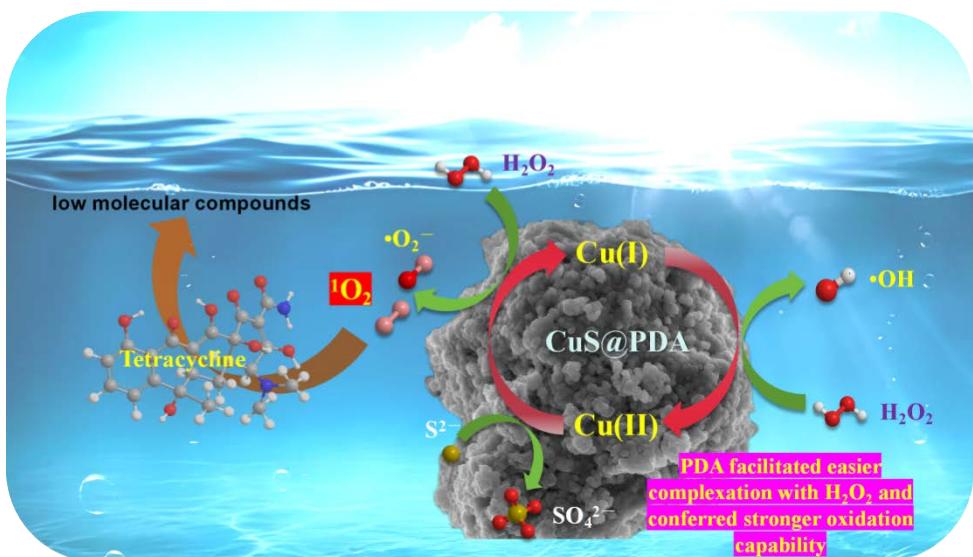


Figure 7. Schematically illustrating the degradation mechanisms of TC by CuS@PDA/ H_2O_2 .

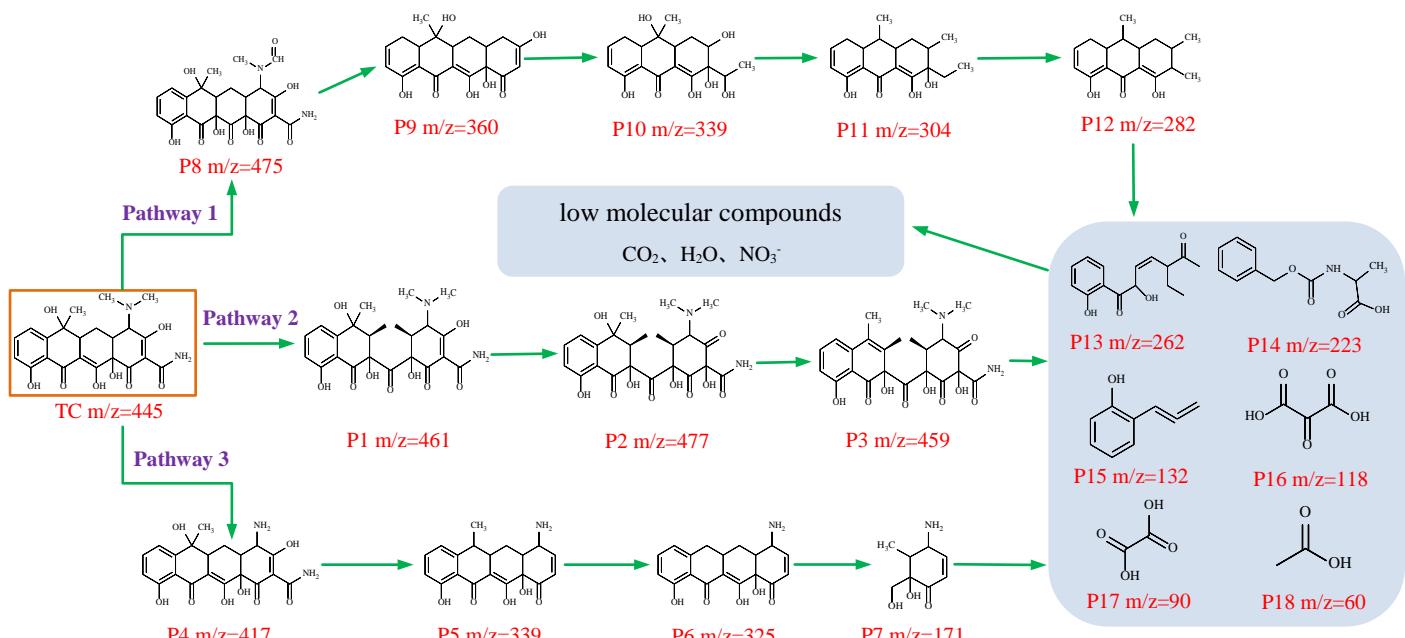


Figure 8. Possible degradation pathways of TC by CuS@PDA/H₂O₂ system.

Supporting information
for
A novel polydopamine-loaded copper sulfide (CuS@PDA) for
activating H₂O₂ to eliminate tetracycline via ¹O₂ dominated
oxidation pathway

Zhou Shi^a, Chenxi He^a, Hao Huang^a, Xile Huang^a, Tong Hu^a, Yijia He^a, Dazhi Yang^a,
Simeng Xia^{a,*}, Haojie Zhang^{a,b,*}, Lin Deng^{a,*}

a. Hunan Engineering Research Center of Water Security Technology and Application,
College of Civil Engineering, Hunan University, Changsha 410082, China
b. Helmholtz Centre for Environmental Research-UFZ, Department of Technical
Biogeochemistry, Leipzig 04318, Germany

*Corresponding authors.

E-mail addresses: symeon@hnu.edu.cn (S. Xia); haojie.zhang@ufz.de (H. Zhang);
lindeng@hnu.edu.cn (L. Deng)

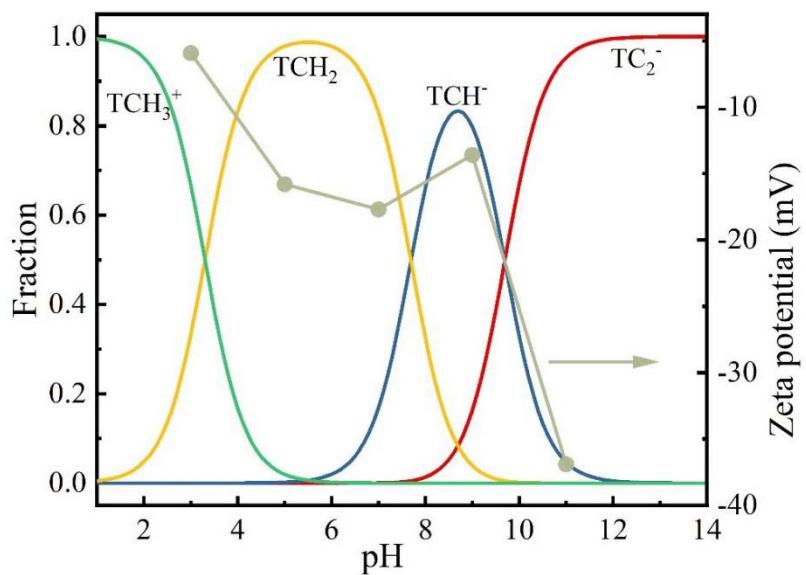
Number of pages: 15
Number of text: 1
Number of tables: 3
Number of figures: 4

Text S1. Analytical and characterization methods

The surface morphology of the materials was characterized by a scanning electron microscope (SEM, ZEISS Sigma 300) with 3.0 kV scanning voltage and transmission electron microscopy (TEM, JEM F200). The crystal properties were determined by X-ray diffraction (XRD, Rigaku SmartLab SE) with $\text{r Cu-K}\alpha$ adiation source ($\lambda=0.154$ nm, 40 kV, 40 mA) at a scan rate of 5 °/min. The Zetasizer Nano ZS (Malvern Instruments) was used to measure the Zeta potential of the samples. X-ray photoelectron spectroscopy (XPS) was applied to identify the elemental composition and chemical states using AXIS SUPRA+ equipped with an $\text{Al K}\alpha$ X-ray source. ROS was recognized by Electron paramagnetic resonance (EPR) with a Bruker A-300 spectrometer using 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) and 2,2,6,6-tetramethyl-4-piperidone (TEMP) as spin- trapping agents.

The concentration of TC was determined by high-performance liquid chromatography (HPLC, Agilent 1260, USA) equipped with a Symmetry C18 column (150mm×4.6mm×5 μ m, Agilent, USA) and a VWD detector (Agilent, USA). For TC determination, the wavelength of the detector was 365 nm, the temperature of C18 column was maintained at 25 °C, the mobile phase consisted of 50% methanol and 50% acetic acid with a flow rate of 1.0 mL/min. Concentrations of the other contaminants SMX, CBZ, CM and SDZ were also determined by high performance liquid chromatography (HPLC, Agilent 1260, USA). The HPLC analysis conditions for various organic compounds are shown in [Table S1](#). The concentration of H_2O_2 in solution was measured by a photometric method on an UV-vis spectrometer (HITACHI,

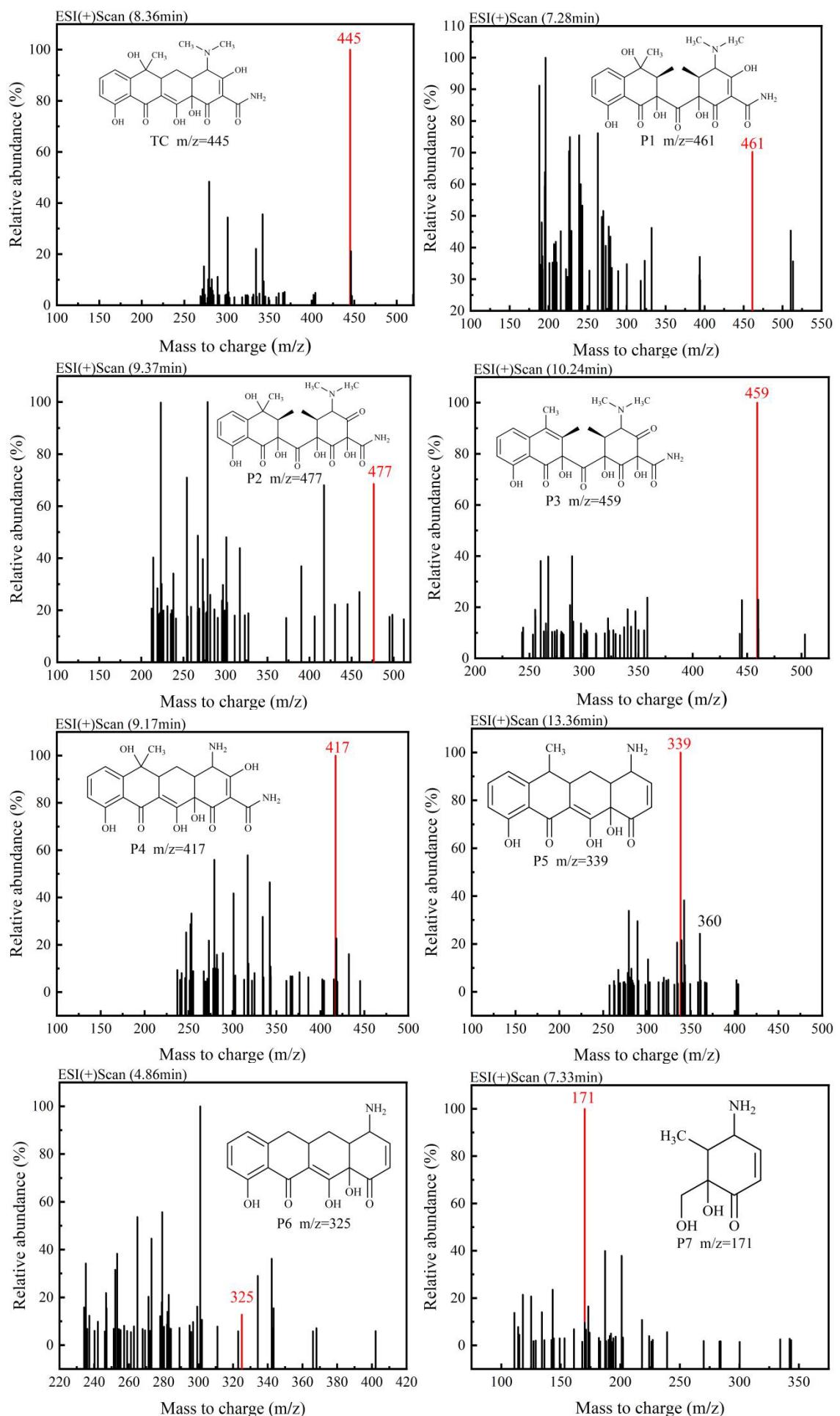
U3900, Japan) at 415 nm using Titanium sulfate as chromogenic reagent. Graphite furnace atomizer (GFA-6880, Shimadzu) Atomic Absorption Spectrophotometry (AA-6880, Shimadzu) was used to detect the metal ions content.

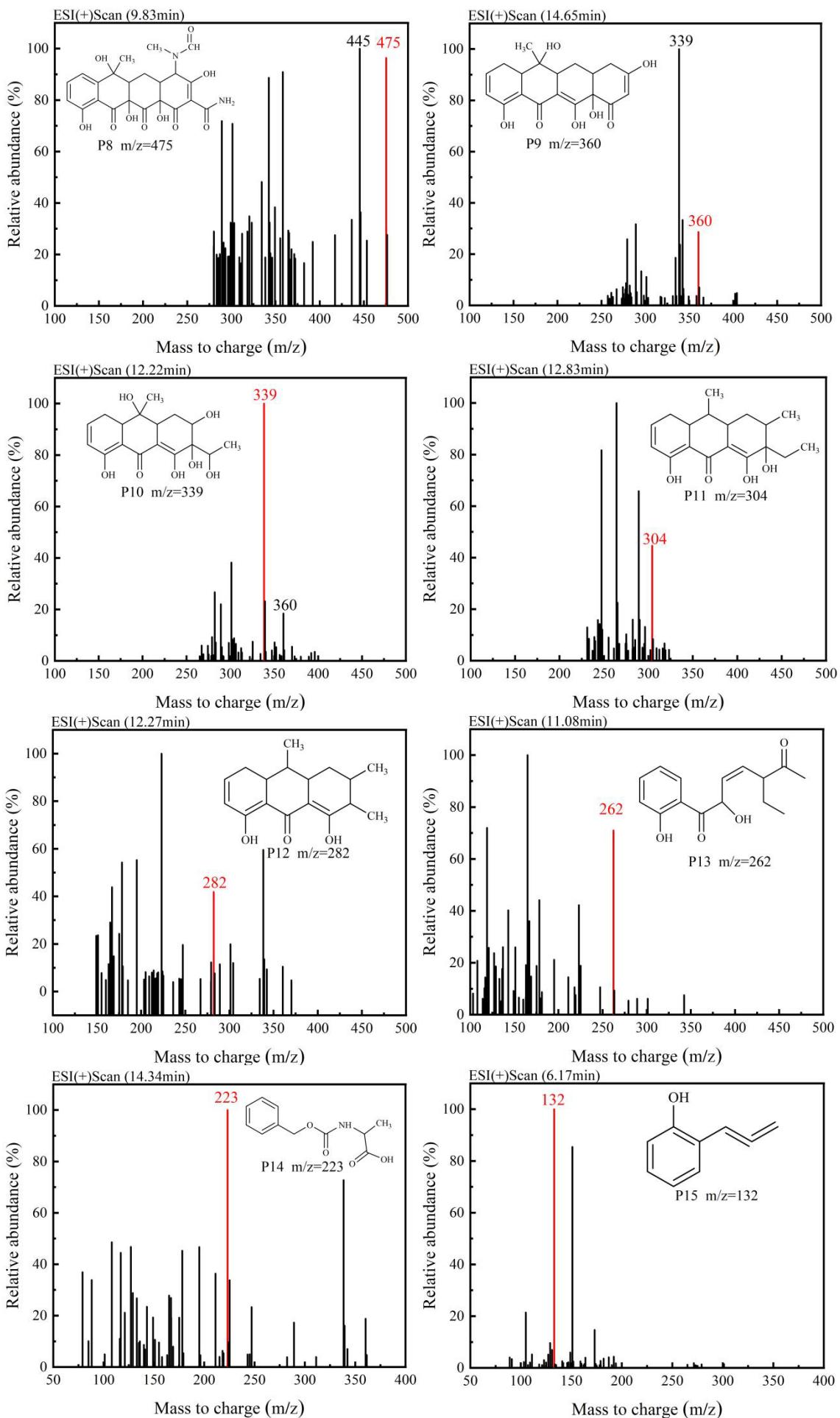

Table S1. HPLC analysis conditions for various organic compounds.

Target pollutants	Flow rate (ml/min)	Temperature (°C)	Wavelength (nm)	Water (% v/v)	Acetonitrile (% v/v)	Methanol (% v/v)
Sulfadiazine (SDZ)	1	25	290	70	0	30
Sulfamethoxazole (SMX)	1	30	269	75 ^a	25	0
Carbamazepine (CBZ)	1	30	280	30	0	70
Coumarin (CM)	1	35	274	20	0	80

Water^a: 0.1% acetic acid;

Table S2. Comparison of kinetic rate constants of TC degradation by different catalysts in H₂O₂-based AOPs.


Catalyst	Dosage	Oxidant	Pollutant	pH	<i>k</i> (min ⁻¹)	Ref.
Fe-BC	0.2 g/L	H ₂ O ₂ , 1 mM	TC, 20 mg/L	3.0	0.1550	[S1]
FeOCl	0.35 mg/L	H ₂ O ₂ , 5 mM	TC, 60 mg/L	4.0	0.0034	[S2]
CoFe-ONSSs	0.3 g/L	H ₂ O ₂ , 20 mM	TC, 50 mg/L	7.0	0.055	[S3]
MgNCN/MgO (Pre2:1)	0.10 g/L	H ₂ O ₂ , 17.6 mM	TC, 50 mg/L	6.0	0.1245	[S4]
Fe-MOFs	0.15 g/L	H ₂ O ₂ , 10 mL/L	TC, 50 mg/L	4.1	0.0822	[S5]
C/CFO@A/C- 0.25C-500	0.2 g/L	H ₂ O ₂ , 9.7 mM	TC, 15 mg/L	6.5	0.0212	[S6]
CQDs/α-FeOOH	0.25 g/L	H ₂ O ₂ , 0.5 mM	TC, 20mg/L	6.8	0.1525	[S7]
CuFeS ₂	0.30 g/L	H ₂ O ₂ , 0.8 mM	TC, 50mg/L	5.1	0.0105	[S8]
CuS@PDA	0.10 g/L	H ₂ O ₂ , 5.0 mM	TC, 40 μM	7.1	0.20	This work



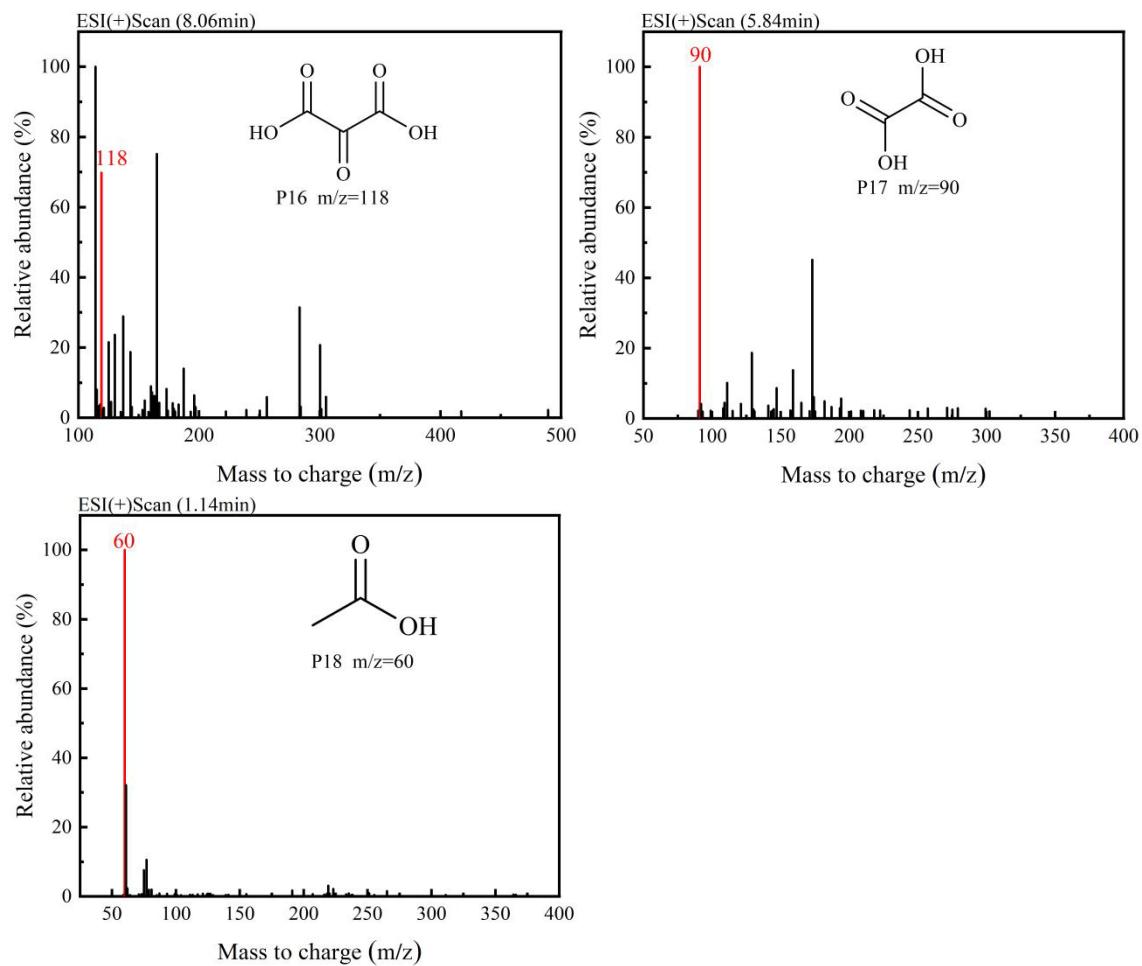

Figure S1. The speciation of TC and zeta potential of CuS@PDA.

Figure S2. Effects of light irradiation and N_2 on the degradation of TC in CuS@PDA/H₂O₂ system. ([TC] = 40 μ M, [catalyst] = 0.1 g/L, [H₂O₂] = 5 mM).

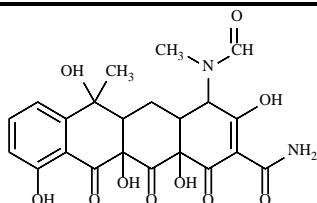
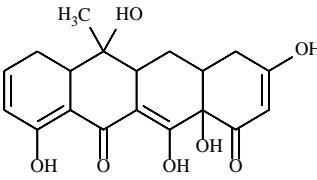
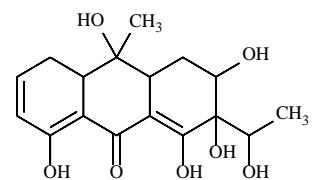
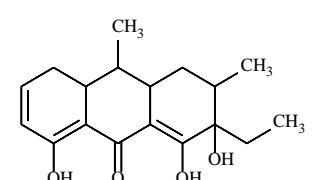
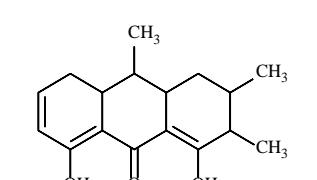
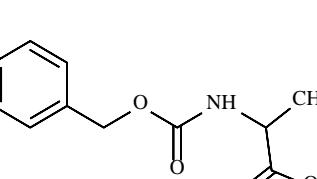
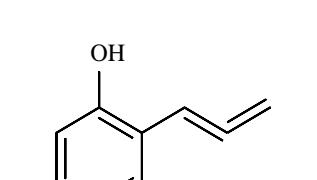
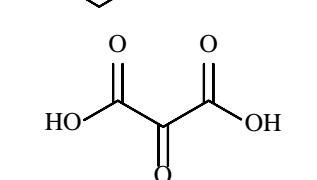
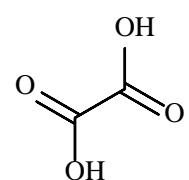









Figure S3. Mass spectrum of TC and its degradation intermediates.

Table S3. Mass spectrometry data for the identification of TC and its intermediates.

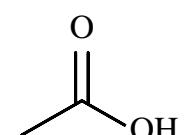
Compound list	Retention time (min)	Main fragment (m/z)	Chemical structure
TC	8.36	445	
P1	7.28	461	
P2	9.37	477	
P3	10.24	459	
P4	9.17	417	
P5	13.36	339	
P6	4.86	325	
P7	7.33	171	

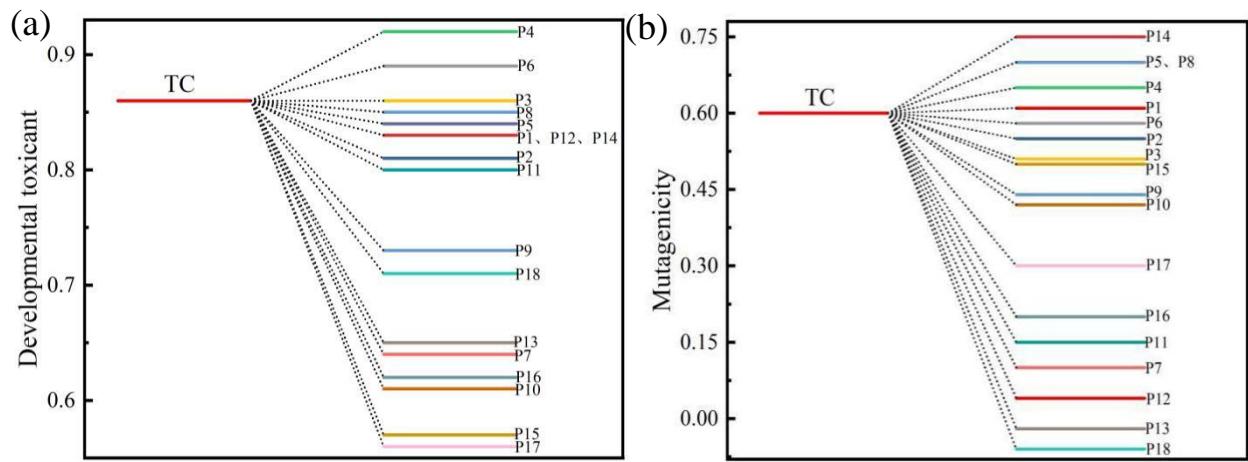
P8	9.83	475	
P9	14.65	360	
P10	12.22	339	
P11	12.83	304	
P12	12.27	282	
P13	11.08	262	
P14	14.34	223	
P15	6.17	132	
P16	8.06	118	



P17

5.84


90



P18

1.14

60

Figure S4. (a) The developmental toxicity and (b) mutagenicity of TC and its degradation intermediates predicted by the T.E.S.T. program.

Reference

[S1] X. Li, Y. Jia, J. Zhang, Y. Qin, Y. Wu, M. Zhou, J. Sun, Efficient removal of tetracycline by H₂O₂ activated with iron-doped biochar: Performance, mechanism, and degradation pathways, *Chin. Chem. Lett.* 33 (2022) 2105–2110. <https://doi.org/10.1016/j.cclet.2021.08.054>.

[S2] Y. Cao, K. Cui, Y. Chen, M. Cui, G. Li, D. Li, X. Yang, Efficient degradation of tetracycline by H₂O₂ catalyzed by FeOCl: A wide range of pH values from 3 to 7, *Solid State Sci.* 113 (2021) 106548. <https://doi.org/10.1016/j.solidstatesciences.2021.106548>.

[S3] Ultrathin iron-cobalt oxide nanosheets with enhanced H₂O₂ activation performance for efficient degradation of tetracycline, *Appl. Surf. Sci.* 535 (2021) 147655. <https://doi.org/10.1016/j.apsusc.2020.147655>.

[S4] L. Ge, Y. Yue, W. Wang, F. Tan, S. Zhang, X. Wang, X. Qiao, P.K. Wong, Efficient degradation of tetracycline in wide pH range using MgNCN/MgO nanocomposites as novel H₂O₂ activator, *Water Res.* 198 (2021) 117149. <https://doi.org/10.1016/j.watres.2021.117149>.

[S5] Q. Wu, H. Yang, L. Kang, Z. Gao, F. Ren, Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe (II)/ Fe (III) cycle under visible light irradiation, *Appl. Catal. B Environ.* 263 (2020) 118282. <https://doi.org/10.1016/j.apcatb.2019.118282>.

[S6] W. Zhong, Q. Peng, K. Liu, X. Tang, Y. Zhang, J. Xing, Building Cu₀/CuFe₂O₄ framework to efficiently degrade tetracycline and improve utilization of H₂O₂ in Fenton-like system, *Chem. Eng. J.* 474 (2023) 145522. <https://doi.org/10.1016/j.cej.2023.145522>.

[S7] S. Huang, Q. Zhang, P. Liu, S. Ma, B. Xie, K. Yang, Y. Zhao, Novel up-conversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system, *Appl. Catal. B Environ.* 263 (2020) 118336. <https://doi.org/10.1016/j.apcatb.2019.118336>.

[S8] Y. Xiong, X. Tang, Y. Liu, W. Li, Y. He, Y. Deng, Z. Lin, Y. Zhou, Activation of periodate by chalcopyrite for efficient degradation of tetracycline hydrochloride, *Sep. Purif. Technol.* 333 (2024) 125813. <https://doi.org/10.1016/j.seppur.2023.125813>.