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Abstract

Dynamic Programming suffers from the curse of dimensionality due to large state and action spaces, a challenge
further compounded by uncertainties in the environment. To mitigate these issue, we explore an off-policy based
Temporal Difference Approximate Dynamic Programming approach that preserves contraction mapping when
projecting the problem into a subspace of selected features, accounting for the probability distribution of the
perturbed transition probability matrix. We further demonstrate how this Approximate Dynamic Programming
approach can be implemented as a particular variant of the Temporal Difference learning algorithm, adapted for
handling perturbations. To validate our theoretical findings, we provide a numerical example using a Markov
Decision Process corresponding to a resource allocation problem.

Index Terms

Reinforcement Learning, Markov Decision Processes, Temporal Difference Learning, Perturbed Probability
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I. INTRODUCTION

N large-scale Markov Decision Processes (MDPs), Dynamic Programming (DP) faces the curse of

dimensionality, where the state and action spaces grow exponentially, making computation infeasible
[1]. To tackle these challenges, Approximate Dynamic Programming (ADP) methods are employed in the
literature [2], [3]. ADP techniques such as Temporal Difference (TD) use function approximations and
simulations to simplify computational complexity [4], [5].

On-policy and off-policy TD methods rely on three main methodologies to estimate cost functions:
gradient-based solutions, which use stochastic gradient descent to minimize the prediction error incremen-
tally (e.g., [6]], [7]); least-squares minimization techniques, which estimate cost functions by minimizing the
least-squares error between the estimated and true returns (e.g., [8]], [1]], [9]); and probabilistic approaches,
which employ Bayesian techniques to model the uncertainty in value estimates, adjusting predictions based
on the confidence in the current estimates (e.g. [10], [[11]). Off-policy TD is a powerful technique within
the broader field of ADP that aims to estimate cost functions using data generated by a policy different
from the one being improved [1]. Unlike on-policy methods, which require following the same policy
being evaluated, off-policy TD learning offers greater flexibility by leveraging experience from a variety
of policies or even simulated environments [[12]. In particular, off-policy TD approaches enable more
extensive exploration of the environment, potentially resulting in better policies [[13]]. In [14], generalized
advantage estimation was proposed, which smooths the trade-off by reducing variance in policy gradient
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updates, allowing more stable learning in high-dimensional control tasks. Exploration strategies, pivotal
in Reinforcement Learning (RL), were demonstrated effectively in their greedy approach within Deep Q-
Learning to achieve human-level control in Atari games [15]. Further advanced exploration-exploitation
trade-offs with Proximal Policy Optimization (PPO) was introduced in [12], which uses a clipped surrogate
objective to ensure stable policy updates while balancing exploration and exploitation, making it robust
for continuous and discrete action spaces.

MDP leverages simulations to generate experience and approximate optimal cost functions that lead
to effective policies. However, inaccuracies in the model and dynamic changes in the environment can
introduce challenges. If the model does not accurately represent the environment or if the environment
changes over time, the effectiveness of a policy based on the model may be compromised. In this
context, it becomes crucial to understand how deviations between the model and the real environment
impact the optimal cost function and the performance of the perturbed policy, associated with perturbed
transition probability matrices, which means perturbed MDPs. Perturbation analysis in RL examines how
changes in the environment or model parameters impact policy performance and value functions. In [10],
a TD Bayesian approach for value function approximation that models the uncertainty of predictions was
proposed, providing robustness against model perturbations.

This paper proves that sufficiently small perturbation in the environment (transition probability matrices)
will lead to restricted bound between the optimal cost-to-go function and non-optimal one. In particular,
we examine how transition probability matrix perturbations can be account as off-policy TD learning,
specifically Q-learning [16], by investigating the impact of weighted combinations of exploration and
optimal actions on efficient learning [[16]]. In addition, we analyze the variations of cost functions in the
context of policy perturbations and provide the corresponding upper bounds for discounted MDPs. More
precisely, let the transition matrices P* and Q correspond to the optimal policy 7* and an exploratory
policy 7o, respectively. Also, let the perturbed transition matrix P be defined as a weighted combination
of these two matrices, i.e., for P, we have

P=(I—-A)Q+ AP, (D
where [ denotes the identity matrix and A is a diagonal matrix with « €]0, 1] on its diagonal, i.e. A = af
and « is the discounted factor, specifying the trade-off between the use of the optimal policy 7* and
the exploratory policy mo. A = «al represents a uniform trade-off between the exploratory policy 7o
and the optimal policy 7*, but a more general choice of A can enable state-dependent perturbations. For
instance, by allowing A to have different diagonal entries for each state, perturbations can be adjusted
adaptively, reflecting varying levels of confidence in the estimated transition dynamics or incorporating
state-dependent exploration-exploitation trade-offs. This formulation also aligns well with frameworks that
introduce state-dependent learning rates or adaptive exploration strategies, making it particularly useful in
reinforcement learning settings where uniform perturbation assumptions may not hold.

Our framework explicitly links the perturbation of transition matrices to the exploration-exploitation
trade-off through a convex combination of Q and P*. While similar trade-offs exist in algorithms like
PPO and TRPO [[12]], [17], the novelty lies in our matrix-based formulation and the explicit derivation
of convergence guarantees under perturbations, which is less explored in MDP research. We characterize
the performance resulting from the utilization of suboptimal policies associated with P. In particular, we
discuss the projection on the subspace of specifically selected features based on such perturbations and the
convergence properties for off-policy TD methods. Furthermore, following the work of [[18]], we ensure
that the perturbed cost function remains bounded over an infinite time horizon, provided that for any pairs
of stationary policy (including 7 = 7*) it is ||P — Plloc <1 — a.

Non-stationary MDPs have been extensively studied in the RL literature, particularly in settings where
transition dynamics or reward functions evolve over time. Prior works such as [19]-[29] focus on
different aspects of non-stationarity, including sliding-window-based estimations [21], [23]], [30]], variation
budget constraints [27], [29]], and kernel-based approaches [26]. Most of these works, however, primarily
address settings where the transition kernel evolves in an arbitrary or adversarial manner, often requiring



explicit tracking mechanisms for adapting to changes. In contrast, our formulation introduces a structured
perturbation model where the perturbed transition matrix is represented as a convex combination of the
optimal and exploratory transition matrices, as given in (1). This representation provides a principled
approach to modeling controlled deviations in transition dynamics, allowing for a smooth interpolation
between optimal and exploratory policies, which aligns with exploration-exploitation trade-offs studied
in optimistic RL methods [31]-[33]. Furthermore, unlike previous works that rely on tabular settings or
parametric drift assumptions [27], [34], our framework generalizes to off-policy learning scenarios by
explicitly linking policy perturbations to transition matrix perturbations, offering a novel perspective on
policy optimization under controlled non-stationarity.

This article is organized as follows. Section [[I| provides some preliminaries on DP and outlines the
cost function approximation problem. The on-policy ADP approach is discussed in Section Section
analyzes the perturbed transition probability matrices and their impacts on cost functions. Section
explores the connection between perturbed transition probability matrices and Q-learning. In Section
the proposed off-policy TD approach is assessed using a resource allocation problem. Section |VII
concludes the paper.

II. PRELIMINARIES

Let us consider an infinite-horizon DP problem for an MDP. Such a problem often is solved by employing
Bellman’s principle of optimality recursively backwards in time [35]. In this regard, a shorthand notation
is introduced for Bellman operator as F* : Rl — RI*I for any cost function vector J € RI* which can
be expressed as

(F*J)(x) = min [R(:z:) +a S Prlu)(@)], 2)

uel
r'eX

where X is the MDP state space with cardinality |X'|, with = and 2’ being its two generic elements.
Moreover, u € U is a generic element of finite set of control actions U, R € R!*l the vector of instant
cost with element R(z)f] P : X x U x X — [0, 1] the state transition probability matrix, with generic
element P,,/(u), and a €]0, 1] the discount factor. In matrix form, (2) simplifies to: F*J = R + aP*J.
As noted in [[13], this shorthand notation is common for simplifying complex expressions. Applying the
sequence of optimal decision functions {u*, u*, ...}, where u* : X — U, as time horizon goes to infinity
results in optimal stationary policy 7* with the associate steady state probability distribution ¢* € RI*l(we
denote by € an element of this vector corresponding to the state x). The Bellman equation for the
optimal cost function satisfies: J* = R + oP*J*, where J* € R!*l is the vector of optimal costs, and
P* € RI*IXI¥] is the optimal transition probability matrix. Any non-optimal stationary policy is shown by
7 with its associated shorthand notation . and associated cost function J, [1]], [35]. The cost function
J*(x) is usually approximated by a parametric model J*(z, ), where € RY is the parameter vector to be
optimized, and 1) € N* is a selected number of features. This approximation, J* : X x R¥ — R!*l, uses a
low-dimensional linear function J* ~ ®r*, where ® € RI*1*? is a feature matrix with linearly independent
columns which we show by ¢(x) its row corresponding to state z, and 7* € RY is the parameter vector
to compute. Substituting the approximation into the Bellman equation yields the projected equation:
Or* = (R +aP*®r*), where Il = &(®'O*®)~1® " O* is the projection operator, and ©* is the diagonal
matrix with ¢* on the diagonal and zero elsewhere [36]. Here, ®r* approximates J*, making the equation
solvable. This approach relies on three key assumptions for any stationary policy 7 (including the optimal
7*) and related cost function J;: (i) the corresponding finite Markov chain is regular, with the stochastic
matrix P having a unique steady-state probability distribution €, with strictly positive elements ¢,, i.e.,
€; > 0,Vor € X; (ii) the feature matrix ® is full rank with rank ¢; (iii) the feature matrix ¢ captures

'This approach can be applied similarly for value function optimization by replacing min function by max function. See the example in
Section VI

2We omit the dependence of R on a specific control action.



the key characteristics of the cost function .J, allowing ®r to closely approximate it. In this context, the
dimensionality of the feature space (1)) plays a crucial role in determining computational feasibility.

III. ADP METHODS BASED ON ON-POLICY FRAMEWORK

Before delving into the main results of this article, we present introductory material on the on-
policy ADPapproach to prepare for the discussion of off-policy methods. In a more general framework,
TD methods can be classified into on-policy and off-policy approaches [16]. In on-policy learning, the
goal is to learn the cost function J, (), which represents the approximated expected long-term discounted
costs from state x when following a target policy 7. The learning process occurs while the agent actively
follows the same policy 7. On-policy methods are particularly effective in ensuring good convergence,

especially when using linear function approximations. To find the optimal parameter vector r* in the
on-policy case for the optimal policy 7*, we solve the following optimization problem:
r* = argmin ||®r — (R + aP*®r)|%, 3)

which minimizes the square of the weighted Euclidean norﬂ of the error between ®r and the projected
Bellman equation, where the weight €* is the steady-state probability distribution associated to 7*. By
differentiating (3) and setting the gradient to zero, we obtain: ®'©*(dr* — R — aP*®r*) = 0, where ©*
is a diagonal matrix with distribution €* along its diagonal. Solving this equation gives:

r = (®T0"® — ad O"P*P) " (&TO7) R.

In this formulation, the term (®7©*® — a® O*P*®) represents the matrix involved in solving for
r*, incorporating both the feature matrix and the transition dynamics. This approach provides a
way to approximate the optimal cost function in infinite-horizon problems using a lower-dimensional
representation, leveraging the structure of the Bellman equation and the projection framework to find an
effective solution. Defining Z* = <I>T®*(I — aP*)®, and d* = ®TO*R, then, the optimal parameter
vector is: r* = Z*~1d*. For large state spaces, computing r* directly is infeasible, so iterative methods
are employed. The update rule can be derived as follows:

2
e

Thy1 = arg mrin |®r — (R + aP*Dry,)
Taking the gradient and setting it to zero:
(@TO*P)r;,, = PTOY (R + aP*dry),
and rearranging and simplifying:
T =15 — (@TO70) (2% — dY). @)

This iterative update formula is related to Least Squares Temporal Difference (LSTD) methods [[13]].
Note that (@) is applicable to any generic target policy = when considering the associated steady state
probability distribution € (whose elements will be the diagonal elements of a diagonal matrix ©). In off-
policy learning, the objective remains the same: to estimate the cost function .J () for the target policy .
However, the actions taken during the learning process follow a different behavior policy 7. Even though
the agent follows 7 during learning, the focus is still on accurately estimating the cost function for the
target policy 7 (see [|6] and reference therein). The mechanism to compute iteratively the parameter vector
is analogous to the one in (@) and is based on perturbation analysis, which is discussed in the next section.

3Weighted Euclidean norm on R!*! for any vector J € RI*! is defined as ||.J||ox = D vzex €5 (J(:Jc))2
*In this article, we make use of standard definitions of norms for matrices and vectors, e.g., | P||so of ||J | so-



IV. PERTURBATION ANALYSIS OF STOCHASTIC MATRICES AND COST FUNCTION BOUNDS

In order to apply off-policy methods, which require perturbation of the transition probability matrices
(for exploration purposes), it is important to understand how perturbations in transition dynamics affect
cost functions. This section establishes bounds for the differences between cost functions from perturbed
and unperturbed dynamics, using properties of stochastic matrices and positive definiteness. These results
provide insights into the resilience of MDPs under uncertain transition probabilities, aiding ADP methods
in developing robust decision strategies. Using the results reported in [37] (Lemma 6.3.1), the following
Lemma [I] and Remark [] guarantee the convergence of on-policy TD approaches and accordingly recursive
iteration (4)). This result will be extended to show the convergence property in the case of off-policy
TD approach as well.

Lemma 1. For any stochastic matrix P corresponding to irreducible and regular Markov chain with
associated stationary probability distribution €, whose elements are arranged along the diagonal of a
diagonal matrix ©, the matrix (I — o'P) is positive definite, where o €]0, 1].

Proof: To prove that ©(] — o/P) is positive definite, we want to show that for any non-zero vector
JeR®: JTO(I—aP)J > 0. We have: JTOJ =Y e, J?and: JTOPJT =" e,J. >, Puar Jor, Where
the term ), P, J, is the expected value of J,/ given z, denoted by E[J,/ | z]. Since € is a stationary
distribution we can rewrite: ) €,J; >, PrwJy = E.[J, - E[Jy | x]]. Applying the Cauchy-Schwarz
inequality to the expectation E, [J, - E[J,/ | z]|, we get:

Ec[Jz - E[Jo | 2]] < \/EE[Jg] ) \/Ee [(E[Jor | 2])2].
By Jensen’s inequality for convex functions, we also have:

E [(E[Jy | 2])?] < E[J3].

Thus,

VE (B[ | 2])?] < VE[Z].

Therefore, E. [J, - E[Jy | z]] < E[JZ]. Or, equivalently, > e, J, > PowJw < > €,J2 Being o €
10, 1[, this gives us the desired result: Y €, J2 > a > > €, PuwJydy. u

Remark 1. From the results of Lemma |l| and full rank assumption of matrix ® we know Z = ®TO(I —
a’P)® is positive definite. Moreover (& O®) is symmetric positive definite, therefore invertible (see Lemma
5.5 in [38]). From Proposition 6.3.3 and Lemma 6.3.2 in [37] the recursive iteration (&) directly converges
to the solution of the projected equation since the matrix I — (®TO®)~1Z has eigenvalues strictly within
the unit circle (see also Theorem 5.6 in [138]).

Remark [I| implies that necessary and sufficient condition for the convergence of any on-policy
TD algorithm depends on the positive definiteness of matrix Z, and hence of ©(/ — a/P). This concept
can be extended to the case of off-policy TD algorithm. In the next Lemma, we investigate such property
for the case of perturbed transition probability matrix P.

Lemma 2. For any stochastic matrix P corresponding to an irreducible and regular Markov chain,
consider a stationary probability distribution €, whose elements are arranged along the diagonal of a
diagonal matrix ©, associated with the perturbed matrix P = (I — A)Q + AP, being A a diagonal
matrix with o €)0,1[ on its diagonal, and Q another stochastic matrix. Then, the matrix O(I — oP) is
positive definite.

Proof: We need to show that for any non-zero vector J € R*!, JTO(I — aP).J > 0. To this end,
consider the matrix ©(I — aP), and apply the results of Lemma || Following the same proof steps, we
can state that:

T z,x’



and also > & J2—a ). &>, ”’ Jodw > 0. Since Py = APy + (1 — ) Quur, and being Q another
stochastic matrix, by substitution 1n @D, it is: >, €2 — a). . € > . PowdyJy > 0, which completes
the proof. [ ]

Now we are ready to consider the impact of perturbation introduced by the matrix P, defined as
P = (I —A)Q+ AP*, on the projected Bellman equation. This perturbation can be incorporated into the
projected Bellman equation by considering the perturbed transition matrix P instead of 7*. The projected
Bellman equation with perturbation is: ®7 = II(R + aP*®7), where II = ®(®TOP) 17O is the
projection operator. Substituting I and rearranging, we get: (@T(:)CD — O@T(:)P*@) 7 = ®TOR. Defining
Z=0TO(I —aP*)®,d = ®TOR, so the solution for 7 is: ¥ = Z~'d. This formulation allows us to
solve for the parameter vector 7 that approximates the cost function under the perturbed policy, providing
a way to assess the impact of deviations from the optimal policy within the framework of ADP. Similar
to previous case, for large state spaces, solving directly for 7 is impractical. Instead, iterative methods
like TD are used. The iterative update formula in the off-policy case is:

Trp =T — (21 O9) " (Zry, — d), 6)
whose convergence property can be derived from the following theorem.

Theorem 3. Consider a Markov Decision Process (MDP) with state space X, action space U, reward
vector R, and optimal transition probability matrix P*. Let the perturbed transition probability matrix
be defined as: P = (I — A)Q + AP*, where A is a diagonal matrix with the discount factor « €0, 1]
along its diagonal, and Q is a stochastic matrix associated with an exploratory policy. Define: Z =
PTO(I —aP*)®, d= ®TOR, where ® € RI**™ js a feature matrix, and © is a diagonal matrix
with the stationary probability distribution € on its diagonal. The recursive iteration for the parameter
vector 7, € RY is given by: T4 = 7 — (®TOP) ! (ka — J) . Then, the iterative update ), converges to
the solution 7 of the projected Bellman equation: ®F = I1 (R + aP*®7) , where I1 = ®(®TOP)~1dTO,
Proof: From the results of Lemma 2| for the case P = P*, we know Z = ®'O(I —aP*)® is positive
definite. Moreover (®TO®) is symmetric positive definite, therefore invertible. Since the convergence of
(@) is directly related to the positive definiteness of the term O(I — aP*), then we can guarantee the
convergence of projected based ADP with perturbed transition matrices. [ ]

Remark 2. The recursive iteration (0) can be computed using the Monte Carlo simulation mechanism.
This procedure involves producing two sequence of state visits via off-policy TD methods, where the

sequence {Z(0),z(1),Z(2),...} is generated using the transition matrix P (behavior policy) or a
steady-state distribution ¢, and we also generate an additional sequence of independent transitions
{(2(0),2(0)), (z(1),2(1)),... } according to an original transition matrix P not necessarily optimal
(target policy).

An important metric in analyzing perturbed MDPs is the upper bound for the difference between cost
functions derived from perturbed and unperturbed transition probabilities matrices. This ensures consistent
policy performance under non-stationary or perturbed conditions in MDPs and helps manage approximation
errors in value iteration and ADP methods, thereby maintaining optimal policy quality [12]].

The next theorem provides an upper bound for the difference between optimal cost function and its
perturbed counterpart. This result is particularly useful when the optimal policy is not known and we
want to obtain a bound on the norm of the error between the estimated cost function and optimal one.

Theorem 4. Consider an MDP with X, U, R, and two different transition probability matrices, P* and P,
with associated cost functions J* and J, respectively. Let P = (I — A)Q + AP*, where A is a diagonal
matrix with o €)0, 1[ on the diagonal, and Q is a stochastic matrix. If ||P* —P||s < (1—a), the difference
between J* and J is bounded by: ||J* — J||s < %

Proof: Using the Bellman optimality equations and the fixed point mapping of the DP for J* and J



[35], we can write the following:
|J*(z) — J(z)| = Jta ) PrJ ) = R) —a ) Pu()|. (7)
z'eXx z'eX
This simplifies to:
(@) = J(2)| = o] Y PrJ (2)) = Y Puw(2) (8)
z’'eX z’'eX
We now decompose the sum:
S Pr @) = Pawd(@) =Y (Pipd (7)) = Paw I (@) + Y Pow(J*(a') = J(2').  (9)
z'eX r’'eX z'eX z’'eX
Substituting (9)) into (8) we have:

@) = | D (PrJ* (@) = Paw I (@) + > Pow(J*(2) = J(a))

r’eX z'eXxX

Using triangle inequality we get:

[T (@) = J(@)| S @ Y [Py = Prar| [T (@)| + @ Y [P [J(2") = ()], (10)

z'eX z'eX

where the first term contains the difference between the transition matrices P* and P, While the second
term accounts for the difference in cost functions. Using the assumption that ! P — PH (1 —a), the
properties of infinite norm, and the fact that (10) holds for any norm, we bound the first term

177 = Tlloe < @l = )| [loo + @ Y [Puar||J7(2) = T (a))]:

r'eX

Next, we use the fact that ) , P, = 1, since P is a stochastic matrix. Therefore, we have:

r'eX
|/

Rearranging the inequality to isolate ||.J* — J||, we get: |

—jHOO <a(l- o)

J| o

o jHoo’

= Since we know from

). <
the Bellman equation that ||.J*||, < %, by substituting this bound, we obtain: ||J* — J||o < %,

which completes the proof. [ ]

a(l—a)HJ* H
1—

Remark 3. The norm condition |P* — P|o < (1 — «) in Theorem [ is satisfied whenever it is ||P* —

Qll < 1. Indeed, the deviation from the optimal policy introduces a perturbation matrix P* — P =
(I — A)(P* — Q), whose norm is bounded as follows: ||P* — Pl < (1 — @)||P* — Q||co-

Remark 4. While Theorems 5| and 4| analyze the impact of perturbations on the optimal transition matrix
P*, the proposed algorithm is applicable to any general target transition matrix P, corresponding to an
arbitrary stationary policy, whether optimal or suboptimal. Since off-policy TD learning is independent of
whether P is optimal, our framework extends beyond optimal policies and remains valid for exploratory
and intermediate policies as well.

Algorithm [l summarizes the off-policy implementation using TD learning and perturbed transition
matrix P for the general target transition probability matrix P.



Algorithm 1 Off-Policy TD Learning with P

1: Initialize parameter vector 7, discount factor «, feature representation ¢(z) for each state x, and behavior policy transition
matrix P

2: for each episode do

3 for each time step k£ do

4 Generate the state z(k) using P

5: Generate the state (k) from the transition pair (Z(k),z(k)) using P

6

7

Observe the immediate cost R(z(k)) associated with the target policy
Compute the TD error:
0 = R(x(k)) + ad(z(k)) "7 — ¢(z(k)) "7

8: Update parameter vector: 7 <— 7 + dpp(xy)
9:  end for
10: end for

V. ANALOGY BETWEEN THE PERTURBED TRANSITION MATRIX AND Q-LEARNING

In this section, we discuss how the analysis on perturbed transition matrix P relates to Q-learning,
where the optimal policy 7* is combined with an exploratory policy, say mo. The mixture of these two
policies can be expressed as a weighted combination, similar to the exploration-exploitation trade-off in
Q-learning. In Q-learning, the policy is a mixture of an exploratory policy and an optimal policy, in the
sense that the action-selection strategy in Q-learning combines exploitation of the optimal policy 7* and
exploration using a stochastic policy 7o.

This is mathematically described by the policy mixture [16]:

me(ulr) = & mo(ulz) + (1 = &) - 7 (ulx),
where 7*(u|x) is the optimal policy that chooses action u in state = based on the optimal Q-function
Q*(z,u), mo(u|z) is an exploratory policy, and £ €]0, 1] is the exploration parameter controlling the
balance between exploration and exploitation. Under this mixed policy ¢, the transition dynamics can be
expressed as a combination of the transition matrices corresponding to 7* and 7g : Pr, = {Prg+(1—E) Prr.
We now observe that the perturbed transition matrix P can be seen as a similar mixture of policies, with
« playing the role of 1 — ¢ in Q-learning:

P=(I-AQ+AP".

This formulation shows that P models the transition dynamics of a perturbed policy 7, which can be
described as a probabilistic mixture of the optimal policy 7* and the exploratory policy mg: 7(u|z) =
(1 — a)mo(ulr) + am*(ulz)f] Thus, a acts similarly to 1 — &, determining how much the system follows
the optimal policy P* versus exploring the exploratory transitions defined by Q. Since P is a weighted
combination of the optimal transition matrix P* and the exploratory matrix Q, the deviation from the
optimal transition matrix is given by: ||P* — Pl = (1 — @)||P* — Q|-

Assuming that ||P* — Q|| < 1, this deviation is bounded by: ||P* — P||s < 1 — a. This expression is
analogous to the temporal difference error in Q-learning, where « controls the trade-off between exploration
and exploitation [16]. As « decreases, the deviation from the optimal transition dynamics increases,
reflecting a greater degree of exploration. This trade-off allows the system to balance between following
the optimal policy 7* and exploring alternative policies through 7o.

The deviation from the optimal transition matrix P* is controlled by «, similar to the exploration
parameter in Q-learning. While the principles of perturbation in Q-learning and the presented approach
share similarities, they are not interchangeable in general. Q-learning excels in model-free and discrete
setups, while our approach is better suited for structured, large-scale, or robust policy optimization tasks.
These differences make them complementary tools in the RL framework.

>The policy 7 deviates from 7* to g with probability 1 — a.



VI. NUMERICAL SIMULATIONS

In this section, we compute an estimation of the optimal value function J* through .J, and hence
the parameter vector 7, utilizing the off-policy TD approach discussed earlier for an MDP related to a
resource allocation problem [1], [2]. In summary, the challenge of managing resource pricing for dynamic
allocation is tackled by utilizing parallel stochastic Markov chains. In this model, customers request a
resource with a probability of \; and release it with a probability of u;, both of which correspond to
the price ¢;. The decision-maker’s objective is to maximize profit over an infinite time horizon, which
is analogous to minimizing costs in the dual formulation of the problem. Denoting by x;(k) the state of
Markov chain (here number of customers) associated to ¢;, we can compute the value function as follows:

T m
J () = lim E "N ek |,
()= [0S nt)
where U = {cl, Co, ... ,cm}. This resource allocation problem exhibits the curse of dimensionality as the

number of available resources N and the possible price choice m increase (see [1] for details).
To provide more information and to elaborate more (see [18]], [39], [40]), by exploiting Bellman’s
principle of optimality, the optimal value function for the tail subproblem at time £ can be written as

Z Z akcixi(k‘)]

k=0 =1

Ji(2(k)) = max B

= max m}E{i cixi(k) + adi (x(k + 1))} :

u(k)e{c1,ca,...,c

More specifically, by applying Bellman’s recursive backward procedure and starting from the terminal
condition

Jr(z(T)) = Zc 2:(T),

the optimal value function for such a tail subproblem can be expressed as

m

Ji(z(k)) = max ]E{Z c;i xi(k)

u(k)e{c1,c2,....cm} p

+ adi (z(k + 1))} = Zci zi(k) +

max E{Jg+l(x(k+ 1))}

u(k)e{c1,c2,....om}
i=1
amax [E{J;H(x(k +1)) | u(k) = cl}, ce

E{J,:H(x(k’ +1)) | u(k) = cm}} :

Finally, Jo(2(0)), generated at the last step, is equal to the optimal value function .J*(z(0)) computed
for the entire finite time horizon 7. Fig. (1) shows an example of the MDP associated to a resource allocation
problem for a given policy.

As illustrated in Table |I| as the number of resources N and the number of actions m increase, the
cardinality of the state space grows exponentially. For instance, if m = 5 and N = 20, performing just one



iteration of Bellman’s recursion to solve the exact Dynamic Programming (DP) problem entails evaluating
5 x 53130 action-state pairs (u,z) and computing their associated transition probabilities P,/ (u), where
P: X xUXX.

1—X

1= A1 —p1

1—p2 (1= p1)(A = p2) 1=

Fig. 1. The graph shows the MDP state space and the corresponding state transition probabilities for a resource allocation problem with
N =2 and m = 2, and for the control input u(k) = c1. The system states are (z1,z2) € {(0,0),(0,1),(1,0),(1,1),(0,2),(2,0)}, where
z1 and xo are associated to c¢i and ca2, respectively.

TABLE 1
DEMONSTRATING THE CURSE OF DIMENSIONALITY IN RESOURCE ALLOCATION PROBLEM

Example of state space explosion [3]

m N Number of States
2 10 66

3 20 1771

5 20 53130

6 20 230230

4 50 316251

5 50 3478761

Consider a resource allocation problem with m = 4 price levels and N = 20 resources. In this case, the
cardinality of the state space is |X'| = 10626, highlighting the curse of dimensionality in DP problems.
In our simulation, each DP iteration requires evaluating 4 x 10626 state-action pairs and dealing with
transition probability matrices of size 10626 x 4 x 10626. This is in addition to saving each iteration’s
results in a lookup table and comparing different actions u for each state x at every time step k.

Moreover, from the fixed-point equation of the DP operator in the infinite-horizon setting, we have

J'=R+aP*J".

Solving this equation often requires matrix inversion on the order of 10626 x 10626, illustrating the
significant computational burden. As a result, Monte Carlo simulation is used to avoid direct matrix
inversion and multiplication for such large-scale problems. Consider a discount factor of o = 0.9, with
prices ¢ = [0.8,0.9, 1, 1.1}, arrival probabilities A = [0.090596, 0.048632, 0.015657, 0.005088], and service
probabilities 1 = [0.483723,0.444019,0.024843,0.335103]. These probabilities satisfy the condition:
maXe, c et 2oy |Poar (¢i) — Paw(cj)| < (1 — @), for all 4,j = 1,...,m, ensuring stability across all
pairs of stationary policies (including the optimal one). We consider 5 features for each state x of MDP,
as ¢1(z) = 1,¢;(x) = x;, i = 1,..., m, hence the parameter vector r € R°. We ran 100 Monte Carlo




simulations each starting from an arbitrary initial state with the length of 50000 iterations. In particular
for Monte Carlo simulations we employ the procedure that briefly narrated in Remark [2] and Algorithm

The results of these simulations are presented in Fig. [2| where, for simplicity, we have depicted the
behavior of kaH ,of parameter vectors across 10 experiments, showing the convergence of the proposed
off-policy TD learning (see Lemma [2] and Remark [2). By averaging the parameter vectors resulted from
these experiments, we have 7 = [0.0212, 1.9179, 2.2853, 8.9394, 3.3748]".

After computing 7, one can use the results of the Theorem @ to approximate J* for a given state x.
In Fig. 2| for the horizontal axis we employ logarithmic scale since the alteration rates of the curves in
linear scale are not adequately detectable through iterations.

120

1712

‘ !
10" 10! 10? 10° 104 10
Iteration

Fig. 2. The behavior of parameter vector r through off-policy TD approach for the resource allocation with m = 4 prices, N = 20
resources and |X'| = 10626.

In the second round of the simulation, we assess the behavior of parameter vector 7 under different

target policies as follows:

o Greedy target policy: The system selects the action that maximizes the instantaneous revenue, ensuring
the highest immediate return at each decision step, i.e. the highest income.

o Fair target policy: The system chooses the action that minimizes the instantaneous revenue, i.e. the
lowest income.

e Random target policy: A decision is selected randomly from the available options, introducing
stochasticity into the control process to explore different state transitions.

o Hybrid Heuristic target policy: The system uses a probabilistic approach, where with 60% probability,
it selects the decision with the lowest value of u (potentially minimizing service rate impact), and in
the remaining 40%, it selects a random action to maintain exploration.

e Modulo-Based target policy: The decision is determined based on the modulo operation of the sum
of the current state values, enforcing a cyclic or structured selection process that balances system
state transitions over time.

The results of these simulations, as depicted in Fig. 3| illustrate the impact of different target policies
on the evolution of the parameter vector 7 in the off-policy TD learning process. The plot shows the (5-
norm of 7 over iterations, providing insights into the convergence behavior under varying decision-making
strategies. In particular:

(i) Greedy Target Policy (black dashed line): This policy consistently produces the highest parameter
values throughout the iterations. Since it always selects the action that maximizes immediate revenue,
it leads to a more aggressive exploitation of high-reward states, resulting in higher values of [|7||o. The
shaded region represents the performance bounds within which other policies operate.



= =Greedy target policy

Fair target policy

L 1 L L 1 Rthe.. - wheudiift ]
1 1.5 2 2.5 3 3.5 4 4.5
Iteration x10*

Fig. 3. Comparing different target policies on the parameter vector 7 through off-policy TD approach.

(i1) Fair Target Policy (green dotted line): In contrast, the Fair target policy, which minimizes immediate
revenue, exhibits the lowest values of ||7||5 across iterations. This outcome aligns with expectations, as this
policy prioritizes decisions that yield lower short-term returns, leading to a more conservative parameter
estimation.

Other Policies (colored solid lines), i.e. the Random, Hybrid Heuristic, and Modulo-Based target
policies, fall within the bounds set by the Greedy and Fair policies. These policies introduce varying
degrees of stochasticity and structure in decision-making: the Random policy (blue) exhibits moderate
behavior, as its random selection of actions balances between high and low revenue choices; the Hybrid
Heuristic policy (purple) maintains a controlled exploration strategy, sometimes choosing low-service-rate
decisions while preserving randomness, leading to a curve closer to the middle range; the Modulo-Based
policy (brown) follows a structured cyclic decision rule, causing its trajectory to fluctuate but still remain
within the expected range.

Overall, the results of this simulation confirms that the Greedy policy leads to the most aggressive
growth in parameter values, while the Fair policy results in the lowest values. The remaining policies
provide intermediate trade-offs between exploration and exploitation.

VII. CONCLUSION

In this article, we analyzed the impact of perturbations on optimal policy in DP problems and computed
the resulting cost function’s deviation from its optimal value. In particular, we handled perturbations in
state transition probability matrices using an off-policy TD projection-based approach, which also allowed
to address the curse of dimensionality in large-scale MDPs. We also provided the necessary and sufficient
conditions for the convergence of the associated Monte Carlo based simulations algorithm. Finally, we
validated the presented theoretical results via a suitable numerical example.

APPENDIX

It is worth to highlight that a MATLAR package has been provided to support different implementation
phase of this article which is available on https://github.com/Ali-Forootani/Off_Policy_TD_Algorithm.
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