

This is the accepted manuscript version of the contribution published as:

Shan, Y., Hao, H., **He, J.**, Hu, N., Liu, P., Zhang, M., Jiao, W., Yin, Y. (2025):
Thermal enhanced electrokinetic bacterial transport in porous media
Environ. Sci. Technol. **59** (3), 1683 - 1692

The publisher's version is available at:

<https://doi.org/10.1021/acs.est.4c07954>

Thermal Enhanced Electrokinetic Bacterial Transport in Porous Media

3

4

5 Yongping Shan¹, Huijuan Hao¹, Jinyao He², Naiwen Hu¹, Ping Liu¹, Mingxiu
6 Zhan³, Wentao Jiao^{1*}, and Yongguang Yin¹

7

8

⁹ *1 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085*
¹⁰ *Beijing, China.*

11 ² *UFZ - Helmholtz Centre for Environmental Research, Department of Environmental*

12 Microbiology, 04318 Leipzig, Germany.

*3 College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou
310018 Zhejiang, China.*

15

16

17

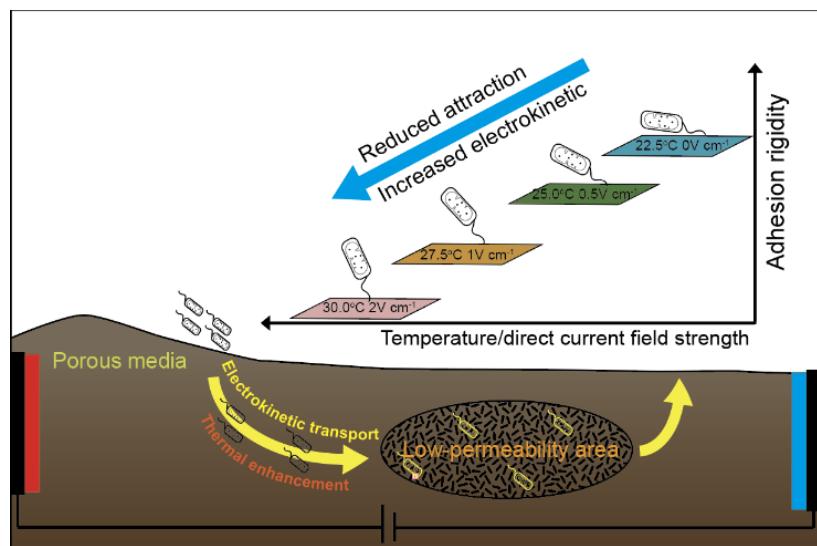
18

19

20

21

22


23

24

²⁴* Corresponding author; E-mail: wtjiao@rcees.ac.cn (W. Jiao)

25 **Abstract:** Soil bacterial communities are crucial to various ecosystem services, with
26 significant implications for environmental processes and human health. Delivering functional
27 bacterial strains to target locations enhances preferred ecological features. However, the
28 delivery process is often constrained by limited bacterial transport through low-permeability
29 soil. Although electrokinetics breaks the bottleneck of bacterial transport in thin porous media,
30 its efficiency remains limited. Here, we tested the hypothesis that thermal effects enhance
31 electrokinetic transport by shifting the net force acting on the bacterium. We found that heating
32 significantly increased electrokinetic transport by 2.75-fold at 1 V cm⁻¹ through porous media.
33 Thermal enhancement mechanisms were interpreted by the heating shift of net force integrating
34 matrix attractive and electrokinetic forces, and verified by the Quartz Crystal Microbalance
35 with Dissipation Monitoring (*QCMD*) observed adhesion rigidity shift. Thermal-dependent
36 parameters liquid viscosity and dielectric constant were the primary contributors to the net
37 force shift. Their variations reduce the attractive force and augment the electrokinetic forces,
38 resulting in lower adhesion rigidity and enhanced bacterial transport. A mechanism-based
39 approach interlinking electric field strength, thermal effect, and collision efficiency was
40 established to facilitate the application of thermally enhanced electrokinetic bacterial transport.
41 These findings provide new prospects for improving bacterial transport, hence optimizing soil
42 ecosystem functions.

43 **Keywords:** thermal enhancement; electrokinetics; bacterial transport; low-permeability soil
44 **Synopsis:** This study reports a significant enhancement of thermal effects on the electrokinetic
45 bacterial transport in porous media.

48 **1. Introduction**

49 Bacteria play essential roles in fulfilling soil ecosystem functions, e.g., soil priming,¹ nutrient
50 amendment,² and environmental remediation.^{3,4} They support a range of critical processes that
51 sustain natural and engineered ecosystems.^{5,6} Bioengineering approaches enable intervening
52 bacterial communities by delivering functional bacterial strains to preferred sites, achieving
53 target ecosystem services with consequences for environmental and human health⁷. However,
54 the realization of bacterial activities in practical applications is often constrained during
55 bacterial transport to target uptake spots in low-permeability porous media, especially through
56 thin pore networks.^{8,9} Therefore, approaches that enhance bacterial transport in porous media
57 are crucial for the development of bioremediation technology¹⁰.

58 Current strategies in improving bacterial transport include fluid shear, direct current (DC) field,
59 etc.¹¹⁻¹⁴ DC field shows potential in facilitating bacterial transport through low-permeable soil
60 structures, by introducing electrokinetic phenomena, such as electroosmosis and
61 electrophoresis.^{15,16} Contrary to the parabolic hydraulic fluid, the plug-shaped electroosmotic
62 flow acts at several nanometers above matrix surfaces. It allows for mobilization in microscale
63 channels that are typically not affected by hydraulic flow. It thus acts in the scales of low-
64 permeable soil pore networks relevant for the microbe-matrix interactions and promotes
65 bacterial transport¹⁷. Electrokinetics performs better in enhancing the transport of high surface
66 charge hydrophilic bacterial strains compared to low surface charge hydrophobic ones.¹⁸
67 Electrokinetic enhancement on a typical high surface charged bio-degrader of polycyclic
68 aromatic hydrocarbons *Pseudomonas fluorescens* LP6a through porous media reaches 85%
69 under a weak DC field of 3 V cm⁻¹.¹⁹ However, in practical application, applying high voltage
70 electric fields in a long-term cause unwanted variations in pH, redox potential, and soil
71 structure. The electrokinetic transport rate still represents a significant hinderance of the bio-

72 degrader through long-distance delivery. Therefore, there is interest in further enhancing
73 electrokinetic bacterial transport through porous media to reduce the required DC field strength.

74 Electrokinetic bacterial transport is driven by the interactions of the matrix attractive force,
75 electroosmotic shear force, and electrophoretic drag force.¹⁸ Thermal effects alter
76 environmental physicochemical properties including liquid viscosity²⁰, dielectric constant²¹,
77 and zeta potentials of bacteria and solid surface²². Theoretically, the reduction of these
78 physicochemical parameters has the potential to reduce matrix attractive force (cf. eq. S8) and
79 increase electrokinetic velocities (cf. eqs. S13-S14)²³. There is, hence interest in testing the
80 hypothesis that thermal effects enhance electrokinetic bacterial transport by introducing
81 variations in the physical environment.

82 Here, based on the principles of microbe-matrix interaction, electroosmosis, and
83 electrophoresis, we hypothesize that heating promotes bacterial transport driven by the
84 thermal-dependent net force acting on bacterial cells. Thermal enhancement of electrokinetic
85 bacterial transport was investigated in percolation columns, and evidenced by the high-
86 sensitivity measurement of the bacteria-quartz adhesion rigidity in the quartz crystal
87 microbalance with dissipation (*QCMD*) system. Thermal effects on electrokinetic bacterial
88 transport were evaluated using clean-bed filtration theory²⁴. The mechanisms were interpreted
89 by the shift of net force integrating matrix attractive and electrokinetic forces, and verified by
90 the *QCMD* observed adhesion rigidity shift. The thermal-dependent parameters driving net
91 force shift including the liquid viscosity, dielectric constant, and zeta potentials were derived
92 from the equations, and their impact extent was investigated. The findings may support better
93 prediction of thermal electrokinetic improvement on bacterial transport, hence optimizing soil
94 ecosystem functions.

95 **2. Materials and Methods**

96 **2.1 Cultivation of Bacteria and Inoculum Preparation**

97 *Pseudomonas fluorescens* LP6a (GenBank accession No. AF525494)²⁵ was selected as the
98 model electrokinetic transport strain, adopted following our previous research. It was cultivated
99 in lysogeny broth (LB) medium until the early stationary phase (18 h at 25 °C, 150 rpm). The
100 cultures were then centrifuged (5000 ×g, 10 min), and resuspended (SCI-FS, Scilogex, China)
101 in 100 mM potassium phosphate buffer (PB, pH = 7.0, prepared with 61 mmol K₂HPO₄ and 39
102 mmol KH₂PO₄ diluted in 1 L DI water). The centrifuge-vortex treatment was repeated three
103 times to reduce extracellular polymeric substances. Afterward, cell suspension in PB was
104 diluted to an optical density of 0.30 at 600 nm using a UV/vis spectrophotometer (Evolution
105 160, Thermo Fisher Scientific, Carlsbad, CA). In practical applications, the optical density of
106 0.30 enables the colonization of bio-degraders in the soil, while avoiding unnecessary dynamic
107 coagulation of over-density.

108 **2.2 Characterization of Physiochemical Properties**

109 The zeta-potentials of bacteria (ζ_{bac}), sand (ζ_s), and the silica sensor of quartz crystal
110 microbalance (QCMD) (ζ_{sr}) were measured by Doppler electrophoretic light scattering analysis
111 (Zetasizer Nano ZS90, Malvern, UK) with disposal folded capillary cells. The sand particles
112 were sampled from a riverside, sieved to 1mm diameter, washed with DI water, dried in oven,
113 and stored in a desiccator before usage. The zeta potential of sand particles was estimated using
114 smashed sand sieved to diameter < 100 μm , treated at 200°C in a muffle furnace for 2 h, then
115 cooled to room temperature (25°C) under sterile conditions. The contact angles (θ) of *P. LP6a*
116 and sand were measured using a drop-shape analysis system (DSA100, KRÜSS, Germany) in
117 three solvents water, formamide, and methylene iodide^{19,26} and listed in Table S1. Bacterial
118 lawns for drop-shape analysis were prepared by depositing bacteria from inoculated
119 suspensions on cellulose acetate membrane filters (Millipore, 0.45 μm). Sand lawns for drop-
120 shape analysis were prepared following the protocol of Achtenhagen et al.²⁷ Three sand lawns

121 were prepared for each experiment, with three solvent droplets of the drop-shape analysis
122 system applied per lawn. The contact angles of solvents at the moment of dropping on the
123 lawns were captured by a high-speed camera.

124 **2.3 Thermal Electrokinetic Transport Experiments**

125 ***Electrokinetic column experiments*** Electrokinetic percolation columns adapted from previous
126 work²⁸ were immersed in a temperature-conditioning water bath (DLSB 5L/10, Yuhua, China)
127 to conduct bacterial transport experiments (Fig. S1). The columns were sterilized and wet-
128 packed with clean, sterilized sand in PB, achieving a porosity of 0.30 and a pore volume (PV)
129 of 3.99 mL. The water bath maintained static temperature of the bacterial suspension reservoir
130 and columns at 20, 30, 40, and 50°C, with deviations $\leq 2^\circ\text{C}$.

131 Prior to the experiments, the columns were equilibrated for 30 min by circulating clean PB at
132 the target temperature using a peristaltic pump (310HT, SENZ, China). The bacterial
133 suspension with an optical density (OD) of 0.30 at 600 nm, was stirred and temperature-
134 stabilized while pumping through the columns downward at an advective flow rate of 19.6 mL
135 h^{-1} (equivalent to $2.4 \times 10^{-7} \text{ m s}^{-1}$ in the porous media). Bacterial transport was quantified by
136 measuring the OD of both the influent (C_0) and effluent (C) at an interval of 5 min (equivalent
137 to 0.41 PV) over a period of three hours.

138 After column experiments, the viability of bacterial suspension in the reservoir was assessed
139 via flow cytometry (Novocyte 1040, ACEA, USA). Nucleic acid stain propidium iodide (PI,
140 ThermoFisher, USA) was used to label dead cells. Bacterial suspensions were centrifuged (3200
141 $\times g$, 10 min, 4°C), washed with 100 mmol L⁻¹ phosphate buffer 3 times by centrifuge-vortex
142 process, to exclude the effects of extracellular polymeric substances (EPS), and adjusted to a
143 cell concentration magnitude of 10^6 cell mL⁻¹. Then 100 μL bacterial suspension was mixed
144 with 5 μL of 100 $\mu\text{g mL}^{-1}$ PI, incubated in the dark for 15 min, and analyzed by flow cytometry.

145 The flow cytometric settings were: fluorescence voltage 420 mV, forward scatter (FSC)
146 threshold 1000, and the count rate 1000 cells s⁻¹.

147 ***QCMD experiments with flow cytometry quantification*** Time-resolved high-sensitivity
148 Quartz Crystal Microbalance with Dissipation Monitoring (*QCMD*) allows analysis of cell
149 adhesion behavior at the liquid-solid interface.^{29,30} *QCMD* reflects the amount and viscoelastic
150 properties of an adhering mass (bacteria) by changes in the resonance frequency (Δf) and
151 changes in the energy dissipation (ΔD) of an oscillating crystal coating sensor surface³¹. *QCMD*
152 (Q-Sense Explorer, Biolin Scientific, Sweden) experiments were conducted to assess the
153 impact of heating and electrokinetics on deposition mass and rigidity³². Silicon dioxide-coated
154 sensors (diameter: 14 mm, AT-cut, roughness < 1 nm, Biolin Scientific, Sweden) were adopted
155 to simulate sand surfaces at nanogram magnitude. The *QCMD* setup comprised an inlet
156 solution reservoir, a *QCMD* chamber with temperature control, a peristaltic pump, and a
157 wastewater container. The peristaltic pump drove a fixed flow velocity of 6×10^{-7} m s⁻¹ at static
158 temperatures of 22.5, 25, 27.5, and 30°C, resp.

159 Before each experiment, a clean sterilized silica sensor was mounted in the chamber, sealed,
160 and connected to the *QCMD* electrodes. Sensor stability and precision were ensured in the air
161 by verifying that both frequency shifts (Δf) and the dissipation shifts (ΔD) remained within $\pm 10\%$
162 of their standard values across multiple overtones 1, 3, 5, 7, 9, 11, and 13 corresponding to
163 frequencies 5-65 MHz. The baselines were stabilized by pumping ultrapure water for 20 min,
164 followed by 40 min with cell-free PB as a control. For experimental assays, bacterial
165 suspensions in PB were introduced into the *QCMD* system continuously for 2 h with Δf and
166 ΔD monitored simultaneously. Each experiment was performed in duplicate.

167 Following each *QCMD* experiment, sensors were rinsed with 1.5 mL deionized water in the
168 bottom of a 50 mL centrifuge tube. Subsequently, adhered bacterial cells were detached using

169 an ultrasonic washing unit (FS60, Fisher Scientific, Canada) for 10 min. The sensors were
170 gently transferred to the sensor cater and thoroughly rinsed for two hours with 2% sodium
171 dodecyl sulfate and ultrapure water. After rinsing, the sensors were dried using a nitrogen
172 stream and sterilized for 20 min in a UV chamber for subsequent use. The bacterial cell
173 concentrations in deionized water post-ultrasonic treatment were accurately quantified using a
174 flow cytometer (Novocyte 1040, ACEA, USA), to ensure the data quality for low cell
175 concentrations. Cytometer performance was checked by loading the 1.0 μm diameter blue
176 fluorescent bead standard (FluoSpheres (350/440), lot-no.: F8815, Thermo Fisher Scientific,
177 USA) as the technical calibration before each measurement sequence to ensure the instrument
178 accuracy. Each measurement was conducted in replicates.

179 **2.4 Theory**

180 ***Bacterial collision efficiency in percolation columns*** Although the clean-bed filtration theory
181 refers to an ideal system (i.e., does not encompass heterogeneities in surface charge³³, surface
182 roughness³⁴, hydration effects, or hydrophobic interaction³⁵), it has been found to be a good
183 predictor of bacterial deposition in solutions of high ionic strength ($I = 0.1\text{--}0.3 \text{ M}$)^{36,37}.
184 For the calculations, we assumed spheres of identical-sized sand particles (average diameter:
185 0.1 mm) in their closest packing and identical effective bacterial radius (1 μm) of the bacteria.
186 The bacterial collision efficiency α_t is used to quantify bacterial deposition and transport
187 according to the clean-bed filtration theory³⁸. It can be quantified according to the unit collector
188 efficiency η_t and the transport of particles from bulk solution to the collector surface η_{trans} .
189 The η_{trans} can be quantified by the contributions of convection, diffusion, van der Waals
190 attraction, and sedimentation²⁴, according to eqs. S1-S3.
191 The η_t can be quantified by fitting the data of influent and effluent cell densities obtained from
192 column experiments, according to eq. 1.³⁹

193
$$C = C_0 \exp\left(\frac{3(1-\varepsilon)}{4a_s} \eta_t L\right) \quad (1)$$

194 where C is the effluent cell density, C_0 is the influent cell density, ε is the porosity of the packed
195 porous media, a_s is the radius of the sand particles, L is the length of the column.

196 The collision efficiency α_t is calculated by η_t and η_{trans} , according to eq. 2.³⁵

197
$$\alpha_t = \frac{\eta_t}{\eta_{trans}} \quad (2)$$

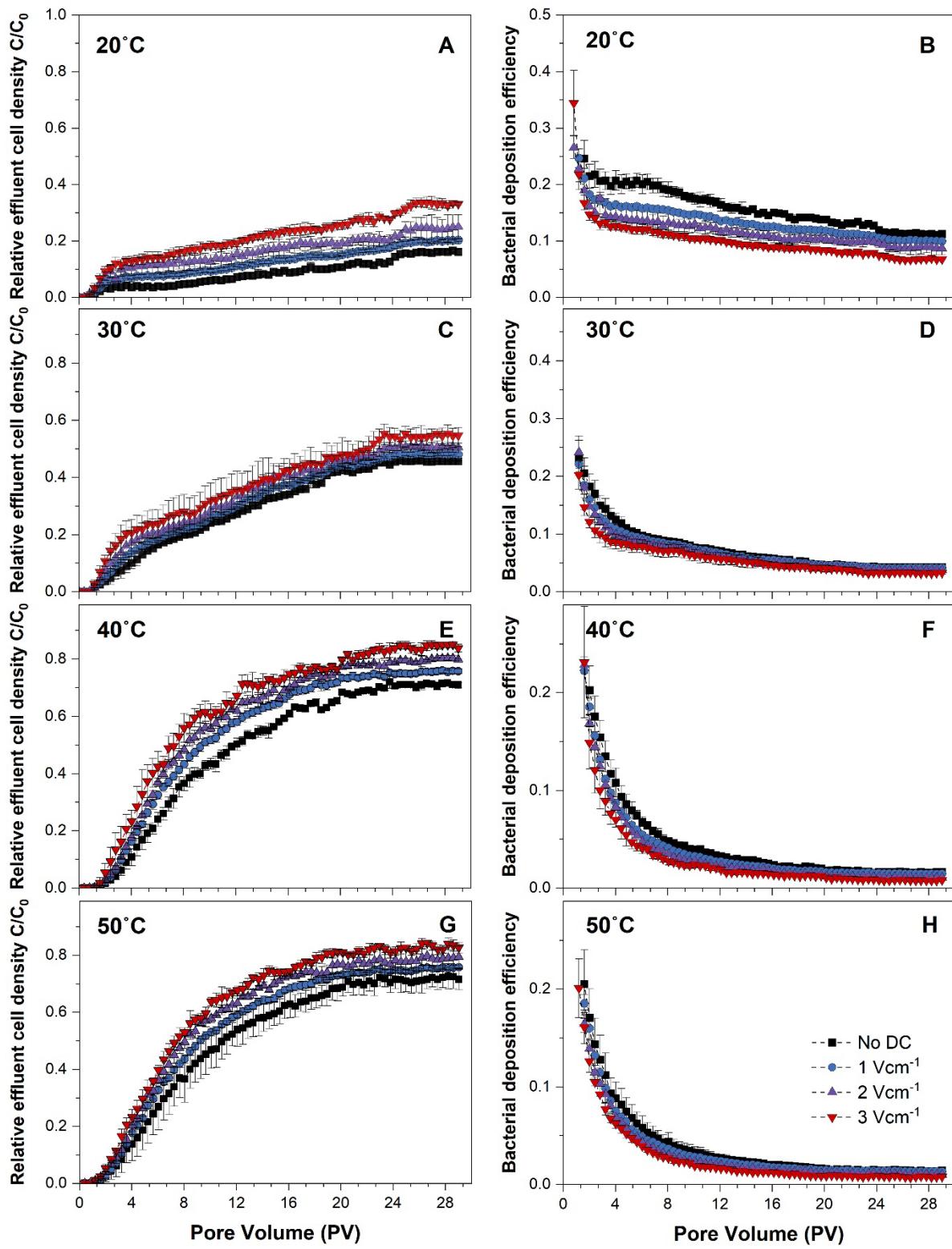
198 ***QCMD Analyses of Bacterial Transport*** *QCMD* is an acoustic method that reflects the amount
199 and viscoelastic properties of an adhering mass by changes in the resonance frequency (Δf) and
200 energy dissipation (ΔD) of an oscillating crystal-coated sensor surface.⁴⁰⁻⁴² The shift in
201 resonance frequency, Δf , can be described by the Sauerbrey equation (eq. S6).⁴³ The $\Delta f/\Delta D$
202 ratio indicates changes in energy dissipation per coupled unit mass and indicates the rigidity
203 and attachment strength of bacterial adhesion.⁴⁴⁻⁴⁶ Typically, bacterial adhesion leads to a
204 reduction in frequency and an increment in dissipation. Thus, a less negative $\Delta f/\Delta D$ value
205 indicates the buildup of a dissipative soft and fluid film on the *QCMD* sensor. In contrast, more
206 negative values of $\Delta f/\Delta D$ indicate a more rigid layer.

207 ***Quantification of Electrokinetic Forces*** Electroosmosis and electrophoresis are the key
208 electrokinetics driving bacterial transport through porous media, which are related to the zeta
209 potential of porous media and bacteria, respectively. Both of their velocities are related to the
210 liquid viscosity and dielectric constant, the detailed calculations are described in Section S3 in
211 the Supporting Information.

212 **3. Results and Discussion**

213 **3.1 Thermal Enhanced Bacterial Transport through Porous Media**

214 Bacterial transport was quantified by the breakthrough curves depicted by the normalized
215 effluent cell density (C/C_0) over time represented by pore volume (PV) under temperatures T


216 = 20-50°C and electric field strengths $E = 0\text{-}3 \text{ V cm}^{-1}$, resp. (Fig. 1). The external DC field
217 induced current was 15 mA under 1 V cm^{-1} , producing 0.1°C temperature increment of water
218 (cf. Section S6 in supporting information), which is hence neglectable in the following
219 discussion. C/C_0 exhibited two stages over time, at the initial stage (the first 2 PV) C/C_0
220 increased sharply, while in the final stage (last 2 PV), C/C_0 was quasi-steady. Due to the
221 significance of final stage in practical bacterial transport, the average C/C_0 at the final stage
222 was adopted to compare the effects.

223 At higher temperatures, an increase in C/C_0 was observed, indicating reduced bacterial
224 deposition (Figs. 1A, C, and E). With the absence of electrokinetics, heating from 20 to 50°C
225 increased C/C_0 from 0.16 to 0.72 (ca. 348%). With the presence of 1, 2, and 3 V cm^{-1}
226 electrokinetics, heating increased C/C_0 by 275%, 222%, and 150%, resp. In summary, thermal
227 effects enhanced electrokinetic bacterial transport by ≥ 1.5 folds, and the enhancement
228 decreased with increasing DC field strength.

229 At 20°C, electrokinetics increased C/C_0 by 0.15 (0.16 to 0.33, at 3 h) (Fig. 1A), and by 0.08,
230 0.13, 0.13, at 30-50°C (Figs. 1B-D), resp. This indicated reduced bacterial retention and
231 enhanced transport. Electrokinetic enhancement of *P. LP6a* transport was observed across all
232 temperatures, this enhancement increased with rising DC field strengths and decreased with
233 rising temperatures.

234 It is notable that temperature increment from 20-30°C, and 30-40°C, heating significantly
235 enhanced bacterial transport, C/C_0 increased from 0.16 to 0.46, and from 0.46 to 0.71, resp. at
236 (No DC). While from 40-50°C, C/C_0 was barely increased (0.71-0.72). That is, thermal
237 enhancement has achieved 54.5% efficiency at 30°C, and the highest efficiency at 40°C.
238 Meanwhile, flow cytometry viability experiments showed that at 50°C, 53.79% of bacterial
239 cells were PI stained, compared to 4.35-12.64% at 20-40°C (Fig. S2). The bacterial viability

240 has been significantly reduced from 40 to 50°C. In the context of long-term field application,
241 the temperature range between the soil environment and 30°C is conducive to the survival and
242 activity of bacterial cells and thus holds more practical significance. Furthermore, the trade-off
243 between the target transport rate and heating consumption within this specific temperature
244 range demands further in-depth investigation.

245

246 **Figure 1.** The relative effluent cell density (A, C, E & G) and collision efficiency (B, D, F & H)
247 of *P. LP6a* at $T=20$ (A&B), 30 (C&D), 40 (E&F), and 50°C (G&H), under electric field
248 strength $E = 0$ (black), 1 (blue), 2 (purple), and 3 V cm^{-1} (red), resp.

249 Based on the breakthrough curves, bacterial collision efficiency in porous media was evaluated
250 using eqs. 1-2 (Figs. 1B, D, F&H). Deposition efficiency at the final stage (α_t) was quantified
251 from the average of the collision efficiency across 10 data points at the plateau (Table 1, Figs.
252 1&S3).

253 With temperature increment, both α_t and η_t decreased, while η_{trans} increased, indicating that
254 factor i) η_t was the driving factor in the collision efficiency variations under thermal effects.
255 With heating from 20-50°C, η_{trans} increased from 1.9% to 2.7%. η_t and bacterial coverage on
256 the sand surface decreased with temperature and DC field strength increment (Fig. S4).
257 Increasing DC fields from 0-2 V cm⁻¹ decreased α_t from 5.4 to 3.3 at 20°C, while thermal effects
258 of 20-40°C decreased α_t from 5.4 to 1.0. Electrokinetics and heating lead to collision efficiency
259 reduction of 38.9% and 81.5%, resp. That is, a temperature increment of 20°C leads to 42.6%
260 higher enhancement than the electrokinetic (Fig. S4, Table 1).

261 **Table 1.** Thermal electrokinetic effects on liquid viscosity, electroosmotic flow velocity (v_{EOF}), electrophoretic velocity (v_{EP}), hydraulic flow velocity
262 (v_{HF}), the net velocity (v_{net}) at the secondary minimum distance of DLVO, and the derived bacterial collision efficiency (α_t).

X (V cm ⁻¹)	T (°C)	viscosity (mPa s)	dielectric constant	v_{EOF} (10 ⁻⁷ m s ⁻¹)	v_{EP} (10 ⁻⁷ m s ⁻¹)	F_{EOF} (pN)	F_{EP} (pN)	F_{DLVO} (pN)	F_{HF} (pN)	F_{net} (pN)	α_t ($\times 10^{-2}$)
0	20	1	80.4	0.0	0.0	0.0	0.0	1.2	0.2	1.4	5.4
	30	0.8	76.8	0.0	0.0	0.0	0.0	1.3	0.2	1.5	2.3
	40	0.7	73.3	0.0	0.0	0.0	0.0	1.4	0.2	1.6	1.0
	50	0.6	69.9	0.0	0.0	0.0	0.0	1.5	0.2	2.7	1.0
1	20	1	80.4	5.1	-27.4	1.4	-4.6	1.2	0.2	0.3	4.8
	30	0.8	76.8	6.3	-34.3	1.8	-5.7	1.3	0.2	0.6	2.2
	40	0.7	73.3	7.8	-42.2	2.2	-7.1	1.4	0.2	0.7	0.9
	50	0.6	69.9	9.2	-49.9	2.6	-8.3	1.5	0.2	1.0	0.8
2	20	1	80.4	10.1	-54.9	2.9	-9.2	1.2	0.2	-4.9	4.2
	30	0.8	76.8	12.7	-68.6	3.6	-11.5	1.3	0.2	-6.3	2.0
	40	0.7	73.3	15.6	-84.4	4.4	-14.1	1.4	0.2	-8.1	0.7
	50	0.6	69.9	18.4	-99.8	5.2	-16.7	1.5	0.2	-9.8	0.7
3	20	1	80.4	15.2	-82.3	4.3	-13.8	1.2	0.2	-8.0	3.3
	30	0.8	76.8	19.0	-102.9	5.4	-17.2	1.3	0.2	-10.3	1.8
	40	0.7	73.3	23.4	-126.6	6.6	-21.2	1.4	0.2	-12.9	0.5
	50	0.6	69.9	27.6	-149.7	7.8	-25.0	1.5	0.2	-15.5	0.5

263

264 **3.2 Correlation of thermal-dependent net force and collision efficiency**

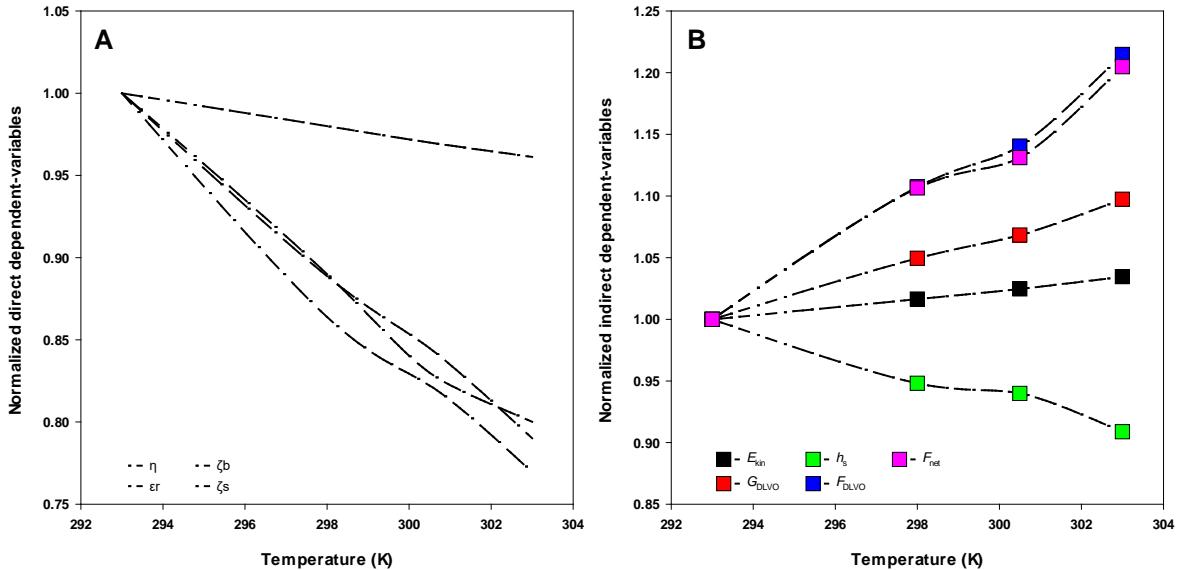
265 ***Thermal effects on the physicochemical parameters***

266 According to eqs. S7-S10, parameters including i) liquid viscosity η , ii) dielectric constant ϵ_r ,
267 iii) the zeta potentials of bacteria (ζ_b) and solid surface (ζ_s) are key to the DLVO attraction and
268 electrokinetics²³. As an important environmental parameter, heating from 20°C to 50°C
269 decreases the water viscosity η from 1.00 to 0.55 mPa S, and water dielectric constant ϵ_r from
270 80.36 to 69.94.^{20,21} The zeta potentials become more negative in higher temperatures following
271 the Smoluchowski equation²².

272 ***Thermal-effect modification on the net force***

273 To further explore the driving mechanisms behind the observed thermal effects on
274 electrokinetic transport, we focused on the quantitative relationship between the net force on
275 the bacterium and its effects on α_t . The net force acting on bacterial cells was quantified by
276 integrating the matrix attraction and electrokinetic forces. The matrix attraction was quantified
277 adopting Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The DLVO energy (G_{DLVO})
278 between the bacterium and sand surface at different temperatures was depicted with van der
279 Waals attractive energy and electrostatic repulsive energy, based on measured zeta potential
280 and contact angle properties (Table S1). The attractive energy at the secondary minimal
281 distance (Fig. S5) represents the maximal attractive energy of reversible adhesion. Therefore,
282 the DLVO force (F_{DLVO}) and its interaction with electrokinetic forces were all calculated at the
283 secondary minimal distance.

284 The net force acting on bacterium (F_{net}) was quantified according to


285
$$F_{net}(T) = F_{DLVO}(T) + F_{EOF}(T) + F_{EP}(T) + F_{HF}(T) \quad (3)$$

286 The detailed equation was deduced to eq. S20, by integrating the DLVO force F_{DLVO} ,
287 electroosmotic shear force F_{EOF} , electrophoretic force F_{EP} , and hydraulic shear force F_{HF} ,
288 according to eqs. S12-S19.

289 Electroosmotic flow shear force (F_{EOF}) and electrophoretic force (F_{EP}) were quantified
290 according to eqs. S18-S19. The forces are enhanced by the liquid viscosity and dielectric
291 constant decrement (Fig. 2B, Table 1). At 2 V cm^{-1} , heating increased ν_{EOF} from 19.9 to
292 $36.2 \times 10^{-7} \text{ m s}^{-1}$, and increased ν_{EP} from -33.3 to $-60.6 \times 10^{-7} \text{ m s}^{-1}$, with the ‘-’ sign indicating
293 opposite directions of ν_{EOF} and ν_{EP} . Heating increased DLVO attractive energy from $5.85 \times 10^{-21} \text{ J}$ to $6.4 \times 10^{-21} \text{ J}$ (Fig. S5), increased F_{EOF} from 0.8 to $1.6 \text{ pN per V cm}^{-1}$, and F_{EP} from -2.17 to $-6.0 \text{ pN per V cm}^{-1}$ (Table 1).

296 The quantified variables were normalized by the data at the temperature of 20°C to describe
297 their variations. Increasing temperature reduces η linearly to 96% from 20 to 30°C , while
298 reducing ε_r to 80%. Zeta potentials of bacterium and sand are more negative (i.e., more charged)
299 of up to 79% and 76% (Fig. 2A), which may increase the velocities and forces of electroosmotic
300 flow and electrophoresis.

301 The variations of the physical environment (i.e, ‘direct variables’) hence may vary the profiles
302 of DLVO (Fig. S5), and the ‘indirect variables’ G_{DLVO} , h_s , F_{DLVO} , and F_{net} , further controlling
303 bacterial collision efficiency⁴⁸. F_{net} reflects the net force acting on a bacterium located at the
304 secondary minimal distance, which determines the bacterial collision efficiency, it has a
305 significant variation (up to 20%) and a similar trend as the F_{DLVO} . Meanwhile, heating elevates
306 the kinetic energy of bacterial cells E_{kin} following the Maxwell-Boltzmann distribution⁴⁹⁻⁵¹.
307 The mean value of E_{kin} varied up to 2% (Fig. 2B). From 20 - 50°C , the mean E_{kin} increased from
308 $6.07 \times 10^{-21} \text{ J}$ to $6.69 \times 10^{-21} \text{ J}$. Therefore, ‘direct variables’ ζ_b , ζ_s , and η , significantly contribute
309 to the variation of ‘indirect variables’ F_{DLVO} and F_{net} to drive the bacterial collision efficiency.

310

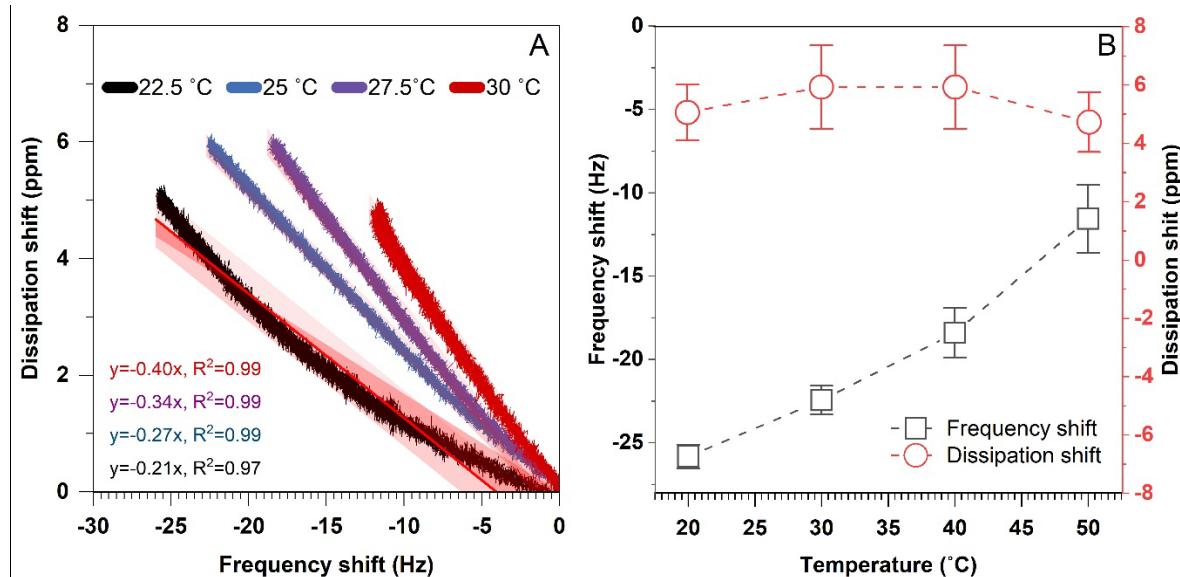
311 **Figure 2.** Temperature effects on the direct (A) and indirect (B) dependent variables
312 determining bacterial collision efficiency.

313 The variations of these direct and indirect dependent variables showed that the thermal effects
314 on electrokinetic bacterial transport are more likely determined by the variations in the DLVO
315 interaction energy than that of kinetic energy.

316 **Net force correlation to collision efficiency**

317 Following the previously established framework²⁸ that interlinked deposition efficiencies
318 (which has included the effects on η_t and η_{trans}) with the net forces (F_{net}) combining the
319 hydraulic flow, electroosmosis, and electrophoresis, we here compared the thermal effects on
320 the F_{net} - α_t correlations at the final stage (Fig. S6).

321 Under temperatures 20-40°C, the F_{net} at $E = 0, 1, 2 \text{ V cm}^{-1}$, and 3 V cm^{-1} was found to be
322 linearly correlated to the collision efficiency α_t with all $R^2 \geq 0.97$ (Fig. S6), which confirmed
323 the F_{net} - α_t framework in our previous work²⁸. While at 50°C, the $R^2 = 0.87$, indicating weaker
324 linear correlation. This may originate from the 53.79% high cell death at 50°C. The slopes stand
325 for the rate of F_{net} effects on the collision efficiency (collision efficiency variation per unit net
326 force in pN), it decreased from -0.20 to -0.03 with temperature increment from 20-40°C (Fig.


327 S6), indicating that temperature has a significant effect on electrokinetic regulated bacterial
328 deposition.

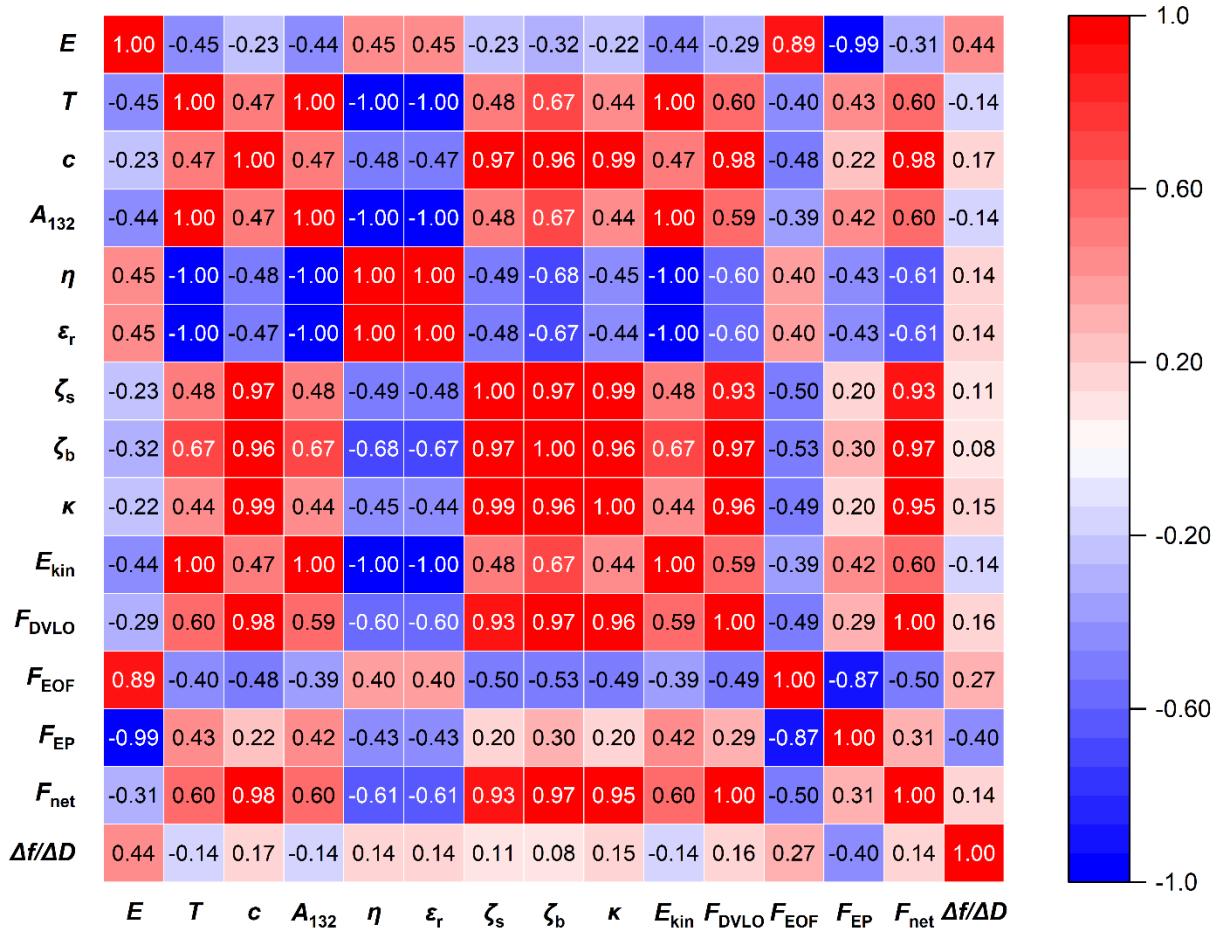
329 **3.3 QCMD Validation of Thermal Effect Mechanisms**

330 *QCMD* experiments recorded frequency shifts and dissipation shifts at overtones 1, 3, 5, 7, 9,
331 11, and 13 throughout the 120-min bacterial deposition at 20-30°C. Overtones are the higher-
332 order resonant frequencies that are integer multiples of the fundamental resonant frequency of
333 the quartz crystal. Frequency shift at overtones reveals mass loading changes on the crystal
334 surface and dissipation shift gives insights into energy-dissipating mechanisms within the
335 adsorbed layer, helping characterize its mechanical properties. The signals showed similar
336 trends in the overtones. Overtone 1 was poorly stable and excessively sensitive, all the other
337 overtones showed relatively stable and similar trends (Fig. S7). Subsequently, we focus our
338 analysis on overtone 5 as the representative signal, using the reference of frequency and
339 dissipation baselines of cell-free PB to calculate the frequency and dissipation shifts.

340 Figure 2A illustrates Δf_5 and ΔD_5 shifts across temperatures of 20-30°C and electric field
341 strengths from 0-2 V cm⁻¹ of our previous research³². Here, pumping bacteria over the sensor
342 surface resulted in a reduction in frequency and an increase in dissipation; Δf_5 and ΔD_5 varied
343 under different experimental conditions (Fig. 3). The shifts of Δf_5 and ΔD_5 , exhibited a linear
344 correlation achieving coefficients of determination $R^2 > 0.95$. Therefore, the $\Delta f_5/\Delta D_5$ ratio as
345 an indicator of adhesion rigidity was derived from the slope values (Fig. 3A). Fig. 3B
346 summarizes Δf_5 , ΔD_5 , and $\Delta f_5/\Delta D_5$ ratios at temperatures 20-30 °C. Thermal effects from 20 to
347 30°C increased Δf_5 from -27.8 Hz to -11.5 Hz while ΔD_5 increased from 2.4 ppm to 4.8 ppm
348 (Fig. 3B). These shifts led to a reduction in the $\Delta f_5/\Delta D_5$ from -11.6 to -2.4 (i.e., adhesion rigidity
349 reduced 79.3%). On the other hand, with the increment of electric field strengths from 0-2 V
350 cm⁻¹, Δf_5 , ΔD_5 , and $\Delta f_5/\Delta D_5$ ratios increased (Fig. S8). Δf_5 increased from -12.4 Hz to -3.14 Hz,
351 indicating a 74.7% reduction of bacterial deposition. ΔD_5 increased from 1.89 ppm to 2.34 ppm

352 indicating a 23.8% less rigid adhesion. The variations of Δf_5 and ΔD_5 resulted in an increment
 353 of $\Delta f_5/\Delta D_5$ from -6.56 to -1.34 MHz, that is, the adhesion rigidity was reduced by 79.6%.

354

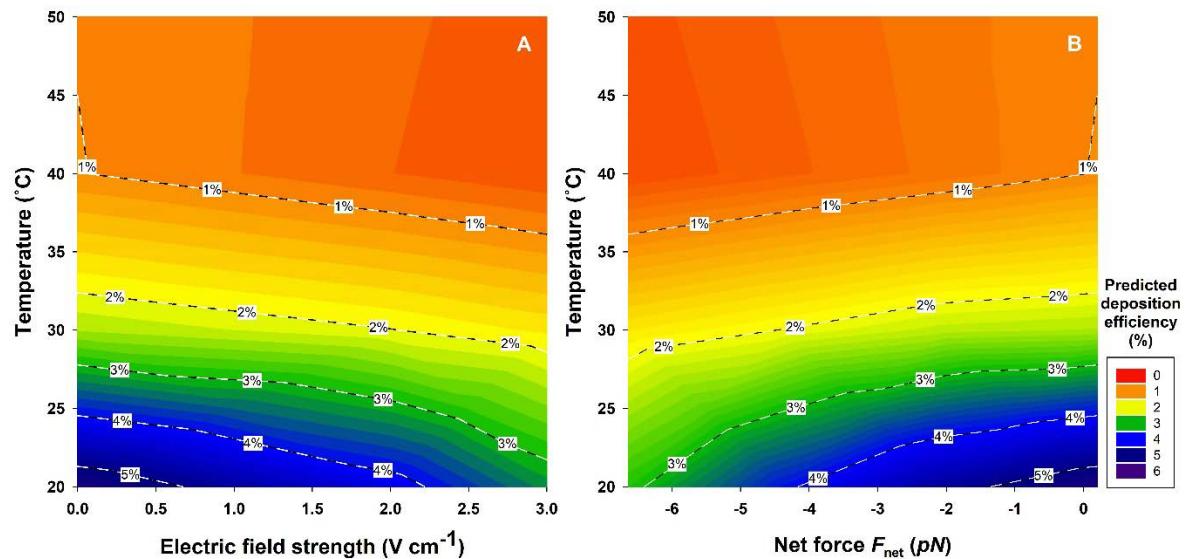

355 **Figure 3.** Thermal (A) and electrokinetic (B) effects on the frequency and dissipation shifts
 356 regarding bacterial deposition in the QCMD system, equations and R^2 present the fitting
 357 results under temperatures of 22.5 °C (black), 25 °C (blue), 27.5 °C (purple), and 30 °C (red).

358 3.4 Primary Contributors of Thermal Effects to the Net Force

359 Overlaying our previous research on the effects of electric field strength and electrolyte
 360 concentration on electrokinetic bacterial transport, the correlations were analyzed with a matrix
 361 heatmap (Fig. 4).

362 The effects of electric field strength and electrophoretic force (F_{EP}) with a relatively high
 363 correlation of 0.44 and 0.40, resp. This indicates that the contribution of per unit ($V \text{ cm}^{-1}$)
 364 electric field is rather higher than per unit temperature (°C), and the electrokinetic force plays
 365 a crucial role in bacterial transport. Electrolyte concentration has dominant effects on the zeta
 366 potentials (ζ_b and ζ_s) and double layer thickness κ^{-1} , with correlations > 0.96 , temperature has
 367 dominant effects on the dielectric constant ϵ_r , liquid viscosity η , cell kinetic energy E_{kin} , with
 368 correlations reach 1.00. This indicates that temperature determines bacterial adhesion rigidity
 369 ($\Delta f_5/\Delta D_5$) mainly via dielectric constant ϵ_r , liquid viscosity η . Temperature varied the primary

370 contributors dielectric constant ϵ_r and liquid viscosity η , driving the variations of electrokinetic
 371 forces F_{EOF} and F_{EP} , hence determining the adhesion rigidity and transport rate.



372
 373 **Figure 4.** Correlation between electric field strength (E), temperature (T), buffer concentration
 374 (c), intermediate physiochemical properties, and bacterial adhesion rigidity, red colors represent
 375 the extent of positive correlations, while blue colors represent the extent of negative correlations.

376 3.5 Prediction of Thermal Enhanced Electrokinetic Bacterial Transport

377 Column transport experiments and *QCMD* characterization revealed the mechanisms of the
 378 thermal enhancement of bacterial transport. In practical applications, the quick prediction of
 379 the bacterial transport rate is crucial for the engineering design. Based on previous theory
 380 analysis, two approaches interlinking DC field strength-temperature-transport enhancement
 381 (Fig. 5A), and net force-temperature-transport enhancement (Fig. 5B) were established for

382 prediction. The warm colors indicate lower collision efficiency, i.e., stronger enhancement of
 383 bacterial mobilization, while cold colors indicate higher collision efficiency and weaker
 384 enhancement of transport. For porous media with similar physical environment to the
 385 experimental system, such as sandy soil, a quick estimation of thermal electrokinetic transport
 386 may be achieved with the approach of Fig. 5A. Adapting these approaches in a practical
 387 physical environment, measuring the hydrophobicity and zeta potential properties allows the
 388 calculation of the net force and prediction of thermal electrokinetic transport in an ideal system.
 389 Based on the screened primary contributors of net force, the characterization of physical
 390 parameters dielectric constant ϵ_r and liquid viscosity η , and their variations according to thermal
 391 effects may allow for a quick estimation of bacterial transport.

392

393 **Figure 5.** Temperature-electric field strength (A) and temperature-net force (F_{net}) effects (B)
 394 on bacterial collision efficiency, the cold colors indicate higher collision efficiency, while
 395 warm colors indicate lower collision efficiency, with data labeled on the boundaries.

396 4. Environmental Implications

397 In this work, the thermal enhancement on electrokinetic bacterial transport has been
 398 investigated. The thermal-dependent net force driving mechanisms on electrokinetic bacterial
 399 transport have been illustrated. Thermal variations in physical environmental parameters liquid

400 viscosity, and dielectric constant were the primary contributors of net force shift. An approach
401 interlinking electric field-temperature-efficiency has been established to predict bacterial
402 transport. These findings have been verified by the adhesion behavior in the *QCMD* system at
403 the microscale.

404 Based on these principles, the thermal electrokinetic approach may be optimized to enhance
405 bacterial transport in the applications of natural and manmade ecosystems. Thermal
406 electrokinetic approaches enhance the transport of functional bacteria to targeted zones in
407 critical processes more efficiently, e.g., facilitating bacterial colonization, fertilization, etc.⁵²
408 Based on the screened primary parameters liquid viscosity, and dielectric constant, the net force
409 can be quickly quantified to predict the transport efficiency. In addition, adopting thermophilic
410 bacterial strains⁵³ in processes e.g., heating desorption soil remediation, allows deriving
411 additional benefits at temperatures up to 60°C. Knowledge of thermally enhanced electrokinetic
412 effects also allows for improving the management of electrokinetic bacterial dispersal in
413 subsurface porous media e.g. to manipulate microbial community structures and functions in
414 disturbed ecosystems.^{54,55}

415 Together with the previous findings on the thermal electrokinetic transport of chemicals^{56,57},
416 the approach may selectively improve specific functions of ecosystems. Besides delivering
417 functional bacterial strains to the target contaminated site, thermal electrokinetic transport also
418 facilitates their accessibility to nutrients facilitating colonization.^{58,59} In practice, by adjusting
419 the locations of electrodes and controlling the environmental physiochemical properties, the
420 functional strains may be designed to be located on specified colonizing sites. It should be
421 noted that in practical applications, environmental parameters and technical stability
422 significantly influence bacterial transport. For instance, the tolerance of the applied bio-
423 degrader to DC fields and heating, environmental parameters such as the soil composition

424 (humic acids, metal nanoparticles, ferric oxide, etc.)^{60,61}, technical fluctuations, etc. should be
425 investigated. In addition, a comprehensive analysis of the simultaneous transport of nutrients
426 and competing bacteria, which potentially affect the survival of bio-degraders, should be
427 investigated. With overall consideration of the calculated energy consumption of heating and
428 external DC fields (cf. Section S6), and the predicted thermal and electrokinetic effects, the
429 design of temperature adjusting may be optimized to achieve the transport target in practical
430 application. This approach provides new prospects for improving specific functions of
431 ecosystems.

432 **Supporting Information**

433 Theories of bacterial transport, matrix attraction and electrokinetics; Schematic of
434 electrokinetic percolation column reactor; Percentage of PI stained cells of flow cytometry;
435 Thermal electrokinetic effects on bacterial collision efficiency at the final stage; Thermal
436 electrokinetic effects on bacterial coverage, deposition rate, and blocking factor; Profiles of
437 matrix-bacterium interaction and electrokinetics; Frequency and dissipation variations of
438 *QCMD* system; Electrokinetic effects on QCMD bacterial deposition.

439 **Acknowledgments**

440 The authors would like to thank the financial support of the Natural Science Foundation of
441 China (Grant No. 42277011 & 42077126).

442 **References**

443 (1) Tao, X.; Yang, Z.; Feng, J.; Jian, S.; Yang, Y.; Bates, C. T.; Wang, G.; Guo, X.; Ning, D.;
444 Kemphher, M. L.; Liu, X. J. A.; Ouyang, Y.; Han, S.; Wu, L.; Zeng, Y.; Kuang, J.; Zhang, Y.; Zhou,
445 X.; Shi, Z.; Qin, W.; Wang, J.; Firestone, M. K.; Tiedje, J. M.; Zhou, J. Experimental Warming
446 Accelerates Positive Soil Priming in a Temperate Grassland Ecosystem. *Nat. Commun.* **2024**, *15* (1),
447 1178. <https://doi.org/10.1038/s41467-024-45277-0>.

448 (2) Stone, B. W.; Li, J.; Koch, B. J.; Blazewicz, S. J.; Dijkstra, P.; Hayer, M.; Hofmockel, K. S.;
449 Liu, X.-J. A.; Mau, R. L.; Morrissey, E. M.; Pett-Ridge, J.; Schwartz, E.; Hungate, B. A. Nutrients
450 Cause Consolidation of Soil Carbon Flux to Small Proportion of Bacterial Community. *Nat. Commun.*
451 **2021**, *12* (1), 3381. <https://doi.org/10.1038/s41467-021-23676-x>.

452 (3) Fierer, N. Embracing the Unknown: Disentangling the Complexities of the Soil Microbiome.
453 *Nat. Rev. Microbiol.* **2017**, *15* (10), 579–590. <https://doi.org/10.1038/nrmicro.2017.87>.

454 (4) Ruan, Z.; Chen, K.; Cao, W.; Meng, L.; Yang, B.; Xu, M.; Xing, Y.; Li, P.; Freilich, S.; Chen,
455 C.; Gao, Y.; Jiang, J.; Xu, X. Engineering Natural Microbiomes toward Enhanced Bioremediation by
456 Microbiome Modeling. *Nat. Commun.* **2024**, *15* (1), 4694. <https://doi.org/10.1038/s41467-024-49098-z>.

458 (5) Cohen, Y.; Pasternak, Z.; Müller, S.; Hübschmann, T.; Schattenberg, F.; Sivakala, K. K.;
459 Abed-Rabbo, A.; Chatzinotas, A.; Jurkevitch, E. Community and Single Cell Analyses Reveal
460 Complex Predatory Interactions between Bacteria in High Diversity Systems. *Nat. Commun.* **2021**, *12*
461 (1), 5481. <https://doi.org/10.1038/s41467-021-25824-9>.

462 (6) Scheidweiler, D.; Bordoloi, A. D.; Jiao, W.; Sentchilo, V.; Bollani, M.; Chhun, A.; Engel, P.;
463 De Anna, P. Spatial Structure, Chemotaxis and Quorum Sensing Shape Bacterial Biomass
464 Accumulation in Complex Porous Media. *Nat. Commun.* **2024**, *15* (1), 191.
465 <https://doi.org/10.1038/s41467-023-44267-y>.

466 (7) Banerjee, S.; Van Der Heijden, M. G. A. Soil Microbiomes and One Health. *Nat. Rev.*
467 *Microbiol.* **2023**, *21* (1), 6–20. <https://doi.org/10.1038/s41579-022-00779-w>.

468 (8) Livingston, G.; Matias, M.; Calcagno, V.; Barbera, C.; Combe, M.; Leibold, M. A.; Mouquet,
469 N. Competition–Colonization Dynamics in Experimental Bacterial Metacommunities. *Nat. Commun.*
470 **2012**, *3* (1), 1234. <https://doi.org/10.1038/ncomms2239>.

471 (9) Wu, L.; Wang, X.-W.; Tao, Z.; Wang, T.; Zuo, W.; Zeng, Y.; Liu, Y.-Y.; Dai, L. Data-Driven
472 Prediction of Colonization Outcomes for Complex Microbial Communities. *Nat. Commun.* **2024**, *15*
473 (1), 2406. <https://doi.org/10.1038/s41467-024-46766-y>.

474 (10) Zhu, Y.-G.; Gillings, M.; Simonet, P.; Stekel, D.; Banwart, S.; Penuelas, J. Microbial Mass
475 Movements. *Science* **2017**, *357* (6356), 1099–1100. <https://doi.org/10.1126/science.aoa3007>.

476 (11) Douterelo, I.; Sharpe, R. L.; Boxall, J. B. Influence of Hydraulic Regimes on Bacterial
477 Community Structure and Composition in an Experimental Drinking Water Distribution System.
478 *Water Res.* **2013**, *47* (2), 503–516. <https://doi.org/10.1016/j.watres.2012.09.053>.

479 (12) Rusconi, R.; Guasto, J. S.; Stocker, R. Bacterial Transport Suppressed by Fluid Shear. *Nat.*
480 *Phys.* **2014**, *10* (3), 212–217. <https://doi.org/10.1038/nphys2883>.

481 (13) Kunti, G.; Agarwal, T.; Bhattacharya, A.; Maiti, T. K.; Chakraborty, S. On-Chip
482 Concentration and Patterning of Biological Cells Using Interplay of Electrical and Thermal Fields.
483 *Anal. Chem.* **2020**, *92* (1), 838–844. <https://doi.org/10.1021/acs.analchem.9b03364>.

484 (14) Wick, L. Y.; Remer, R.; Würz, B.; Reichenbach, J.; Braun, S.; Schäfer, F.; Harms, H. Effect
485 of Fungal Hyphae on the Access of Bacteria to Phenanthrene in Soil. *Environ. Sci. Technol.* **2007**, *41*
486 (2), 500–505. <https://doi.org/10.1021/es061407s>.

487 (15) Shi, L.; Müller, S.; Harms, H.; Wick, L. Y. Factors Influencing the Electrokinetic Dispersion
488 of PAH-Degrading Bacteria in a Laboratory Model Aquifer. *Appl. Microbiol. Biotechnol.* **2008**, *80*
489 (3), 507–515. <https://doi.org/10.1007/s00253-008-1577-0>.

490 (16) Semple, Kirk. T.; Doick, K. J.; Jones, K. C.; Burauel, P.; Craven, A.; Harms, H. Defining
491 Bioavailability and Bioaccessibility of Contaminated Soil and Sediment Is Complicated. *Environ. Sci.*
492 *Technol.* **2004**, *38* (12), 228A-231A. <https://doi.org/10.1021/es040548w>.

493 (17) He, J.; Castilla-Alcantara, J. C.; Ortega-Calvo, J. J.; Harms, H.; Wick, L. Y. DC Electric
494 Fields Promote Biodegradation of Waterborne Naphthalene in Biofilter Systems. *Environ. Sci.*
495 *Technol.* **2024**, *acs.est.4c02924*. <https://doi.org/10.1021/acs.est.4c02924>.

496 (18) Shan, Y.; Harms, H.; Wick, L. Y. Electric Field Effects on Bacterial Deposition and Transport
497 in Porous Media. *Environ. Sci. Technol.* **2018**, *52* (24), 14294–14301.
498 <https://doi.org/10.1021/acs.est.8b03648>.

499 (19) Qin, J.; Sun, X.; Liu, Y.; Berthold, T.; Harms, H.; Wick, L. Y. Electrokinetic Control of
500 Bacterial Deposition and Transport. *Environ. Sci. Technol.* **2015**, *49* (9), 5663–5671.
501 <https://doi.org/10.1021/es506245y>.

502 (20) Podolsky, R. D. Temperature and Water Viscosity: Physiological Versus Mechanical Effects
503 on Suspension Feeding. *Science* **1994**, *265* (5168), 100–103.
504 <https://doi.org/10.1126/science.265.5168.100>.

505 (21) Malmberg, C.; Maryott, A. Dielectric Constant of Water from 00 to 1000 C. *J. Res. Natl. Bur.*
506 *Stand.* **1956**, *56* (1), 1–8.

507 (22) Constantin, P.; Kevrekidis, I.; S. Titi, E. Remarks on a Smoluchowski Equation. *Discrete*
508 *Contin. Dyn. Syst.* **2004**, *11* (1), 101–112. <https://doi.org/10.3934/dcds.2004.11.101>.

509 (23) *Particle Deposition and Aggregation: Measurement, Modelling and Simulation*; Elimelech,
510 M., Ed.; Colloid and surface engineering series; Butterworth-Heinemann: Oxford, 1998.

511 (24) Martin, R. E.; Bouwer, E. J.; Hanna, L. M. Application of Clean-Bed Filtration Theory to
512 Bacterial Deposition in Porous Media. *Environ. Sci. Technol.* **1992**, *26* (5), 1053–1058.
513 <https://doi.org/10.1021/es00029a028>.

514 (25) Foght, J. M.; Westlake, D. W. Transposon and Spontaneous Deletion Mutants of Plasmid-
515 Borne Genes Encoding Polycyclic Aromatic Hydrocarbon Degradation by a Strain of *Pseudomonas*
516 *Fluorescens*. *Biodegradation* **1996**, *7* (4), 353–366.

517 (26) Ghanem, N.; Kiesel, B.; Kallies, R.; Harms, H.; Chatzinotas, A.; Wick, L. Y. Marine Phages
518 As Tracers: Effects of Size, Morphology, and Physico-Chemical Surface Properties on Transport in a
519 Porous Medium. *Environ. Sci. Technol.* **2016**, *50* (23), 12816–12824.
520 <https://doi.org/10.1021/acs.est.6b04236>.

521 (27) Achtenhagen, J.; Goebel, M.-O.; Miltner, A.; Woche, S. K.; Kästner, M. Bacterial Impact on
522 the Wetting Properties of Soil Minerals. *Biogeochemistry* **2015**, *122* (2–3), 269–280.
523 <https://doi.org/10.1007/s10533-014-0040-9>.

524 (28) Shan, Y.; Harms, H.; Wick, L. Y. Electric Field Effects on Bacterial Deposition and Transport
525 in Porous Media. *Environ. Sci. Technol.* **2018**, *52* (24), 14294–14301.
526 <https://doi.org/10.1021/acs.est.8b03648>.

527 (29) Feiler, A. A.; Sahlholm, A.; Sandberg, T.; Caldwell, K. D. Adsorption and Viscoelastic
528 Properties of Fractionated Mucin (BSM) and Bovine Serum Albumin (BSA) Studied with Quartz
529 Crystal Microbalance (QCM-D). *J. Colloid Interface Sci.* **2007**, *315* (2), 475–481.
530 <https://doi.org/10.1016/j.jcis.2007.07.029>.

531 (30) Olsson, A. L. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. Acoustic Sensing of the
532 Bacterium–Substratum Interface Using QCM-D and the Influence of Extracellular Polymeric
533 Substances. *J. Colloid Interface Sci.* **2011**, *357* (1), 135–138.
534 <https://doi.org/10.1016/j.jcis.2011.01.035>.

535 (31) Olsson, A. L. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. Acoustic Sensing of the
536 Bacterium–Substratum Interface Using QCM-D and the Influence of Extracellular Polymeric
537 Substances. *J. Colloid Interface Sci.* **2011**, *357* (1), 135–138.
538 <https://doi.org/10.1016/j.jcis.2011.01.035>.

539 (32) Shan, Y.; Liu, L.; Liu, Y.; Harms, H.; Wick, L. Y. Effects of Electrokinetic Phenomena on
540 Bacterial Deposition Monitored by Quartz Crystal Microbalance with Dissipation Monitoring.
541 *Environ. Sci. Technol.* **2020**, *54* (21), 14036–14045. <https://doi.org/10.1021/acs.est.0c04347>.

542 (33) Elimelech, M.; Chen, J. Y.; Kuznar, Z. A. Particle Deposition onto Solid Surfaces with
543 Micropatterned Charge Heterogeneity: The “Hydrodynamic Bump” Effect. *Langmuir* **2003**, *19* (17),
544 6594–6597. <https://doi.org/10.1021/la034516i>.

545 (34) Bhattacharjee, S.; Ko, C.-H.; Elimelech, M. DLVO Interaction between Rough Surfaces.
546 *Langmuir* **1998**, *14* (12), 3365–3375. <https://doi.org/10.1021/la971360b>.

547 (35) Elimelech, M. *Particle Deposition and Aggregation: Measurement, Modelling, and
548 Simulation*; Colloid and surface engineering series; Butterworth-Heinemann: Woburn, 1998.

549 (36) Redman, J. A.; Walker, S. L.; Elimelech, M. Bacterial Adhesion and Transport in Porous
550 Media: Role of the Secondary Energy Minimum. *Environ. Sci. Technol.* **2004**, *38* (6), 1777–1785.
551 <https://doi.org/10.1021/es034887l>.

552 (37) Simoni, S. F.; Bosma, T. N. P.; Harms, H.; Zehnder, A. J. B. Bivalent Cations Increase Both
553 the Subpopulation of Adhering Bacteria and Their Adhesion Efficiency in Sand Columns. *Environ.
554 Sci. Technol.* **2000**, *34* (6), 1011–1017. <https://doi.org/10.1021/es990476m>.

555 (38) Velasco-Casal, P.; Wick, L. Y.; Ortega-Calvo, J.-J. Chemoeffectors Decrease the Deposition
556 of Chemotactic Bacteria during Transport in Porous Media. *Environ. Sci. Technol.* **2008**, *42* (4),
557 1131–1137. <https://doi.org/10.1021/es071707p>.

558 (39) Ryan, J. N.; Elimelech, M. Colloid Mobilization and Transport in Groundwater. *Colloids
559 Surf. Physicochem. Eng. Asp.* **1996**, *107*, 1–56. [https://doi.org/10.1016/0927-7757\(95\)03384-X](https://doi.org/10.1016/0927-7757(95)03384-X).

560 (40) Ward, M. D.; Buttry, D. A. In Situ Interfacial Mass Detection with Piezoelectric Transducers.
561 *Science* **1990**, *249* (4972), 1000–1007.

562 (41) Reviakine, I.; Johannsmann, D.; Richter, R. P. Hearing What You Cannot See and
563 Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces.
564 *Anal. Chem.* **2011**, *83* (23), 8838–8848. <https://doi.org/10.1021/ac201778h>.

565 (42) Camesano, T. A.; Liu, Y.; Datta, M. Measuring Bacterial Adhesion at Environmental
566 Interfaces with Single-Cell and Single-Molecule Techniques. *Adv. Water Resour.* **2007**, *30* (6–7),
567 1470–1491. <https://doi.org/10.1016/j.advwatres.2006.05.023>.

568 (43) Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur
569 Mikrowägung. *Z. Für Phys.* **1959**, *155* (2), 206–222. <https://doi.org/10.1007/BF01337937>.

570 (44) Gutman, J.; Walker, S. L.; Freger, V.; Herzberg, M. Bacterial Attachment and Viscoelasticity:
571 Physicochemical and Motility Effects Analyzed Using Quartz Crystal Microbalance with Dissipation
572 (QCM-D). *Environ. Sci. Technol.* **2013**, *47* (1), 398–404. <https://doi.org/10.1021/es303394w>.

573 (45) Kao, W.-L.; Chang, H.-Y.; Lin, K.-Y.; Lee, Y.-W.; Shyue, J.-J. Effect of Surface Potential on
574 the Adhesion Behavior of NIH3T3 Cells Revealed by Quartz Crystal Microbalance with Dissipation
575 Monitoring (QCM-D). *J. Phys. Chem. C* **2017**, *121* (1), 533–541.
576 <https://doi.org/10.1021/acs.jpcc.6b11217>.

577 (46) Marcus, I. M.; Herzberg, M.; Walker, S. L.; Freger, V. *Pseudomonas Aeruginosa* Attachment
578 on QCM-D Sensors: The Role of Cell and Surface Hydrophobicities. *Langmuir* **2012**, *28* (15), 6396–
579 6402. <https://doi.org/10.1021/la300333c>.

580 (47) Rijnaarts, H. H. M.; Norde, W.; Bouwer, E. J.; Lyklema, J.; Zehnder, A. J. B. Bacterial
581 Deposition in Porous Media Related to the Clean Bed Collision Efficiency and to Substratum
582 Blocking by Attached Cells. *Environ. Sci. Technol.* **1996**, *30* (10), 2869–2876.
583 <https://doi.org/10.1021/es960597b>.

584 (48) Shan, Y.; Harms, H.; Wick, L. Y. Electric Field Effects on Bacterial Deposition and Transport
585 in Porous Media. *Environ. Sci. Technol.* **2018**, *52* (24), 14294–14301.
586 <https://doi.org/10.1021/acs.est.8b03648>.

587 (49) Mo, J.; Raizen, M. G. Highly Resolved Brownian Motion in Space and in Time. *Annu. Rev.*
588 *Fluid Mech.* **2019**, *51* (1), 403–428. <https://doi.org/10.1146/annurev-fluid-010518-040527>.

589 (50) Li, G.; Tam, L.-K.; Tang, J. X. Amplified Effect of Brownian Motion in Bacterial Near-
590 Surface Swimming. *Proc. Natl. Acad. Sci.* **2008**, *105* (47), 18355–18359.
591 <https://doi.org/10.1073/pnas.0807305105>.

592 (51) Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van Horn, B.; Guan, Z.; Chen, G.;
593 Krishnan, R. S. General Strategies for Nanoparticle Dispersion. *Science* **2006**, *311* (5768), 1740–
594 1743. <https://doi.org/10.1126/science.1122225>.

595 (52) Gude, S.; Pinçé, E.; Taute, K. M.; Seinen, A.-B.; Shimizu, T. S.; Tans, S. J. Bacterial
596 Coexistence Driven by Motility and Spatial Competition. *Nature* **2020**, *578* (7796), 588–592.
597 <https://doi.org/10.1038/s41586-020-2033-2>.

598 (53) Parameswaran, P.; Bry, T.; Popat, S. C.; Lusk, B. G.; Rittmann, B. E.; Torres, C. I. Kinetic,
599 Electrochemical, and Microscopic Characterization of the Thermophilic, Anode-Respiring Bacterium

600 601 *Thermincola Ferriacetica*. *Environ. Sci. Technol.* **2013**, *47* (9), 4934–4940.
<https://doi.org/10.1021/es400321c>.

602 603 604 (54) König, S.; Worrlich, A.; Banitz, T.; Centler, F.; Harms, H.; Kästner, M.; Miltner, A.; Wick, L. Y.; Thullner, M.; Frank, K. Spatiotemporal Disturbance Characteristics Determine Functional Stability and Collapse Risk of Simulated Microbial Ecosystems. *Sci. Rep.* **2018**, *8* (1), 9488.

605 606 607 608 (55) König, S.; Worrlich, A.; Banitz, T.; Harms, H.; Kästner, M.; Miltner, A.; Wick, L. Y.; Frank, K.; Thullner, M.; Centler, F. Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem. *Front. Microbiol.* **2018**, *9*, 734.

609 610 611 (56) Qin, J.; Moustafa, A.; Harms, H.; El-Din, M. G.; Wick, L. Y. The Power of Power: Electrokinetic Control of PAH Interactions with Exfoliated Graphite. *J. Hazard. Mater.* **2015**, *288*, 25–33. <https://doi.org/10.1016/j.jhazmat.2015.02.008>.

612 613 614 (57) Shan, Y.; Hao, H.; Yin, Y.; Hu, N.; Zhan, M.; Ma, D.; Yin, Y.; Jiao, W.; Wick, L. Y. Effects of Temperature and DC Electric Fields on Perfluorooctanoic Acid Sorption Kinetics to Activated Carbon. *Environ. Sci. Technol.* **2024**, *58* (13), 5987–5995. <https://doi.org/10.1021/acs.est.3c10590>.

615 616 617 618 (58) Mao, X.; Wang, J.; Ciblak, A.; Cox, E. E.; Riis, C.; Terkelsen, M.; Gent, D. B.; Alshawabkeh, A. N. Electrokinetic-Enhanced Bioaugmentation for Remediation of Chlorinated Solvents Contaminated Clay. *J. Hazard. Mater.* **2012**, *213–214*, 311–317.
<https://doi.org/10.1016/j.jhazmat.2012.02.001>.

619 620 621 (59) Sprocati, R.; Gallo, A.; Sethi, R.; Rolle, M. Electrokinetic Delivery of Reactants: Pore Water Chemistry Controls Transport, Mixing, and Degradation. *Environ. Sci. Technol.* **2021**, *55* (1), 719–729. <https://doi.org/10.1021/acs.est.0c06054>.

622 623 624 (60) Yang, H.; Ge, Z.; Wu, D.; Tong, M.; Ni, J. Cotransport of Bacteria with Hematite in Porous Media: Effects of Ion Valence and Humic Acid. *Water Res.* **2016**, *88*, 586–594.
<https://doi.org/10.1016/j.watres.2015.10.052>.

625 626 627 (61) Abramson, A.; Brown, D. G. Influence of Solution Ionic Strength on the Collision Efficiency Distribution and Predicted Transport Distance of a *Sphingomonas* Sp. Flowing through Porous Media. *Water Res.* **2007**, *41* (19), 4435–4445. <https://doi.org/10.1016/j.watres.2007.06.005>.

628