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 17 

Dissolved organic matter (DOM) is one of the most complex chemical mixtures and plays 18 

a central role in biogeochemical cycles across our ecosphere. Despite its importance, 19 

DOM remains poorly understood at the molecular level. Over the last decades, significant 20 

efforts have been made to decipher the chemical composition of DOM by high-resolution 21 

mass spectrometry (HRMS) and liquid chromatography (LC) coupled with tandem mass 22 

spectrometry (MS/MS). Yet, the complexity and high degree of non-resolved isomers still 23 

hamper the full structural analysis of DOM. To overcome this challenge, we adapted a two-24 

dimensional (2D) LC approach consisting of two reversed-phase dimensions with 25 

orthogonal pH, followed by MS/MS data acquisition and molecular networking. The 2D 26 

chromatography approach mitigates the complexity of DOM, enhancing both the quality of 27 

MS/MS spectra and spectral annotation rates. Applying our approach to analyze coastal 28 

surface DOM from Southern California (USA), we annotated in total more than 600 29 

structures via MS/MS spectrum matching, which was up to 90% more than in iterative 1D 30 

LC-MS/MS analysis with the same total run time. Our data provide an unprecedented view 31 

into the molecular composition of coastal DOM, highlighting the potential of 2D LC-MS/MS 32 

approaches to decipher ultra-complex mixtures. 33 

 34 
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 37 

 38 

INTRODUCTION 39 

 40 

Dissolved organic matter (DOM) is one of the most complex natural chemical mixtures. Despite 41 

its ubiquity and major role in biogeochemical cycling, DOM remains poorly understood on the 42 
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structural level. Especially in marine systems, DOM is of fundamental importance, representing 43 

the largest and most actively cycling pool of reduced carbon1–3. For example, DOM affects nutrient 44 

retention4,5, trace metal complexation6, long-term carbon sequestration3, and aerosol formation7–45 
9. Missing molecular information, however, hampers our understanding of ecosystem functioning 46 

and potential feedback loops under climate change scenarios1,3,10. 47 

Many studies investigate the molecular composition of DOM by direct injection (DI) ultrahigh 48 

resolution mass spectrometry (HR-MS) via Fourier Transform Ion Cyclotron Resonance (FT-ICR) 49 

or Orbitrap mass spectrometers. While these techniques allow unprecedented resolution of 50 

isobaric molecular detail in DOM, complementary coupled techniques such as tandem mass 51 

spectrometry (MS/MS)11–13, liquid chromatography-mass spectrometry (LC-MS)14–17, and ion 52 

mobility mass spectrometry (IMS)18,19 all suggest a high degree of non-resolved isomeric 53 

complexity. Although prior attempts to resolve this complexity via LC-MS have shown promising 54 

results, they typically resolve the higher abundant components of DOM and thus are more suitable 55 

for freshly produced metabolites and xenobiotics and less for the diverse refractory components 56 

of DOM that are present at lower concentrations. Besides inherent problems of subsampling due 57 

to a limited number of possible MS/MS scans per LC-MS/MS run, a central bottleneck is the 58 

annotation of the resulting spectra20. Here, the use of molecular networking (MN) offers a 59 

promising avenue to resolve this complexity21. MN allows for the internal comparison of MS/MS 60 

spectra based on their spectral similarity as well as the matching of spectra against existing 61 

datasets and growing community-based reference libraries22–24. This way, large LC-MS-MS/MS 62 

datasets can be processed, and similar molecular features can be grouped to propagate chemical 63 

class level annotations20,21,25,26. By making use of the concept of annotation propagation, 64 

comprehensively annotated reference samples could lay the foundation for a detailed exploration 65 

of DOM data sets, as reference MS/MS spectra for most compounds present in DOM are still 66 

limited25,27. 67 

DOM analyzed by LC-MS/MS setups suffers from insufficient chromatographic resolution, leading 68 

to so-called DOM “mountains”, “humps”, or “unresolved complex mixture” of mass features15,28,29. 69 

Furthermore, the structural level annotation of DOM often remains less than 10% of detected 70 

features14,20,30. This reflects not only the insufficient coverage of MS/MS duty cycles and 71 

chemodiversity in public spectral libraries, but also the insufficient separation of molecular 72 

features, leading to the acquisition of low-quality “chimeric” tandem mass spectra13,14,31. To 73 

improve the chromatographic resolution of DOM, multidimensional separations via gas 74 

chromatography32,33 and liquid chromatography29,34 have been attempted, but did not yet lead to 75 

high-throughput routines. 76 

Among the available 2D-setups, separation by two reversed-phase LC steps at varying pH have 77 

shown to be most effective due to the high peak capacity, orthogonality, and high compatibility of 78 

mobile phases with evaporation and electrospray ionization35–37. Such 2D setups have been 79 

widely used in the proteomics field to improve the identification depth of peptides38. For example, 80 

Wang and coworkers report a 2.2 and 2.7-fold increase in protein and proteoform identifications, 81 

respectively, compared to a traditional 1D LC-MS approach36. Similarly, McIlvin & Saito reported 82 

an online 2D LC-MS setup that led to a 1.5 - 2-fold higher protein identification rate in marine 83 

meta-proteome samples, arguing that the diverse assemblages of organisms and ecological 84 

interactions led to a wide array of low-abundance protein features39. Combined high pH/ low pH 85 

separations for the MS/MS analysis of marine DOM represents a promising application in 86 
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environmental metabolomics, as this field faces similar problems as in (meta)proteomics samples, 87 

such as high sample complexity and large numbers of rare features. The orthogonality of pH over 88 

the two chromatographic dimensions might be especially suitable for DOM, as many compounds 89 

contain carboxylic acids or amines, which would drastically change their protonation and thereby 90 

their retention to the stationary phase with the different pH.  91 

 92 

 93 
Figure 1: Schematic workflow of 1D and 2D-LC-MS/MS analysis. (A) 1D LC-MS/MS setup. Filtered 94 

seawater is extracted using a PPL-cartridge and separated in a UHPLC with a C18 column and low pH 95 

mobile phase, before positive and negative electrospray ionization (ESI) and subsequent high-resolution 96 

tandem mass spectrometry. Exemplary extracted ion chromatogram (XIC) indicating insufficient separation 97 

of isobaric compounds (“DOM-Mountain”). (B) 2D-LC-MS/MS setup. After solid-phase-extraction, samples 98 

were separated using an HPLC with high pH mobile phase and a C18 column (1D) and fractionated into 99 

multiple fractions. Fractions were further separated in a UHPLC with a low pH mobile phase and a C18 100 

column before subsequent positive and negative ESI into a high-resolution tandem mass spectrometer. 101 

Exemplary XICs showing separation of isobaric compounds. 102 

 103 

Making use of this concept, we adapted a 2D separation with a first (1D) offline high pH 104 

fractionation followed by a second (2D) low pH separation in both negative and positive ESI 105 

ionization, followed by data-dependent acquisition (DDA) of MS/MS spectra. Applying and 106 

comparing these workflows to our standard 1D LC-MS/MS approaches of a coastal DOM sample, 107 

we show that the 2D approach effectively reduces sample complexity while enhancing tandem 108 

MS data quality and coverage, leading to a higher coverage and annotation rate of DOM.  109 

 110 

 111 

MATERIALS AND METHODS 112 

 113 

Sample collection and processing. As a DOM reference sample, we collected 200 L of surface 114 

seawater in a 20-liter bucket from the Ellen Browning Scripps Memorial Pier (32°52’001.500N 115 

117°15’026.900W) in La Jolla, Southern California, USA, on the 26th of February 2021 between 116 

11:00 and 19:00 PDT. Seawater was filtered through 0.7 µm GF/F filters. 25 L aliquots of the 117 
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sample were acidified with 26 mL of hydrochloric acid (37% p.a., trace metal grade, J.T.Baker, 118 

pH 2). 25 L of Seawater were then extracted via PPL cartridges with a bed mass of 5 g (Bond 119 

Elut, Agilent) according to previous studies40,41. Before use, the PPL cartridges were activated 120 

with 30 mL of MeOH and then rinsed with 30 mL H2O (pH 2, LCMS grade) and 30 mL MeOH 121 

(LCMS grade) followed by an equilibration with 30 mL H2O (pH 2, LCMS grade). For sample 122 

loading, acidified seawater was pulled through 8 SPE PPL cartridges in parallel. We used a 123 

vacuum SPE station (Agilent 20 port SPE station) to maintain a flow rate of approximately 20 124 

mL/min/cartridge for a total loading time of 20 h. A process blank was collected using 4 L of 125 

acidified H2O (pH2, LCMS grade) onto a 5 g cartridge using the same SPE protocol as above. 126 

After sample loading, the cartridges were desalted with 60 mL H20 (pH 2, LCMS grade) and dried 127 

under N2 gas. After drying, the cartridges were eluted with 20 mL MeOH per cartridge resulting in 128 

a total of 200 mL eluted sample to which an internal standard mix was added that contained 5 µg 129 

each of domoic acid, kanic acid, isoxaben, irgarol, imazapyr, heroin, methamphetamine and 130 

cocaine. The pooled sample was then aliquoted to 100 individual 2mL HPLC vials. All vials were 131 

dried down in a vacuum centrifuge overnight at room temperature, resulting in 1.8 mg of total 132 

organic matter per vial. 133 

 134 

Prefractionation by high pH reversed-phase liquid chromatography. Separation of samples 135 

in the 1st dimension was performed using a 1260 Infinity II Semi-preparative HPLC (Agilent, Santa 136 

Clara, USA) system with mobile phase A: H2O + 0.05% NH4OH and mobile phase B: ACN + 137 

0.05% NH4OH, with the mobile phases having a pH around 10. For the chromatographic 138 

separation, a reversed-phase C18 porous core column (Kinetex EVO C18, 150 x 4.6 mm, 2,6 µm 139 

particle size and 100 A pore size, Phenomenex, Torrance, USA) was used. The flow rate was 1 140 

ml/min, and the elution was performed with a linear gradient, from 0-8 min from 95-50 % A, then 141 

from 8-10 min 50-1 % A, holding 1 % A for 3 min to washout the column followed by a 3 min re-142 

equilibration phase at 95% A. A total of 250 µL was injected in 10 iterative HPLC runs (each 25 143 

µl) and fractionated using the integrated fraction collector. Fractions were collected in a time-144 

dependent manner into a 96-well deep well plate (Brand, Wertheim, Germany), changing the 145 

fraction after every minute, yielding 10 fractions. For an easier workflow, we also collected the 146 

first two fractions of the washout, 11 and 12, so that the same fractions are in the same column 147 

of the plate. Corresponding fractions between runs were pooled into vials before evaporating the 148 

solvent in a speedvac (Concentrator plus, Eppendorf, Hamburg, Germany). The samples were 149 

redissolved in 100 µl of 80:20 MeOH:H2O.  150 

 151 

Low pH reversed-phase liquid chromatography tandem mass spectrometry. DOM samples 152 

and the fractions (2nd dimension) were separated, using the same LC gradient as in the 153 

prefractionation, but different mobile phases, with mobile phase A: H2O + 0.1% formic acid and 154 

mobile phase B: ACN + 0.1% formic acid (pH ~ 2) were used. The eluting molecules were 155 

detected by the coupled Q Exactive HF Orbitrap mass spectrometer. DOM constituents were 156 

ionized in positive or negative electrospray ionization (ESI) mode. ESI settings were as described 157 

previously14,17: In short, gas flows (in AU) were set to 52 AU (sheath gas), 14 AU (auxiliary gas), 158 

and 0 AU (sweep gas); spray voltage was set to 3.5 kV, inlet capillary was heated to 320 °C; S-159 

Lens level was at 50%. MS1 spectra were acquired with a scan range of 150-1,500 m/z at a 160 

nominal resolution of 140,000 at m/z 200 and automatic gain control (AGC) set to one million 161 
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charges. Maximum injection time was set to 100 ms. MS/MS spectra were acquired at a lower 162 

AGC target of 300,000 charges with a minimum 10% C-trap filling. Precursors were selected 163 

within 1 m/z window width. Collision-induced dissociation (HCD) was conducted stepwise at 25, 164 

35 and 45% and at charge state (z) of 1. MS/MS acquisition was triggered at peak apex within 2 165 

– 15 seconds after the first precursor detection. Precursors were then dynamically excluded for 5 166 

seconds, as well as precursors with unassigned charge states or isotope peaks. Retention time 167 

drifts were controlled with a quality control mix of six standards evenly distributed in the 168 

chromatogram (Sulfamethazine, Sulfamethizole, Sulfachloropyridazine, Sulfadimethoxine, 169 

Amitriptyline, and Coumarin-314) at the beginning and the end of the sequence. 170 

 171 

LC-MS/MS feature detection and molecular networking. MS1 features were extracted with 172 

MZmine 342 at a signal threshold of 30,000 and 0.6 seconds minimum peak width. MS1 features 173 

were then transformed to extracted ion chromatograms (XICs) at a minimum signal threshold of 174 

90,000 and 5 ppm mass tolerance. Likewise, thresholds for deconvolution were set at 30,000 175 

(baseline level) and 90,000 (minimum peak height). Maximum peak length was 2 min. Isotope 176 

peaks were grouped at tolerances of 5 ppm for mass and 0.1 min for retention time. Alignment of 177 

XICs between samples was conducted using similar tolerance limits, and only XICs grouped with 178 

> 1 isotope peaks were considered for further analysis. The aligned XIC list was checked for 179 

duplicates at the above mass (5 ppm) and retention time (0.1 min) tolerances. From MZmine 3 180 

the precursor purity information was exported and used to evaluate the presence of chimeric 181 

spectra. Classical Molecular Networking (MN) was used to evaluate the spectra quality and 182 

annotate by matching MS/MS spectra with the GNPS libraries22. The MZmine3 output quant table 183 

and .mgf files were used to create Feature-Based Molecular Networking (FBMN) in GNPS23. 184 

Detailed settings and urls of processed jobs are provided in Table S1-S4.  185 

 186 

In-silico spectrum annotation. Sirius (5.6.3)43 was used for in-silico annotation of tandem mass 187 

spectrometry data. Using the Sirius module, molecular formulas were computed by matching 188 

experimental with predicted isotopic patterns from the fragmentation trees analysis of MS/MS. 189 

Parameters for SIRIUS are as follows: Instrument: Orbitrap, MS/MS ppm: 5, Isotope scorer: 190 

ignore, Candidates stored: 10, Min candidates per Ion: 1, Databases used: no selections, Possible 191 

Ionizations: pos/neg, Tree timeout: 0, Compound timeout: 0, Use heuristics above m/z: 300, Use 192 

heuristics only above m/z: 650, Only molecular formulas present in the Bio Databases were 193 

considered. In-silico structure annotations was performed with CSI:FingerID44 and structures from 194 

the Bio Database. 195 

 196 

Visualization of molecular networks. The visualization and analysis of the networks was carried 197 

out using Cytoscape (Version 3.9.1)45. For that, the obtained table from the feature-based network 198 

analysis was thinned out, eliminating redundant SMILES-codes and structural formulas. Nodes 199 

represent detected compounds and their drawn chemical structure. Chemical similarity was 200 

calculated using Tanimoto similarity (cut-off 0.8), creating a connection between the nodes using 201 

the ChemViz add-on.  202 

 203 

 204 

 205 
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RESULTS AND DISCUSSION 206 

 207 

Improved chromatographic resolution extends the depth of annotated molecules in marine 208 

DOM. To improve chromatographic resolution and analytical depth for the molecular 209 

characterization of DOM, we developed an offline 2D UHPLC-MS/MS method. Improved 210 

chromatographic resolution should lead to cleaner and more unique MS2 spectra, especially in 211 

the data-dependent acquisition (DDA) mode used here. In DDA, the compounds are selected for 212 

isolation and fragmentation by their intensity information from the previous MS1 scan, so with 213 

higher chromatographic resolution, different compounds are selected for isolation and 214 

fragmentation. The spectra should be cleaner, as fewer isomers and compounds with similar 215 

masses should be present in the quadrupole isolation window (here, 1 m/z).  216 

Our workflow relies on the fractionation of the DOM sample with a C18 column with high pH 217 

mobile phase with 0.05% NH4OH as a modifier for the first dimension. Technical duplicates of 218 

corresponding fractions were then injected into a second dimension with a C18 column and low 219 

pH mobile phase with 0.1% formic acid, before MS/MS data acquisition (20 injections per ESI+ 220 

and ESI- mode). To compare the 2D results to our classic 1D LC-MS/MS workflow, we injected 221 

the same sample in 20 consecutive LC-MS/MS runs (ESI+ and ESI- mode) yielding the overall 222 

same MS/MS analysis time and theoretical maximum number of spectra.  223 

To assess possible improvements in the chromatographic resolution, we first compared the total 224 

ion chromatograms (TICs) of a classical 1D LC-MS/MS run and our 2D approach and 225 

subsequently compared extracted ion chromatograms (XICs) of representative high abundant 226 

masses (470.1653; 500.1753; 579.2068 m/z in pos mode and 381.1195; 395.1351; 411.1301 m/z 227 

in neg mode) as shown in Figure 2. 228 

The TIC obtained from the 1D runs (Figure 2 A and B, light gray) shows the aforementioned 229 

“DOM-Mountain”, showing poor resolution of the peaks, whereas the TICs obtained from the 230 

technical replicates from the 2D runs show more defined peaks that also resemble the fraction 231 

order from the first dimension. Importantly, the retention time of the main peaks in all fractions is 232 

clearly distinct, indicating a constant and reproducible interaction of the DOM component with the 233 

stationary phase and likely less colloidal interactions between DOM itself29,46–48. 234 

The effect of this sample decomplexation gets more pronounced when looking at specific XICs. 235 

In Figure 2, C-E the XICs of three highly abundant masses in positive mode, m/z 470.1653 (+/- 3 236 

ppm (Figure 2 C)), m/z 500.1753 (+/- 3 ppm (Figure 2 D)), and m/z 579.2068 (+/- 3 ppm (Figure 237 

2 E)) are shown. The XIC obtained from the 1D run is shown in gray in the background and the 238 

XICs obtained from the 2D run are overlaid. While the 1D XICs show poor chromatographic 239 

resolution and a “Mountain-like” shape again, the XICs obtained from the 2D run show at least 240 

partially resolved peaks, with detection of molecules with the same m/z in multiple, different 241 

fractions. While this effect is more pronounced in the positive mode, clearer peaks and a better 242 

resolution are also visible in the negative mode. This suggests improved resolution of isomeric 243 

and isobaric compounds by the orthogonal 2D LC, which is crucial to increase MS/MS purity and, 244 

ultimately, MS/MS based identification.  245 

 246 

Evaluation of Improved Molecular Networking and Spectral Quality. We employed two forms 247 

of molecular networking, classical molecular networking (MN) and feature-based molecular 248 

networking (FBMN). Briefly, classical molecular networking is a widely used bioinformatics tool 249 
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for the visualization and annotation of non-targeted MS data. In addition to spectral matching 250 

against reference spectra, it aligns all experimental spectra of a data set against one another and 251 

connects related molecules by their spectral similarity. This is achieved by clustering MS2 spectra 252 

and using the obtained consensus MS2 spectra for MN49. We employed classical molecular 253 

networking using the GNPS infrastructure and created classical molecular networks either from 254 

the 20 2D runs or from the 20 1D runs (Figure 3). 255 

 256 

 257 
Figure 2: Comparison of 1D and 2D Total and Extracted Ion Chromatograms showing improved 258 

separation of DOM. (A) Overlay of the Total Ion Chromatograms (TICs) of the single fractions of the 2D 259 

analysis in positive mode (light gray, in background). (B) Overlay of the TICs of the single fractions of the 260 

2D analysis in negative mode (light gray, in background). (C-E) Overlay of the Extracted Ion 261 

Chromatograms (XIC) for (C) m/z 470.1653, (D) m/z 500.1753, and (E) m/z 579.2068 of the single fractions 262 

of the 2D analysis over the XIC of the 1D analysis in positive mode (gray, in background). (F-H) Overlay of 263 

the XIC for (F) m/z 381.1195 (G) m/z 395.1351 (H) m/z 411.1301 of the single fractions of the 2D analysis 264 

over the XIC of the 1D analysis in negative mode (light gray, in background) 265 

https://doi.org/10.26434/chemrxiv-2023-j1bxh ORCID: https://orcid.org/0000-0002-6561-3022 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-j1bxh
https://orcid.org/0000-0002-6561-3022
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 266 
Figure 3: 1D and 2D LC-MS/MS based molecular networks showing larger numbers of annotated 267 

features and nodes for the 2D setup. Classic molecular networks of both positive mode (green, left side) 268 

and the negative mode (blue, right side) with the 1D and 2D method (lighter and darker colors, respectively). 269 

Data contained 20 replicate injections for 1D and duplicated injections for the 10 fractions for 2D (20 total 270 

injections).  271 

 272 

As a first result, the classic molecular networks obtained from the 2D analysis show more nodes 273 

overall, but also more complex networks, having more connected nodes than the 1D networks, 274 

as shown in Figure 3. The difference is far more pronounced in the negative mode, where an 275 

additional strong increase in self-looped nodes (nodes not connected to other nodes) is visible. 276 

This result could be indicative of the improvement of carboxylic acid-rich refractory components 277 

that are better ionized and typically more dominant in negative ESI mode. Larger and more 278 

complex molecular networks indicate a better overall spectral quality of MS2 spectra, as chimeric 279 

spectra would be more random and thus less likely to be similar to other spectra (e.g., single 280 

nodes). 281 

To assess the spectral quality, we used the precursor purity checker module available in MZmine 282 

3, which provides the precursor purity of each MS/MS feature, giving a score between 0 and 1, 283 

with 1 being a “clean” spectrum, which means that no other precursor was present within the 284 

isolation window in MS1 survey scan closest to the MS/MS scan. The spectral purity scores for 285 

all spectra between the 1D and 2D experiments are visualized in Figure 4. The median spectral 286 

purity in the positive mode increased over two-fold, from 0.25 for the 1D analysis to 0.72 for the 287 

2D analysis, whereas the improvement in the negative mode was not as pronounced, increasing 288 

only from 0.53 to 0.81. Overall, in the distribution, a clear shift is visible in both modes: In the 1D 289 

analysis, the distribution shows a high abundance of spectra having low purity, which shifts 290 

towards higher purity in the 2D analysis. This shows a clear improvement of the spectral purity by 291 

the improved chromatographic resolution obtained through the 2D LC approach. Interestingly, we 292 

observed a general higher spectral purity of MS/MS in negative mode, which are mainly attributed 293 

to a set of features that had high precursor purity (~ 1.0) in both the 1D and 2 D analysis. Yet, the 294 

general trend of improved precursor purity in the 2D run also holds true for the remaining features 295 

(< 0.99) in negative mode.  296 

To investigate if the improved precursor purity relates to improved chromatographic separation 297 

and peak shape, we plotted the precursor purity against the full width at half maximum (FWHM) 298 

of the chromatographic peak which showed a higher density of cleaner spectra (precursor purity 299 
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> 0.8) in the 2D runs (Figure 4). Interestingly, in both the 1D and 2D runs a general relation 300 

between high purity spectra and sharper peaks (FWHM <0.1 min) could be observed. Yet, we 301 

noted a shift in this pattern in the 2D runs, where an increasing amount of high purity MS/MS 302 

spectra come from chromatographic features with wider peaks (FWHM > 0.1 min). 303 

 304 

 305 
Figure 4: Distribution of MS/MS precursor purity. MS/MS precursor purity was evaluated using the 306 

precursor purity checker-module in MZmine 3.5.0, which ranks the purity between 1 and 0, with 1 307 

representing a “clean” precursor selection for MS/MS. (A) shows raincloud plots of precursor purity. The 308 

single spectra are depicted as dots, the distribution is depicted as a half-violin plot, the black dot indicates 309 

the median, the thick black line the interquartile range (IQR) and the thin black line the 95% confidence 310 

interval. (B) Scatter plots show the relation between precursor purity and the full width at half maximum 311 

(FWHM) of the chromatographic peaks.   312 
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To further assess differences in spectral quality at the global data set level, we analyzed 313 

parameters concerning identification and networking efficiency (Figure 5 and S1). To also 314 

visualize the effect of the iterative 1D analysis, we analyzed the 20 1D runs in an increasing order 315 

(1, 2, 3, 4 runs etc. and the 2 D analysis via classical molecular networking (Figure 5 A+B). As 316 

expected, in the line plot we see that with an increasing amount of 1D runs, an increase in the 317 

number of total Library IDs from 48 to 291 in positive mode and from 5 to 71 in negative mode, 318 

can be observed. Strikingly, for the 2D approach (a total of 20 runs in the 2nd dimension with the 319 

same total run time as 20 1D runs), a total of 501 Library IDs were obtained in positive mode and 320 

186 in negative mode, increasing the Library IDs by 72% or even 162%, respectively. Taken 321 

together, the overall increase in Library IDs is 90% (from 362 to 687) in the combined positive 322 

and negative mode data. The annotation rate of all features in negative mode is comparable 323 

between the 20 1D runs and the 2D approach, whereas the annotation rate in positive mode is at 324 

2.2% with 20 1D runs and increases to 3.5% for the 2D approach.  325 

Interestingly, the 2D runs did not yield a higher number of total spectra, and for positive mode, 326 

the overall spectra decreased by 37.4% (from 124010 to 77712) and by 4.8% (from 97236 to 327 

92591) in negative mode. Conversely, the total number of nodes (clustered spectra) increased 328 

slightly from 13233 to 14339 in positive mode and significantly from 10662 to 27381 in negative 329 

mode. We assume the larger number of total spectra in the 1D runs could be explained with the 330 

general higher signal throughout the LC gradient, so the number of MS/MS spectra acquired in 331 

every DDA duty cycle will be maxed out. For the 2D runs on the other hand, as the sample is 332 

decomplexed, in some areas of the LC gradient, the topN (5 iterative MS2 events after MS1 333 

survey scan) of the DDA duty cycle will not be maxed out and thus less total MS/MS spectra will 334 

be acquired. While a decrease in the number of total spectra could indicate less total coverage, 335 

we argue that it could also indicate an improvement regarding MS/MS sub-sampling and less 336 

redundant spectra. Investigating the average amount of clustered spectra per network Node (i.e. 337 

redundant MS/MS spectra) we see a clear decrease from an average of 9.4 spectra per node in 338 

the 1D run vs. an average of 5.4 spectra per node in the 2D runs in positive mode as well as in 339 

negative mode with 9.1 vs. 3.4 spectra per node. 340 

Assessing the number of networks that include at least one identified compound showed that, 341 

although the consecutive runs led to an increase (from 57 to 105 in positive and from 13 to 23 in 342 

negative mode), the 2D analysis was able to identify at least one compound in 128 networks for 343 

positive mode, and 42 for negative mode respectively (Figure S3). This shows a broader 344 

distribution of identified compounds throughout the molecular networks, which, as connected 345 

nodes share high structural similarity and have a known mass difference, facilitates structure 346 

elucidation and compound identification of unknowns.  347 

Comparing the unique library IDs (based on unique library entries with smiles codes) between the 348 

1D and 2D LC-MS/MS based molecular networks (Figure S2), an average of ~ 16 % where only 349 

annotated in the 1D analysis, whereas ~ 31 % were identified in both analyses and ~ 52% only in 350 

the 2D analysis. 351 

To further assess the chemical space of the compounds detected, we used FBMN and SIRIUS. 352 

Briefly, FBMN differs from MN in that it uses processed spectral information and therefore includes 353 

MS1 information like retention time or ion mobility, thereby facilitating the distinction between 354 

isomers giving the same MS2 spectra, and spectral annotation in general, as well as incorporating 355 

relative quantitative information, which enables robust downstream metabolomics statistical 356 
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analysis. While more nodes were obtained with FBMN using the 1D analysis in positive mode 357 

(20220 vs 12758 in 2D), more library IDs could be annotated with the 2D analysis (1003 vs 1176 358 

in 2D). In the negative mode, the 2D analysis led to more nodes and more annotations (12419 vs 359 

15545 nodes in 2D and 117 vs 251 annotations). This can also be seen in the annotation rate 360 

obtained from the FBMN, almost doubling between the 1D and the corresponding 2D analysis 361 

(4.96% to 9.22% in positive mode and 0.94% to 1.61% in negative mode (Table S5)).  362 

 363 

 364 
Figure 5: Increase in Identification and Networking efficiency between 1D and 2D analysis. (A,B) 365 

Comparison of annotation efficiency in 1D and 2D analysis in positive mode (A) and negative mode (B). 366 

(C,D) Comparison of Networking efficiency in 1D and 2D analysis in positive mode (C) and negative 367 

mode (D).  368 

 369 

We exported the output of the FBMN to SIRIUS, an in-silico annotation tool, predicting the 370 

molecular formula by calculating possible fragmentation trees for MS2 spectra, and used the 371 

obtained molecular formulas. We obtained 17869 formulas for the 1D analysis, 11543 for the 2D 372 

analysis, and in negative mode 10527 formulas were predicted for the 1D analysis and 12055 for 373 

2D. In negative mode, more formulas were predicted for the 2D analysis. Looking at H:C and O:C 374 
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ratios of molecular formulas in van Krevelen plot (Figure S3), the negative mode data shows a 375 

broader distribution of formulas compared to the 1D analysis, whereas the van Krevelen plots for 376 

the positive mode look overall similar in their distribution. Investigating the score distribution of 377 

the SIRIUS result, we observed no significant improvement of SIRIUS scores nor the 378 

CSI:FingerID confidence scores between 1d and 2D runs (Figure S4), indicating that MS/MS 379 

spectral purity might have less of an effect for molecular formula calculation with SIRIUS, which 380 

also relies on MS1 mass accuracy and isotope patterns.  381 

 382 

Untangling the Deep Metabolome of Marine Dissolved Organic Matter. To obtain a status 383 

quo of annotated chemical space of coastal DOM, we combined the structural level 2 identification 384 

(spectral matches to MS/MS libraries50) obtained from the FBMN using 2D analysis in positive 385 

and negative mode and removed redundant annotations. After the removal of redundant nodes, 386 

often originating from library entries having isomeric or canonical smiles codes, 393 and 99 387 

uniquely annotated compounds in positive mode and negative mode were level 2 IDs, 388 

respectively.  389 

An overview of all level 2 annotated compounds in the 2D analyses is provided in supplemental 390 

tables S5-S8. Expanding the library search to putative analogs (spectra with high similarity but 391 

different precursor masses), we obtained 1746 analog hits (level 3 ID, meaning spectral similarity 392 

to known compounds of a chemical class50) for the compounds detected in positive mode, and 393 

222 in negative mode. In order to display the annotated chemical space, we generated a structure-394 

based network using the Tanimoto similarity metric, shown in Figure 6 (a high-resolution version 395 

of the network is provided in the SI). The network yielded some larger (> 50 nodes) and multiple 396 

smaller (< 20 Nodes) sub-networks, as well as individual unconnected nodes (152). As expected, 397 

the nodes in these clusters share a high structural similarity and/or are analog matches with 398 

similar frequently occurring delta mass patterns.  399 

The largest cluster contained 557 compounds, mainly highly oxidized molecules such as di- and 400 

tricarboxylic acids and fatty acids. The second largest cluster, containing 351 nodes, also harbors 401 

highly oxidized compounds, having 326 compounds that contain carboxylic acids as well as 402 

aromatic and alicyclic rings, which are structural properties representatives for carboxyl-rich 403 

alicyclic molecules (CRAM), a common class of refractory DOM components (Figure 6D).  404 

Overall, the annotated compounds include 918 (37,3%) nitrogen containing compounds. 405 

Hundreds of metabolites were detected within those classes, including disaccharides, fatty acids, 406 

peptides, and bile acids. In addition to the spiked standards, we could annotate a multitude of 407 

lipids and amino acids as well as terpenes such as loliolide, and the signaling compound 408 

dihydrojasmonic acid. In addition to the vast amount of natural products, dozens of xenobiotics 409 

including herbicides such as simetryn, and 2-hydroxyatrazine, the hydrolysis product of atrazine, 410 

drugs such as amitriptyline, drug metabolites such as benzoylecgonine and hydroxybupropion, 411 

as well as the industrially used triallyl cyanurate were annotated as level 2 IDs (mirror matches of 412 

the here mentioned compounds are provided in Figure S5 in the SI or can be inspected for all 413 

annotated compounds through the GNPS links provided in Table S2).  414 

Notably, most of the mentioned xenobiotics were only found in the 2D analysis and would have 415 

remained unannotated using our conventional 1D LC-MS/MS approach. Together, the 416 

compounds annotated in this study (as level 2 IDs) as well as large amounts of derivatives (level 417 
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3 IDs) provide an unprecedented view into the chemical composition and vast diversity and 418 

human influences on the coastal DOM pool. 419 

 420 

 421 
Figure 6: Structure-similarity network of annotated features (level 2 and level 3 IDs) from coastal 422 

DOM. A high resolution image of the network, including chemical structures, is available in the SI. 423 

(A) The figure shows the chemical similarity network between the annotated features using the Tanimoto 424 

similarity metric. Each node represents an annotated compound. The colors of the nodes indicate the mode 425 

of analysis (green, positive mode; blue, negative mode). After removal of redundant nodes, the network 426 

was expanded including the analog search provided by GNPS advanced library search, which is indicated 427 

by the respective lighter nodes. The connections between the nodes were calculated based on the chemical 428 

similarity between the compound’s structural fingerprints using a threshold of 0.8. The network contains 429 

393/99 unique library matches and 1746/222 analog library matches in the positive/negative ion mode. (B-430 

E) Zoomed subnetworks, for C and D only a subset of the subnetwork is shown. (B) Zoom on a subnetwork 431 

containing sugar phosphates and disaccharides. (C) Zoom on a subset of nodes containing dicarboxylic 432 

acids and fatty acids. (D) Zoom on a subset of nodes containing carboxylic acids and aromatic and alicyclic 433 

rings. (E) Zoom on a subnetwork containing domoic and kainic acid derivatives. 434 

 435 

Practical Considerations to Implement 2D-LC-MS/MS in Routine Analysis Workflows. A key 436 

advantage of the suggested protocol is its ease of integration with high-throughput 1D setups to 437 

both conserve fast data acquisition and improved annotation rates27, and does not require 438 

changes in terms of hardware and gradient time to improve peak capacities51. This outweighs the 439 

https://doi.org/10.26434/chemrxiv-2023-j1bxh ORCID: https://orcid.org/0000-0002-6561-3022 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-j1bxh
https://orcid.org/0000-0002-6561-3022
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

comparatively small additional effort of an added fractionation step of representative or pooled 440 

sample(s). Through the different pH in the mobile phases, different functional groups are 441 

influenced differently and change their interaction with the stationary phase. This leads to an 442 

orthogonal separation, increasing the chromatographic resolution, especially for closely related 443 

compounds. While offline 2D-LC-MS/MS approaches are inherently more time and work intensive 444 

compared to a routine LC-MS/MS approach, they clearly increase the chemical coverage and 445 

analytical depth. A possible strategy to implement 2D-LC-MS/MS analysis into large scale DOM 446 

studies, at a feasible total runtime, could be a hybrid 1D-2D approach. In such a workflow, the 2D 447 

analysis would be performed on representative or pooled sample sets to obtain high quality 448 

MS/MS spectra and increased depth, and the quantitative comparison of these features between 449 

all samples would be performed on MS1 level of the 1D runs. An important point here is that the 450 

chromatographic condition of the 1D run and the 2nd dimension of the 2D runs must be identical 451 

to align features by retention time and MS1.  452 

 453 

 454 

CONCLUSION 455 

 456 

To elucidate molecular signatures that drive global natural processes, such as global carbon 457 

cycling, including human impacts, it is essential to be able to detect and identify also very low 458 

abundant molecules to capture a more complete picture. With both, iterative injections via DDA-459 

based LC-MS/MS as well as 2D-LC-MS/MS, we could increase the spectral coverage and 460 

annotation of marine DOM, through which we obtained unprecedented structural insights into the 461 

chemical space of an exemplary coastal water sample. We demonstrate that 2D-LC-MS/MS 462 

analysis, using reversed phase C18 UHPLC and orthogonal mobile phase modifier and pH, 463 

effectively improves MS/MS spectral purity and spectrum library matching results from DOM in 464 

comparison to standard non-targeted LC-MS/MS. Specifically, the obtained Library IDs increased 465 

by 90% and the median MS/MS spectral purity increased by 188% and 53% in positive and 466 

negative mode respectively. The improved data quality and depth of the 2D analysis can be clearly 467 

seen by the higher MS/MS purity, increased number of library annotations as well as larger 468 

network size in comparison to the 1D analysis.  469 

In our case study with a coastal DOM sample, we could increase the obtained library IDs, as well 470 

as the networked nodes in positive and negative mode, thereby improving the molecular insights 471 

into DOM.  472 

There is little doubt that with the constant increase of public DOM LC-MS/MS datasets, reference 473 

samples and the inclusion of new in silico annotation tools, molecular insight into DOM will further 474 

improve. We envision that the here presented 2D LC-MS/MS method will be broadly applicable 475 

in the field and will contribute to a deeper annotation of DOM in the future. Together with FAIR 476 

sharing of raw and processed data, we hope that these analytical advances will contribute to a 477 

better understanding of biogeochemical dynamics and human influences on DOM in the ocean 478 

as well as other ecosystems. 479 

 480 

 481 

 482 
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DATA AVAILABILITY 483 

 484 

Raw data was converted to .mzML format with MSConvert using centroid mode. All raw and 485 

converted data can be found on the Mass spectrometry Interactive Virtual Environment 486 

(http://massive.ucsd.edu/) with the accession number MSV000092520. Classic molecular 487 

Network analysis was performed through the GNPS data analysis environment (gnps.ucsd.edu) 488 

with the parameters found in the SI (Table S1). Urls to the jobs submitted to GNPS with the 489 

obtained results can be found in the SI (Table S2). 490 

 491 
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