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ABSTRACT  64 

Trees are an important carbon sink as they accumulate biomass via photosynthesis
1
, and hence 65 

identifying tree species that grow fast is commonly considered essential to effective climate change 66 

mitigation through forest planting. Although species characteristics are key information for 67 

plantation design and forest management, field studies often fail to detect clear relationships 68 

between species functional traits and tree growth2. By consolidating four independent datasets 69 

and classifying the acquisitive and conservative species based on their functional trait values, we 70 

show that acquisitive tree species, which are supposedly fast-growing species, generally grow 71 

slowly in field conditions. This discrepancy between the current paradigm and field observations 72 

is explained by the interactions with environmental conditions that influence growth. Acquisitive 73 

species require moist mild climates and fertile soils, conditions that are generally not met in the 74 

field. Conversely, conservative species, which are supposedly slow-growing species, show 75 

generally higher realised growth, due to their ability to tolerate unfavourable environmental 76 

conditions. In general, conservative tree species grow more steadily than acquisitive tree species 77 

in non-tropical forests. We recommend planting acquisitive tree species in areas where they can 78 

realise their fast-growing potential. In other regions, where environmental stress is higher, 79 

conservative tree species have a larger potential to fix carbon in their biomass. 80 

 81 

 82 

MAIN TEXT 83 

The potential to mitigate current rates of climate change depends on reducing greenhouse gas emissions 84 

and enhancing carbon (C) sinks3. Along with oceans, forests constitute one of the two main carbon sinks 85 

on Earth3, but the potential for enhancing forest carbon sinks differs among biomes4. Tropical forests 86 

are under high anthropogenic pressure with a continuous decline in surface area5. Therefore, maintaining 87 

their role in climate change mitigation firstly requires protection and restoration1. Conversely, despite 88 

being threatened by global changes6, the forested area in temperate and boreal regions is expanding and 89 

remains important for climate change mitigation through biophysical effects (evapotranspiration and 90 

albedo), carbon storage in soils, standing biomass and wood products1,4,5,7. In such a context, 91 
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sequestering carbon in tree biomass and hence promoting tree species that grow fast may strengthen one 92 

of the pathways to increased mitigation. This leads to a key question for managing forests in a global 93 

change context: which tree species enable an efficient and sustainable mitigation? 94 

Research in plant ecophysiology has shown in controlled conditions that species able to efficiently 95 

acquire resources (sunlight, water, nutrients) generally grow fast8–10. These acquisitive species are 96 

characterised by high values of functional traits involved in resource collection, such as specific leaf 97 

area (SLA; for sunlight) and specific root length (SRL; for water and nutrients). Acquisitive species also 98 

have high values of functional traits involved in transforming resources into biomass (maximum 99 

photosynthetic capacity [Amax], and leaf content of nitrogen [N]). Because of their ability to efficiently 100 

acquire and transform resources, acquisitive species are commonly considered as being fast-growing 101 

species in most environments8,10. Similarly, species that are more efficient at keeping their internal 102 

resources (i.e. nutrients, water and energy) than collecting external resources are defined as conservative 103 

species and are commonly assumed to be slow-growing species, except in particularly unfavourable 104 

environments. Current knowledge thus suggests that acquisitive tree species should be promoted for 105 

mitigating climate change through fast biomass growth, but this paradigm is only partly supported by 106 

the literature. We compiled data from 10 independent greenhouse experiments, involving a total of 212 107 

tree species from all biomes, and confirmed the well-established result that seedlings of acquisitive 108 

species (i.e. with high SLA values) grow faster than conservative species (low SLA values) under 109 

favourable conditions of temperature and resource availability (Extended Data Fig. 1). Conversely, 110 

while robust growth-trait relationships are observed for seedlings under controlled conditions, studies 111 

on adult trees in natural conditions displayed high variability. Even if local- to regional-scale studies 112 

identified some growth-trait relationships11,12, some others found only weak relationships at best13,14, 113 

and studies that compared tree growth in contrasting regions failed to find consistent patterns2. This lack 114 

of a clear pattern has led some scientists to question whether trait-based studies are a good approach for 115 

predicting plant growth2,15. The aim of the present study was to evaluate whether acquisitive tree species 116 

do really grow fast in the field. The premises of our study are that (i) the observed growth-trait 117 

relationships are relevant only in environmental conditions favourable to biological activity (i.e. moist 118 

warm climates and fertile soils)10,11,16, but (ii) these conditions are more and more uncommon due to 119 
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widespread nutritive limitations and climatic stresses17–20. Based on this, and because acquisitive species 120 

are resource-demanding and also stress-sensitive9,21–23, we hypothesised that acquisitive species are 121 

often constrained by environmental limitations and consequently do not perform on average better than 122 

conservative species (Extended Data Fig. 2). To test this hypothesis, and hence investigate the 123 

interactive effects of functional traits, climate and soil on tree growth, we compiled data describing tree 124 

growth, functional traits and environmental conditions for 1,262 monospecific stands, distributed in 160 125 

common gardens (hereafter referred to as “sites”), and representing 223 distinct tree species. The 126 

consolidated database was composed of four independent datasets that enabled us to test the reliability 127 

of results in all forest biomes, all forested continents, and at different tree ages (see Methods): (i) the 128 

European Atlantic Network (hereafter referred to as EAN), (ii) the TreeDivNet network (TDN), (iii) a 129 

global dataset of stand biomass (SBD), and (iv) a dataset containing additional tropical data (TED). 130 

First, we investigated growth-trait relationships without taking into account possible interactions with 131 

site conditions. We found that, in non-tropical forests, tree growth showed significant correlations with 132 

many functional traits (Extended Data Fig. 3 and 4) such as wood density (Extended Data Fig. 3C), a 133 

functional trait that is consistently and negatively associated with growth rate15,24,25. We notably found 134 

that tree growth was negatively associated with several important traits typically linked to fast growth 135 

(e.g. SLA, leaf N and P content; Extended Data Fig. 3AEF). This was particularly noticeable for the 136 

maximum photosynthetic capacity of tree species (Amax: Figure 1 and Extended Data Fig. 5), which is a 137 

key trait in plant growth as it integrates the effects of other traits23,26. In a second step, following our 138 

first premise and because there was large variability in growth-trait relationships (Figure 1 and Extended 139 

Data Fig. 5), we investigated the extent to which local conditions influence growth-trait relationships. 140 

For this purpose, we analysed the growth-trait-site interactions through random forest models, mixed 141 

linear models, and linear modelling of growth-trait correlation values. The analysis of the EAN data 142 

showed that drivers of forest growth such as atmospheric N deposition27, climate18,28 and soil properties29 143 

were all highly influential (random forest models; Extended Data Table 1). In these sites, three 144 

functional traits had consistent relationships with tree growth across sites, and consequently along 145 

environmental gradients (Extended Data Table 2; negative effect: wood density; positive effect: leaf 146 

carbon and root phosphorus [P]).  147 
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In contrast, some traits (e.g. SLA, SRL, leaf N, leaf photosynthetic capacity [Amax]) had inconsistent 148 

relationships with tree growth (Extended Data Table 2). We considered that these inconsistent 149 

relationships may be due growth-trait-site interactions, and investigated such interactions using mixed 150 

linear modelling. We found statistically significant growth-trait-site interactions for most functional 151 

traits, at worldwide scale and at different development stage of trees (Table 1). Finally, we explored 152 

these interactions by studying to which extent the growth-trait relationships depended on local 153 

conditions (as approximated by the site productivity, which integrates all environmental constraints on 154 

plants). It resulted that, for these traits, both the strength and the direction of the growth-trait 155 

relationships depended on the local environment. Notably, if some traits such as wood density had a 156 

consistent effect across different environments, as the site productivity increased, the strength of 157 

correlation between growth rate and trait value weakened (Figure 2A). This dependency on site 158 

conditions was particularly clear for several functional traits, such as Amax, SLA and SRL, which 159 

previously showed inconsistent effects over sites (Extended Data Table 2). For these traits, which are 160 

key for acquiring and using resources, the correlation with growth rate progressively switched from 161 

negative to positive with increasing site productivity (Figure 2BCD; Extended Data Fig. 6). We 162 

observed this pattern for most traits in the EAN sites (Extended Data Fig. 7) and it was confirmed in 163 

three common gardens of the TDN network and four tropical common gardens (Figure 2; Extended 164 

Data Fig. 6).  165 

All in all, our results supported our initial expectation that positive relationships between key functional 166 

traits and tree growth occur only in field conditions with favourable environments but are uncommon in 167 

stressful environments. The discrepancy between an abundant literature based on experiments under 168 

controlled conditions (Extended Data Fig. 1) and observations in the field, can thus be explained by 169 

ontogenetic effects, functional ecology, and changes in resource allocation. Indeed, for obvious technical 170 

constraints, experiments under controlled conditions (often greenhouse experiments) used seedlings as 171 

model plants whereas in situ studies often focused on saplings or adult trees. Seedlings, saplings and 172 

adult trees respond differently to environmental constraints11,15, which may explain why our results did 173 

not align with expectations derived from theory and greenhouse experiments. In addition, greenhouse 174 

seedlings were generally grown under conditions with optimal temperature, light intensity, water and 175 
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nutrient supplies, and with no herbivory pressure. In such non-limiting conditions, acquisitive species 176 

are by definition able to acquire resources fast (due to high SLA and SRL) and can in turn produce new 177 

biomass quickly (Amax, leaf N), defining the concept of fast-growing species. Conversely, under 178 

unfavourable conditions, plant growth is not limited by C assimilation (as under optimal conditions) but 179 

is constrained by the capacity to efficiently use nutrients and water from soils26 and to endure stress, 180 

conditions under which tree species with high trait values (SLA and leaf N) tend to be less 181 

efficient10,22,23,30. Furthermore, allocation of resources to processes and organs that promote stress 182 

tolerance (e.g. for defence) and reproduction rather than growth changes the relationship between 183 

functional traits and growth31. Consequently, conservative species are generally stress-tolerant10,22,32 that 184 

are, on average, able to maintain substantial effective growth under conditions of ambient environmental 185 

stress despite trait values (such as low SLA23,33) that reduce maximum growth rate. In the field, along 186 

gradients of environmental conditions from favourable to stressful, functional traits involved in plant 187 

growth shift progressively from beneficial to deleterious. This observed change explains the 188 

inconsistency in the literature between greenhouse experiments and field studies2,15,34.  189 

Based on empirical observations, the current paradigm is that acquisitive species are fast-growing 190 

species because they generally outpace conservative species, except in particularly resource-deficient 191 

sites (Figure 3A). However, based on common gardens worldwide, our data suggest that the optimal 192 

conditions required by acquisitive species are the exception rather than the rule (Figure 3BCD). Indeed, 193 

if acquisitive species do perform well in particularly favourable environments35,36, they are more 194 

sensitive to environmental harshness37,38, whereas conservative, stress-tolerant, tree species perform 195 

better in most environments, thus supporting our initial hypothesis that environmental conditions are 196 

generally disadvantageous to acquisitive species. In practice, acquisitive species grew on average more 197 

slowly in field conditions than conservative tree species (Figure 4ABC), except in tropical regions 198 

(Figure 4D). This difference was large in terms of height growth rate for young adult trees 199 

(Supplementary Fig. S2AB), and it remained significant in terms of biomass growth and accumulation 200 

in mature stands (Supplementary Fig. S2C and S3). Such a persistent difference over time may be partly 201 

explained by a similar survival rate at young stages (P = 0.775, 2 = 0.1, n = 571 EAN stands), and 202 

longer lifespan values of conservative species39 (Extended Data Table 3). Despite this step forward, 203 
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further research is still needed as several questions remain open (i.e. growth-trait interactions with other 204 

important processes such as growth-survival-reproduction trade-offs, competition along gradients of 205 

productivity, intra-specific variability, inter-specific effects in mixed forests or multi-strata forests). This 206 

is particularly the case for tropical forests for which functional traits and ecological strategies have on 207 

average less importance than in non-tropical forests (Figure 1; Extended Data Fig. 3), confirming 208 

previous studies that found non-significant or minor effect of functional traits –except wood density40– 209 

on growth rate of tropical trees12,34,41,42. This average weak effect is consistent with our main findings 210 

since tropical forests generally present favourable climatic conditions and high net primary production 211 

(Supplementary Fig. S4). In wet tropical regions, a general positive growth-trait relationship might even 212 

have been expected, but tropical forests are often locally limited by water supply or nutrient 213 

availability17,18,43,44, resulting in complex growth-trait-site interactions35,45. As such, and based on our 214 

tropical data, we posit that local conditions are probably favourable from site to site for acquisitive 215 

species or conservative species35,37,46. 216 

Forests provide many ecosystem services47 and not only wood production and carbon sequestration. 217 

While our findings have implications for carbon sequestration, there remain the other ecosystem services 218 

and sustainable silviculture encompass more than just selecting the fastest growing tree species. We 219 

consequently put forth that our results do not question the general guidelines for sustainable forest 220 

management that include, amongst many others, favouring a high level of biodiversity that is an issue 221 

for conservation. Biodiversity is an even more important issue because mixing tree species in forests is 222 

an efficient lever for increasing carbon sequestration48 and for improving forest resistance to 223 

disturbances and stressors49. On the other hand, taking into account the complexity of forest 224 

management, this does not mean that favouring certain tree species is not important. Indeed, the change 225 

of view regarding the so-called fast-growing species has implications for climate change mitigation 226 

through tree growth7,50. In tropical regions, where functional traits seem to have a limited influence on 227 

tree growth, we posit that protecting forests from degradation5 remains the priority. Conversely, in non-228 

tropical regions, in order to enhance carbon sequestration in biomass, tree species should not be favoured 229 

based on their absolute potential, but by matching them with local conditions, each tree species having 230 

its own ecological niche and specific requirements28. In a context of promotion for programs of massive 231 
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tree planting, we stress that the choice of tree species should not rely on a priori expectations but on 232 

local forester knowledge. Furthermore, if low-risk strategies for mitigating climate change are a priority, 233 

then dedicated approaches should always consider choosing tree species with caution, regardless the 234 

other silvicultural options employed. As such, conservative tree species –which are stress-tolerant and 235 

long-lived– appear to be a better strategy for fixing carbon than the so-called “fast-growing” acquisitive 236 

tree species, which generally grow slowly. 237 

 238 

 239 

METHODS 240 

Experimental networks and tree species.  241 

Our study was based on complementary sets of forest sites (EAN, TDN, SBD, TED), their common 242 

features being: (i) spread across large-scale geographic regions, and (ii) composed of common gardens51 243 

with at least two different tree species compared. In each common garden, characterised by homogenous 244 

conditions, several monospecific stands were installed by planting only one tree species by stand. All 245 

stands within a given site were installed and managed identically. In total, tree growth was assessed in 246 

1,262 monospecific stands distributed over 160 common gardens (hereafter referred to as “sites”) 247 

located mainly in Europe, but also in all other forested continents (Supplementary Fig. S5). Together, 248 

these sites encompass large ranges of climatic conditions and soil properties (Supplementary Fig. S6 249 

and Table S1). In total, our study comprised the growth data about 223 tree species representing 166 250 

angiosperm species and 57 gymnosperm species, 114 genera, and 42 families (mainly, in decreasing 251 

order of abundance: Pinaceae, Fabaceae, Fagaceae, Myrtaceae, Cupressaceae, Betulaceae, 252 

Malvaceae, Meliaceae, and Sapindaceae). These tree species are representative of the main plant 253 

functional types (i.e. broadleaf species: 59% deciduous and 41% evergreen; needleleaf species: 10% 254 

deciduous and 90% evergreen). The studied tree species are also representative of the main mycorrhizal 255 

symbioses (ectomycorrhizal = 20% and 75% in angiosperms and gymnosperms, respectively; 256 

arbuscular mycorrhizal = 65% and 25% in angiosperms and gymnosperms; mixed preference for 257 

mycorrhizae = 15% in angiosperms), and included tree species with N-fixing symbioses (20%).  258 

 259 
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European Atlantic Network (hereafter referred to as EAN) 260 

The EAN, also known as the REINFFORCE experimental network (https://reinfforce.iefc.net/en)52, is 261 

composed of 38 common gardens found across the European Atlantic region. The EAN constitutes a 262 

gradient of latitude (38.7-56.5°N) and climatic conditions (Supplementary Table S1), from Portugal to 263 

Scotland. The common gardens were installed in 2011-2013 and monitored afterwards with common 264 

protocols. Each common garden had 2000 trees and 37 common tree species (each having several 265 

geographical provenances) planted in an area (as flat and homogenous as possible) of about two hectares. 266 

All the seedlings were produced in the same nursery at the same time, and their vigour and homogeneity 267 

were checked by the coordinators of the network before being sent to the different common gardens.  268 

Among the tree species of the EAN, for our study we chose 23 tree species (Acer pseudoplatanus, Betula 269 

pendula, Calocedrus decurrens, Castanea sativa, Cedrus atlantica, Cupressus sempervirens, 270 

Eucalyptus nitens, Fagus orientalis, Fagus sylvatica, Larix decidua, Liquidambar styraciflua, Pinus 271 

nigra, Pinus pinaster, Pinus sylvestris, Pinus taeda, Pseudotsuga menziesii, Quercus ilex, Quercus 272 

petraea, Quercus robur, Quercus rubra, Robinia pseudoacacia, Sequoia sempervirens, Thuja plicata) 273 

based on several selection criteria, including: (i) species that have enough trait values reported in the 274 

literature (e.g. leaf nutrient content and photosynthetic capacity), (ii) having a diversity of plant 275 

functional types (i.e. broadleaf species versus needleleaf species, deciduous versus evergreen, early- and 276 

late-successional species53, N-fixing species or not and different mycorrhizal symbioses) and taxonomic 277 

families, and (iii) species with a good survival rate in the network, implying that species that were 278 

planted outside their ecological niche were not retained (e.g. Ceratonia siliqua and Pinus caribaea; see 279 

Appendix 2). We selected only one provenance per species based on several criteria (e.g. survival rate, 280 

data availability, etc.; Appendix 3), one criterion being that we chose preferably a provenance that was 281 

within or close to the European Atlantic region, or (for non-European species) having a climate similar 282 

to those of the European Atlantic region. A provenance of a given tree species was not replicated, except 283 

for four species (Betula pendula, Cedrus atlantica, Pinus pinaster and Quercus robur) that were 284 

replicated three times in each common garden. We used these replicates to exclude the common gardens 285 

that showed spatial heterogeneity, as quantified by the coefficient of variation of tree growth among 286 

replicates of a given provenance (in the retained sites, CV = 26.6  2.7%). We also excluded a few 287 
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common gardens where catastrophic events (disease problems, exceptional drought just after tree 288 

planting, or destruction of most seedlings by dense populations of herbivores), caused very low survival 289 

and made it difficult to obtain reliable growth data. Finally, data from three common gardens were 290 

merged and considered as one single common garden because these sites were located next to each other 291 

(distance < 1 km). All in all, we retained 32 sites. The dataset comprised 139,049 values of total tree 292 

height from 18,576 different trees. 293 

 294 

TreeDivNet (or Tree Diversity Network, but hereafter referred to as TDN) 295 

The TDN is a global network of forest diversity experiments (https://treedivnet.ugent.be)54,55. We 296 

selected sites from this network with the following criteria: (i) a limited number of sites that were located 297 

in the same areas as the EAN to avoid giving a high statistical weight to the European Atlantic region, 298 

(ii) the tree species included in the experimental design are species for which trait data are available in 299 

the literature, and (iii) stands were planted before 2010 in order to have growth data on young adult trees 300 

(sensu ref.15). Based on these criteria and the response we received from their principal investigators, 301 

we retained 14 sites in Europe and Northern America (Supplementary Table S1). It is noticeable that the 302 

TDN sites are often (i.e. 10 sites out of 14) located on land that was previously dedicated to agriculture 303 

(i.e. fertilised croplands or grasslands). In each site, there were 3-12 different tree species, growing in 304 

monospecific stands, resulting in 88 site-species combinations. The choice of the planted tree species 305 

was made by each site principal investigator, based on knowledge of the ecological niche of tree species, 306 

and their suitability to local environmental conditions. Tree species were replicated at least twice in each 307 

site (except in one site where there was no replication). The dataset comprised 81,932 tree height 308 

measurements from 19,778 different trees. 309 

 310 

Stand Biomass Dataset (hereafter referred to as SBD) 311 

The SBD originated from a study56 that investigated the influence of tree functional traits on soil organic 312 

carbon, but which also used stand biomass values when available, as an explanatory variable. After 313 

assessing the data suitability, we extracted data from this publication that contained biomass information 314 

for 76 sites. We complemented this dataset with biomass values from 28 sites, provided by some authors 315 



12 
 

of the present study or found in recent publications (Appendix 4), giving 104 sites worldwide 316 

(Supplementary Fig. S5). In each site, there were 2-14 different tree species growing in monospecific 317 

stands (mean value: 3.5  0.2 tree species per site), generally following a common garden design56. 318 

Stands that were described as unhealthy or containing important canopy gaps were not retained. In total, 319 

the SBD represented 359 site-species combinations. Unlike EAN and TDN data that were successive 320 

surveys of identified trees, the SBD contained only one survey of aboveground tree biomass at the stand 321 

scale. For the SBD, growth rate was estimated as the stand biomass divided by the stand age, and was 322 

consequently the mean rate of net biomass accumulation (see below).  323 

 324 

Tropical Extra Data (hereafter referred to as TED) 325 

Because the EAN-TDN-SBD data were more representative of Mediterranean forests, temperate forests 326 

and boreal forests than of tropical forests, we complemented our study with data about this latter biome 327 

through an investigation of the literature. Because field experiments having a common garden design 328 

with mature monospecific stands are rare in tropical studies, we used inclusion/exclusion criteria that 329 

were more flexible than for our other datasets (i.e. growth metric, tree age). We retained six 330 

publications (Appendix 4) that contained usable growth data about 10 sites. After having checked that 331 

functional trait values existed in the literature (see below), we retained 71 distinct tree species and 196 332 

site-species combinations (Supplementary Table S1). In each TED site, there were 4-37 different tree 333 

species (19.6  4.8 species per site) growing in monospecific stands. 334 

 335 

Data about tree growth.  336 

Tree growth data in the EAN and TDN were based on surveys of young adult trees, enabling the 337 

quantification of growth rate in post-sapling stages. On the other hand, the SBD compiled information 338 

about aboveground net biomass accumulation during adult tree ageing. Finally, the TED were 339 

informative of growth dynamics of tropical tree species at different tree development stages (from 340 

saplings to adult trees). Thus, these independent datasets were complementary to each other, as it is 341 

well-established that the ontogenetic stage is an important factor driving trait-growth relationships57,58. 342 
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Tree growth values were calculated based on the difference between two surveys at the tree scale for 343 

EAN and TDN data, on one survey at the stand scale for SBD data (by dividing the stand biomass value 344 

by the stand age), and on the available metric for TED. 345 

 346 

 347 

Tree height growth (EAN, TDN) 348 

The quantification of tree growth rate was based on tree height, a variable that was monitored in all 349 

common gardens (contrary to other metrics such as biomass, volume, or stem diameter). Growth rate 350 

values (cm yr-1) were calculated as the difference in tree height between two surveys (each carried out 351 

during the dormant season for vegetation), taking into account the number of growing seasons between 352 

the two surveys. This method was compared with a method that estimates tree growth simply as the 353 

height:age ratio and found good consistency (r = +0.97). Nevertheless, we preferred to quantify tree 354 

growth based on two surveys because it enables excluding the period after plantation (i.e. 1-2 years), 355 

which is often problematic for seedlings (the so-called “transplant shock”). We chose the final survey 356 

based on available data for each site, trying to find a trade-off between the quantity of available data and 357 

the duration of growth (i.e. the time difference between the two surveys). The measurement period was 358 

generally between 3 and 9 years (41 sites) but was shortened to 1-2 years when necessary (5 sites). 359 

Taking into account the start of monitoring, growth data were mainly representative of young adult 360 

individuals (37 sites where age > 5 yrs; ontogenetic stage defined by ref.15), with a small proportion of 361 

saplings (9 sites; 1 yr < age ≤ 5 yrs), but no seedlings (0 site; age ≤ 1 yr). 362 

Before analysis, data were curated with several quality controls. Notably a few negative values of tree 363 

growth were observed so we removed these trees, which apparently “shrank” probably due to dieback 364 

of their top (4% of trees). In the case of multi-stemmed trees (2% of trees), we selected the height 365 

value of the tallest stem as the tree height value. We also removed a few site-species combinations for 366 

which not enough surviving trees remained (i.e. n < 5). In the EAN dataset, we observed that some trees 367 

(12%) died after the second survey retained in our study. For each site, we tested the extent to which 368 

these nearly dying trees might have biased our results, for instance due to a depressed growth rate before 369 

death. Comparing growth rate values with or without these nearly dying trees showed that there was a 370 
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significant difference (Dunnett test on ratio values, and linear regression analysis testing for both zero 371 

intercept and unit slope) for only one common garden when growth rate was assessed in original values 372 

(i.e. cm yr-1), and that there was no difference at all when standardised values were used (see § Data 373 

analyses). Based on these tests, we decided to not remove trees that died after the second survey, except 374 

for the common garden mentioned above. After all these quality checks, growth rate was estimated for 375 

each site-species combination as the arithmetic mean height growth value of all trees. 376 

 377 

Stand Biomass Dataset (SBD) 378 

The SBD contained data of standing aboveground biomass (in Mg-dry weight ha-1). Considering the tight 379 

allometric relationships that exist among tree structural components (stem, stump, branches, 380 

roots etc.)59–62, we assumed that aboveground biomass was well-representative of stand total biomass. 381 

This dataset is based mainly on quite old common gardens (46  3 years; 25-63 years between the first 382 

and third quartiles) for which generally only one survey of biomass measurements was available. When 383 

needed, stand aboveground biomass was estimated using –specific or generic63– allometric 384 

relationships. The estimated values were evaluated using an independent dataset64 and showed 385 

satisfactory consistency (Supplementary Fig. S7). Growth rate was calculated by dividing standing 386 

aboveground biomass by stand age. Because there was no information about tree mortality, SBD growth 387 

rate (in Mg ha-1 yr-1) was the mean rate of net biomass accumulation.  388 

 389 

Tropical Extra Data (TED) 390 

While growth data were homogeneous in other datasets (i.e. cm-height yr-1 for EAN+TDN, Mg ha-1 yr-1 391 

for SBD), growth data for TED used several metrics (relative growth rate, cm-height yr-1, cm-diameter yr-1, 392 

kg tree-1 yr-1). This limitation implied that, contrary to other datasets (which could be used with original 393 

values and mixed linear modelling to explore growth-trait-site interactions; see below § Data analyses), 394 

TED data were used mainly for growth-trait relationships. 395 

 396 

  397 
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Trait data 398 

The functional traits that were studied in our four datasets are known to be key traits in plant 399 

functioning65–67: plant maximal height (m), plant longevity (years), successional-stage (integer from 1 400 

to 5; from pioneer species to climax species), seed mass (mg; log-transformed to avoid data skewness), 401 

wood density (mg cm3), foliage and root element content (C, N, P, Ca; mg g-1), specific leaf area (SLA; 402 

mm2 mg-1), maximum photosynthetic capacity (Amax; µmol g-1 s-1) and specific root length (SRL; m g-403 

1). We used mass-based values of Amax and foliage composition but not area-based values because the 404 

former generally explain plant growth –and functioning in general– better than the latter26,68–70.  405 

Trait values were obtained from a previous global scale study of 178 different tree species56. To fill the 406 

data gaps, we first complemented this database with trait values (if any) found in the publications 407 

containing our growth data, and in 76 publications and a few specialised websites (Appendix 5). Wood 408 

carbon values were extracted from an open database71. When several values existed for a trait-species 409 

combination, we retained the mean value. In a second step, we measured traits for the 23 tree species of 410 

the EAN. To do this, we sampled one common garden (in south-western France) for mature foliage 411 

(n=36 per species), living branches (n=3 per species) and living fine roots (n=6 soil cores; roots of < 2 412 

mm in diameter). Samples were analysed (C, N, P, Ca; for foliage and roots) and measured (WD, SLA, 413 

SRL) following standard methods72,73. Data obtained from field samplings showed satisfactory 414 

consistency with the initial database56 (r=+0.55 to +0.95 for WD, SLA and element contents in leaves; 415 

regression slope values were close to 1) and we kept the measured values for our study. For four tree 416 

species of the EAN (Calocedrus decurrens, Cedrus atlantica, Eucalyptus nitens, Fagus orientalis) we 417 

had no Amax value, so in the field we also measured their maximum photosynthetic capacity under good 418 

conditions (cumulated precipitation in the week before sampling = 34.5 mm; soil water content during 419 

measurements  60-70% of the soil water holding capacity; vapour pressure deficit = 0.64-1.38 kPa; air 420 

temperature = 16-25°C; photosynthetically active radiation  > 1500 µmol m-2 s-1; data from the 421 

XyloSylve monitoring platform, 1.5 km from the common garden). Finally, for genera with several tree 422 

species, we complemented trait values by replacing missing values by the mean value of their genus, 423 

provided that at least two values were available and that they had a similar magnitude. This latter gap-424 
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filling represented a small proportion of trait values (proportion of estimated values for a given tree 425 

species: median = 0%; mean = 5%). 426 

Trait values were generally highly interrelated (Supplementary Fig. S8), which is a common pattern in 427 

functional ecology11,56,74,75 as plant functions are dependent on each other, implying trade-offs and high 428 

levels of correlation among traits32,65,67,76–79. Due to this strong interplay among functional traits23,80, and 429 

because data about nutrient content of fine roots were scarce for tree species of TDN and SBD, we 430 

restrained the use of most root traits to EAN results. Trait value distribution was comparable among 431 

datasets (Supplementary Table S2).  432 

 433 

Site data  434 

We collected auxiliary data related to factors (hereafter referred to as “site properties”) that may affect 435 

tree growth, notably climate, atmospheric nitrogen (N) deposition, past land-use and soil properties. At 436 

the site scale, the collected information was: site name and location (longitude and latitude), elevation, 437 

mean annual values of temperature and precipitation (MAT, MAP), past land-use and fertilisation 438 

history (information provided by the principal investigator of each site), soil name and soil parent 439 

material, topsoil clay or sand content, and other topsoil properties (e.g., pH, cation exchange capacity 440 

and its “base” saturation value, total content of phosphorus, soil organic carbon content [SOC] and its 441 

ratio with total nitrogen [C/N], and soil water holding capacity). Original site data were obtained 442 

differently for our four networks of common gardens: EAN site data were obtained using a shared 443 

protocol and soil analyses were carried out at a single laboratory. Data about TDN sites (and the few 444 

SBD sites that complemented the original dataset) were provided by the principal investigator of each 445 

site, when requested data were available. Data of most SBD-TED sites were extracted from 446 

publications56, with the same availability limitation. This process of data acquisition implied that site 447 

data were homogeneous in the EAN dataset whereas they contained a varying proportion of missing 448 

values and there were some heterogeneities in the methods used (e.g. for soil phosphorus analyses) for 449 

TDN, SBD and TED.   450 

Due to missing auxiliary data in the TDN-SBD-TED datasets (climate, elevation and soil properties), 451 

we complemented them from external sources using the latitude-longitude coordinates of the sites. 452 
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Similarly, we used global datasets to include variables that were never measured in the field (e.g. 453 

atmospheric N deposition). The data sources used were taken from the literature (N deposition81; soil 454 

properties82,83) or from large scale databases. Elevation values were obtained from the Enhanced Shuttle 455 

Land Elevation Data (https://www2.jpl.nasa.gov/srtm). For climatic variables, we collected data for 456 

mean annual values of precipitation or temperature (MAP, MAT; http://worldclim.org), potential 457 

evapotranspiration and aridity index (https://cgiarcsi.community). For sites in Europe, we also collected 458 

climate data from the Climate Downscaling Tool (https://www.ibbr.cnr.it/climate-dt), from the B4EST 459 

European project (https://b4est.eu), which enables one to work with scale-free queries, customised 460 

periods (for this study: the period of tree growth in our datasets) and many other variables (e.g. sum of 461 

degree-days above 5°C). The B4EST climate values were consistent with those obtained from other 462 

sources and were also consistent with data from the XyloSylve monitoring platform. The quality of the 463 

external sources was checked by comparing them with the measured values (when they existed) and 464 

showed acceptable consistency for most variables (r = +0.67 to +0.90 for MAT, MAP, soil pH and soil 465 

clay or sand content; regression slope values were close to 1) but not for some soil properties (e.g. P 466 

content or cation exchange capacity), which was in line with previous large-scale studies17,84. We 467 

observed a high level of covariation among several collected site variables. For instance, MAT was 468 

highly correlated with potential evapotranspiration (PET; r = +0.84), sum of degree-days above 5°C 469 

(r = +0.85) and mean temperature during the growing season (r = +0.90). Similarly, the soil water 470 

holding capacity was strongly controlled by soil clay content (r = +0.86) and sand content (r = -0.82). 471 

Because highly-correlated variables can bias methods of model selection85, we retained only a few 472 

variables to describe climatic conditions: MAT and MAP (which are commonly used in ecology86–89) 473 

and the “climate factor” index (hereafter referred to as fclimate)
90. The climate factor index is based on 474 

monthly climatic conditions of a given site, and increases with concomitant water availability (i.e. 475 

precipitation:PET ratio) and warm temperatures (Supplementary Fig. S9), conditions that favour 476 

biological activity91 and tree growth17. This fclimate index is normalised between 0 (harsh conditions) to 1 477 

(optimal conditions)17 and has already been tested at national or global scales17,91,92. We applied the same 478 

parsimonious approach for soil data, retaining clay content, SOC content, P content, C:N ratio and pH 479 

as explanatory variables. In addition to continuous climatic variables, we used a categorical approach to 480 
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assess the influence of biomes on growth-trait relationships. In practice, we grouped all sites into three 481 

classes based on their latitude absolute value: tropical sites (|latitude|  23°), high-latitude sites 482 

(|latitude|  45°;  cold sites93) and intermediate sites ( warm temperate sites). 483 

With the scope of discussing our results in a global perspective, we finally collected data for all forests 484 

worldwide. Net primary production (NPP) of terrestrial ecosystems was retained using TERRA/MODIS 485 

data (https://neo.gsfc.nasa.gov/view.php?datasetId=MOD17A3H_Y_NPP). We averaged the annual 486 

NPP of all grid cells based on the 2010s decade. We also calculated the fclimate index at the global scale. 487 

To enable relevant comparisons with our results about forests, we kept in global data only cell grids 488 

having at least 90% of their surface area covered by forest ecosystems (land-use data: ref.94). 489 

 490 

Data analyses  491 

Identifying the factors influencing site productivity 492 

We first explored the drivers of tree growth with data from the EAN, because these are derived from 493 

common gardens sharing the same studied tree species and protocols (29 sites with enough data). The 494 

influence of functional traits (e.g. leaf N content), site properties (e.g. MAT, soil pH) and site 495 

productivity were assessed using three independent approaches (see below). We defined site 496 

productivity as the arithmetic mean value of the mean growth rate (cm yr-1) of the n tree species studied 497 

in this site: 498 

 Eq. (1):  ���� ���	
������
 = ∑ ��������  ���� �����ℎ ���������� �⁄  499 

The three approaches for data analysis were: (i) mixed linear models (lme4 R package95; assigning the 500 

site identity as a random effect), (ii) linear models based on AIC for the selection of the best model 501 

(ols_step_forward_aic function of the olsrr package96) and (iii) non-linear “random forest” analyses 502 

(randomForest package97). For the latter, we followed a backward elimination method98 to select by 503 

iterations the best random forest model, which consists of eliminating the least important variables until 504 

out-of-bag prediction accuracy drops. The importance of each variable in the retained model is assessed 505 

based on the percentage increase of Mean Squared Error (%IncMSE). The threshold value above which 506 

a variable is considered as important is not consistent among studies using the random forest 507 
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approach99,100 and consequently we defined four levels of confidence to interpret our results: low (2% 508 

≤ %IncMSE < 5%), moderate (5% ≤ %IncMSE < 10%), high (10% ≤ %IncMSE < 20%) and very high 509 

(%IncMSE  20%). Considering all tree species of the EAN together, soil C:N ratio and fclimate were the 510 

most influential factors of site productivity (Extended Data Table 1).  511 

We quantified site productivity of TDN and SBD using the same method as EAN (equation 1). Because 512 

TDN data (and data from a few TED sites) had the same metric of tree growth as EAN data (i.e. tree 513 

height growth, in cm yr-1), we were able to present merged results (i.e. EAN+TDN+TED). Because the 514 

growth metric of SBD was different (in Mg ha-1 yr-1) these results were consequently presented 515 

separately. Contrary to other datasets, we could not calculate site productivity in all TED sites because 516 

the growth metric varied from site to site. Therefore, for some TED sites, only growth-trait relationships 517 

were investigated and no growth-trait-site interaction was tested. 518 

 519 

Standardising growth rate 520 

Tree growth rate obviously does not depend on functional traits alone, but is also strongly dependant on 521 

site properties (i.e. local climate and soil fertility)18,29,101–104. Indeed, when we investigated the main 522 

factors influencing tree growth, all our results confirmed foresters’ knowledge that site productivity was 523 

the main factor controlling species growth: site productivity was selected first by a mixed linear model 524 

(2 = 63.2), a predictive linear model (contribution to explained variance = 29.1 %) and a non-linear 525 

random forest model (%IncMSE = 55.3%). In addition, site productivity was much more predictive than 526 

the other variables (e.g. leaf C:N, leaf C, wood density) selected by these three models (2 = 22.0; 527 

explained variance = 10.4 %; %IncMSE = 34.2%). To remove the prominent influence of site 528 

productivity and hence to enable comparisons among species across all sites, we standardised the 529 

original values of tree species growth. To do so, we tested two different approaches: the z-score105 and 530 

a log growth ratio (see equation 2). The two metrics were highly correlated to each other (r = +0.86), 531 

but the log growth ratio metric was more suitable for our data because (i) the z-score cannot be calculated 532 

for sites with only two tree species (Appendix 6) and (ii) the values transformed as log growth ratios 533 

showed better distributions as evaluated by normality tests (Lilliefors and  Shapiro-Wilk tests106) and 534 

QQ plots. We consequently standardised the original values using the log growth ratio metric, which 535 
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consisted in dividing the absolute values of tree species growth by the site productivity value. This ratio 536 

was then log-transformed (natural logarithm)107: 537 

Eq. (2):  ��� �����ℎ ����� = ��� � �������� !"#$%&
'('�! )�(�#*+,-.&,+/..&#1

2 = ��� �3'45�43 67(8)9 7 )4
3�)4 '7(��5)���): 2 538 

The log growth ratio metric is very similar to the centered log-ratio metric108, the later using the 539 

geometric mean instead of the arithmetic mean. We preferred to use the arithmetic mean because (i) the 540 

geometric mean might be biased if one single value of the studied population is nil or very close to zero 541 

(which happens sometimes when comparing the growth rate of different plant species), and (ii) the 542 

arithmetic mean is consistent with the site productivity metric (equation 1). 543 

Positive standardised growth rates (i.e. log growth ratio values) indicate that these species had a higher 544 

growth rate than the average growth of the site, and negative standardised values indicate a lower growth 545 

rate than average for the site. For a few tree species that grew extremely slowly compared with the other 546 

species within the same site, this formula led to very negative values of standardised growth, with 547 

skewness problems of data distribution. Consequently, we corrected extreme values of standardised 548 

growth to -2.0 based on assessments of data distribution (histograms; Shapiro-Wilk tests).  549 

An example of a data subset is presented, showing how the transformation of growth values removed 550 

the relationship between tree species growth and site productivity (Supplementary Fig. S10AC). An 551 

example of relationships between a functional trait and growth is also presented (Supplementary 552 

Fig. S10BD). It should be noted that standardisation of values was done for subsets of data with no 553 

missing value implying that, when there was a missing trait value for a tree species of a given site, the 554 

growth values of this site were standardised without taking into account this tree species (see an example 555 

in Supplementary Table S3). It is also noticeable that the method used for data standardisation, while 556 

improving statistical power, enabled the study of interactions with possible confounding factors109 (see 557 

below). 558 

 559 

Defining acquisitive species and conservative species 560 

Because trait values constitute ecological gradients23,110,111, continuous data analyses are adequate to test 561 

our hypothesis (see next section). Nevertheless, in order to test our hypothesis, we used in addition 562 
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categorical analyses by classifying tree species into acquisitive species or conservative species based on 563 

their trait values. Tree species were considered as acquisitive species if they have high values of 564 

photosynthetic capacity (Amax), SLA and leaf N content10,23,26. We prioritised Amax to class tree species 565 

because this trait is integrative of plant functioning23,26,112. For tree species without an Amax value, we 566 

used the SLA value or the leaf N value instead. The procedure enabled the classification of 212 tree 567 

species, representing 98.3% of growth data (87%, 10% and 1% of data based on Amax, SLA and leaf 568 

N, respectively). In practice, however, there is no functional threshold value between acquisitive species 569 

and conservative species as they are distributed along trait gradients23,110,111. Following previous 570 

studies113, we defined our species classes based on value distributions of our global database of 571 

functional traits. We defined acquisitive species and conservative species, with limit values close to 572 

median values (Amax = 0.1 µmol g-1 s-1; SLA = 13.3 mm2 mg-1; leaf N content = 19.3 mg g-1). Although 573 

these threshold values are consistent with the distributions reported in other studies carried out at the 574 

global scale (Figures 2 in ref.110,111), we performed a sensitivity analysis to assess to which extent 575 

changing the chosen values may affect our results (see below).  576 

With this trait-based classification, acquisitive species tended to be represented more in broadleaf 577 

deciduous species than in needleleaf evergreen species, whereas conservative species included both 578 

broadleaf species and needleleaf species (Extended Data Table 3; Appendix 7). Similarly, both groups 579 

contained arbuscular mycorrhizal species and ectomycorrhizal species. Although there was no 580 

significant difference in shade tolerance and both groups contained early-successional species (e.g. 581 

Pinus species and Betula species), acquisitive species were on average characteristic of earlier 582 

successional stages than conservative species. Finally, acquisitive species were shorter-lived than 583 

conservative species, which is consistent with how different ecological functions (i.e. growth, survival, 584 

reproduction) are coordinated in woody plants39. 585 

 586 

Investigating site-trait interactive effects on tree growth 587 

We expected that the role of functional traits in tree growth was neither unidirectional (i.e. always 588 

positive or negative) nor systematic (i.e. the traits correlated with tree growth were not systematically 589 

the same across different regions), but that it depended on environmental conditions12,35,58,114. To 590 
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investigate these possible site-trait interactions, we used three complementary approaches: (1) 591 

interactions were statistically tested using mixed models45, (2) interactions were visually illustrated by 592 

regressing linear models between site productivity and growth-trait correlation values, and (3) the slope 593 

values of the regression between site productivity and standardised growth were compared for 594 

acquisitive species and conservative species.  595 

(1) Mixed models were fitted on standardised values to remove the prominent effect of site productivity 596 

(see equation 2) and hence enable comparisons among sites. The mixed models were built with site 597 

identity and tree species identity as random factors, as follows: 598 

 Eq. (3):  �����ℎ ~ ����� + =����� ×  ����'7(�.? + @1|������.C + @1|���������.C 599 

with siteprod. = site productivity (eq. 1); siteid. = site identity; speciesid. = species identity. 600 

(2) For common gardens where it was possible to quantify a site productivity metric (in cm yr-1) and 601 

that included at least 10 different tree species, we graphically illustrated the extent to which the influence 602 

of trait values depended on site productivity by regressing a linear relationship between site productivity 603 

and the [species growth-trait value] correlation value of the same site: 604 

 Eq. (4):  ����D�����ℎ3'45�43 − �����F = G@���� ���	
������
C 605 

with corr{growth.species-trait} = correlation value (Pearson method) between species growth rate 606 

and species trait value; correlations being performed site by site. 607 

This case corresponded to all EAN sites and a few sites from TDN and TED. Nevertheless, it was not 608 

possible to include TDN and TED r values to fit the linear regression because the probability of having 609 

by-random high r values tends to increase with decreasing size of data115,116, implying that correlations 610 

obtained from TDN (10-12 species per site) or from TED (up to 34 species per site) were not directly 611 

comparable to correlations obtained from EAN (23 tree species per site). Nevertheless, even if TDN and 612 

TED r values were not used along with EAN r values to statistically test the interactions between site 613 

properties and growth.species-trait relationships, in the graphs we added the results from the TDN-TED 614 

sites that contained at least 10 tree species. 615 

(3) We tested whether the functional traits and site properties interactively influenced tree growth by 616 

comparing the slope value of the relationship between site productivity and tree growth (in standardised 617 

values), taking into account our two tree species classes (i.e. acquisitive versus conservative, with 618 
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respectively high and low values of Amax, SLA and leaf N). To do so, we built one linear regression 619 

model with interaction with site productivity, and a second model without interaction (using aov 620 

function). Then, the two regression models were compared using covariance analysis (using anova 621 

function). We concluded that a site-trait interaction existed if the slope of the regression was 622 

significantly different between the acquisitive tree species and the conservative tree species. For this 623 

approach, sites that included only acquisitive species, or only conservative species, we not taken into 624 

account in data analyses.  625 

 626 

Analysing possible misleading effects or confounding effects in data analyses  627 

Assessment of the datasets 628 

The first three datasets that were built (EAN, TDN, SBD) are complementary in terms of tree age and 629 

climatic conditions. Because the collected data lacked tropical data, a fourth dataset (TED) was built to 630 

supplement the three others, and the final data were representative of all climates (Supplementary 631 

Fig. 11). Nevertheless, although the TED dataset was useful as complementary data, it is less 632 

homogeneous as it is based on several growth metrics (see above) and it includes sites having very 633 

different number of tree species (Supplementary Fig. 12). The TED results, when presented 634 

independently from other data, should consequently be interpreted with caution.  635 

In addition, even as a data supplement, we combined cautiously TED data with other data. In most cases, 636 

we found no risk of biasing the results. An exception was the study of the interaction between site 637 

productivity and growth-trait relationships in young sites. Indeed, two sites showed being much more 638 

productive than the rest of the studied population (Supplementary Fig. 13). Because outliers of a 639 

predictor variable may induce spurious correlations116,117, these two sites were not used during data 640 

analyses implying possible interactions with site productivity. 641 

 642 

Interactions with tree age 643 

It is well-established that tree growth rate varies as a function of tree age (e.g. ref.118) and we 644 

consequently tested this possible effect. For the young stands (EAN and TDN datasets; age at tree 645 

measurement = 3-24 yrs), we found no significant effect (P > 0.1), neither considering site productivity 646 
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(mixed model: P = 0.555, t = +0.60, df = 21.5) nor considering tree growth at the stand scale (P = 0.788, 647 

t = -0.27, df = 31.0). We also checked if an interaction with tree species might exist by plotting the 648 

growth-age curve for each of them, and found no clear trend. We finally concluded that there was no 649 

substantial age effect in our data about young trees. 650 

In contrast, data about mature stands showed a clear age effect on tree growth (Supplementary 651 

Fig. S14A). This effect had no influence on results when data were standardised because the 652 

standardised values are species growth rate (or species trait value) that are relative to the site productivity 653 

(eq. 2). Conversely, the age effect may affect the results when the site productivity is used as a predictor 654 

(eq. 3; see also Table 1 and Figure 3D), and we corrected growth values in these cases. To do so, we 655 

first fitted a non-linear regression between forest age and productivity (Supplementary Fig. S14A). The 656 

Modelling Efficiency value of the fitted regression was 0.46 (ref.119). Then, we calculated a standardised 657 

growth rate, using 40 years-old as a reference (which was close to the mean age value of SBD stands = 658 

41.8 yrs): 659 

 Eq. (5):  �����ℎ.HI = �����ℎJ�))4�.HI × K67(8)9L*+M+1#$
67(8)9N+,,&O

P 660 

With growth.40 = growth estimated at 40 years-old; growthfitted.40 = value of the regression at age 661 

40 yrs (growthfitted.40 = 4.446 Mg ha-1 yr-1); growthoriginal = growth original value; 662 

growthfitted = value of the regression at the actual age of the stand. 663 

The distribution of the corrected values is presented in the Supplementary Fig. S14B. 664 

 665 

Intra-specific differences 666 

Different populations of a given tree species may differ in terms of trait values and growth rate because 667 

of genetic differences and plasticity to local conditions120. In the present study, the effect of intra-specific 668 

variability was not quantified, as the inter-specific influence on growth was the main topic. Although it 669 

is well-established that intra-specific variability exists, it is also observed that inter-specific variation 670 

can be much larger than the intra-specific variation121,122. As such, retaining only the mean trait value of 671 

each plant species is considered as a relevant and reliable approach in large scale studies2,110,111,122–124, 672 

even with partly imputed data74,125. In the present study dedicated to inter-specific variation, the 673 
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coefficient of variation (CV) of trait values was 25% for wood density and ranged from 42% to 78% for 674 

the acquisitive-conservative traits (Amax, SLA, SRL, leaf N and P). Conversely, intra-specific variation 675 

of traits was found to range from 9% to only 22% of CV for wood density, SLA, leaf N and leaf P126–676 

128, confirming that inter-specific variability is larger than intra-specific variability in multi-species 677 

studies. Another possible problem is the variability of trait values over plant development129 because 678 

some trait values found in the literature or trait databases were determined using seedlings and not adult 679 

trees130. However, it was also shown that trait values at seedling stage are well-correlated with trait 680 

values at adult stage131, implying that inter-specific rankings are maintained over ontogenic 681 

development132.  682 

We used EAN data to evaluate the possible effect of intra-specific variability on tree growth. Indeed, 683 

each EAN site contains for each tree species up to eight different provenances. We found that intra-684 

specific variability of tree growth was 4-fold lower than inter-specific variability (CV = 17% and 66%, 685 

respectively), indicating that the inter-specific effect on tree growth was much more important than 686 

intra-specific variations. This result is in line with a recent study133 showing that provenance is generally 687 

a second-order driver of tree growth.  688 

Based on these results, the literature results and on published guidelines134, we concluded the intra-689 

specific variability of trait values (or of growth rate values) likely had a minor effect on our results.  690 

 691 

Ecological niches 692 

One possible pitfall in studies based on common gardens is that some tree species might be planted 693 

outside their ecological niche (i.e. unfavourable climatic/edaphic conditions), biasing the species growth 694 

dynamics. This possible bias was taken into account (i) during the design definition of most common 695 

gardens, (ii) during data acquisition, and (iii) after data acquisition:  696 

At least for the common gardens of the EAN and TDN networks, the principal investigators (who are 697 

co-authors of the present study) chose tree species not at random but based on their ecological 698 

requirements, implying that the planted tree species were expected to be adapted to local conditions. 699 

During data acquisition, we excluded a few tree species with low survival rate (EAN-TDN common 700 

gardens) or described as unhealthy (SBD-TED; see above § Experimental networks and tree species). 701 
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Finally, we tested a possible niche effect using our data and quantitative information about ecological 702 

niches. To do so, we studied the 23 tree species of the EAN network, which is a network with a factorial 703 

design (i.e. all tree species are present in all sites). For each tree species, we collected the surface area 704 

of the natural niche of the species and (for MAT, MAP and soil pH) the ranges of the species in natural 705 

conditions. This data collection was made based on information found in dedicated websites and 706 

publications (Appendix 8). Then, for each species-site combination, we evaluated if the trees were 707 

within or outside their niche by checking if the site conditions (MAT, MAP, soil pH) were within or 708 

outside the range of values reported for the species in natural conditions. We also tested if the ecological 709 

range of the tree species (as defined as {MATmax - MATmin}, and so on for MAP, soil pH) might explain 710 

tree growth. We found that: (1) in a majority of cases, tree species were planted in sites where 711 

environmental conditions were suitable for them (see percentage values in panels A-D of Supplementary 712 

Fig. S15), (2) trees planted in sites where conditions did not comply to the expected species requirements 713 

did not growth differently as compared with trees planted in suitable conditions (Supplementary 714 

Fig. S15A-D), (3) tree species with large ranges of ecological niche did not growth faster than tree 715 

species with narrow niches (Supplementary Fig. S15E-G), (4) tree species with large spatial niche did 716 

not perform better than tree species from small regions (Supplementary Fig. S15H), and (5) there was a 717 

slight, but significant negative effect of the MAP range value on standardised tree growth 718 

(Supplementary Fig. S15F). The latter result is mainly due to three tree species with large MAP range 719 

(caused by very high MAPmax values; > 2000 mm yr-1) but, having on average, lower standardised 720 

growth rate than the other tree species. Although this MAP range effect was significant, it explained less 721 

than 1% of the growth variance (R2 = 0.7%) and became not significant when considering tree species 722 

with MAPmax  2000 mm/yr (cf. red line in panel F), which is the most common case for temperate-723 

boreal tree species. As a whole, we concluded that the ecological requirements of the studied tree species 724 

were fairly well-respected and we consequently assumed that the results of the study were not severely 725 

biased. 726 

 727 

  728 



27 
 

Possible phylogenetic effect 729 

Two tree species may be functionally very different because their most recent common ancestor existed 730 

in a far past, enabling its descendants to evolve differently for long times. As such, phylogeny may be a 731 

powerful predictor of plant species functioning123,135 and, in our case, may have explained tree growth 732 

better than functional traits. We tested this possible effect for the EAN dataset because this network has 733 

a factorial design. We built a phylogenetic tree for the 23 species of the dataset, which included closely 734 

related species (e.g. species of the same genus) and evolutionary distant species (e.g. angiosperms and 735 

gymnosperms). The phylogenetic distance between two species was estimated based on the approach of 736 

the most recent common ancestor. The distance between angiosperms and gymnosperms was fixed as 737 

350 Myr and the distance between Cupressales and Pinales was set at 273Myr136. Within the 738 

gymnosperms, the distances among clades down to genera were estimated based on a dedicated study137. 739 

Similarly, within the angiosperms, we used first the phylogenetic distances among families138. For 740 

shorter phylogenetic distances (e.g. between genera of the same family or between two species of the 741 

same genus), we used the Angiosperm Phylogeny Website and relevant references137,139–141. We 742 

calculated the phylogenetic distance of all possible pairs of tree species (� = ∑ @� − 1C��QR��� ), and then 743 

we tested to which extent this distance might explain tree growth and trait values. Using a linear plateau 744 

regression (R package nlraa), we found that the phylogenetic distance had an effect for tree species that 745 

were close to each other in the phylogenetic tree (i.e. distance < 98-137 Myr). However, this effect was 746 

weak and explained only a very small proportion of the variance, from 1% (for leaf Amax, wood density, 747 

or SRL; data not shown) to 5-11% (for SLA or leaf N-P; Supplementary Fig. S16). These results are 748 

consistent with previous studies showing that phylogeny often poorly explains functional traits, site 749 

properties or ecosystem functioning56,142,143. Based on these results and on the literature we concluded 750 

that, in our study, there was a significant but minor effect of the phylogeny on tree growth. 751 

 752 

Possible spermatophyte effect 753 

Our datasets comprise both angiosperm species and gymnosperm species. These two groups are 754 

evolutionary and functionally quite different144–148, which might have induced apparent growth-trait 755 

correlations without any true functional relationships. We tested this possible effect by investigating to 756 
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which extent the growth-trait relationships were observable within a spermatophyte group (i.e. only 757 

angiosperms or only gymnosperms). We found that growth-trait relationships were generally still 758 

significant for most traits (Supplementary Fig. S17ABD). Similarly, within the angiosperm group, 759 

acquisitive species and conservative showed the same growth trends as for the complete dataset, which 760 

was a significantly higher growth rate of the conservative species (Supplementary Fig. S17F; not tested 761 

within the gymnosperm group due to an insufficient number of acquisitive species). Conversely, the 762 

growth trait relationships were no longer significant, or significant only for angiosperms, for some other 763 

traits (Supplementary Fig. S17CE). These results are consistent with studies that explored plant 764 

functioning across plant functional types and found weaker or absent relationships for gymnosperms149–765 

151. This pattern can be explained by the level of functional diversity within each group: for six major 766 

traits (Amax, SLA, SRL, wood density, leaf N and P), the range of values was between 59% and 215% 767 

higher for angiosperm species than for gymnosperm species (see also Figure S3 in ref.149 and Figure 1 768 

in ref.150). These ranges of values in the gymnosperm group were probably too narrow for some 769 

functional traits to enable isolating a significant growth-trait relationship. Besides, this explanation may 770 

also apply to leaf nitrogen (Supplementary Fig. S17C) as the data dispersion showed that the overlap 771 

between angiosperm data and gymnosperm data was small (38% of the full range, as compared with 53-772 

63% for SLA or leaf P), suggesting that the general effect observed for leaf nitrogen was induced by the 773 

comparison of two functionally different clades. As a whole we conclude that, in agreement with the 774 

literature124,149,150, whereas the angiosperm-gymnosperm dichotomy strengthens existing function-trait 775 

relationships by enlarging the ranges of trait values, these relationships generally remain relevant within 776 

a spermatophyte group. 777 

 778 

Sensitivity of results to the retained threshold values 779 

We tested the extent to which changing the threshold values retained for classifying tree species 780 

(acquisitive species versus conservative species, based on Amax, SLA or leaf N content) would change 781 

our results. First, for each of these three traits, we quantified the difference between the percentile 40% 782 

and the percentile 60%, which represents the part of a normal distribution where values change most 783 

(hereafter referred to as “max change range”, MCR). In a second step, we defined the ranges of 784 
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sensitivity analyses by adding or subtracting the MCR value to the threshold value initially retained. 785 

This resulted in large changes to the population size of the species classes (up to 3.0-fold; n = 250-747 786 

stands of conservative tree species). These results explain why we did not use larger ranges of sensitivity 787 

analyses because the compared classes would have been extremely unbalanced in size, with deleterious 788 

effects on the stability of the results. The large changes to the population size of the species classes also 789 

highlight that the acquisitive-conservative status of the tree species of the present study should not be 790 

used alone for management decisions. Indeed, if a dichotomous classification was useful for data 791 

analyses, tree species are distributed along ecological and functional gradients, with many species 792 

having intermediate positions. 793 

We finally performed the sensitivity analyses by testing the difference between tree species (acquisitive 794 

species versus conservative species) with varying threshold values (n = 5, including the value initially 795 

retained as median value). The results showed that the results were satisfactory, with quite stable slope 796 

values (Supplementary Table S4A) and a constant difference of growth rate between acquisitive species 797 

and conservative species (Supplementary Table S4B). 798 

 799 
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