

This is the accepted manuscript version of the contribution published as:

Wang, J., Shi, W., Zhang, W., Zeng, H., Deng, J., **Zhang, H.** (2025): Ultrafast degradation of Cu(II)-EDTA by peroxyomonosulfate activated with polyoxometalate clusters intercalated layered double hydroxides: Simultaneous decomplexation and resourcelization
Colloid Surf. A-Physicochem. Eng. Asp. **707**, art. 135835

The publisher's version is available at:

<https://doi.org/10.1016/j.colsurfa.2024.135835>

1

2 **Ultrafast degradation of Cu(II)-EDTA by peroxyomonosulfate**

3 **activated with polyoxometalate clusters intercalated layered double**

4 **hydroxides: Simultaneous decomplexation and resourcelization**

5

6 Jue Wang^{a,*}, Wenfang Shi^b, Wenqi Zhang^c, Hanxuan Zeng^b, Jing Deng^b, Haojie Zhang^d

7

8 a. College of Architecture and Energy Engineering, Wenzhou University of Technology,

9 Wenzhou, 325000, P.R. China

10 b. College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, P.R.

11 China

12 c. Hangzhou City Planning and Design Academy, Hangzhou, 310012, P.R. China

13 d. Department of Environmental Engineering, Helmholtz Centre for Environmental

14 Research-UFZ, Leipzig, 04318, Germany

15

16 *Corresponding author.

17 *E-mail address:* wangjue0119@hnu.edu.cn (J. Wang).

18

19

Abstract

20 Technologies used to handle metal pollution are often ineffective for complexed metals,
21 which have refractory biodegradability, high solubility, and strong mobility, posing
22 significant threats to the ecological environment. This work proposed a novel catalytic
23 system for the proper disposal of Cu(II)-EDTA pollution. Polyoxometalate cluster
24 intercalated CaFe layered double hydroxide (LDH-CoPW) prepared through a mild and
25 convenience method was applied to activate peroxyomonosulfate (PMS) for the degradation of
26 Cu(II)-EDTA and the simultaneous immobilization of the released Cu(II). Compared to direct
27 waste or complex regeneration of catalysts, the application of used LDH-CoPW in clean
28 energy production was proposed to further reduce carbon emissions. Under the combination
29 of 0.1 g/L of LDH CoPW and 0.1 mM of PMS, nearly 100% of Cu(II)-EDTA was removed
30 within 3 min of reaction time, and 49.6% of Cu(II) was adsorbed within 60 min of reaction
31 time. The second-order reaction kinetic constants of Co(IV)=O with various probes were
32 confirmed by competition kinetics method. Based on this, Co(IV)=O was identified as the
33 dominant RSs using a scientific probe-based kinetic model. Furthermore, CaFe-LDH did not
34 directly activate PMS but ensured the reactivity of the catalytic system by promoting the
35 redox cycle of cobalt species. Finally, due to the regulation of Cu on the electronic structure
36 of the catalyst, the electrochemical performance of the used LDH-CoPW surpassed that of
37 fresh LDH-CoPW and CaFe-LDH, showing great potential in clean energy production.

38

39 **Keywords:** Layered double hydroxides; Polyoxometalates; High valence metal;

40 Resourcelization.

41

42 **1. Introduction**

43 Increasing heavy metal pollution has attracted global public attention due to its
44 environmental persistence and lethal toxicity [1, 2]. Due to the stable coordination of heavy
45 metals with organic compounds, complexed metals with refractory biodegradability, high
46 solubility and strong mobility can easily across water treatment process and pose potential
47 threats to the ecological environment [3]. Therefore, efficient strategies are urgently needed
48 to mitigate the harmfulness of complexed metals.

49 Although traditional methods such as precipitation, adsorption, and ion exchange are
50 sufficient for removing free metals ions, they are powerless to handle complexed metals.

51 Given the molecular structure of complexed metals, a two-step strategy is considered feasible.

52 Heavy metal ions, released from complexed metals via oxidative decomplexation, can be
53 subsequently removed by chemical precipitation [4]. Currently, several advanced oxidation
54 processes (AOPs) have been employed to destruct the organic part of complexed metals [5, 6].

55 Of which, sulfate radical ($\text{SO}_4^{\cdot-}$) based AOPs are found to possess higher decomplexation
56 efficiency than hydroxyl radical ($\cdot\text{OH}$) based AOPs. Xu et al. compared the degradation of

57 Cu(II) -EDTA by UV/persulfate and UV/peroxide systems, and proposed that the advantages
58 of UV/persulfate system were mainly attributed to the better selectivity of $\text{SO}_4^{\cdot-}$ [7]. Despite

59 the efficiency of precipitation and coagulation in removing free metal ions, the cost of
60 chemical agents and sludge treatment is often unaffordable [8, 9]. Fortunately, some
61 elaborately designed AOPs systems have achieved the goal of simultaneous decomplexation
62 and metal recovery. For instance, satisfactory Cu(II) -EDTA degradation and Cu(II) recovery

63 were realized in a combined electro-oxidation and electro-coagulation (EO-EC) reactor, with
64 COD and Cu(II) removal of 85.01% and 99.85%, respectively [3]. Zhao et al. introduced a
65 method for the photolysis of Cu(II)-EDTA and the simultaneous reduction of Cu(II) under
66 UV irradiation, where EDTA was mineralized by radicals and Cu(II) was reduced to
67 recoverable Cu⁰ [10]. Notably, while decomplexation requires only oxidants, the recovery of
68 heavy metal ions depends on energy input, complicating pollution remediation.

69 Developments in heterogeneous catalysts with activation and adsorption functions have
70 alleviated this issue. The simultaneous decomposition of complex and the immobilization of
71 free metal ions by a catalyst/oxidant system can effectively control the risk diffusion of
72 complexed metals [11, 12]. For example, Ti₃C₂T_x played the triple roles as activator for
73 peroxyomonosulfate (PMS) activation, reductant for triggering Cu(II)/Cu(I) cycle and
74 absorbent for Cu ions recovery in the Ti₃C₂T_x/PMS system [13]. Layered double hydroxides
75 (LDHs) with special spatial structure and abundant surface functional groups have been
76 widely used in catalysis and adsorption, especially in the treatment of heavy metal pollution
77 [14-16]. Efficient Cu(II) removal was achieved through Cu(OH)₂ precipitation on the LDH
78 surface or by isomorphic substitution of divalent metals at the octahedral sites of LDH layers
79 [17, 18]. Importantly, the interlayer confined space of LDHs serves as an ideal catalyst
80 immobilization site, preventing catalyst loss and alleviating active site passivation [19]. Chen
81 et al. constructed a LDHs confined single-atom cobalt catalyst for the PMS activation. The
82 positively charged LDHs can stabilize PMS and enable it to be effectively activated by the
83 intercalated single-atom cobalt [20].

84 Based on the above, we designed a $[\text{Co}_4(\text{PW}_9\text{O}_{34})_2]$ polyoxometalate cluster (CoPW)
85 intercalated CaFe-LDH (LDH-CoPW) to activate PMS for simultaneous Cu(II)-EDTA
86 decomplexation and Cu(II) resourcelization. The physicochemical properties and
87 microstructure of LDH-CoPW were thoroughly characterized. The removal of Cu(II)-EDTA
88 and the control of released Cu(II) by the LDH-CoPW/PMS system was assessed.
89 Furthermore, we revealed the underlying catalytic mechanism of the LDH-CoPW/PMS
90 system and evaluated its resourcelization prospect based on the electrochemical performance
91 of the used LDH-CoPW. This study not only proposes a reasonable method for handling
92 complexed metal pollution, but also provides a new idea for the reuse of waste catalysts.

93 **2. Materials and methods**

94 *2.1. Chemicals*

95 Potassium peroxyomonosulfate was acquired from Sigma-Aldrich®, and other reagents
96 were purchased from Sinopharm Chemical Reagent Co., Ltd., China. All reagents were
97 analytical grade and used as received without further purification. Ultrapure water was used
98 in all experiments.

99 *2.2. Synthesis of LDH-CoPW*

100 CaFe-LDH was first prepared as the host of CoPW. Briefly, 4.72 g of $\text{Ca}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$
101 and 4.04 g of $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ were dissolved in 100 mL of ultrapure water labeled as A. Then,
102 2.4 g of NaOH was dissolved in another 100 mL of ultrapure water labeled as B.
103 Subsequently, A solution was dropwise added to B solution with vigorous stirring under
104 nitrogen atmosphere. Subsequently, the obtained suspension was aged at 60 °C for 10 h to

105 gain CaFe-LDH. CoPW was synthesized according to the previous literature [21].
106 LDH-CoPW was synthesized via a convenience ion exchange method at room temperature.
107 CaFe-LDH and CoPW were ultrasonically dispersed in 200 mL of ultrapure water at the mass
108 ratio of 1:1. Then, the reaction was kept at 60 °C for 3 h. After filtration, washing and drying,
109 the collected powder was named LDH-CoPW.

110 Characterization, experimental and analytic methods are provided in [Texts S1-S6](#) and
111 [Tab. S1](#) in [Supporting Information](#).

112 **3. Results and discussion**

113 *3.1. Catalysts characterization*

114 XRD analysis was employed to ascertain the crystalline phase of LDH-CoPW and
115 CaFe-LDH. [Fig. S1](#) illustrates distinct peaks observed at $2\theta = 6.8^\circ$, 18.7° and 28.8° ,
116 corresponding to the (003), (006) and (009) lattice planes of CaFe-LDH (JCPDS#44-0445),
117 respectively [22, 23]. Upon substituting NO_3^- with CoPW in the interlayer of CaFe-LDH, a
118 notable shift in lattice reflection toward lower 2θ values was observed compared to pristine
119 CaFe-LDH, indicative of successful CoPW intercalation [24, 25]. Particularly, the primary
120 diffraction peak corresponding to the d value provides crucial insights into the interlayer
121 distance [26, 27]. Calculation reveals that the basal spacing of LDH-CoPW (17.9 Å)
122 significantly surpassed that of CaFe-LDH (8.2 Å), consistent with previous observations [21,
123 28]. Furthermore, the interlayer spacing, determined as 13.1 Å by subtracting the height of
124 the host layer (4.8 Å), aligned well with the diameter of the b axis of CoPW [21, 28].

125 The elemental valence information of LDH-CoPW and CaFe-LDH were analyzed using

126 XPS. [Fig. S2a](#) shows that no significant difference between the elemental valence of Fe in
127 CaFe-LDH and LDH-CoPW, suggesting that the intercalated CoPW would not react with
128 CaFe-LDH and lead to the structural collapse of CaFe-LDH. Furthermore, for the XPS
129 spectra of O1s ([Fig. S2b](#)), the intercalation of CoPW resulted in the decrease of adsorbed
130 oxygen (O_O) and the increase of hydroxyl oxygen (O_{OH}) in CaFe-LDH. This can be attributed
131 to the increase in interlayer spacing of CaFe-LDH, which led to the escape of adsorbed
132 oxygen and the exposure of surface hydroxyl groups, which was beneficial for the adsorption
133 of metal ions.

134 HR-TEM was utilized to examine the microstructure of LDH-CoPW. As depicted in [Fig. 1a](#), LDH-CoPW displayed the characteristic lamellar structure of brucite, with nanosheets
135 standing up in bulk aggregates, exhibiting a mean size of 50 nm. This observation suggests
136 the structural stability of CaFe-LDH during the ion exchange process, as CaFe-LDH also
137 possessed typical layered structure ([Fig. S3](#)). The lattice plane distances were measured to be
138 0.47 and 0.31 nm corresponding to the (006) and (009) planes, respectively, which was
139 indeed evidenced in the polycrystalline diffraction rings of LDH-CoPW. Furthermore,
140 elemental content analysis and EDS mapping of LDH-CoPW ([Fig. 1b and c](#)) confirm the
141 uniform distribution of Ca, Fe, O, Co, P and W elements in the prepared catalyst. Notably, the
142 relative content of Co attributed to CoPW was significantly lower than that of Fe,
143 representing CaFe-LDH, indicating that CoPW was more likely to be intercalated within the
144 CaFe-LDH interlayer rather than simply loaded onto the surface.

146 *3.2. Catalytic performance evaluation*

147 As depicted in [Fig. 2a](#), the combination of LDH-CoPW and PMS led to 98.3% of
148 Cu(II)-EDTA removal within 3 min of reaction time. Conversely, LDH-CoPW could barely
149 adsorb Cu(II)-EDTA, and negligible removal was achieved through direct PMS oxidation,
150 underscoring the enhancement of PMS activation by LDH-CoPW. The catalytic activity of
151 CaFe-LDH was also examined. Only ~20% of Cu(II)-EDTA was removed under the same
152 conditions. Furthermore, the pseudo-first-order reaction rate constant (k_{obs}) for the
153 LDH-CoPW/PMS and CaFe-LDH/PMS systems were 0.41 and 0.03 min^{-1} , respectively,
154 indicating that the catalytic site responsible for PMS activation was CoPW rather than
155 CaFe-LDH. Moreover, the turnover frequency values (TOF) of some reported catalysts were
156 calculated by dividing the product of Cu(II)-EDTA concentration and k_{obs} values by the
157 product of catalyst dosage and PMS dosage. As calculated, the TOFs of calcite, MSBC, and
158 ZIF-67 were 0.0007 [\[29\]](#), 0.007 [\[30\]](#), and 0.08 [\[31\]](#), which were much lower than that of
159 LDH-CoPW (0.41). This indicates that the proposed catalytic system possessed advantages in
160 the rapid elimination of Cu(II)-EDTA from water.

161 [Fig. 2b](#) shows the synchronous removal of released Cu(II) by LDH-CoPW. Compared to
162 the rapid degradation of Cu(II)-EDTA, the immobilization of Cu(II) took longer. However,
163 49.6% of Cu(II) was still adsorbed within 60 min of reaction time, indicating that the
164 LDH-CoPW/PMS system possessed potential of controlling pollution diffusion. The
165 adsorption of Cu(II) on the LDH-CoPW surface was further verified using XRD and XPS
166 analysis. As shown in [Fig. S4a](#), compared to the XRD pattern of fresh LDH-CoPW, the
167 typical diffraction peak representing (006) and (009) crystal planes shifted from low angle to

168 high angle, suggesting the successful substitution of Ca(II) by Cu(II), which was consistent
169 with previous literatures. As can be seen in [Fig. S4b](#), the formation of Cu-OH and Cu-O in
170 the used LDH-CoPW suggests the isomorphic substitution of Ca(II) with Cu(II) at the
171 octahedral sites of LDHs layers. Moreover, the shift of O 1s towards higher binding energy
172 indeed confirms this process ([Fig. S4c](#)) [32, 33]. It should be noted that the adsorption
173 efficiency of Cu(II) was much lower than the decomplexation efficiency of Cu(II)-EDTA.
174 This could be attributed to the strong oxidation environment induced by the catalytic system
175 caused the high concentration of Cu(II) to be released rapidly, while the adsorption sites of
176 LDHs was limited. Therefore, more attention should be paid to the concentration variation of
177 Cu(II) in aqueous solution rather than the degradation efficiency of Cu(II)-EDTA in
178 real-world application.

179 To evaluate the mineralization capacity of the LDH-CoPW/PMS system, TOC removal
180 was monitored during the reaction. As depicted in [Fig. 2c](#), with 98.3% of Cu(II)-EDTA was
181 degraded, only 17.0% of TOC was eliminated within 3 min of reaction time, suggesting the
182 recalcitrance of EDTA in the environment. Notably, extending the reaction time to 20 min led
183 to an improved mineralization rate of 17.2%, underlining the sustained oxidation capacity of
184 the LDH-CoPW/PMS system. However, with extending the reaction time from 20 min to 60
185 min, TOC removal only increased from 34.2% to 48.3%, which may be due to the lack of
186 oxidants in the later stage of the reaction. The effect of reaction temperature on Cu(II)-EDTA
187 degradation was investigated ([Fig. 2d](#)), revealing that higher temperatures facilitated PMS
188 activation by LDH-CoPW. The k_{obs} values for Cu(II)-EDTA degradation at 15 °C, 25 °C,

189 35 °C and 45 °C were 0.16, 0.41, 1.39, and 2.61 min⁻¹, respectively. Additionally, a linear
190 relationship between $\ln(k_{obs})$ and the reciprocal of the reaction temperature (1/T) was
191 observed, with the activation energy (Ea) for PMS by LDH-CoPW calculated to be 67.4
192 kJ/mol. Considering that the Ea for diffusion-controlled reactions is typically between 10-13
193 kJ/mol, therefore, the catalytic reaction was governed by surface chemical reactions rather
194 than mass transfer [34].

195 *3.3. Catalytic mechanisms analysis*

196 *3.3.1. Reactive species identification*

197 Various reactive species (RSs) has been found that could be generated in the catalytic
198 system during PMS activation [35, 36]. Hence, it is imperative to identify the RSs present in
199 the LDH-CoPW/PMS system. ESR analysis was employed to recognize $\text{SO}_4^{\cdot-}$, $\cdot\text{OH}$,
200 superoxide radical ($\text{O}_2^{\cdot-}$) and singlet oxygen ($^1\text{O}_2$) using 5,5-dimethyl-1-pyrroline N-oxide
201 (DMPO) and 2,2,6,6-Tetramethylpiperidine (TEMP) as the trapping agents [37, 38]. Fig. 3a
202 reveals a weak characteristic signal attributed to 5,5-dimethyl-1-pyrrolidone-2-oxy-1
203 (DMPOX) adducts in the LDH-CoPW/PMS system, instead of the signals of DMPO- $\text{SO}_4^{\cdot-}$
204 and DMPO- $\cdot\text{OH}$ adducts. Recent studies have proposed that Co(IV)=O can directly oxidize
205 DMPO to form DMPOX, potentially leaving misleading information [39]. Moreover,
206 compared with the feeble signals of DMPO- $\text{O}_2^{\cdot-}$, the three-line characteristic signals
207 observed in Fig. 3b were attributed to TEMP- $^1\text{O}_2$ adducts, indicating the formation of $^1\text{O}_2$ in
208 the LDH-CoPW/PMS system [40].

209 Then, methanol (MeOH) ($k_{[\text{MeOH},\text{OH}]}=1.2-2.8\times10^7$ M⁻¹s⁻¹; $k_{[\text{MeOH},\text{SO}_4^{\cdot-}]}=1.7-7.7\times10^7$

210 $M^{-1}s^{-1}$), tert-butanol (TBA) ($k_{[TBA,OH]}=3.8-7.6\times10^8 M^{-1}s^{-1}$), furfuryl alcohol (FFA)
211 ($k_{[FFA,OH]}=1.5\times10^{10} M^{-1}s^{-1}$; $k_{[FFA,1O_2]}=1.2\times10^8 M^{-1}s^{-1}$) and dimethylsulfoxide (DMSO)
212 ($k_{[DMSO,Co(IV)=O]}=2.4\times10^6 M^{-1}s^{-1}$) were used as quenching agents to further confirm the RSs in
213 the system [41]. As shown in Fig. S5, with 100 mM of TBA and MeOH was added into the
214 solution, Cu(II)-EDTA removal decreased to 78.5% and 9.6%, respectively, highlighting the
215 significant role of SO_4^{2-} in the system. In addition, the presence of 1 mM FFA almost
216 terminated the reaction, with the k_{obs} value for Cu(II)-EDTA degradation decreasing to 0.02
217 min^{-1} . As for Co(IV)=O, Cu(II)-EDTA degradation was barely effected by the addition of 100
218 mM DMSO. However, the results did not correspond well with ESR analysis. Generally, it is
219 impossible for MeOH and FFA to completely terminate Cu(II)-EDTA degradation
220 simultaneously, as they are capture agents for SO_4^{2-} and 1O_2 , respectively.

221 3.3.2. Reactive species exposure

222 Due to the varying reactivity of different RSs towards Cu(II)-EDTA, we reassessed the
223 contribution of SO_4^{2-} , $\cdot OH$, 1O_2 , and Co(IV)=O to Cu(II)-EDTA degradation. To avoid
224 potential misinterpretations from traditional probe experiments, a probe-based kinetic model
225 proposed by Wang's group was employed to evaluate the exposure and contribution of RSs to
226 Cu(II)-EDTA removal (details in Text S4) [42]. Notably, all four probes were rapidly
227 degraded by the LDH-CoPW/PMS system, affirming the presence of these RSs in the
228 solution. It is worth noting that the probes can hardly be removed within 0.5 min, which may
229 be due to the mass transfer limitation of PMS (Fig. S6a). Subsequently, we determined RSs
230 exposure by selectively fitting the probes degradation. As illustrated in Fig. S6b, the k_{obs} for

231 ATZ, PMD, MTZ, and PMSO degradation were calculated as 0.48, 0.57, 1.43 and 0.56 min⁻¹,
232 respectively. Through calculations, ·OH exposure was nearly undetectable, while the
233 exposures of SO₄^{·-}, ¹O₂, and Co(IV)=O continuously increased during the catalytic reaction,
234 reaching 3.4×10⁻¹⁰, 7.7×10⁻⁹ and 5.4×10⁻⁷ M s at 3 min, respectively (Fig. 3c). Furthermore,
235 the transient concentration variations of RSs during the reaction were estimated (details in
236 Text S5). As indicated in Fig. 3d, the concentrations of SO₄^{·-}, ¹O₂, and Co(IV)=O gradually
237 increased to 8.8×10⁻¹⁴, 2.0×10⁻¹², and 1.4×10⁻¹⁰ M within 3 min, respectively. Remarkably,
238 the concentration of Co(IV)=O remained approximately 10²-10⁴ times higher than that of
239 SO₄^{·-} and ¹O₂ throughout the reaction, underscoring the dominant role of Co(IV)=O in the
240 LDH-CoPW/PMS system. Based on these observations, we calculated the contributions of
241 different RSs to Cu(II)-EDTA degradation as described in the inserted figure in Fig. 3c
242 (details in Text S5). Although the concentration of ¹O₂ in the LDH-CoPW/PMS system was
243 two orders of magnitude higher than that of SO₄^{·-}, its contribution to Cu(II)-EDTA
244 attenuation was only 3.8%, while the contribution of SO₄^{·-} was 14.7%. Conversely, the
245 contribution of Co(IV)=O, with its long-acting oxidation capacity, selectivity, and high
246 concentration, to Cu(II)-EDTA degradation was as high as 80.9%. [43]. As demonstrated by
247 the advantages of catalytic systems in TOC removal, the longer half-life of Co(IV)=O
248 compared to free radicals endows it with sustained oxidative activity. In addition, as a
249 nonradical pathway, its inertness to water substrates also endows Co(IV)=O with flexibility in
250 environmental remediation, as Co(IV)=O is not as easily quenched as free radicals. This
251 makes the LDH-CoPW/PMS system a favorable candidate for the remediation of

252 Cu(II)-EDTA pollution.

253 *3.3.3. Mechanism of PMS activation*

254 To explore the mechanism of PMS activation by LDH-CoPW, the element valence of
255 fresh and used LDH-CoPW were determined using XPS. From [Fig. 4](#), the 2p orbit can be
256 divided into $2p_{1/2}$ and $2p_{3/2}$, representing the same elemental information. Herein, taking $2p_{3/2}$
257 as an example, Co(III) and Co(II) are represented by peaks at binding energies of 780.8 and
258 784.9 eV, respectively ([Fig. 4a](#)). Significantly, both single-electron transfer processes related
259 to free radicals and double-electron transfer processes related to Co(IV)=O involve the
260 oxidation of lower-valence cobalt species to higher-valence states [\[44, 45\]](#). However, the
261 relative content of Co(II) decreased after the reaction ([Tab. S3](#)). Given the catalytic inertness
262 of CaFe-LDH, this result is unlikely due to competitive activation of PMS by iron species.
263 Therefore, it can be reasonably concluded that although iron species cannot directly activate
264 PMS, it can endow LDH-CoPW with high catalytic activity of by promoting the redox cycle
265 of cobalt species. As shown in [Fig. 4b](#), the peak intensities of Fe(III) and Fe(II) at binding
266 energies of 712.2 and 710.0 eV changed from 31.6% and 68.4% to 37.5% and 62.5%,
267 respectively ([Tab. S3](#)), confirming this process.

268 Therefore, the process of Cu(II)-EDTA degradation and Cu(II) immobilization by the
269 LDH-CoPW/PMS system is described in [Fig. 5](#). Upon addition of PMS, CoPW confined in
270 the CaFe-LDH interlayer can capture PMS to form CoPW-OOSO_3^- intermediate. Hence, the
271 bonded PMS would be reduced to SO_4^{2-} through a double-electron transfer process.
272 Meanwhile, Co(IV)=O with strong oxidation was concomitantly produced, which possesses

273 high selectivity for Cu(II)-EDTA. Along with the oxidation of Cu(II)-EDTA, Co(IV)=O is
274 continuously converted into non renewable Co(III). Fortunately, Fe(II) on the CaFe-LDH
275 layer can accelerate the reduction of Co(III) to Co(II), thus ensuring the continuous
276 production of Co(IV)=O. Meanwhile, due to the buffering of CaFe-LDH, the coordination of
277 CoPW and PMS via inner/outer sphere interaction would not be interfered with by ClO_4^- and
278 PO_4^{3-} (Fig. S7), ensuring the environmental resistance of the LDH-CoPW/PMS system.
279 Under the attack of Co(IV)=O, Cu(II)-EDTA can be rapidly degraded. Of which, EDTA is
280 deeply mineralized to inorganic carbon/nitrogen, and the released Cu(II) is immobilized on
281 the CaFe-LDH layer via isomorphic substitution of Ca(II).

282 *3.4. Effect of key parameters*

283 The broad operational range of pH is crucial for the potential application of LDH-CoPW.
284 In Fig. S8a, the LDH-CoPW/PMS system exhibited satisfactory performance across acidic
285 and alkaline solutions, with the k_{obs} values for Cu(II)-EDTA degradation at pH 3.0, 5.0, 7.0,
286 and 9.0 being recorded as 0.27, 0.25, 0.60 and 0.92 min^{-1} , respectively. The slight suppressed
287 performance of the LDH-CoPW/PMS system at lower pH conditions can be attributed to the
288 scavenging of $\text{SO}_4^{\cdot-}$ and ${}^1\text{O}_2$ by H^+ might inhibit their secondary contribution to Cu(II)-EDTA
289 degradation [46, 47]. Then, the zeta potential of LDH-CoPW was tested to further understand
290 the effect of electrostatic force on the catalytic process (data not provided). LDH-CoPW was
291 negatively charged within the studied range of pH, and its potential decreased with the
292 elevation of pH. However, this was not consistent with the better performance of catalytic
293 system under alkaline conditions, as negatively charged catalyst exhibits significant

294 electrostatic repulsion with PMS molecule. Therefore, the better catalytic efficiency of the
295 catalytic system at higher pH conditions may be due to the fact that the higher reactivity of
296 SO_5^{2-} than HSO_5^- , and the negative impact of electrostatic repulsion in the catalytic reaction
297 process is not the decisive factor [48].

298 The effect of coexisting anions on the LDH-CoPW/PMS system was investigated. As
299 depicted in Fig. S8b, the presence of Cl^- notably inhibited Cu(II)-EDTA degradation,
300 particularly at higher Cl^- concentrations, resulting in a decline in k_{obs} for Cu(II)-EDTA
301 degradation to 0.05 min^{-1} at a Cl^- concentration of 10 mM. This inhibition could be attributed
302 to the direct consumption of PMS by excessive Cl^- , leading to the formation of chlorine
303 oxidants, which cannot be effectively utilized by LDH-CoPW [49, 50]. Meanwhile, the
304 addition of SO_4^{2-} slightly compromised the catalytic efficiency of the LDH-CoPW/PMS
305 system, with the k_{obs} values for Cu(II)-EDTA degradation being recorded as 0.38, 0.35, and
306 0.37 min^{-1} in the presence of 1, 5, and 10 mM of SO_4^{2-} , respectively (Fig. S8c). From Fig. 5,
307 it can be seen that PMS bonds to the active site and undergoes oxygen transfer to form
308 Co(IV)=O , which involves the release of SO_4^{2-} . Therefore, the addition of SO_4^{2-} can lower
309 the decomposition potential of HSO_5^- , thereby suppressing the formation of Co(IV)=O [51].
310 However, with the buffer of confined space, this negative impact was reduced to an
311 acceptable level. Similarly, the slight inhibitory effect of NO_3^- on the reactivity of the
312 LDH-CoPW/PMS system can also be attributed to the protection of the internal catalytic sites
313 by CaFe-LDH. Overall, the influence of coexisting anions on the performance of the catalytic
314 system was limited, indicating promising application prospects for the LDH-CoPW/PMS

315 system.

316 As shown in [Fig. S9a](#), the effect of initial pH on Cu(II) immobilization was consistent
317 with the degradation of Cu(II)-EDTA. Along with the rapid degradation of Cu(II)-EDTA
318 under alkaline conditions, the released Cu(II) did not accumulate significantly in the solution,
319 which can be attributed to the alkaline environment promoting surface hydroxylation of
320 CaFe-LDH, thereby facilitating the isomorphic substitution reaction between CaFe-LDH and
321 free Cu(II). Furthermore, we investigate the influence of coexisting anions on the adsorption
322 of Cu(II). As shown in [Fig. S9b](#), the presence of Cl^- inhibited Cu(II)-EDTA degradation and
323 also possessed adverse effect on the subsequent Cu(II) immobilization. The low efficiency of
324 the decomplexation process prevented Cu(II) from being captured by the adsorption sites of
325 CaFe-LDH. For SO_4^{2-} and NO_3^- ([Fig. S9c](#) and [d](#)), the slight suppression of Cu(II)
326 immobilization might only be induced by the decrease in the efficiency of Cu(II)-EDTA
327 decomplexation, and these coexisting anions barely effected the adsorption process of Cu(II)
328 by CaFe-LDH.

329 The multi-cycle durability of the LDH-CoPW/PMS system was assessed as shown in
330 [Fig. S10](#), the catalytic system not only possessed remarkable potential in removing
331 Cu(II)-EDTA, but also exhibited satisfactory stability. Cu(II)-EDTA removal in the first,
332 second, third, and fourth cycles were 98.3%, 100%, 97.5%, and 94.5%, respectively.
333 However, compared with the superior degradation efficiency, the recovery performance of Cu
334 was almost completely lost in only the second cycle (data not provided). This suggests that
335 Cu(II) immobilized by chemical adsorption cannot be removed by simple washing methods,

336 which forced us to seek a more reasonable way of catalyst reuse.

337 *3.5. Copper resourcelization*

338 Promoting the use of clean energy is crucial to achieving carbon neutrality. Thus,

339 exploring more efficient strategies for obtaining clean energy has attracted great attention.

340 Water splitting is a promising approach to obtain hydrogen energy, a type of clean energy

341 with zero pollution emissions. Unfortunately, due to the kinetic sluggishness of the four

342 electron transfer process, oxygen evolution reaction (OER), as the half reaction of water

343 splitting, is considered the bottleneck of electrochemical water splitting [52]. Therefore,

344 low-cost and high activity OER electrocatalysts are urgently needed to alleviate the

345 embarrassment. Among all the materials capable of catalyzing OER, LDHs stand out as one

346 of the most effective electrocatalysts owing to their compositional and structural flexibility.

347 Specifically, LDHs composed of transition metals (Co, Fe, Ni, et al.) have been proven to

348 exhibit superior OER performance [53]. Recent studies indicate that the high electron

349 conductivity and d-electron abundance of Cu can promote the OH⁻ adsorption and electron

350 transport at active sites, thus improving the OER kinetics of the catalyst [54]. Thus, used

351 LDH-CoPW is expected to be as a potential OER catalyst.

352 Firstly, the OER performance of CaFe-LDH, fresh LDH-CoPW and used LDH-CoPW in

353 1.0 M KOH was tested. From the linear sweep voltammetry (LSV) curves (Fig. 6a), it is

354 evident that CaFe-LDH was electrochemically inert, and the slope of used LDH-CoPW was

355 higher than that of fresh LDH-CoPW. These results manifest that used LDH-CoPW possessed

356 better electrocatalytic OER activity than CaFe-LDH and fresh LDH-CoPW [55]. Moreover,

357 electrochemical impedance spectroscopy (EIS) test was performed to compare the charge
358 transfer properties. The EIS curves consist of two distinct semicircles. The high-frequency
359 semicircle and the low-frequency semicircle are associated with charge transfer resistance
360 and mass-diffusion process, respectively [56]. As shown in Fig. 6b, it can be found that used
361 LDH-CoPW exhibited a smaller high-frequency semicircle diameter compared to CaFe-LDH
362 and fresh LDH-CoPW, indicating lower charge transfer resistance for water oxidation in the
363 used LDH-CoPW compared to CaFe-LDH and fresh LDH-CoPW [55].

364 **4. Conclusion**

365 Proper disposal of Cu(II)-EDTA pollution was achieved by the LDH-CoPW/PMS
366 catalytic system in this work. The following conclusions can be drawn.

367 i) The combination of LDH-CoPW and PMS enabled both ultrafast Cu(II)-EDTA
368 removal and acceptable Cu recovery.

369 ii) Instead of free radical and ${}^1\text{O}_2$, Co(IV)=O was determined as the dominate RSs using
370 a scientific probe-based kinetic model.

371 iii) Although CaFe-LDH was incapable of activating PMS, it ensured the reactivity of
372 the catalytic system by promoting the redox cycle of cobalt species.

373 iv) The regulation of Cu on the electronic structure of the catalyst improved the
374 electrochemical performance of used LDH-CoPW compared to fresh LDH-CoPW and
375 CaFe-LDH.

376 **Conflicts of interest**

377 The authors declare no conflict of interest.

378 **Acknowledgments**

379 This work was supported by National Natural Science Foundation of China (Grant No.
380 52300014 and 51978618), Zhejiang Provincial Natural Science Foundation of China (Grant
381 No. LQ24E080020 and LZ24E080005). The authors would like to thank Shiyanjia Lab
382 (www.shiyanjia.com) for the XPS analysis.

383 **References**

384 [1] Duan, G., Li, X., Ma, X., Zhong, W., Wang, S. High-efficiency adsorption removal for
385 Cu(II) and Ni(II) using a novel acylamino dihydroxamic acid chelating resin. *Sci. Total
386 Environ.* **2023**, 864, 160984.

387 [2] Wang, L., Guo, C., Qian, Q., Lang, D., Wu, R., Abliz, S., Wang, W., Wang, J. Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in
388 aqueous solutions. *Chemosphere* **2023**, 313, 137439.

390 [3] Song, P., Sun, C., Wang, J., Ai, S., Dong, S., Sun, J., Sun, S. Efficient removal of
391 Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation
392 process: Performance and mechanism study. *Chemosphere* **2022**, 287, 131971.

393 [4] Bai, W., Tang, R., Wu, G., Wang, W., Yuan, S., Xiao, L., Zhan, X., Hu, Z.-H. Co-precipitation of heavy metals with struvite from digested swine wastewater: Role of
394 suspended solids. *J. Hazard. Mater.* **2023**, 455, 131633.

396 [5] Zong, Y., Ji, W., Xie, Y., Wu, D. Overlooked oxidative role of Ni(III) in the enhanced
397 mineralization of Ni(II)-EDTA complex by ozonation. *Sep. Purif. Technol.* **2023**, 306, 122697.

398 [6] Zhang, Y., Li, D., She, L., Guo, F., Jia, F., Zhang, L., Ai, Z., Liu, X. Ball-milled
399 zero-valent iron with formic acid for effectively removing Cu(II)-EDTA accomplished by
400 EDTA ligands oxidative degradation and Cu(II) removal. *J. Hazard. Mater.* **2024**, 465, 133009.

401 [7] Xu, Z., Shan, C., Xie, B., Liu, Y., Pan, B. Decomplexation of Cu(II)-EDTA by
402 UV/persulfate and UV/H₂O₂: Efficiency and mechanism. *Appl. Catal. B-Environ.* **2017**, 200,
403 439-447.

404 [8] Yang, X., Liu, L., Wang, Y., Lu, T., Wang, Z., Qiu, G. Sustainable and reagent-free
405 cathodic precipitation for high-efficiency removal of heavy metals from soil leachate. *Environ.
406 Pollut.* **2023**, 320, 121002.

407 [9] Liu, J.-W., Fu, T., Sun, G.-D., Shen, X.-R., Liu, S., He, Y., Xu, Y., Zhao, H.-Z. A
408 versatile organic silicate aluminum hybrid coagulant for broad-spectrum removal of heavy
409 metal ions. *Chem. Eng. J.* **2023**, 472, 145005.

410 [10] Zhao, J., Hu, X., Kong, L., Peng, X. UV irradiation induced simultaneous reduction
411 of Cu(II) and degradation of EDTA in Cu(II)-EDTA in wastewater containing Cu(II)-EDTA. *J.
412 Hazard. Mater.* **2024**, 465, 133131.

413 [11] Wu, L., Garg, S., Xie, J., Zhang, C., Wang, Y., Waite, T.D. Electrochemical removal

414 of metal-organic complexes in metal plating wastewater: A comparative study of Cu-EDTA
415 and Ni-EDTA removal mechanisms. *Environ. Sci. Technol.* **2023**, 57, 12476-12488.

416 [12] Huang, J., Miao, X., Zhang, L., Yu, X., Liu, W., Huang, C. Synergistic effect and
417 mechanism of zero-valent iron activated persulfate on Cu(II)-EDTA decomplexation enhanced
418 with weak magnetic field. *J. Environ. Chem. Eng.* **2023**, 11, 111042.

419 [13] Zu, D., Song, H., Li, C., Wang, Y., Du, R., Zhou, R., Zhang, W., Pan, S., Cai, Y.,
420 Shen, Y., Yang, Z. Understanding the self-catalyzed decomplexation mechanism of Cu-EDTA
421 in $Ti_3C_2T_x$ MXene/peroxymonosulfate process. *Appl. Catal. B-Environ.* **2022**, 306, 121131.

422 [14] Zeng, H., Yang, B., Zhang, J., Zhu, H., Deng, J., Shi, Z., Zhou, S., Zhang, H., Cai, A.,
423 Deng, L. MnFe layered double hydroxides confined MnO_x for peroxymonosulfate activation:
424 A novel manner for the selective production of singlet oxygen. *Environ. Pollut.* **2024**, 348,
425 123865.

426 [15] Zeng, H., Zhu, H., Deng, J., Shi, Z., Zhang, H., Li, X., Deng, L. New insight into
427 peroxymonosulfate activation by CoAl-LDH derived CoOOH: Oxygen vacancies rather than
428 Co species redox pairs induced process. *Chem. Eng. J.* **2022**, 442, 136251.

429 [16] Farhan, A., Khalid, A., Maqsood, N., Iftekhar, S., Sharif, H.M.A., Qi, F., Sillanpää,
430 M., Asif, M.B. Progress in layered double hydroxides (LDHs): Synthesis and application in
431 adsorption, catalysis and photoreduction. *Sci. Total Environ.* **2024**, 912, 169160.

432 [17] Rojas, R. Effect of particle size on copper removal by layered double hydroxides.
433 *Chem. Eng. J.* **2016**, 303, 331-337.

434 [18] González, M.A., Pavlovic, I., Barriga, C. Cu(II), Pb(II) and Cd(II) sorption on
435 different layered double hydroxides. A kinetic and thermodynamic study and competing
436 factors. *Chem. Eng. J.* **2015**, 269, 221-228.

437 [19] Wu, J., Xie, Y., Li, Y., Jin, M., Liu, L., Pan, G., Wang, C., Li, F. Layered double
438 hydroxides-based metal nanocatalysts: Confinement engineering, microenvironment effect
439 and applications in catalytic conversion of biomass. *Coord. Chem. Rev.* **2023**, 497, 215437.

440 [20] Chen, C., Yan, M., Li, Y., Hu, Y., Chen, J., Wang, S., Wu, X.-L., Duan, X.
441 Single-atom co sites confined in layered double hydroxide for selective generation of
442 surface-bound radicals via peroxymonosulfate activation. *Appl. Catal. B-Environ.* **2024**, 340,
443 123218.

444 [21] Yin, Q., Tan, J.M., Besson, C., Geletii, Y.V., Musaev, D.G., Kuznetsov, A.E., Luo, Z.,
445 Hardcastle, K.I., Hill, C.L. A fast soluble carbon-free molecular water oxidation catalyst based
446 on abundant metals. *Science* **2010**, 328, 342-345.

447 [22] Xiong, W., Yang, M., Wang, J., Wang, H., Zhao, P., Li, Z., Liu, B., Kong, X., Duan,
448 H., Zhao, Y. Removal, recycle and reutilization of multiple heavy metal ions from
449 electroplating wastewater using super-stable mineralizer Ca-based layered double hydroxides.
450 *Chem. Eng. Sci.* **2023**, 279, 118928.

451 [23] Jiménez, A., Trujillano, R., Rives, V., Soria, M.A., Madeira, L.M., Vicente, M.Á.
452 CaAlFe-mixed metal oxides prepared from an aluminum salt-cake and their evaluation as CO_2
453 sorbents at moderate temperature. *Chem. Eng. J.* **2023**, 473, 145165.

454 [24] Yang, Q., Li, Z., Xu, B. Layered double hydroxide with interlayer quantum dots and
455 laminate defects for high-performance supercapacitor. *Adv. Funct. Mater.* **2023**, 33, 2300149.

456 [25] Hu, W., Chen, L., Geng, B., Song, Y., Wu, Z., Zheng, Q., Shan, G., Du, M. Effect of
457 intercalated anion in nickel-cobalt-layered double hydroxide on its supercapacitive properties.
458 *Chem. Eng. J.* **2023**, 468, 143694.

459 [26] Li, C., Yan, B., Xue, T., Tao, R., Song, Z., Qi, F., Zhang, F., Lei, X., Wang, Y.
460 Electron transfer degradation of ciprofloxacin by peroxydisulfate intercalated MgAlFe-layered
461 double hydroxides: Roles of laminate structure and interlayer peroxydisulfate. *Sep. Purif.*
462 *Technol.* **2023**, 312, 123385.

463 [27] Chen, Z., Wang, X., Han, Z., Zhang, S., Pollastri, S., Fan, Q., Qu, Z., Sarker, D.,
464 Scheu, C., Huang, M., Cölfen, H. Revealing the formation mechanism and optimizing the
465 synthesis conditions of layered double hydroxides for the oxygen evolution reaction. *Angew.*
466 *Chem. Int. Ed.* **2023**, 62, e202215728.

467 [28] Terzi, C.M., dos Santos, E.H., Carvalho, C., Prevot, V., Wypych, F., Forano, C.,
468 Nakagaki, S. MgAl and ZnAl layered double hydroxides modified with molybdate and
469 tungstate anions as catalysts for oxidation of cyclohexane. *Catal. Today* **2023**, 422, 114221.

470 [29] Chu, Z., Han, Z., Liu, H., Chen, T., Zou, X., Wang, H., Sun, F., Wang, H., Chen, D.
471 Autocatalytic degradation of Cu-EDTA in the Calcite/PMS system: Singlet oxygen and
472 Cu(III). *J. Hazard. Mater.* **2024**, 477, 135286.

473 [30] Xie, J., Liang, Z., Zhang, J., Zhao, Z., Cui, F. Synchronous decomplexation and
474 mineralization of copper complexes by activating peroxymonosulfate with magnetic bimetallic
475 biochar derived from municipal sludge. *Chemosphere* **2023**, 338, 139358.

476 [31] Wang, S., Guo, S., Du, X., Liu, Z., Yang, Y., Song, Y., Zhang, Q. One-step rapid
477 removal of Cu(II) complexes via dual-active-site MOF catalysis with Peroxymonosulfate:
478 Cooperative oxidation and adsorption. *Chem. Eng. J.* **2024**, 495, 153604.

479 [32] Li, Z., Zheng, S., Yan, J., Qian, P., Ye, S. Design and preparation of CaFe layered
480 double hydroxides for efficient treatment of fluorinated water deduced by tailored
481 sustained-release of Ca²⁺. *Chem. Eng. J.* **2024**, 480, 147950.

482 [33] Vasseghian, Y., Sezgin, D., Nguyen, D.C., Hoang, H.Y., Sari Yilmaz, M. A hybrid
483 nanocomposite based on CuFe layered double hydroxide coated graphene oxide for
484 photocatalytic degradation of trimethoprim. *Chemosphere* **2023**, 322, 138243.

485 [34] Saputra, E., Muhammad, S., Sun, H., Ang, H.-M., Tadé, M.O., Wang, S. Manganese
486 oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for
487 phenol degradation in aqueous solutions. *Appl. Catal. B-Environ.* **2013**, 142, 729-735.

488 [35] Yin, K., Wu, R., Shang, Y., Chen, D., Wu, Z., Wang, X., Gao, B., Xu, X.
489 Microenvironment modulation of cobalt single-atom catalysts for boosting both radical
490 oxidation and electron-transfer process in Fenton-like system. *Appl. Catal. B-Environ.* **2023**,
491 329, 122558.

492 [36] Yin, K., Shang, Y., Chen, D., Gao, B., Yue, Q., Xu, X. Redox potentials of pollutants
493 determining the dominate oxidation pathways in manganese single-atom catalyst
494 (Mn-SAC)/peroxymonosulfate system: Selective catalytic mechanisms for versatile pollutants.
495 *Appl. Catal. B-Environ.* **2023**, 338, 123029.

496 [37] Asif, M.B., Kang, H., Zhang, Z. Gravity-driven layered double hydroxide nanosheet
497 membrane activated peroxymonosulfate system for micropollutant degradation. *J. Hazard.*

498 *Mater.* **2022**, *425*, 127988.

499 [38] Sharmin, A., Asif, M.B., Zhang, G., Bhuiyan, M.A., Pramanik, B.K. Reactive layered
500 hydroxide membrane for advanced water treatment: Micropollutant degradation and
501 antifouling potential. *Chemosphere* **2024**, *359*, 142318.

502 [39] Zeng, H., Zhu, H., Deng, J., Liu, B., Zhou, S., Shi, Z., Deng, L. Tunable
503 peroxyomonosulfate activation by (−111) crystal plane exposed δ -MnO₂: Oxidant concentration
504 induced intrinsic mechanisms transformation. *Chem. Eng. J.* **2023**, *473*, 145222.

505 [40] Yin, K., Peng, L., Chen, D., Liu, S., Zhang, Y., Gao, B., Fu, K., Shang, Y., Xu, X.
506 High-loading of well dispersed single-atom catalysts derived from Fe-rich marine algae for
507 boosting Fenton-like reaction: Role identification of iron center and catalytic mechanisms.
508 *Appl. Catal. B-Environ.* **2023**, *336*, 122951.

509 [41] Zeng, H., Deng, L., Zhang, H., Zhou, C., Shi, Z. Development of oxygen vacancies
510 enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxyomonosulfate activation:
511 A highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole
512 degradation. *J. Hazard. Mater.* **2020**, *400*, 123297.

513 [42] Wang, H., Gao, L., Xie, Y., Yu, G., Wang, Y. Clarification of the role of singlet
514 oxygen for pollutant abatement during persulfate-based advanced oxidation processes:
515 Co₃O₄@CNTs activated peroxyomonosulfate as an example. *Water Res.* **2023**, *244*, 120480.

516 [43] Zhang, L., Qi, J., Chen, W., Yang, X., Fang, Z., Li, J., Li, X., Lu, S., Wang, L.
517 Constructing hollow multishelled microreactors with a nanoconfined microenvironment for
518 ofloxacin degradation through peroxyomonosulfate activation: Evolution of high-valence
519 cobalt-oxo species. *Environ. Sci. Technol.* **2023**, *57*, 16141-16151.

520 [44] Anipsitakis, G.P., Dionysiou, D.D., Gonzalez, M.A. Cobalt-mediated activation of
521 peroxyomonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride
522 ions. *Environ. Sci. Technol.* **2006**, *40*, 1000-1007.

523 [45] Wu, Q.-Y., Yang, Z.-W., Wang, Z.-W., Wang, W.-L. Oxygen doping of
524 cobalt-single-atom coordination enhances peroxyomonosulfate activation and high-valent
525 cobalt–oxo species formation. *Proc. Natl. Acad. Sci.* **2023**, *120*, e2219923120.

526 [46] Chen, X., Hu, X. Removal of NO_x and SO₂ from the coal-fired flue gas using a
527 rotating packed bed pilot reactor with peroxyomonosulfate activated by Fe(II) and heating.
528 *Energy Fuels* **2019**, *33*, 6707-6716.

529 [47] Zhao, Y., Sun, M., Zhao, Y., Wang, L., Lu, D., Ma, J. Electrified ceramic membrane
530 actuates non-radical mediated peroxyomonosulfate activation for highly efficient water
531 decontamination. *Water Res.* **2022**, *225*, 119140.

532 [48] Jijoe, P.S., Yashas, S.R., Shivaraju, H.P. Fundamentals, synthesis, characterization
533 and environmental applications of layered double hydroxides: a review. *Environ. Chem. Lett.*
534 **2021**, *19*, 2643-2661.

535 [49] Zhu, K.-A., Chen, X.-J., Yuan, C.-W., Bai, C.-W., Sun, Y.-J., Zhang, B.-B., Chen, F.
536 Orientated construction of visible-light-assisted peroxyomonosulfate activation system for
537 antibiotic removal: Significant enhancing effect of Cl. *J. Hazard. Mater.* **2023**, *445*, 130476.

538 [50] Guan, Y.-H., Ma, J., Liu, D.-K., Ou, Z.-f., Zhang, W., Gong, X.-L., Fu, Q.,
539 Crittenden, J.C. Insight into chloride effect on the UV/peroxyomonosulfate process. *Chem. Eng.*

540 J. **2018**, 352, 477-489.

541 [51] Lin, K., Liu, W., Gan, J. Oxidative removal of bisphenol a by manganese dioxide:
542 Efficacy, products, and pathways. *Environ. Sci. Technol.* **2009**, 43, 3860-3864.

543 [52] Cai, Z., Bu, X., Wang, P., Ho, J.C., Yang, J., Wang, X. Recent advances in layered
544 double hydroxide electrocatalysts for the oxygen evolution reaction. *J. Mater. Chem. A* **2019**, 7,
545 5069-5089.

546 [53] Lv, L., Yang, Z., Chen, K., Wang, C., Xiong, Y. 2D Layered double hydroxides for
547 oxygen evolution reaction: From fundamental design to application. *Adv. Energy Mater.* **2019**,
548 9, 1803358.

549 [54] Chanda, D., Kwon, H., Meshesha, M.M., Gwon, J.S., Ju, M., Kim, K., Yang, B.L.
550 Modulating interfacial electronic coupling of copper-mediated NiFe layered double hydroxide
551 nanoprisms via structural engineering for efficient OER in wireless photovoltaic-coupled and
552 anion exchange membrane water electrolysis. *Appl. Catal. B-Environ.* **2024**, 340, 123187.

553 [55] Zhai, Y., Ren, X., Sun, Y., Li, D., Wang, B., Liu, S. Synergistic effect of multiple
554 vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts.
555 *Appl. Catal. B-Environ.* **2023**, 323, 122091.

556 [56] Chen, R., Hung, S.-F., Zhou, D., Gao, J., Yang, C., Tao, H., Yang, H.B., Zhang, L.,
557 Zhang, L., Xiong, Q., Chen, H.M., Liu, B. Layered structure causes bulk NiFe layered double
558 hydroxide unstable in alkaline oxygen evolution reaction. *Adv. Mater.* **2019**, 31, 1903909.

559