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Abstract

Technologies used to handle metal pollution are often ineffective for complexed metals,
which have refractory biodegradability, high solubility, and strong mobility, posing
significant threats to the ecological environment. This work proposed a novel catalytic
system for the proper disposal of Cu(ll)-EDTA pollution. Polyoxometalate cluster
intercalated CaFe layered double hydroxide (LDH-CoPW) prepared through a mild and
convenience method was applied to activate peroxymonosulfate (PMS) for the degradation of
Cu(Il)-EDTA and the simultaneous immobilization of the released Cu(Il). Compared to direct
waste or complex regeneration of catalysts, the application of used LDH-CoPW in clean
energy production was proposed to further reduce carbon emissions. Under the combination
of 0.1 g/L of LDH CoPW and 0.1 mM of PMS, nearly 100% of Cu(Il)-EDTA was removed
within 3 min of reaction time, and 49.6% of Cu(ll) was adsorbed within 60 min of reaction
time. The second-order reaction kinetic constants of Co(IV)=0 with various probes were
confirmed by competition kinetics method. Based on this, Co(IV)=0O was identified as the
dominant RSs using a scientific probe-based kinetic model. Furthermore, CaFe-LDH did not
directly activate PMS but ensured the reactivity of the catalytic system by promoting the
redox cycle of cobalt species. Finally, due to the regulation of Cu on the electronic structure
of the catalyst, the electrochemical performance of the used LDH-CoPW surpassed that of

fresh LDH-CoPW and CaFe-LDH, showing great potential in clean energy production.

Keywords: Layered double hydroxides; Polyoxometalates; High valence metal;
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1. Introduction

Increasing heavy metal pollution has attracted global public attention due to its
environmental persistence and lethal toxicity [1, 2]. Due to the stable coordination of heavy
metals with organic compounds, complexed metals with refractory biodegradability, high
solubility and strong mobility can easily across water treatment process and pose potential
threats to the ecological environment [3]. Therefore, efficient strategies are urgently needed
to mitigate the harmfulness of complexed metals.

Although traditional methods such as precipitation, adsorption, and ion exchange are
sufficient for removing free metals ions, they are powerless to handle complexed metals.
Given the molecular structure of complexed metals, a two-step strategy is considered feasible.
Heavy metal ions, released from complexed metals via oxidative decomplexation, can be
subsequently removed by chemical precipitation [4]. Currently, several advanced oxidation
processes (AOPs) have been employed to destruct the organic part of complexed metals [5, 6].
Of which, sulfate radical (SO4s™) based AOPs are found to possess higher decomplexation
efficiency than hydroxyl radical ("OH) based AOPs. Xu et al. compared the degradation of
Cu(I)-EDTA by UV/persulfate and UV/peroxide systems, and proposed that the advantages
of UV/persulfate system were mainly attributed to the better selectivity of SO4™ [7]. Despite
the efficiency of precipitation and coagulation in removing free metal ions, the cost of
chemical agents and sludge treatment is often unaffordable [8, 9]. Fortunately, some
elaborately designed AOPs systems have achieved the goal of simultaneous decomplexation

and metal recovery. For instance, satisfactory Cu(ll)-EDTA degradation and Cu(ll) recovery
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were realized in a combined electro-oxidation and electro-coagulation (EO-EC) reactor, with
COD and Cu(ll) removal of 85.01% and 99.85%, respectively [3]. Zhao et al. introduced a
method for the photolysis of Cu(ll)-EDTA and the simultaneous reduction of Cu(ll) under
UV irradiation, where EDTA was mineralized by radicals and Cu(ll) was reduced to
recoverable Cu® [10]. Notably, while decomplexation requires only oxidants, the recovery of
heavy metal ions depends on energy input, complicating pollution remediation.

Developments in heterogeneous catalysts with activation and adsorption functions have
alleviated this issue. The simultaneous decomposition of complex and the immobilization of
free metal ions by a catalyst/oxidant system can effectively control the risk diffusion of
complexed metals [11, 12]. For example, TisC2Tx played the triple roles as activator for
peroxymonosulfate (PMS) activation, reductant for triggering Cu(ll)/Cu(l) cycle and
absorbent for Cu ions recovery in the TisCoTx/PMS system [13]. Layered double hydroxides
(LDHs) with special spatial structure and abundant surface functional groups have been
widely used in catalysis and adsorption, especially in the treatment of heavy metal pollution
[14-16]. Efficient Cu(ll) removal was achieved through Cu(OH)2 precipitation on the LDH
surface or by isomorphic substitution of divalent metals at the octahedral sites of LDH layers
[17, 18]. Importantly, the interlayer confined space of LDHs serves as an ideal catalyst
immobilization site, preventing catalyst loss and alleviating active site passivation [19]. Chen
et al. constructed a LDHs confined single-atom cobalt catalyst for the PMS activation. The
positively charged LDHSs can stabilize PMS and enable it to be effectively activated by the

intercalated single-atom cobalt [20].
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Based on the above, we designed a [Cos(PWs0z4)2] polyoxometalate cluster (CoPW)
intercalated CaFe-LDH (LDH-CoPW) to activate PMS for simultaneous Cu(ll)-EDTA
decomplexation and Cu(ll) resourcelization. The physicochemical properties and
microstructure of LDH-CoPW were thoroughly characterized. The removal of Cu(Il)-EDTA
and the control of released Cu(ll) by the LDH-CoPW/PMS system was assessed.
Furthermore, we revealed the underlying catalytic mechanism of the LDH-CoPW/PMS
system and evaluated its resourcelization prospect based on the electrochemical performance
of the used LDH-CoPW. This study not only proposes a reasonable method for handling
complexed metal pollution, but also provides a new idea for the reuse of waste catalysts.

2. Materials and methods

2.1. Chemicals
Potassium peroxymonosulfate was acquired from Sigma-Aldrich®, and other reagents
were purchased from Sinopharm Chemical Reagent Co., Ltd., China. All reagents were

analytical grade and used as received without further purification. Ultrapure water was used
in all experiments.
2.2. Synthesis of LDH-CoPW

CaFe-LDH was first prepared as the host of CoPW. Briefly, 4.72 g of Ca(NO3)2-4H20
and 4.04 g of Fe(NO3)3-9H20 were dissolved in 100 mL of ultrapure water labeled as A. Then,
2.4 g of NaOH was dissolved in another 100 mL of ultrapure water labeled as B.
Subsequently, A solution was dropwise added to B solution with vigorous stirring under

nitrogen atmosphere. Subsequently, the obtained suspension was aged at 60 °C for 10 h to
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gain CaFe-LDH. CoPW was synthesized according to the previous literature [21].
LDH-CoPW was synthesized via a convenience ion exchange method at room temperature.
CaFe-LDH and CoPW were ultrasonically dispersed in 200 mL of ultrapure water at the mass
ratio of 1:1. Then, the reaction was kept at 60 °C for 3 h. After filtration, washing and drying,
the collected powder was named LDH-CoPW.

Characterization, experimental and analytic methods are provided in Texts S1-S6 and
Tab. S1 in Supporting Information.
3. Results and discussion
3.1. Catalysts characterization

XRD analysis was employed to ascertain the crystalline phase of LDH-CoPW and
CaFe-LDH. Fig. S1 illustrates distinct peaks observed at 260 = 6.8°, 18.7° and 28.8°,
corresponding to the (003), (006) and (009) lattice planes of CaFe-LDH (JCPDS#44-0445),
respectively [22, 23]. Upon substituting NO3™ with CoPW in the interlayer of CaFe-LDH, a
notable shift in lattice reflection toward lower 26 values was observed compared to pristine
CaFe-LDH, indicative of successful CoPW intercalation [24, 25]. Particularly, the primary
diffraction peak corresponding to the d value provides crucial insights into the interlayer
distance [26, 27]. Calculation reveals that the basal spacing of LDH-CoPW (17.9 A)
significantly surpassed that of CaFe-LDH (8.2 A), consistent with previous observations [21,
28]. Furthermore, the interlayer spacing, determined as 13.1 A by subtracting the height of
the host layer (4.8 A), aligned well with the diameter of the b axis of COPW [21, 28].

The elemental valence information of LDH-CoPW and CaFe-LDH were analyzed using
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XPS. Fig. S2a shows that no significant difference between the elemental valence of Fe in
CaFe-LDH and LDH-CoPW, suggesting that the intercalated CoPW would not react with
CaFe-LDH and lead to the structural collapse of CaFe-LDH. Furthermore, for the XPS
spectra of Ol1s (Fig. S2b), the intercalation of CoPW resulted in the decrease of adsorbed
oxygen (Oo) and the increase of hydroxyl oxygen (Oonr) in CaFe-LDH. This can be attributed
to the increase in interlayer spacing of CaFe-LDH, which led to the escape of adsorbed
oxygen and the exposure of surface hydroxyl groups, which was beneficial for the adsorption
of metal ions.

HR-TEM was utilized to examine the microstructure of LDH-CoPW. As depicted in Fig.
la, LDH-CoPW displayed the characteristic lamellar structure of brucite, with nanosheets
standing up in bulk aggregates, exhibiting a mean size of 50 nm. This observation suggests
the structural stability of CaFe-LDH during the ion exchange process, as CaFe-LDH also
possessed typical layered structure (Fig. S3). The lattice plane distances were measured to be
0.47 and 0.31 nm corresponding to the (006) and (009) planes, respectively, which was
indeed evidenced in the polycrystalline diffraction rings of LDH-CoPW. Furthermore,
elemental content analysis and EDS mapping of LDH-CoPW (Fig. 1b and c) confirm the
uniform distribution of Ca, Fe, O, Co, P and W elements in the prepared catalyst. Notably, the
relative content of Co attributed to CoPW was significantly lower than that of Fe,
representing CaFe-LDH, indicating that CoPW was more likely to be intercalated within the
CaFe-LDH interlayer rather than simply loaded onto the surface.

3.2. Catalytic performance evaluation
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As depicted in Fig. 2a, the combination of LDH-CoPW and PMS led to 98.3% of
Cu(Il)-EDTA removal within 3 min of reaction time. Conversely, LDH-CoPW could barely
adsorb Cu(Il)-EDTA, and negligible removal was achieved through direct PMS oxidation,
underscoring the enhancement of PMS activation by LDH-CoPW. The catalytic activity of
CaFe-LDH was also examined. Only ~20% of Cu(ll)-EDTA was removed under the same
conditions. Furthermore, the pseudo-first-order reaction rate constant (kobs) for the
LDH-CoPW/PMS and CaFe-LDH/PMS systems were 0.41 and 0.03 min™, respectively,
indicating that the catalytic site responsible for PMS activation was CoPW rather than
CaFe-LDH. Moreover, the turnover frequency values (TOF) of some reported catalysts were
calculated by dividing the product of Cu(ll)-EDTA concentration and kops values by the
product of catalyst dosage and PMS dosage. As calculated, the TOFs of calcite, MSBC, and
ZIF-67 were 0.0007 [29], 0.007 [30], and 0.08 [31], which were much lower than that of
LDH-CoPW (0.41). This indicates that the proposed catalytic system possessed advantages in
the rapid elimination of Cu(l1)-EDTA from water.

Fig. 2b shows the synchronous removal of released Cu(ll) by LDH-CoPW. Compared to
the rapid degradation of Cu(Il)-EDTA, the immobilization of Cu(ll) took longer. However,
49.6% of Cu(ll) was still adsorbed within 60 min of reaction time, indicating that the
LDH-CoPW/PMS system possessed potential of controlling pollution diffusion. The
adsorption of Cu(ll) on the LDH-CoPW surface was further verified using XRD and XPS
analysis. As shown in Fig. S4a, compared to the XRD pattern of fresh LDH-CoPW, the

typical diffraction peak representing (006) and (009) crystal planes shifted from low angle to
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high angle, suggesting the successful substitution of Ca(ll) by Cu(ll), which was consistent
with previous literatures. As can be seen in Fig. S4b, the formation of Cu-OH and Cu-O in
the used LDH-CoPW suggests the isomorphic substitution of Ca(ll) with Cu(ll) at the
octahedral sites of LDHs layers. Moreover, the shift of O 1s towards higher binding energy
indeed confirms this process (Fig. S4c) [32, 33]. It should be noted that the adsorption
efficiency of Cu(ll) was much lower than the decomplexation efficiency of Cu(ll)-EDTA.
This could be attributed to the strong oxidation environment induced by the catalytic system
caused the high concentration of Cu(ll) to be released rapidly, while the adsorption sites of
LDHs was limited. Therefore, more attention should be paid to the concentration variation of
Cu(ll) in aqueous solution rather than the degradation efficiency of Cu(ll)-EDTA in
real-world application.

To evaluate the mineralization capacity of the LDH-CoPW/PMS system, TOC removal
was monitored during the reaction. As depicted in Fig. 2¢, with 98.3% of Cu(ll)-EDTA was
degraded, only 17.0% of TOC was eliminated within 3 min of reaction time, suggesting the
recalcitrance of EDTA in the environment. Notably, extending the reaction time to 20 min led
to an improved mineralization rate of 17.2%, underlining the sustained oxidation capacity of
the LDH-CoPW/PMS system. However, with extending the reaction time from 20 min to 60
min, TOC removal only increased from 34.2% to 48.3%, which may be due to the lack of
oxidants in the later stage of the reaction. The effect of reaction temperature on Cu(ll)-EDTA
degradation was investigated (Fig. 2d), revealing that higher temperatures facilitated PMS
activation by LDH-CoPW. The kobs values for Cu(ll)-EDTA degradation at 15 °C, 25 °C,

10
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35 °C and 45 °C were 0.16, 0.41, 1.39, and 2.61 min, respectively. Additionally, a linear
relationship between In(kos) and the reciprocal of the reaction temperature (1/T) was
observed, with the activation energy (Ea) for PMS by LDH-CoPW calculated to be 67.4
kJ/mol. Considering that the Ea for diffusion-controlled reactions is typically between 10-13
kJ/mol, therefore, the catalytic reaction was governed by surface chemical reactions rather
than mass transfer [34].
3.3. Catalytic mechanisms analysis
3.3.1. Reactive species identification

Various reactive species (RSs) has been found that could be generated in the catalytic
system during PMS activation [35, 36]. Hence, it is imperative to identify the RSs present in
the LDH-CoPW/PMS system. ESR analysis was employed to recognize SOs~, "OH,
superoxide radical (O2) and singlet oxygen (*O2) using 5,5-dimethyl-1-pyrroline N-oxide
(DMPO) and 2,2,6,6-Tetramethylpiperidine (TEMP) as the trapping agents [37, 38]. Fig. 3a
reveals a weak characteristic signal attributed to 5,5-dimethyl-1-pyrrolidone-2-oxy-I
(DMPOX) adducts in the LDH-CoPW/PMS system, instead of the signals of DMPO-SOs™
and DMPO-"OH adducts. Recent studies have proposed that Co(IV)=0 can directly oxidize
DMPO to form DMPOX, potentially leaving misleading information [39]. Moreover,
compared with the feeble signals of DMPO-O;", the three-line characteristic signals
observed in Fig. 3b were attributed to TEMP-10O; adducts, indicating the formation of 1O in
the LDH-CoPW/PMS system [40].

Then, methanol (MeOH) (Kveom,orj=1.2-2.8x10" Ms?:  Kpveom.sos1=1.7-7.7x107
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Mst), tert-butanol (TBA) (KreaoH=3.8-7.6x10% Mst), furfuryl alcohol (FFA)
(kirraoHj=1.5%x101% Mst: Kkipra102=1.2x108 Ms1) and dimethylsulfoxide (DMSO)
(kppmso,coavy=01=2.4x108 M1s1) were used as quenching agents to further confirm the RSs in
the system [41]. As shown in Fig. S5, with 100 mM of TBA and MeOH was added into the
solution, Cu(Il)-EDTA removal decreased to 78.5% and 9.6%, respectively, highlighting the
significant role of SO4™ in the system. In addition, the presence of 1 mM FFA almost
terminated the reaction, with the kobs Value for Cu(ll)-EDTA degradation decreasing to 0.02
mint. As for Co(1V)=0, Cu(ll)-EDTA degradation was barely effected by the addition of 100
mM DMSO. However, the results did not correspond well with ESR analysis. Generally, it is
impossible for MeOH and FFA to completely terminate Cu(ll)-EDTA degradation
simultaneously, as they are capture agents for SO4~ and 'O, respectively.
3.3.2. Reactive species exposure

Due to the varying reactivity of different RSs towards Cu(ll)-EDTA, we reassessed the
contribution of SO4™, "OH, 02, and Co(IV)=0 to Cu(ll)-EDTA degradation. To avoid
potential misinterpretations from traditional probe experiments, a probe-based kinetic model
proposed by Wang’s group was employed to evaluate the exposure and contribution of RSs to
Cu(I)-EDTA removal (details in Text S4) [42]. Notably, all four probes were rapidly
degraded by the LDH-CoPW/PMS system, affirming the presence of these RSs in the
solution. It is worth noting that the probes can hardly be removed within 0.5 min, which may
be due to the mass transfer limitation of PMS (Fig. S6a). Subsequently, we determined RSs
exposure by selectively fitting the probes degradation. As illustrated in Fig. S6b, the Kobs for
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ATZ, PMD, MTZ, and PMSO degradation were calculated as 0.48, 0.57, 1.43 and 0.56 min™,
respectively. Through calculations, "“OH exposure was nearly undetectable, while the
exposures of SO+, 102, and Co(IV)=0 continuously increased during the catalytic reaction,
reaching 3.4x1071°, 7.7x10° and 5.4x107 M s at 3 min, respectively (Fig. 3c). Furthermore,
the transient concentration variations of RSs during the reaction were estimated (details in
Text S5). As indicated in Fig. 3d, the concentrations of SO4™~, 102, and Co(IV)=0 gradually
increased to 8.8x10714, 2.0x10%2, and 1.4x10° M within 3 min, respectively. Remarkably,
the concentration of Co(IV)=0 remained approximately 102-10* times higher than that of
SO+~ and 'O throughout the reaction, underscoring the dominant role of Co(IV)=0 in the
LDH-CoPW/PMS system. Based on these observations, we calculated the contributions of
different RSs to Cu(ll)-EDTA degradation as described in the inserted figure in Fig. 3c
(details in Text S5). Although the concentration of 'Oz in the LDH-CoPW/PMS system was
two orders of magnitude higher than that of SO4™, its contribution to Cu(ll)-EDTA
attenuation was only 3.8%, while the contribution of SO4~ was 14.7%. Conversely, the
contribution of Co(IV)=0, with its long-acting oxidation capacity, selectivity, and high
concentration, to Cu(ll)-EDTA degradation was as high as 80.9%. [43]. As demonstrated by
the advantages of catalytic systems in TOC removal, the longer half-life of Co(IV)=0
compared to free radicals endows it with sustained oxidative activity. In addition, as a
nonradical pathway, its inertness to water substrates also endows Co(1V)=0 with flexibility in
environmental remediation, as Co(IV)=0 is not as easily quenched as free radicals. This
makes the LDH-CoPW/PMS system a favorable candidate for the remediation of
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Cu(Il)-EDTA pollution.
3.3.3. Mechanism of PMS activation

To explore the mechanism of PMS activation by LDH-CoPW, the element valence of
fresh and used LDH-CoPW were determined using XPS. From Fig. 4, the 2p orbit can be
divided into 2p1/2 and 2p3s, representing the same elemental information. Herein, taking 2pz.
as an example, Co(ll1) and Co(ll) are represented by peaks at binding energies of 780.8 and
784.9 eV, respectively (Fig. 4a). Significantly, both single-electron transfer processes related
to free radicals and double-electron transfer processes related to Co(IV)=0 involve the
oxidation of lower-valence cobalt species to higher-valence states [44, 45]. However, the
relative content of Co(ll) decreased after the reaction (Tab. S3). Given the catalytic inertness
of CaFe-LDH, this result is unlikely due to competitive activation of PMS by iron species.
Therefore, it can be reasonably concluded that although iron species cannot directly activate
PMS, it can endow LDH-CoPW with high catalytic activity of by promoting the redox cycle
of cobalt species. As shown in Fig. 4b, the peak intensities of Fe(lll) and Fe(ll) at binding
energies of 712.2 and 710.0 eV changed from 31.6% and 68.4% to 37.5% and 62.5%,
respectively (Tab. S3), confirming this process.

Therefore, the process of Cu(ll)-EDTA degradation and Cu(ll) immobilization by the
LDH-CoPW/PMS system is described in Fig. 5, Upon addition of PMS, CoPW confined in
the CaFe-LDH interlayer can capture PMS to form CoPW-OO0SO3" intermediate. Hence, the
bonded PMS would be reduced to SOs* through a double-electron transfer process.
Meanwhile, Co(IV)=0 with strong oxidation was concomitantly produced, which possesses
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high selectivity for Cu(ll)-EDTA. Along with the oxidation of Cu(ll)-EDTA, Co(IV)=0 is
continuously converted into non renewable Co(lll). Fortunately, Fe(ll) on the CaFe-LDH
layer can accelerate the reduction of Co(lll) to Co(ll), thus ensuring the continuous
production of Co(IV)=0. Meanwhile, due to the buffering of CaFe-LDH, the coordination of
CoPW and PMS via inner/outer sphere interaction would not be interfered with by CIO4 and
PO.* (Fig. S7), ensuring the environmental resistance of the LDH-CoPW/PMS system.
Under the attack of Co(IV)=0, Cu(ll)-EDTA can be rapidly degraded. Of which, EDTA is
deeply mineralized to inorganic carbon/nitrogen, and the released Cu(ll) is immobilized on
the CaFe-LDH layer via isomorphic substitution of Ca(ll).
3.4. Effect of key parameters

The broad operational range of pH is crucial for the potential application of LDH-CoPW.
In Fig. S8a, the LDH-CoPW/PMS system exhibited satisfactory performance across acidic
and alkaline solutions, with the kobs values for Cu(ll)-EDTA degradation at pH 3.0, 5.0, 7.0,
and 9.0 being recorded as 0.27, 0.25, 0.60 and 0.92 min™!, respectively. The slight suppressed
performance of the LDH-CoPW/PMS system at lower pH conditions can be attributed to the
scavenging of SO4™~ and O, by H* might inhibit their secondary contribution to Cu(11)-EDTA
degradation [46, 47]. Then, the zeta potential of LDH-CoPW was tested to further understand
the effect of electrostatic force on the catalytic process (data not provided). LDH-CoPW was
negatively charged within the studied range of pH, and its potential decreased with the
elevation of pH. However, this was not consistent with the better performance of catalytic
system under alkaline conditions, as negatively charged catalyst exhibits significant
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electrostatic repulsion with PMS molecule. Therefore, the better catalytic efficiency of the
catalytic system at higher pH conditions may be due to the fact that the higher reactivity of
SOs? than HSOs', and the negative impact of electrostatic repulsion in the catalytic reaction
process is not the decisive factor [48].

The effect of coexisting anions on the LDH-CoPW/PMS system was investigated. As
depicted in Fig. S8b, the presence of CI° notably inhibited Cu(ll)-EDTA degradation,
particularly at higher CI" concentrations, resulting in a decline in kops for Cu(ll)-EDTA
degradation to 0.05 min* at a CI- concentration of 10 mM. This inhibition could be attributed
to the direct consumption of PMS by excessive CI°, leading to the formation of chlorine
oxidants, which cannot be effectively utilized by LDH-CoPW [49, 50]. Meanwhile, the
addition of SO4*" slightly compromised the catalytic efficiency of the LDH-CoPW/PMS
system, with the kobs values for Cu(ll)-EDTA degradation being recorded as 0.38, 0.35, and
0.37 mint in the presence of 1, 5, and 10 mM of SO4>", respectively (Fig. S8c). From Fig. 5,
it can be seen that PMS bonds to the active site and undergoes oxygen transfer to form
Co(IV)=0, which involves the release of SO4*". Therefore, the addition of SO4>~ can lower
the decomposition potential of HSOs, thereby suppressing the formation of Co(1V)=0 [51].
However, with the buffer of confined space, this negative impact was reduced to an
acceptable level. Similarly, the slight inhibitory effect of NO3z™ on the reactivity of the
LDH-CoPW/PMS system can also be attributed to the protection of the internal catalytic sites
by CaFe-LDH. Overall, the influence of coexisting anions on the performance of the catalytic
system was limited, indicating promising application prospects for the LDH-CoPW/PMS

16



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

system.

As shown in Fig. S9a, the effect of initial pH on Cu(ll) immobilization was consistent
with the degradation of Cu(ll)-EDTA. Along with the rapid degradation of Cu(ll)-EDTA
under alkaline conditions, the released Cu(ll) did not accumulate significantly in the solution,
which can be attributed to the alkaline environment promoting surface hydroxylation of
CaFe-LDH, thereby facilitating the isomorphic substitution reaction between CaFe-LDH and
free Cu(ll). Furthermore, we investigate the influence of coexisting anions on the adsorption
of Cu(ll). As shown in Fig. S9b, the presence of CI inhibited Cu(ll)-EDTA degradation and
also possessed adverse effect on the subsequent Cu(ll) immobilization. The low efficiency of
the decomplexation process prevented Cu(ll) from being captured by the adsorption sites of
CaFe-LDH. For SO+ and NOs (Fig. S9c and d), the slight suppression of Cu(ll)
immobilization might only be induced by the decrease in the efficiency of Cu(ll)-EDTA
decomplexation, and these coexisting anions barely effected the adsorption process of Cu(ll)
by CaFe-LDH.

The multi-cycle durability of the LDH-CoPW/PMS system was assessed as shown in
Fig. S10, the catalytic system not only possessed remarkable potential in removing
Cu(I)-EDTA, but also exhibited satisfactory stability. Cu(ll)-EDTA removal in the first,
second, third, and fourth cycles were 98.3%, 100%, 97.5%, and 94.5%, respectively.
However, compared with the superior degradation efficiency, the recovery performance of Cu
was almost completely lost in only the second cycle (data not provided). This suggests that
Cu(Il) immobilized by chemical adsorption cannot be removed by simple washing methods,
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which forced us to seek a more reasonable way of catalyst reuse.
3.5. Copper resourcelization

Promoting the use of clean energy is crucial to achieving carbon neutrality. Thus,
exploring more efficient strategies for obtaining clean energy has attracted great attention.
Water splitting is a promising approach to obtain hydrogen energy, a type of clean energy
with zero pollution emissions. Unfortunately, due to the kinetic sluggishness of the four
electron transfer process, oxygen evolution reaction (OER), as the half reaction of water
splitting, is considered the bottleneck of electrochemical water splitting [52]. Therefore,
low-cost and high activity OER electrocatalysts are urgently needed to alleviate the
embarrassment. Among all the materials capable of catalyzing OER, LDHSs stand out as one
of the most effective electrocatalysts owing to their compositional and structural flexibility.
Specifically, LDHs composed of transition metals (Co, Fe, Ni, et al.) have been proven to
exhibit superior OER performance [53]. Recent studies indicate that the high electron
conductivity and d-electron abundance of Cu can promote the OH™adsorption and electron
transport at active sites, thus improving the OER kinetics of the catalyst [54]. Thus, used
LDH-CoPW is expected to be as a potential OER catalyst.

Firstly, the OER performance of CaFe-LDH, fresh LDH-CoPW and used LDH-CoPW in
1.0 M KOH was tested. From the linear sweep voltammetry (LSV) curves (Fig. 6a), it is
evident that CaFe-LDH was electrochemically inert, and the slope of used LDH-CoPW was
higher than that of fresh LDH-CoPW. These results manifest that used LDH-CoPW possessed
better electrocatalytic OER activity than CaFe-LDH and fresh LDH-CoPW [55]. Moreover,

18



357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

electrochemical impedance spectroscopy (EIS) test was performed to compare the charge
transfer properties. The EIS curves consist of two distinct semicircles. The high-frequency
semicircle and the low-frequency semicircle are associated with charge transfer resistance
and mass-diffusion process, respectively [56]. As shown in Fig. 6b, it can be found that used
LDH-CoPW exhibited a smaller high-frequency semicircle diameter compared to CaFe-LDH
and fresh LDH-CoPW, indicating lower charge transfer resistance for water oxidation in the
used LDH-CoPW compared to CaFe-LDH and fresh LDH-CoPW [55].

4. Conclusion

Proper disposal of Cu(Il)-EDTA pollution was achieved by the LDH-CoPW/PMS
catalytic system in this work. The following conclusions can be drawn.

i) The combination of LDH-CoPW and PMS enabled both ultrafast Cu(ll)-EDTA
removal and acceptable Cu recovery.

ii) Instead of free radical and Oz, Co(I1V)=0 was determined as the dominate RSs using
a scientific probe-based kinetic model.

iii) Although CaFe-LDH was incapable of activating PMS, it ensured the reactivity of
the catalytic system by promoting the redox cycle of cobalt species.

iv) The regulation of Cu on the electronic structure of the catalyst improved the
electrochemical performance of used LDH-CoPW compared to fresh LDH-CoPW and
CaFe-LDH.
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