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A B S T R A C T
Dimensionality reduction is one of the most challenging and crucial issues apart from data min-
ing, security, and scalability, which have retained much traction due to the ever-growing need to
analyze the large volumes of data generated daily. Fractal Dimension (FD) has been successfully
used to characterize data sets and has found relevant applications in dimension reduction. This
paper presents an application of the FD Reduction (FDR) Algorithm on geospatial hyperspectral
data, examining its usefulness for data sets with a relatively high embedding dimension. We
examine the algorithm at two levels. First is the conventional FDR approach (unsupervised) at
the image level. Alternatively, we propose a pixel-level supervised approach for band reduction
based on time-series complexity analysis. Techniques for determining an optimal intrinsic di-
mension for the dataset using these two techniques are examined. We also develop a parallel
GPU-based implementation for the unsupervised image-level FDR algorithm, reducing the run-
time by nearly 10 times. Furthermore, both approaches use a support vector machine classifier
to compare the classification performance of the original and reduced image obtained.

1. Introduction
Technological innovation in hardware and storage space has enabled the collection of increasingly large and com-

plex information, which has helped capture more attributes pertaining to the data and added a higher level of detail to
the attributes. However, analyzing and deriving meaningful inferences from it has become more challenging. While
we take advantage of the space, we capture data that might be redundant.

Many classification and regression algorithms cannot learn from this redundant information, decreasing the overall
performance of the desired task. This behavior called "Curse of Dimensionality", or the Hughes Phenomenon (Hughes,
1968), states that with the increase in the embedding dimension, the available data becomes more and more sparse in its
own address space (Aggarwal et al., 2001). This results in an exponential increase in the number of data points required
for any useful analysis. In most real-world scenarios, including more data points is not easily possible, which directs
us toward decreasing the dimensionality of the input data. However, the real-world data may have high dimensionality
but could be effectively represented by fewer dimensions due to significant multi-collinearity amongst the attributes.

Hyperspectral remote sensing is one earth observation domain that uses multichannel (high spectral resolution)
images acquired within the electromagnetic spectrum’s blue and shortwave infrared wavelengths. It provides a higher
resolution of the spectral response curve (SRC) to inspect complex surface materials. The image size with hundreds of
bands is very large (many gigabytes), posing problems handling the storage and processing time for further analysis.
Due to the huge data volume associated with each scene of hyperspectral data, this data type requires more specific
attention to the complexity of data receiving, storing, transforming, and processing (Mukherjee et al., 2013).

Hence, it is preferred that the dimension of hyperspectral data be reduced so that both the effect of noise and the
curse of dimensionality can be avoided (Mukherjee et al., 2012). Kendall’s seminal work in 1961 provided empirical
evidence that high-dimensional spaces are predominantly sparse, with data points converging towards the extremities,
notably the corners (Kendall, 1961). As a result, high-dimensional hyperspectral data can effectively be represented
within a lower-dimensional subspace without significant information loss. In this lower dimensional subspace, the
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classifiers can perform well with a much-reduced number of training samples and can produce good classification
accuracy. This led to the theory of dimensionality reduction (DR) and a large number of methods had been proposed
thereafter to transform the original high dimensional data to another space at a much lower dimension.

DR techniques can be grouped based on the subject or area of focus (Van Der Maaten et al., 2009). From the
machine learning or data mining perspective, they can be divided into two categories: feature selection and feature
extraction/projection (Khalid et al., 2014). The former focuses on sub-setting a part of the input set to derive the reduced
set (Pudil and Novovičová, 1998). In contrast, the latter is based on a transformed input representation to capture the
most relevant information (ping Tian et al., 2013). Another perspective on the DR approaches has also been presented
in (Sorzano et al., 2014), where they have been categorized according to the reduction criterion, namely methods based
on statistics/information theory, dictionaries, and projection. These techniques range from the most primitive linear
techniques like principal component analysis (PCA) (Swain and Banerjee, 2021; Chang et al., 1999; Kambhatla and
Leen, 1997) and independent component analysis (ICA) (Wang and Chang, 2006; Lennon et al., 2001) to graph-based
techniques such as spectral clustering (Li et al., 2014; Gupta et al., 2018), Laplacian-based embedding (Ghojogh et al.,
2023), multi-structure unified discriminative embedding (Luo et al., 2022), discriminative and geometry-preserving
adaptive graph embedding (Gou et al., 2023), and collaboration- competition preserving graph embedding (Shah and
Du, 2022) etc. to the most recent non-linear (Paul and Chaki, 2019) and neural network-based auto-encoders (Tao
et al., 2015; Zabalza et al., 2016).

In this paper, we examine a fractal dimension (FD) based attribute reduction technique, namely the FD reduction
(FDR) algorithm introduced by Traina et al. (2000). Fractal geometry, since its introduction by Mandelbrot (Mandel-
brot and Van Ness, 1968), has gained popularity in describing various types of naturally occurring structures (Pentland,
1984), which possess self-similarity when viewed at a range of scales (up to a certain limit in a practical setting). This
self-similarity can be exact (Figure 1), qualitative, or even statistical (Falconer, 2004). The most popular FD estima-
tion methods in remote sensing include the modified variogram method (Mukherjee et al., 2013), the triangular prism
(Clarke, 1986), the blanket method (Peleg et al., 1984), and the adapted Hausdorff distance (Ghosh and Somvanshi,
2008). Moreover, the FD parameter in a single spectral band can be calculated for each pixel (local description) or
a square subset of the image (global description) (Aleksandrowicz et al., 2016; Krupiński et al., 2020). Similarly,
in the context of hyperspectral data, researchers have used two approaches for FD estimation, i.e., (1) an analysis of
spectral signatures or profiles that refer to single pixels (Dong, 2008; Mukherjee et al., 2014), and (2) spectral bands
in the whole image or a subset (Qiu et al., 1999). Besides the number of algorithms for FD calculation, there are a
few applications where fractal-based analysis has been utilized in several applications in earth observation and remote
sensing, such as image compression, dimensionality reduction (DR) (Krupiński et al., 2020), image classification (Su
et al., 2019), image segmentation (Karydas, 2020; Coliban et al., 2016), mixture analysis (Patel and Ghosh, 2020),
scaling of essential ecosystem variables (Wu et al., 2018), landscapes types classification (Krupiński et al., 2020) etc.

Figure 1: Sierpinski Triangle - an exact spatial fractal

In this research, we have studied a feature selection-based DR approach. In areas such as image analysis and DR,
existing studies predominantly build upon two aspects or key properties of fractals, which we have examined in the
current research, i.e., (1) as a measure of a shape’s roughness and (2) as an indicator of intrinsic dimension. This paper
aims to examine, using the FDR algorithm, if the two characteristics mentioned above can be utilized to obtain mean-
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ingful results as previously proposed by several studies (Keller et al., 1989; Lam, 1990; Lopes and Betrouni, 2009).
Unsupervised FDR (UFDR) methods often fail to capture the intricate variations among different classes, hindering
the potential for accurate representation and analysis. By introducing a supervised FDR (SFDR) approach, we aspire
to harness the discriminative information present in the dataset’s classes, leading to a more meaningful and insightful
reduction of dimensions. Moreover, the potential use of FD as a measure of roughness or complexity for time-series
fractals has also been utilized using a pixel-level reduction approach of the SRC. A detailed analysis of the FDR is
performed on three widely used hyperspectral datasets - Indian Pines (IP), Pavia University (PU), & University of
Houston (UH). In this research, we have implemented DR to classify PU, IP and UH hyperspectral images.

For the DR problem, the contributions of this paper are as follows:
• To quickly determine the optimal dimension for the reduced space.
• To develop a novel SFDR method and compare it with the UFDR method for classification accuracy assessment.

2. Theoretical Background
2.1. Concept of Fractals and Fractal Dimension

Within the context of the earth’s surface features, every object possesses a characteristic dimension (Mukherjee
et al., 2012). Mandelbrot (1982) asserts that when an object exhibits an irregular shape, like a curved line or like
the coastline of Britain, its dimension is fractional rather than an integer value. The word “Fractal" was invented by
Mandelbrot (1977) to bring together under one heading a large class of objects that have certain structural features
in common, although they appear in diverse contexts in astronomy, geography, biology, fluid dynamics, probability
theory, and pure mathematics (Xu et al., 1993).

According to Mandelbrot (1982), the term “fractal" comes from the Latin adjective “fractus", which has the same
root as “fraction" and “fragment" and means “irregular and fragmented." According to fractal geometry (Mandelbrot,
1977), a straight line has a dimension of one. As the line becomes more and more irregular or curved, the dimension
goes on increasing towards two. Thus, the fractal dimension of any curve is intimately related to its shape/ irregularity
and can be considered as its characteristic feature (Mukherjee et al., 2012). Fractal structures are characterized by the
Hausdorff-Besicovitch dimension (Balka et al., 2015), also known as the “Fractal Dimension”, a non-integer dimension
that is essentially a measure of “roughness” (Vadrevu, 2023).

In hyperspectral data, a single pixel contains 𝑁 response values corresponding to 𝑁 spectral channels. If the pixel
is pure, i.e., there is only one ground cover class represented by that pixel, and if the spectral response values of the
pixel are plotted against bands, the curve generated resembles the SRC of the ground cover. The SRC of a land cover
class exhibits fractal characteristics, evident through its distinct fractal dimension.
2.2. FD Calculation

Most reduction methods need an optimal estimate of the dimensionality of the reduced set, a.k.a. intrinsic dimen-
sion (ID) of the dataset, in advance. Hence, an ID estimator must precede any DR technique. Various benchmark ID
estimation techniques have been highlighted in (Camastra, 2003; Campadelli et al., 2015). One of the ways to estimate
the ID is to study the FD of the data. An intuitive way to understand the FD is to visualize the bulk (e.g., length) of
an object to vary exponentially with the size of the measuring instrument or the scale of measurement (Theiler, 1990).
This exponent is a measure of the FD 1. For a fractal, the bulk (length, area) is a function of the size of the measuring
unit. It is considered to theoretically reach an infinite as the size of the measuring unit approaches 0 (see coastline
paradox), unlike Euclidean geometrical figures whose size is constant for any measurement scale.

𝐵𝑢𝑙𝑘 ∼ 𝑠𝑖𝑧𝑒𝐷 (1)

𝐷 = lim
𝑠𝑖𝑧𝑒→0

𝑙𝑜𝑔(𝑏𝑢𝑙𝑘)
𝑙𝑜𝑔(𝑠𝑖𝑧𝑒)

(2)
Here, D remains constant for a fractal and can be estimated by finding the slope of the log(𝑏𝑢𝑙𝑘) vs. log(𝑠𝑖𝑧𝑒) graph.
However, to translate it into a numerical estimate that can be algorithmically designed for sampled data, various meth-
ods/FD estimators, such as box counting, power spectrum, correlation dimension, etc., were proposed to calculate the
FD (Theiler, 1990).
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These techniques also have certain limitations. Factors such as quantization and sampling frequency (resolution) of
the signal (Huang et al., 1994; Lam and Quattrochi, 1992; Theiler, 1990) determine the extent to which the proposed
methods converge with the theoretical limit. In theory, the resolution of the data is assumed to be infinite for the
proposed techniques to give an accurate estimate of the FD. The increased resolution of the sampled data enhances
the estimator’s performance (under certain conditions), while quantization may cause a shift in the value of the FD
(Huang et al., 1994). Hence, the absolute value of FD obtained from these techniques is a weak descriptor of the true
FD. Another limiting aspect reviewed in (Camastra, 2003) is the number of data points essential to arrive at an accurate
estimate of D:

𝐷 < 2 log10𝑁 (3)
where N is the number of data points, and D is the FD. So, for a data set with nearly 10, 000 points, the ID can be at
most 8 for the fractal-based methods to give a near-accurate estimate of the ID. Through the results presented in this
paper, we examine the applicability of FD in determining the optimal dimensionality of the 200 and 103 dimensional
datasets. The proposed technique reduces the generalization of FD from the image level to a pixel level, considering
that similar pixels or data points can be grouped to illustrate the same FDR behavior. A similar idea is also presented
in (Barbará and Chen, 2003), where a change in FD is used to determine clusters of similar data points.

As stated in many studies (Pentland, 1984; Theiler, 1990), FD coupled with lacunarity as a second-order statistic
can be used to measure a shape’s roughness or complexity. Introduced in (Keller et al., 1989), it has shown some
potential for utility in segmentation and characterization in geospatial imagery (Lam, 1990; De Cola, 1989; Qiu et al.,
1999; Sun et al., 2006) and elsewhere (Lopes and Betrouni, 2009). Although, it cannot be used as a unique descriptor
for a shape that is not a true fractal. In this paper, we attempt to leverage this idea of shape complexity to time-series-
like data. When such a structure possesses the self-similar scaling properties of a fractal, either exactly or statistically,
it is known as a time-series fractal (Pilgrim and Taylor, 2018). Various studies characterizing real-time-series data
as fractals have successfully been carried out (Evertsz, 1995; Sewell, 2011) for better prediction and analysis models.
Here, we treat the SRC as a variable quantity captured at a range of wavelengths and try to analyze its complexity
using its correlation dimension. Some studies suggest that SRC at a given pixel in a hyperspectral image has fractal
properties, but more research is needed to validate this claim. Now, the spectral response pattern at any pixel location
of any hyperspectral image has its characteristic shape, which cannot be defined by any mathematical formula and is
therefore considered an irregular curve (Mukherjee et al., 2012). We intend to find the basis and the intrinsic dimension
(cardinality of the basis) of the set of 𝐸 𝑁-dimensional vectors, i.e., eliminate all the correlated attributes.

FD technique is used to aid classifiers in identifying important aspects of the data. This study uses correlation
dimension to compute FD (Grassberger and Procaccia, 2004). This is because of two reasons. Firstly, we intend to
compare how the FDR algorithm in (Traina et al., 2000) compares for datasets of higher dimensionality, particularly
hyperspectral imagery. Since correlation dimension has been employed for their study, we use the same FD estimator
as different methods can give slightly varying estimates of FD. Secondly, it is computationally simple and robust for
higher dimensional data (Mo and Huang, 2010) and hence is more widely utilized.
2.3. Correlation Dimension

The correlation dimension is estimated by computing the slope of the linear part of the correlation integral curve
on a log-log scale (Grassberger and Procaccia, 2004). The correlation integral is given by:

𝐶(𝑁, 𝑟) = 2
𝑁(𝑁 − 1)

∑

𝑖≠𝑗
Θ(𝑟 − ‖𝑋𝑖 −𝑋𝑗‖) (4)

where 𝑁 is the number of data points, 𝑟 is a arbitrarily chosen distance and Θ is the Step Function such that Θ(𝑥) = 1
if 𝑥 ≥ 0, else Θ(𝑥) = 0. In simple terms, 𝑁(𝑁 − 1)∕2 (denominator) is the total number of point-wise distances
(excluding distance to self), and the summation (numerator) indicates the number of point-wise distances greater than
𝑟, which can vary between a minimum and maximum inter-point distance.

𝐶(𝑁, 𝑟) varies exponentially for a fractal as described previously, wherein the 𝑏𝑢𝑙𝑘 can be equated to the 𝐶(𝑁, 𝑟)
and 𝑠𝑖𝑧𝑒 to 𝑟. Therefore, D (FD) is the slope of the linear fit of the log(𝐶(𝑁, 𝑟)) vs. log(𝑟) curve.
2.4. Fractal Dimension Reduction Algorithm

As proposed by (Traina et al., 2000), the FDR is an unsupervised iterative approach for attribute selection based on
the idea of retaining the intrinsic dimension (equated to the fractal here) of the data on removal of redundant attributes.
Gupta et al.: Preprint submitted to Elsevier Page 4 of 21
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It also aligns with the notion of FD as an approximation of the data complexity, as redundant attributes would do
little to change the FD. The FDR is an unsupervised iterative method that selects attributes by preserving the data’s
ID (referred to as the fractal) while removing redundant attributes. It aligns with the concept that FD approximates
data complexity, and redundant attributes have little impact on FD. Instead of FD alone, the change in FD is used
to characterize the data set. Many studies have already proven this idea of FD as a standalone indicator insufficient
(Keller et al., 1989). Though it may not perform well with high-dimensional data, the algorithm has the potential as
a feature selection tool and can indicate optimal intrinsic dimensions in certain scenarios. This paper uses the term
unsupervised FDR to refer to this method.

Given a set of 𝑁 points, with embedding dimensionality 𝐸, we can represent the data as (𝑁,𝐸), and the algorithm
used can be summed up as follows:

1: 𝑖 ← 1
2: 𝑆 ← (𝑁,𝐸)
3: while 𝑖 ≤ 𝐸 do
4: 𝐷 ← 𝐹𝐷 of 𝑆
5: for 𝑗 = 1 to (𝐸 − 𝑖 − 1) do
6: 𝑆′ ← Remove 𝑗𝑡ℎ dimension from 𝑆
7: 𝑝𝐷𝑗 ← 𝐹𝐷 of 𝑆′

8: end for
9: 𝐼 ← 𝑗 for which |𝐷 − 𝑝𝐷| is minimum

10: 𝑆 ← Remove 𝐼 𝑡ℎ dimension from 𝑆
11: end while

where 𝑝𝐷 is the partial FD. It is the FD of the resulting set obtained after removing one of the attributes from the
data. Inside the loop, 𝑆′ is of the form (𝑁,𝐸 − 𝑖), i.e., 𝑖 dimensions have been removed.
2.5. Hyperspectral Data

A hyperspectral image is a remotely sensed geospatial image taken using sensors that can capture surface reflectance
at nearly hundreds of wavelengths at a very low bandwidth. RGB images are 3 band images (𝐻,𝑊 , 3) captured at 3
wavelengths in the EM spectrum. Beyond RGB comes multispectral images, which contain approximately 10 or fewer
bands. Similarly, Hyperspectral is of the form (𝐻,𝑊 ,𝐸) where 𝐸 is of the order of 100′𝑠. At a particular pixel (ℎ,𝑤),
a spectral response curve can be obtained as shown in Figure 2. Each pixel represents the overall value of the surface
reflectance at a range of wavelengths. Depending on the spatial resolution of the sensor, the reflectance at a pixel can
be from a single or mixed land cover.

Figure 2: Spectral response at a pixel in a Hyperspectral Image containing 200 bands
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2.6. Support Vector Machine Classifier
Support vector machine (SVM) classifier is based on computing an optimal hyperplane that divides the data into

two parts such that the two classes lie on either side of the hyperplane. Initially designed for linearly separable data
(Boser et al., 1992), kernel tricks have aided the classification of rather complex data distributions applicable to a real
setting. The optimization function for SVM maximizes the margin of separation for the two classes, and the points
belonging to each class lie on the opposite side of the hyperplane.

Support vectors are the data points closest to the decision boundary or hyperplane and are critical to training. Using
Lagrange’s multiplier and kernel function (Berwick, 2003), we get the following optimization function:

𝐿𝑑 =
𝑁
∑

𝑖=1
𝑎𝑖 −

1
2

𝑁
∑

𝑖=1
𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 ⋅ 𝑥𝑗)

𝑆.𝑡. ∀𝑖, 0 < 𝑎𝑖 < 𝐶,
𝑁
∑

𝑖=1
𝑎𝑖𝑦𝑖 = 0

(5)

𝐾(𝑥, 𝑦) = (𝛾(𝑥 ⋅ 𝑦) + 1)𝑝 (6)

𝐾(𝑥, 𝑦) = 𝑒−𝛾‖𝑥−𝑦‖
2 (7)

where 𝑎𝑖 is the weight to be optimized, 𝑦𝑖 is the label for sample 𝑥𝑖 and 𝐾 is the Kernel Function and 𝑁 is the total
number of training samples. Equation 6 and 7 represent the most commonly used kernels: polynomial (Poly) and
radial basis function (RBF). The input parameters for these kernel functions are 𝑝 and 𝜎, respectively.

A higher penalty parameter 𝐶 would mean more penalty on miss-classified samples, leading to overfitting and
poor generalization, especially when kernel functions are employed. For multi-class, we use the one-vs-rest decision
approach. As evident from the kernel functions (see eq 6 and 7), the polynomial function fits a polynomial of a specified
degree as the decision boundary. In contrast, the RBF kernel can fit more complex distributions and is much more
powerful. The 𝑛 fractal features generated by the proposed methodology have then been used for classification by the
SVM classifier using the training pixels, and the accuracy of classification has been obtained using the testing pixels.

3. Datasets
In this research, we have used three widely used hyperspectral datasets, i.e., Pavia University (PU) & Indian

Pines (IP), & University of Houston (UH), for evaluating the performance of dimensionality reduction using the
fractal-based method.
Dataset I

The first dataset used is the IP Hyperspectral image acquired by the AVIRIS sensor across a spectral range 0.4
to 2.5 𝜇𝑚 on June 12, 1992, available from the Purdue University Research Repository (PURR)1. The image size is
145 × 145 pixels with a spatial resolution of 20𝑚, consisting of 200 bands and 16 classes (see Figure 3). We obtained
the MATLAB data files of the image from Grupo de Inteligencia Computacional website 2.
Dataset II

The second dataset is the PU (see Figure 4) Scene captured by the ROSIS sensor at a spectral range of 0.43 to
0.96 𝜇𝑚 and resolution of 5𝑛𝑚 per channel. The image size is 610 × 340, consisting of 103 bands, 9 classes, and
a spatial resolution of 1.3𝑚. This image is publicly available and was provided by Prof. Paolo Gamba from the
Telecommunications and Remote Sensing Laboratory at Pavia University (Italy). We took the MATLAB files from
the same source as IP.

These two datasets are widely used in geospatial analysis and concept testing. The PU image has fewer classes and
a larger number of samples overall as well as per class. In contrast, the IP image has more classes and a higher level
of imbalance coupled with a smaller sample set. The latter will help us evaluate the algorithm for a non-ideal case and
test its utility.

1https://purr.purdue.edu/
2http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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(a) (b)

Figure 3: IP hyperspectral image (a) false color composite Image, (b) ground truth

(a) (b)

Figure 4: PU hyperspectral image (a) false color composite Image, (b) ground truth

Dataset III
The third dataset is the Houston 2018 (see Figure 5) scene that was captured by the ITRES CASI 1500 sensor on

the University of Houston campus and its vicinity in 2018. This sensor acquires data in a spectral range of 0.38 to
1.05 𝜇𝑚 at a spatial resolution of 1𝑚. The image size is 954 × 210, consisting of 48 spectral bands and 7 classes. This
dataset was originally distributed for the 2018 GRSS Data Fusion Contest 3 (Le Saux et al., 2018) and later provided
by Zhang et al. (2023). There are only 22 pixels in the water class, hence, it was merged with background and not used
for DR and classification.

4. Methodology
This research is divided into five parts: 1. data processing, 2. fractal dimensionality reduction, 3. estimating the

optimal dimension, 4. image classification, and 5. accuracy assessment. The following sections provide details about
each part of the developed methodology.
4.1. Data Processing

Data Processing is an integral part of any research on data-driven problems. The data available is usually raw and
may not be compatible with the input requirements of the algorithm. It could often be in strings, categorical variables,

3https://hyperspectral.ee.uh.edu/?page_id=1075
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(a)

(b)

Figure 5: The UH hyperspectral image (a) natural color composite Image (Source: Rasti et al. (2020)), (b) ground truth
(Source: Zhang et al. (2023))

or the standard unit format for that particular application. For example, in this study, the remote sensor captures
reflectance of the underlying surface, which has a dynamic range of 16 bit, corresponding to integer values from 0 to
65, 535 (Klein et al., 2008). These values can behave abnormally during the classification and, more importantly, with
the FD estimation algorithm (Kumaraswamy, 2003). This dependence on data values makes this step critical for our
research.

Our primary task is to estimate the image’s FD. The original data (.mat file) is 𝐻 ×𝑊 ×𝐸, which is first reshaped
to a 1D vector of 𝐻 ∗ 𝑊 ×𝐸. We do not consider unclassified or background classes in any of our implementations.
Further, the data is normalized using 𝐿2-norm, each sample row-wise. This step (i.e., normalization) is applied to
both supervised (pixel-level) and unsupervised (image-level) algorithms to maintain the characteristics of the data and
capture its complexity without changing the nature of the SRC. This property is followed by an 𝐿2-norm.

After applying FDR, we shuffle the original and reduced data with a fixed seed and split it into training and testing
sets using a 70:30 ratio. After the split, the same set of normalization consisting of 𝐿2-Norm and feature scaling (0 to
1) is applied to the test and the train data separately. The testing and training samples are normalized separately to not
introduce any knowledge from the train to the test set, which can often lead to bias in the test results. The normalization
(𝐿2-norm and feature scaling) step drastically improves the classification performance in SVM.
4.2. Fractal Dimensionality Reduction (FDR)

We have implemented two variants of FDR, i.e., unsupervised and supervised, which are described in the following
sections.
4.2.1. Unsupervised Implementation

The unsupervised or conventional FDR (UFDR) approach is followed, as explained in subsection 2.4. Here 𝑆 is
the reshaped and normalized vector (𝑁 × 𝐸) obtained after applying the procedure as explained in subsection 4.1,
where 𝑁 = 𝐻 ∗ 𝑊 is the number of pixels or data points excluding background pixels, and E is the number of bands
in the image.

A parallelized algorithm implementation is developed for the procedure, but the algorithm remains unchanged. The
large dataset size and high dimensionality make a sequential implementation infeasible. Specifically, we parallelize
the inner for loop, where the subroutine estimates the partial FD vector (𝑝𝐷𝑗) by temporarily removing attributes one
at a time. The parallel pool of processes is closed once the inner loop is complete. The attribute causing a minimum
change in FD is then eliminated.
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4.2.2. Supervised Implementation
This implementation aims to localize the FDR algorithm to a pixel level and analyze its effects on our classification

end goal, i.e., compute the FD of the SRC at a pixel, treating it as a 1-D time series.
Points are removed iteratively from the SRC to preserve its behavior while minimizing changes to the FD. However,

the above-described approach needs to be repeated for all the pixels in the image, thereby processing approximately
10, 000 pixels or 1-D wavelength series (based on foreground pixels of the IP image). This process is time-intensive
and, hence, infeasible to be pursued.

We propose to follow a SFDR (SFDR) algorithm to handle this issue. We selected one pixel from each class/label
representing all the pixels belonging to that class. The wavelengths removed from the SRC of the representative pixel
(after applying FDR) are also removed from all the pixels of that class, which means that if we have a pixel (vector at
a pixel location) 𝑥𝑘 = (1 × 𝐸) with 𝑦𝑘 = 2, and after an inner loop of FDR, the point at position 𝑗 gives a minimum
change in FD, then ∀𝑥𝑖 for which 𝑦𝑖 = 2, we remove the point at index 𝑗. The proposed approach can be summed up
as follows:

1: 𝑆 ← (1, 𝐸)
2: for 𝑘 = 1 to 𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do
3: 𝑆𝑘 ← (𝑁𝑘, 𝐸) = {𝑥𝑡 ∣ 𝑦𝑡 = 𝑘}
4: 𝑆 ← (1, 𝐸) - Any one pixel from 𝑆𝑘
5: 𝑖 ← 1
6: while 𝑖 ≤ 𝐸 do
7: 𝐷 ← 𝐹𝐷 of 𝑆
8: for 𝑗 = 1 to (𝐸 − 𝑖 − 1) do
9: 𝑆′ ← Remove 𝑗𝑡ℎ dimension from 𝑆

10: 𝑝𝐷𝑗 ← 𝐹𝐷 of 𝑆′

11: end for
12: 𝐼 ← 𝑗 for which |𝐷 − 𝑝𝐷| is minimum
13: 𝑆 ← Remove 𝐼 𝑡ℎ dimension from 𝑆
14: 𝑆𝑘 ← Remove 𝐼 𝑡ℎ dimension ∀ 𝑥𝑡 ∈ 𝑆𝑘
15: end while
16: end for

Using this approach, the FDR will run as many times as the number of classes in the dataset. Stopping the result
at the correct iteration (optimal dimension) in the while loop will yield the reduced set. This algorithm is substantially
faster than the conventional FDR due to 2 reasons: (1) FD estimation of a time series is very fast (vector of size 1×𝐸)
(2) the algorithm has to be implemented as many times as the number of classes. Hence, it scales well even for a
large number of classes. FD estimation of time series with 200 points (considering IP) takes less than 0.01 seconds
on average, and ×16 (16 classes for IP) gives an overall 0.16 seconds for one FD estimation. Therefore, 0.16 seconds
compared to 15 seconds for the unsupervised implementation on a CPU is considerably faster.

A supervised technique was also introduced in (Mo and Huang, 2010); however, their approach significantly differs
from the proposed method. In (Mo and Huang, 2010), attributes are eliminated based on the variables’ effect on the
dependent or output variable, unlike our proposed method.
4.3. Estimating the Optimal Dimension

We can analyze the results obtained from the unsupervised and supervised approach to estimate the ID of the data.
The change in FD after removing the least significant attribute at each iteration is analyzed against the number of
iterations completed (or the number of attributes removed). We could examine this graph by searching for the initial
point of an increasing trend or by counting the times Δ𝐹𝐷 surpasses a set threshold value if a sudden upward trend is
not visible.

The value of this count determines the number of significant attributes in the dataset. The threshold is set based on
the error allowed (or precision desired) in preserving the original data complexity.

We can plot the partial FD (with the attribute causing the least difference removed) against the number of iterations
to gain further understanding. The point at which this plot drops may indicate which attribute removal substantially
impacted the FD and suggest the number of significant attributes. Traina et al. (2000) showed that the FD of the original
dataset is that point in this graph where the drop occurs. However, since the Embedding dimensionality of our dataset
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is very high, deflections to this are very likely.
4.4. Image Classification

Once the approximate dimensionality and reduced set containing only significant attributes are obtained, we test
the results using SVM. The change in classification accuracy on the reduced set (SFDR and UFDR) is compared to the
original image. We perform hyper-parameter tuning for C, Gamma, and Kernel to find the optimal values. For C, we
used the following values: 1, 5, 10, 50, 100; for Gamma: 0.5, 0.1, 0.05, 0.005, 𝑠𝑐𝑎𝑙𝑒; for kernel: RBF, Poly (Polynomial
of degree 3). Setting gamma as ’scale’ implies that the performance of the classifier is invariant to the scale of 𝑋, and
its value is set as 1∕(𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋)), where 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the same as the number of dimensions.
4.5. Accuracy Assessment

We use accuracy, precision, recall, F1-score, and confusion matrix to test the classifier’s performance. While
accuracy alone is insufficient for multi-class and imbalanced data, they provide adequate validation for testing the
model. Accuracy is defined as the percentage of the total number of samples the model correctly classifies. Precision
measures the ratio of correctly predicted samples to the total number of samples predicted to belong to that class. Recall,
on the other hand, indicates the proportion of correctly predicted samples to the total number of samples belonging to
that class. The model is considered good when precision and recall are close to 1. F1-score is the harmonic mean of
precision and recall and is ideally close to 1.

5. Results
The methodology explained in section 4 was applied to the PU and IP dataset, and the results are explained in this

section.
5.1. Unsupervised Approach

The parallel unsupervised version of the algorithm is run on a Windows 10 Pro Intel(R) Xeon(R) Platinum 8160
CPU @2.10 GHz with 24 cores and 48 threads and an NVIDIA Quadro K5200 Graphics card. We use 24 cores
to implement the algorithm. The parallelized version was nearly a 10× speed-up as the GPU took approximately
2.5× more time to perform the same FD estimation task. The execution time for computing the FD is noted and is
observed to decrease linearly with the number of dimensions, as expected since it has a time complexity of 𝑂(𝑁).
Since the algorithm is linear, overall speedup compared to sequential implementation is also ∼ 10 times. The two
graphs discussed in subsection 4.3 for the PU image are shown in Figure 6.

(a) (b)

Figure 6: PU UFDR results (a) FD (b) Δ FD and 3-point moving average of Δ FD as a function of the number of
attributes removed

As seen in Figure 6a, removing several attributes does not cause any notable change in the dataset’s characteristics.
The Δ𝐹𝐷 is close to zero in the initial 75% of the curve. The point where the drop occurs (highlighted) is taken at a
precautionary distance as we want the precision of selection to be high, or in other words, we can keep some redundant
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attributes. The important note that we must take here is that although the nature of the graph coincides with that of
results shown in Traina et al. (2000), the FD does not act as a guide for the point at which to terminate the algorithm
as 6 is too less to represent the intrinsic dimension of such a high dimensional real dataset (Gupta et al., 2018; Golay
and Kanevski, 2017; Mukherjee et al., 2012). The insufficiency in the number of data points to concretely establish
the FD of the dataset may be attributed as a possible reason (Traina Jr et al., 2010). The change in FD (Δ𝐹𝐷) is
plotted in Figure 6 along with its 3-point moving average to perform smoothing and suppress any undulations. We get
approximately the same point from the graph, i.e., 19 dimensions. This plot is useful for analyzing when the change in
FD starts to increase considerably. However, it cannot give a very accurate estimate as the Δ𝐹𝐷 can increase/decrease
in a local window of sequential iterations and need not be monotonically non-decreasing in nature (even for ideal
datasets). Hence, we only take a 3-point moving average if the trend increases.

The same graphs have been generated for the IP dataset in Figure 7. We can see that although the FD drops at a
point, it increases again, which is not the expected behavior of a graph. There can be many possible reasons for this;
as explained by PU, the ideal requirement of data points (see Eq 3) is too high compared to the actual number of points
available. The deflections to this are more prominent in IP as it has a higher embedding dimension and possibly a higher
intrinsic dimension. Hence, the graph obtained cannot be very useful for determining the optimal dimensionality of
the data.

(a) (b)

Figure 7: IP UFDR results (a) FD (b) Δ FD and 3-point moving average of Δ FD as a function of the number of attributes
removed

The change in the FD plot, as shown in Figure 7b, also does not give any evidence of a proper elbow. This shows that
even if the algorithm proves correctness in reducing to the least dependent attributes, it cannot be relied on statistically,
i.e., to estimate the intrinsic dimensionality. Finally, we use a threshold on the allowed percentage change in FD as
we wish to eliminate all attributes that do not contribute significantly towards the FD of the dataset. An error of 1% is
permitted, and 30 bands crossing this threshold are obtained.

Similarly, for the UH dataset (in Figure 8), the clear transition point cannot be determined using UFDR. One
possible reason can be the small number of channels in the dataset. Another possible reason could be the skewness of
samples in each class. Even though the number of data points is high, most of them belong to one class.
5.2. Supervised Approach

We independently compute each class’s FD and percentage ΔFD to derive the same graphs using the SFDR. To
satisfy the requirement of having the same dimensions for all classes, we computed the average of these quantities
across all classes and then plotted it. As seen in Figure 9a, we do not observe a sudden drop in the FD, and the overall
descent is at a smooth gradient. However, we notice an upward trend in Figure 9b. Hence, we take the 3-point moving
average and select the point where the graph takes an upfront. Using this approach, we get 22 bands for the reduced
set. As mentioned previously, we can also employ a threshold approach here.

Similar results were obtained in the case of the IP image, as shown in Figure 10. Taking a 3-point moving average
of the ΔFD, we obtained approximately 30 bands. As stated earlier and from the results, it is clear that this method
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(a) (b)

Figure 8: UH UFDR results (a) FD (b) Δ FD and 3-point moving average of Δ FD as a function of the number of
attributes removed

(a) (b)

Figure 9: PU SFDR results (a) FD (b) Δ FD and 3-point moving average of Δ FD as a function of the number of attributes
removed

is weak in estimating the intrinsic dimensionality of the data. Hence, we can incorporate alternative approaches to
estimating this prior (Gupta et al., 2018).

The number of optimal bands chosen for each case has been summarised in Table 1. The estimated number of
dimensions for the PU dataset are 19 and 22 using UFDR and SFDR, respectively. The number of dimensions for the
IP dataset could not be correctly estimated using UFDR as shown in Figure 7; however, the maximum change in FD
is obtained for 30 - 50 dimensions. Hence, we have presented equal FDs for UFDR and SFDR for the IP dataset. For
UH datset, the estimated number of dimensions are 18 and 15 using UFDR and SFDR, respectively. It should be noted
that the UH dataset contains only 48 bands and the % reduction in dimension is lesser than that of IP and PU datasets.
These reduced bands
Table 1
Estimated number of dimensions for both datasets

IP PU UH

Unsupervised 30* 19 18

Supervised 30 22 15
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(a) (b)

Figure 10: IP SFDR results (a) FD (b) Δ FD and 3-point moving average of Δ FD as a function of the number of attributes
removed

(a) (b)

Figure 11: UH SFDR results (a) FD (b) Δ FD and 3-point moving average of Δ FD as a function of the number of
attributes removed

The SRC of the reduced and original set obtained using the supervised and unsupervised approaches for PU, IP,
and UH datasets (only a few classes) are shown in Figure 12, 13, and 14 respectively. We randomly picked four pixels
belonging to different classes and plotted their SRC. For most of the classes, we can see that SFDR-based reduction
can preserve the nature of the SRC much better than the UFDR. However, the unsupervised method outperforms the
SFDR for class 9 of both PU and IP data. The important point is that the visual similarity of the reduced SRC with
the original SRC does not necessarily indicate a better classification. A DR technique that increases the separability
of points belonging to different labels can perform better in this respect (similar to LDA, which is a feature projection-
based technique).
5.3. Classification

After estimating the number of dimensions and extracting the reduced dataset, we performed SVM classification
and compared the original and reduced sets based on the described metrics. The effects of different settings for the
hyper-parameters of SVM were studied by exploring variations on a logarithmic scale for each of the four cases de-
scribed in subsection 4.4. The model is set for convergence until infinite iterations using a tolerance of 0.001. For the
PU dataset, there were 29945 and 12831 pixels for training and testing, respectively, whereas, for IP, there were 7176
and 3073, respectively. The data is randomly shuffled using a fixed seed value before splitting between test and train.
This data distribution for testing and training in PU after the split is shown in Table 2. A similar split is performed for
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Figure 12: PU - Comparison of Original (left) and Reduced Spectral Response Curve (a) Using SFDR (middle) (b) UFDR
(right)

the IP and UH datasets.
After considering all the factors such as overfitting, underfitting, training, and test accuracy, precision, recall, and

confusion matrix, parameters, as shown in Table 3, were selected as the best-fit tuning. It is essential to consider all
the factors, as the model might exhibit randomness or bias towards a class with more samples. This problem can arise
here as the dataset exhibits class imbalance, especially the IP.

The results from the hyper-parameter tuning have been provided as Supplementary file containing Tables 1, 2, 3,
and 4, 5, and 6, along with classification reports on metrics in Tables 7, 8, 9, and 10). As seen in Table 3, both datasets
show a decrease in accuracy in UFDR but a significant increase in accuracy in the supervised approach. The decrease
in accuracy is more prominent in the IP image, possibly due to greater imbalance and more classes with fewer samples.
The UFDR approach fails to retain the variability of different classes, making it harder for the classifier to construct an
optimized decision boundary. Additionally, the lower spatial resolution of IP allows for more mixed pixels, making it
difficult to distinguish between the SRC of individual classes. The accuracy of classification is very high on UH image
as there are

The confusion matrix for classifying PU image before and after dimensionality reduction is given in Table 4. As
can be seen, the model classifies many samples as Class 1. A similar trend can be observed for supervised methods
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Figure 13: IP - Comparison of Original (left) and Reduced Spectral Response Curve (a) Using SFDR (middle) (b) UFDR
(right)

Table 2
Distribution of train-test samples for PU data

Class # Training # Testing
1 4665 1966
2 13017 5632
3 1460 639
4 2136 928
5 937 408
6 3542 1487
7 931 399
8 2595 1087
9 662 285
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Figure 14: UH - Comparison of Original (left) and Reduced Spectral Response Curve (a) Using SFDR (middle) (b) UFDR
(right)

Table 3
Best fit parameters with testing and training accuracy for original and reduced set

Data - Method Dimension C Gamma Kernel
Original Reduced

Training Testing Training Testing
PU - Unsupervised 19 1 scale rbf 87.67 85.45 83.69 81.85
IP - Unsupervised 30 50 scale rbf 95.96 83.24 84.69 68.17
UH - Unsupervised 18 50 scale poly 95.30 94.40 93.02 92.45
PU - Supervised 22 1 scale rbf 87.45 86.04 96.87 94.56
IP - Supervised 30 1 0.05 poly 86.38 81.06 94.25 94.43
UH - Supervised 15 50 0.5 poly 95.24 94.44 100.00 100.00
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(Table 4(a)) as well as unsupervised methods (Table 4(b)). This indicates that minimal data characteristics are lost even
after reducing it to nearly 1∕5𝑡ℎ of the original embedding dimension. SVM’s ability to distinguish between classes
improves in the SFDR approach.

Table 4
Confusion matrix for PU dataset consisting of 9 classes (1 to 9) (a) supervised for original (left) and reduced data (right)
(b) unsupervised for original (left) and reduced data (right)

Predicted Label Predicted Label

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

A
ct

ua
lL

ab
el

1 1634 5 17 0 0 3 249 58 0

A
ct

ua
lL

ab
el

1 1510 0 0 0 0 0 450 6 0

2 45 5441 0 42 0 101 0 3 0 2 0 5602 0 0 0 30 0 0 0

3 93 2 421 0 0 0 2 121 0 3 3 1 632 0 0 0 3 0 0

4 0 73 0 844 0 11 0 0 0 4 1 1 0 925 0 1 0 0 0

5 0 0 0 0 408 0 0 0 0 5 0 0 0 0 408 0 0 0 0

6 26 512 20 1 0 894 5 29 0 6 4 24 1 0 0 1448 10 0 0

7 17 1 3 0 0 0 376 2 0 7 26 2 0 0 0 0 370 1 0

8 216 4 102 0 0 10 12 743 0 8 5 0 0 1 0 0 116 965 0

9 4 1 0 0 0 0 0 0 280 9 10 0 0 0 0 0 1 0 274

(a)

Predicted Label Predicted Label

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

A
ct

ua
lL

ab
el

1 1825 5 12 0 0 10 9 45 0

A
ct

ua
lL

ab
el

1 1611 10 105 0 0 22 1 157 0

2 18 5239 0 8 0 447 0 2 0 2 4 5645 1 13 0 50 0 1 0

3 127 1 400 0 0 3 0 117 0 3 30 2 552 0 0 3 0 61 0

4 0 140 0 744 0 15 0 0 0 4 0 224 0 667 0 8 0 0 0

5 5 0 0 0 424 1 0 0 0 5 2 1 0 0 424 1 2 0 0

6 38 270 21 0 0 1177 0 17 0 6 27 768 10 0 0 698 1 19 0

7 135 0 0 0 0 0 239 1 0 7 311 1 4 0 0 2 32 25 0

8 289 3 105 0 0 16 0 646 0 8 61 7 365 0 0 25 0 601 0

9 4 1 1 0 0 0 0 0 271 9 3 1 0 0 0 0 0 0 273

(b)

Further, to check if the enhanced classification ability of the supervised approach in the Pavia image is due to more
bands, we computed the classification report for a range of reduced dimensions. We found that the test accuracy for
PU on the reduced set obtained using UFDR (consisting of 22 bands) was smaller from that of SFDR.

6. Discussion
In this research, a fractal-based method for the DR of hyperspectral data has been proposed. Instead of using all

of the bands of the original hyperspectral data for analysis, this method attempts to find a much-reduced dimension
by using an algorithm for generating the fractal features. The fractal dimension considers the structure of the SRC,
while the corresponding energy accounts for class separation (Mukherjee et al., 2012). Consequently, the reduced-
dimensional features encapsulate both class-specific characteristics and inter-class variation.

We compared the proposed SFDR algorithm with various state-of-the-art methods published in the field to es-
tablish its advantages. For the sake of fair comparison, we have not compared the proposed algorithm with complex
deep learning methods. The methods used for comparison included two-stage subspace projection (Li et al., 2018),
joint spectral-spatial fractal method (Su et al., 2019), multiple edge-preserving features and multiple feature learn-
ing (Tian et al., 2019), improved spatial-spectral weight manifold embedding (Liu et al., 2020), self-organizing maps
(Hidalgo et al., 2021), multi-structure unified discriminative embedding (Luo et al., 2022), spatial-aware collaboration-
competitive preserving graph embedding (Shah and Du, 2022). In case of UH dataset, the accuracy of classification
has been compared for 6 classes provided in Zhang et al. (2023) except water. As seen from the results presented in
Table 5, we can see that the proposed SFDR algorithm has obtained higher overall accuracy and better data reduction
compared to the state-of-the-art methods and, to some extent, outperformed the other models.

The proposed method efficiently utilizes the unique FD value associated with each SRC to reduce the dimensional-
ity. It is able to produce appreciable results in terms of classification accuracy for data having high dimensions, having
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Table 5
Comparison of classification results for state-of-the-art DR methods with proposed SFDR approach

S. No. Method
PU Dataset IP Dataset UH Dataset

Accuracy (%) Data Reduction (%) Accuracy (%) Data Reduction (%) Accuracy (%) Data Reduction (%)

1. Li et al. (2018) - - 73.90 90.00

2. Su et al. (2019) 84.57 65.05 - -

3. Tian et al. (2019) 94.40 63.11 85.22 81.00

4. Liu et al. (2020) 86.98 80.85 84.71 90.00

5. Hidalgo et al. (2021) 81.90 37.80 92.50 77.50

6. Luo et al. (2022) 83.00 88.35 - -

7. Shah and Du (2022) - - 91.57 75.00

8. Li et al. (2022) - - 93.89 - 91.82 (6 Classes from best models) -

9. Akwensi et al. (2023) - - - - 84.52 37.50

10. Proposed (SFDR) 94.56 78.64 94.43 85.00 100.00 (6 Classes) 68.75

only pure pixels, and a large number of classes of subtly different spectral response patterns that are otherwise difficult
to distinguish from each other. Furthermore, the complexity of the FD algorithm may affect the efficiency of feature
analysis. With the rapidly increasing spatial and spectral resolutions in hyperspectral imagery, the efficiency of feature
computation and extraction will become more and more critical for complex feature analysis and extraction approaches
(Su et al., 2019). As a feature reduction method, FD is also faced with the challenge of condensing information with
high accuracy, which affects the accuracy of hyperspectral image classification. Our proposed SFDR approach has
demonstrated an effective dimensionality reduction method for hyperspectral imagery, but challenges still exist similar
to other feature extraction methods, such as PCA, ICA, and various kernel-based methods, etc. The SFDR algorithm
used for FD estimation is simple and effective. It can extract information and reduce the dimension of SRC in the
spectral domain. The FD can be used as an additional feature for object segmentation, classification, and recognition
in hyperspectral imagery.

7. Conclusion
The application of the FDR examined on hyperspectral images reveals certain limitations in deriving statistical

inferences for estimating an optimal intrinsic dimension for the dataset. Qualitatively or in terms of reducing significant
attributes, the unsupervised algorithm presents promising results and can be employed for dimensionality reduction.
The supervised approach performs better in all datasets (IP, PU and UH) and enhances the classification performance
to a great extent. The results show that the FDR analysis is suitable for complex and nonlinear objects in hyperspectral
image data reduction and classification. However, a supervised technique can only be utilized in certain settings
where the ground truth is available. The rationale behind developing the SFDR approach was that when we apply
unsupervised reduction using FDR to the whole image, it tries to generalize the intrinsic dimension. However, each
class can have its own intrinsic dimension and may improve the results using the knowledge of different classes.

The supervised version can be further extended to localized unsupervised or semi-supervised versions wherein a
local window of some pixels can be considered for carrying out common FDR (instead of one pixel for a class). This
local window can be a conventional moving window with some stride or a cluster of points selected based on a similarity
metric. Such improvisations can reduce the breadth of data for which we derive a common iterative elimination and
might enhance the desired outcome. However, it comes at the cost of increased computation time as the number of
iterations for which FDR is run increases.

Code Availability
The code for this work is available at https://github.com/vansjyo/Fractal_Dimension_MP
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