This is the preprint of the contribution published as:

Du, Y., Liu, X., Hu, M., Liu, X., Peng, W., Liu, C., Rinke, K., Boehrer, B., Wang, Y. (2024):
Resolving spatially complex interactions between hydrodynamics and biogeochemical processing in a large reservoir with metalimnetic oxygen deficits *J. Hydrol.* 644, art. 132060

The publisher's version is available at:

https://doi.org/10.1016/j.jhydrol.2024.132060

1	Resolving spatially complex interactions between hydrodynamics and
2	biogeochemical processing in a large reservoir with metalimnetic oxygen
3	deficits
4	Yanliang Du ^{1, 2} *, Xiaowei Liu ¹ , XiaoBo Liu ^{1, 2} , MingMing Hu ¹ , Chang Liu ¹ , Karsten Rinke ³ ,
5	Wenqi Peng ¹ , Bertram Boehrer ³ , Yuchun Wang ^{1,2}
6	¹ State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China
7	² Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower
8	Research (IWHR), Beijing 10038, China
9	³ Helmholtz Centre for Environmental Research, Department of Lake Research, Magdeburg,
10	Germany
11	
12	* Correspondence: duyl@iwhr.com; Tel.: +86-152-1042-9872
13	Received: date; Accepted: date; Published: date
14	Abstract:
15	Metalimnetic oxygen minima (MOM) typically occurs during the mid to late stages of
16	limnetic stratification. To investigate the mechanism of MOM during stably stratified
17	periods in the Panjiakou Reservoir, northern China, 4 years of in-situ monitoring was
18	conducted in parallel with longitudinal-vertical 2D modeling. The model simulated
19	the hydrodynamic, water quality, algal, and DO processes in 2017 and 2020, and was
20	calibrated and verified by the measurements. Three scenarios were designed to test the
21	impact of hydrological processes and the high oxygen-consuming sedimentation

22 zones (HOCSZ). We concluded that the stratification and the corresponding advection

23 generated in the metalimnion are the driving forces of MOM in the reservoir, and the

24	limnetic eutrophication-related benthic HOCSZ are the seedbeds of the metalimnetic
25	low oxygen. This unique spatial setting driving the biogeochemical processing and
26	MOM dynamics required a new generation of modelling that includes spatial
27	inhomogeneities of sediment characteristics and a sophisticated resolution of
28	hydrodynamics. Hypolimnetic currents, sedimentation hot spots and the formation of
29	high oxygen consumption zones became the major initiation processes leading to
30	MOM. The numerical modeling not only represented the occurrence, development,
31	and extinction of MOM but also comprehensively explained the spatial differences in
32	the vertical morphology of MOM and its inter-annual variations. Our studies help to
33	identify management strategies to mitigate the impacts of MOM on aquatic ecology
34	and water quality, thus supporting the optimization of reservoir regulation and
35	management.
36	
37	Keywords: (Metalimnetic oxygen minima, Oxygen advection in metalimnion,
38	Stratified reservoir, Benthic high-oxygen consumption, CE-QUAL-W2, upwelling in
39	hypolimnion)
40	
41	1. Introduction
42	Deep lakes located between 35 and 50 degrees latitude tend to be strongly and stably
43	stratified in summer (Lewis, 1987). Density gradients in the metalimnion strongly
44	limit vertical mixing between the hypolimnion and epilimnion in stratified lakes,

45	resulting in biogeochemical concentration stratification(Boehrer and Schultze, 2008a).
46	Dissolved oxygen (DO) is involved in most biochemical reactions and is highly
47	sensitive to environmental stressors, including seasonal weather patterns, trophic
48	status, organic pollution and hydrological regime, making it an important indicator in
49	water quality management of lakes and reservoirs.
50	Hypoxia usually emerges in the metalimnion or hypolimnion during the mid to late
51	stages of the limnetic stratification period, threatening the habitat of benthic
52	invertebrates and fish. Hypolimnetic hypoxia is mainly caused by oxygen depletion
53	from sediments and decomposition of sediment organic matter and is initiated at the
54	sediment-water interface(Chen et al., 2020). Hypolimnetic hypoxia is therefore
55	exacerbated as the productivity and trophic status of the water body increases. In
56	contrast, the interpretation of potential process chains leading to metalimnetic oxygen
57	minima (MOM) remains controversial.
58	The earliest records of metalimnetic oxygen minima in stratified lakes or reservoirs
59	date back to 1906 in Lake Mendota (Wiebe, 1939a). Vertical oxygen profiles
60	collected from 235 reservoirs in Missouri during 1989-2007 showed MOM, probably
61	related to mesotrophic or eutrophic conditions and intense and stable thermal
62	stratification(Jones et al., 2011). Metalimnetic metabolic processes rates exhibited
63	high day-to-day variability in all trophic states(Giling et al., 2017). The study of
64	dissolved oxygen dynamics in Lake Constance, covering a period of more than 30
65	years from eutrophication to oligotrophication, has shown that severe oxygen

66	depletion in the metalimnion occurred during periods of moderate (1988-1999, TP
67	between 10 and 40 μ g L ⁻¹) and oligotrophic (2000-2010, TP<10 μ g L ⁻¹) rather than
68	during periods of high eutrophication (1977-1987, TP>40µg L ⁻¹), indicating that
69	MOM was not simply coordinated with nutrients (Rhodes et al., 2017). McDonald et
70	al. (2022) concluded from high-frequency observations of oxygen depletion at
71	multiple depths that DO consumptions in the metalimnion were synchronised with
72	DO deficits in the hypolimnion over time. Shapiro (1960) proposed three possible
73	causes of metalimnetic oxygen minima: 1) in situ oxygen depletion; 2) invasion of
74	low oxygen inflows; and 3) basin morphological features associated with horizontal
75	water movement.
76	Many studies have identified the cumulative effect of in situ oxygen depletion due to
77	the following aspects: (a) phytoplankton respiration beyond its photosynthetic
78	activity(Effler et al., 1998; Wentzky et al., 2019); (b) zooplankton respiration(Schram
79	and Marzolf, 1994; Shapiro, 1960), and (c) bacterial respiration from organic matter
80	decomposition(Boehrer and Schultze, 2008b; McDonald et al., 2022; Saeed, 2020), all
81	of which are considered to be Shapiro's first explanation. Based on the hydrodynamic
82	properties due to stratification. Kreling et al. (2017) suggested that the high density
83	gradient retards sedimentation of surface organic matter, making the metalimnion a
84	hotspot for organic matter degradation, implying that the corresponding vertical
85	positions for oxygen consumption are in the metalimnion. As a contribution to
86	primary productivity, most live blue-green algae accumulate in the euphotic zone, and

87	dying or dead algae float briefly to the surface where they are decomposed by bacteria
88	and then sedimented. Mitchell and Burns (1979) pointed out that zooplankton
89	respiration accounted for less than 10% of the maximum oxygen depletion in the
90	metalimnion in one year, but more in the other two years in Lake Johnson. Schram
91	and Marzolf (1994) calculated zooplankton respiration accounted for 26-31% of the
92	observed oxygen loss, except in midsummer when it accounted for 15%, Estimated
93	bacterial respiration accounted for >44% of the observed oxygen loss. In a study of
94	the northern Baltic Sea, microbial decomposition accounted for 80% and
95	mesozooplankton respiration for 20% of the metalimnetic oxygen
96	consumption(Raateoja et al., 2010). Algae deposition partly contributed to the oxygen
97	depletion in the hypolimnion, and the proportions of dead algae decomposed in the
98	metalimnion and in the hypolimnion are unclear. Terry et al. (2017) inverted the inter-
99	annual variation in sediment oxygen demand (SOD) by modelling in an ice-covered
100	lake in winter and concluded that maximum summer Chl_a concentrations determined
101	winter sediment oxygen demand, suggesting that mortal algae were mostly deposited
102	on the bed rather than fully decomposing in the metalimnion. The in-situ theory
103	deduces that the local metalimnetic DO depletion can be predicted from the local
104	biomass in a vertical water column, and the horizontal spatial variability in lakes or
105	reservoirs should be related to the algal heterogeneity in the current year. In addition,
106	Mi et al. (2020) indicated that approximately 60% of the oxygen consumption is from
107	benthic processes, with the remainder from pelagic processes.

109	Furthermore, in some studies the formation of MOM was mainly due to exogenous
110	inflow. The incoming density currents carried oxygen-depleted water towards the
111	dam, forming biogeochemical gradients limited to their characteristic density and
112	temperature, respectively (Wiebe, 1939b). During the flood season, the oxygen
113	demand of the inflowing water can be very high due to large amounts of organic
114	matter, and such inflow-borne loading can induce corresponding dissolved oxygen
115	changes in the reservoir (Lyman, 1944; Nix, 1981). During low flow periods,
116	upstream water containing some algae was incorporated into a density current and
117	transported through the metalimnetic region, and this process was proposed to support
118	the formation of metalimnetic dissolved oxygen minima in DeGray Reservoir (Nix,
119	1981).
120	The third hypothesis of MOM has received little research attention, while the
121	morphological features that generate environmental properties are being reviewed. In
122	stratified estuarine regions, the combination of upwelling along the coastal shelf in the
123	underlying high-density layer and river plumes in the surface layer regulates
123 124	underlying high-density layer and river plumes in the surface layer regulates sedimentation and pelagic processes, resulting in the spatial distribution of hypoxia on
123 124 125	underlying high-density layer and river plumes in the surface layer regulates sedimentation and pelagic processes, resulting in the spatial distribution of hypoxia on the shelf bed, the so-called 'shelf effect' (Jacox and Edwards, 2011; Wei et al., 2021).
123 124 125 126	underlying high-density layer and river plumes in the surface layer regulates sedimentation and pelagic processes, resulting in the spatial distribution of hypoxia on the shelf bed, the so-called 'shelf effect' (Jacox and Edwards, 2011; Wei et al., 2021). Unlike estuaries inland reservoirs tend to be seasonally stratified, with similar benthic
123 124 125 126 127	underlying high-density layer and river plumes in the surface layer regulates sedimentation and pelagic processes, resulting in the spatial distribution of hypoxia on the shelf bed, the so-called 'shelf effect' (Jacox and Edwards, 2011; Wei et al., 2021). Unlike estuaries inland reservoirs tend to be seasonally stratified, with similar benthic hypoxia typically occurring first at the tail bottom during the stratification. It is rarely

129	acts on the tail-bed hypoxia in the stratified reservoirs. The spatial variation in
130	sediment properties posed by flow velocity-sieved sedimentation from the tail to the
131	head of a reservoir (Chen et al., 2021). The exchange of solutes between sediment and
132	water is influenced by temperature and dissolved oxygen concentration (Dadi et al.,
133	2023). In a stratified reservoir, the flux of reducing agents at the sediment-water
134	interface appeared to be unevenly distributed (Wang et al., 2021).
135	Numerical models can be useful to study the formation of MOMs and even to
136	quantify the contribution of different processes. One-dimensional (1D) coupled
137	physical-ecological models provided information on the dissolved oxygen dynamics
138	along the vertical changes and emphasized the vertical turbulent diffusivity (Kz)
139	(Antonopoulos and Gianniou, 2003). In 1D models, the pelagic respiration term is
140	considered to be the most important factor controlling the formation and intensity of
141	MOM, and the effect of SOD on MOM may be negligible (Joehnk and Umlauf, 2001;
142	Saeed, 2020). However, 1D models grounded on the in-situ theory and ignore
143	horizontal evolutions, which may miss some information(Weber et al., 2017). The
144	two-dimensional (2D) CE-QUAL-W2 is widely used in water allocation and quality
145	management(Lindenschmidt et al., 2019). The 2D modelling results also showed that
146	the oxygen depletion would be intense if the withdrawal at the dam was at the same
147	level as the metalimnion(Williams, 2007). The 2D model of Rappbode reservoir was
148	well calibrated by the amount of observation data in different time periods, whereas
149	there was only one monitoring site at the head of the reservoir and it was difficult to

150	interpret the MOM	formation com	prehensively	(Mi et al.,	2020).
-----	-------------------	---------------	--------------	-------------	--------

150	interpret the MOM formation comprehensively (Mi et al., 2020).
151	A 4-year monitoring campaign was conducted in a dimictic stably stratified reservoir
152	in northern China, and by combining the monitoring results from the literature, we
153	found that MOM showed spatial differences and year-to-year variation in the
154	reservoirs. The established references could explain certain driving factors of MOM,
155	but not enough to predict the whole MOM process and guide the reservoir operation.
156	For the reservoir monitor, water temperature, dissolved oxygen, chemical indices,
157	algae and sediments are relatively easy to measure, but the systematic and high-
158	resolution assessment of hydrodynamics in stratified reservoirs is challenging. A
159	solution to this problem can be provided by numerical models. In this study, in
160	addition to the field survey, we use CE-QUAL-W2 to simulate the hydrodynamics
161	and associated water quality and phytoplankton dynamics in Panjiakou Reservoir
162	(PJKR). The model is driven by observed meteorological, hydrological and water
163	quality data at the boundaries to represent the dynamics of currents, nutrients, algae
164	and especially oxygen processes in the regulated limnetic ecosystem. A major novelty
165	of our study is the detailed spatial structure of biogeochemical processing in a large
166	reservoir with very complex morphometry. We provide evidence that spatial
167	heterogeneities, particularly with respect to sediment properties, can play a major role
168	in structuring and driving water quality dynamics in large reservoirs. A
169	comprehensive understanding of MOM formation of the reservoir will help to secure
170	ecological safety and implement scientific management.

171 2. Date and Methods

172 2.1 Study area and Observed data

171	2. Date and Methods
172	2.1 Study area and Observed data
173	The Panjiankou Reservoir, located in northern China (40°26'N, 118°16'E) on Luan
174	River (Fig. 1), has a multi-year capacity of 1.6 billion m ³ and a maximum depth of
175	68.9 m at the target water level of 225 m. Since its construction in the 1970s, the
176	water intakes have been located at the bottom of the dam. The inflow to the PJKR has
177	been significantly reduced by about 70% since the late 1990s, and the hydraulic
178	retention time (HRT) has increased to 2-3 years in recent years. The PJKR suffered
179	from severe eutrophication due to net-pen fish farming in the reservoir, non-point
180	source imports and upstream pollution. Since 2016, following the implementation of
181	nutrient reduction measures, the concentration of total phosphorus (TP) and total
182	nitrogen (TN) in the PJKR has decreased significantly, mainly due to the ban on
183	aquaculture and the pollution control from the catchment.
184	[Insert Figure 1 about here]
185	The study collected several categories of data: daily hydrological data, water quality
186	data, satellite remote sensing data, meteorological data and literature data. The inflow
187	contributions of the two tributaries are about 74% and 22% respectively, and the net
188	distributed inflow from the reservoir basin minus evaporation and infiltration is about
189	4%. The meteorological data come from a small meteorological monitoring station on
190	the dam. There are 24 water quality indicators measured based on the Chinese
191	Environmental Quality Standards for Surface Water (GB 3838-2002), including water

192	temperature, dissolved oxygen (DO), permanganate index (COD _{Mn}), chemical oxygen
193	demand (COD), ammonia nitrogen (NH ₄ -N), TN and TP. Water was typically
194	sampled monthly from April to October only at a depth of about 1.5 m. However, in-
195	situ vertical profiling campaigns in PJKR from the tail to the dam using a YSI-EXO
196	multiparameter probe were conducted in 2017, 2019 and 2020 at different times of the
197	year following the routine monitoring sites (Fig. 1). Among these years there was a
198	higher sampling frequency in 2020. In addition to these probe-based measurements,
199	we also obtained monthly averaged surface spatial distributions of Chl_a and total
200	dissolved solids (TDS) through remote sensing interpretation.
201	2.2 Model description and set up
202	The longitudinal-vertical 2D model CE-QUAL-W2 was chosen to simulate water
203	quality dynamics and hydrodynamics. In the hydrodynamic model, water temperature
204	and density are mandatory items in the hydrodynamic module, in which the density
205	is taken into account. The eddy viscosities, Chezy coefficient, and wind shelter
206	coefficient are the parameters for the hydrodynamics and solute transport. In the
207	vertical direction, CE-QUAL-W2 uses z-coordinates with fixed meshes at a vertical
208	resolution of 1 m. The water quality module is coupled with the hydrodynamic model
209	and can reflect feedbacks between water quality and hydrodynamic variables, while it
210	can be updated less frequently than hydrodynamics in order to save computational
211	time. The model is well suited to PJKR, which is relatively long and narrow has
212	longitudinal and vertical temperature and water quality gradients. The horizontal grid

213	spacing ranges from 221.97m to 2278.32m and the vertical grid spacing is 1m, as
214	shown in Fig. 1(b)
215	
216	According to the laboratory analysis of algae, the phytoplankton in PJKR is mainly
217	composed of Bacillariophyta, Cyanophyta and Chlorophyta, among which
218	Bacillariophyta is the most dominant one. The state variables modelled for water
219	quality include nutrients, dissolved oxygen and three algal groups, namely diatoms,
220	cyanophytes and green algae. Twenty-four active constituents, including
221	orthophosphate (PO4), ammonia-N (NH4), nitrate-N (NO3), DO, dissolved and
222	particulate matters, labile and refractory matters, and eight derived constituents,
223	including TN, TP, Chl_a, are modelled.
224	The transport and reaction equation used to model the dynamics of water quality or
225	temperature variables is:
226	$\frac{\partial B\Phi}{\partial t} + \frac{\partial UB\Phi}{\partial x} + \frac{\partial WB\Phi}{\partial z} = \frac{\partial}{\partial x} \left(BD_x \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial z} \left(BD_z \frac{\partial \Phi}{\partial z} \right) + q_{\phi}B + S_{\phi}B \tag{1}$
227	In which, Φ is lateral averaged concentration of active constituents mentioned before
228	and water temperature, mg L ⁻¹ and °C B is control volume width, m; U is x-direction
229	velocity, m s ⁻¹ ; W is z-direction velocity, m s ⁻¹ ; D_x is longitudinal dispersion
230	coefficient, m^2s^{-1} . D_z is vertical temperature and constituent dispersion coefficient,
231	m ² s ⁻¹ ; q_{Φ} = lateral inflow or outflow mass flow rate of constituent per unit volume,
232	gm ⁻³ s ⁻¹ ; S_{Φ} = laterally averaged source/sink term, gm ⁻³ s ⁻¹ .

233 The D_x specification is a user-defined input, it can also be set to be a function of the

234 mean velocity. D_z is internally computed within the model using the Reynold's

analogy, where D_z is computed from the vertical eddy viscosity A_z , as $D_z = 0.14A_z$ 235

- There are several methods available in CE-QUAL-W2 to calculate Az, we chose the 236
- 237 turbulent kinetic energy (TKE) approach.
- According to equation (1), the changes in temperature or actived constituents in a unit 238
- 239 grid are composed of four elements: (a) the convection term driven by the currents;
- 240 (b) the dispersion generated by mixing intensity and gradients; (c) the inflow or

241 outflow; and (d) the source and sink terms. The source and sink terms here describe

the rates of change due to biogeochemical reactions between active constituents. Here, 242

243 the source and sink terms for DO are described by equation (2).

244
$$S_{DO} = \underbrace{\sum (K_{ag} - K_{ar})\delta_{OMa}\Phi_a}_{algal \, net \, production} + \underbrace{\frac{A_{sur}}{V_{sur}}K_L(\Phi_{SDo} - \Phi_{DO})}_{aeration} - \underbrace{K_{RPOM}\delta_{OM}\gamma_{OM}\Phi_{RPOM}}_{refractory \, POM \, decay} -$$

245
$$\underbrace{K_{LPOM}\delta_{OM}\gamma_{OM}\Phi_{LPOM}}_{labile POM \ decav} - \underbrace{K_{RDOM}\delta_{OM}\gamma_{OM}\Phi_{RDOM}}_{refractory DOM \ decav} - \underbrace{K_{LDOM}\delta_{OM}\gamma_{OM}\Phi_{LDOM}}_{labile \ DOM \ decav}$$

246
$$\underbrace{K_{sed}\delta_{OM}\gamma_{OM}\Phi_{sed}}_{1st - oroder \ sediment \ decay} - \underbrace{SOD\gamma_{OM}\frac{A_{sed}}{V}}_{0 - order \ SOD} - \underbrace{\sum K_{CBOD}R_{CBOD}\theta^{T-20}\Phi_{CBOD}}_{CBOD \ decay}$$

labile DOM decar

247
$$\underbrace{K_{NH4}\delta_{NH4}\gamma_{NH4}\Phi_{NH4}}_{nitrification} - \underbrace{\delta_{Fe2-02}K_{Fe2}\Phi_{Fe2}}_{oxidation}$$
(2)

248 In which, Φ_i describes the oxygen concentrations, mg·L⁻¹; δ_i is the oxygen

stoichiometric coefficient of *i*;
$$\gamma_i$$
 is the temperature rate multiplier for *i*; K_i is the

growth, respiration or decay rate of *i*, s⁻¹;
$$V_{sur}$$
 is volume of the surface cell, m³; T is

- temperature, °C; A_{sur} is water surface area, m²; A_{sed} is sediment surface area, m². 251
- 252 The net production of oxygen by algae is given by photosynthetic production minus
- 253 respiration. Aeration processes are restricted to the surface cells in calculation, while

254	the sediment oxygen	demand is met by	y the benthic lay	yers. A fraction	of the organic
	20	-	-		0

- 255 matter released by algal mortality enters the detritus compartment as particulate
- 256 organic matter(POM), while the remainder becomes labile dissolved organic
- 257 matter(LDOM). The transformation of POM into DOM is a first order process with a
- transformation rate, as is the mineralisation of DOM.
- 259 The inflow boundary conditions were set at the upper reaches of Luan River and Pu
- 260 River, and the outflow boundary was at Dam. According to the frequency of in-situ
- 261 vertical monitoring and the representativeness of the measurements, we chose the
- 262 years 2017 and 2020 for modelling and analysis. A small amount of missing input
- 263 data is calculated using the linear interpolation method.
- 264 The trophic status of PJKR is reviewed to give an insight to the nutrient cycle. In
- addition to high N and P loads, the high algal biomass leads to high sedimentation and
- high oxygen consumption. The yearly average Chl a concentrations at sites 1, 3, 5
- and 8 and the yearly average TP concentrations and the yearly maximum Chl_a
- concentrations at sites 1, 3, 5 and 8 from 2010 to 2020 are shown in Fig. 2. Chl_a
- 269 concentrations decreased significantly from 2010 to 2020, and TP concentrations
- 270 reached high values in 2015~2017 and then decreased dramatically, and the
- 271 correlation between annual mean Chl_a and TP concentrations is not obvious. In
- 272 general, Chl_a concentrations were higher at site 8 than at sites 1, 3 and 5. The
- 273 oxygen consumption of reservoirs in different years can refer to the algal biomass of
- that year or the previous years.

[Insert Figure 2 about here]

The distributed sediment condition was mainly based on a reservoir sediment survey 276 277 (Wang et al., 2021). Ammonia nitrogen, nitrite and nitrate in sediments were sampled 278 in May 2020 and the internal loading of the reservoir was analyzed. According to the 279 nutrient flux at the sediment-water interface during the static release experiment in 280 Fig. 2(c, d, e), the release of ammonia nitrogen was about more than 10 times higher than that of nitrite, while nitrate was a sink. Spatially, the largest ammonia releases 281 282 were at site 3, followed by the second largest releases at 1, 2 and 8, and small 283 ammonia releases at 4, 5, 6 and 7, which were about 1/3 or 1/2 of those at 1, 2 and 8. Among these 8 sites, the smallest ammonia release flux was at 7. In the investigation 284 285 of the oxygen consumption in 11 European lakes (Steinsberger et al., 2020), the flux 286 of reduced compounds from the sediment was in good agreement with the sediment oxygen uptake. The estimated fluxes were converted to oxygen equivalents (F_{red}, 287 mmol $O_2 m^{-2} d^{-1}$) (Matzinger et al., 2010; Müller et al., 2012) as follows: 288 289 $F_{\rm red} = 2 \cdot J_{CH_4} + 2 \cdot J_{NH_4} + 0.5 \cdot J_{Mn(II)} + 0.25 \cdot J_{Fe(II)}$ (3) 290 In which, J is fluxes of reduced substances J (mol $m^{-2} s^{-1}$). Although the components of CH₄, Mn(II) and Fe(II) fluxes were not tested in the reservoir, the NH₄ flux at 291 292 different sites can be used as a reference for the SOD distributions. 293 A schematic diagram of the corresponding SOD value in the range of 1~9 g·m⁻²·day⁻¹ in 294 PJKR can be seen in Fig. 3. The SOD values in 2017 were higher than those in 2020

295 considering the annual Chl_a and TP concentrations, which was also reflected in the

[Insert Figure 3 about here]

- 298 The main parameters used in the model and their values are given in Table 1. Some
- 299 parameters refer to the CE-QUAL-W2 manual or to the model documents, others
- 300 come from the calibration.
- 301 Table 1. Parameters calibrated or referenced in PJKR model

Parameter	Description	Value	Source
AX	Hor. Eddy Viscosity , m ² ·s ⁻¹	1.0	Manual
DX	Hor. Eddy Diffusivity, m ² ·s ⁻¹	1.0	Manual
AZC	Vertical Eddy Viscosity	TKE	Manual
AZSLC	Vertical Transport Hor. Momentum	IMP	Manual
CBHE	Sediment Heat Exchange Coeff. (W·m ⁻² ·s ⁻¹)	1.0	Calibration
SEDK	Sediment decay rate, day-1	0.05	Calibration
SOD	SOD, g·m ⁻² ·day ⁻¹	0.2~9 (2017)	Calibration
		0.2~6 (2020)	Calibration
SODT1	Lower temperature for sediment decay (°C)	4	Manual
SODT2	Upper temperature for sediment decay (°C)	30	Manual
AT1	Lower temperature for 3 ALG growth (°C)	2, 6, 16	Calibration
AT2	Lower temperature for maximum 3 ALG growth (°C)	3, 14, 27	Calibration
AT3	Upper temperature for maximum 3 ALG growth (°C)	8, 16, 29	Calibration
AT4	Upper temperature for 3 ALG growth (°C)	10, 31, 36	Calibration

PO4R	Sediment Release rate of phosphorus, g·m ⁻² ·day ⁻¹	0.050(2017),	Calibration
		0.025(2020)	
NH4R	Sediment release rate of ammonium, g·m ⁻² ·day ⁻¹	0.40(2017),	Calibration
		0.25(2020)	

302 2.3 Scenarios designed

303	Three hypothetical scenarios were designed to identify the hydrodynamic and
304	sedimentary factors on MOM. Scenarios aimed at the role of algae on MOM were
305	also calculated by switching algae on and off, and similar results with Mi (2020) were
306	found that MOM without SOD disappears, whether with or without the algae process.
307	In this study, 3 scenarios (S-A, S-B and S-C for short), mainly based on the conditions
308	of 2017, are designed to analyze the mechanism of MOM formation in the reservoir.
309	
310	In scenario A (S-A), a quiescent reservoir with temperature and biochemical
311	processes is set up by removing inflow, outflow and wind to test the exogenous
312	hydrodynamic effects. Vertical water movements due to the changing stratified water
313	temperature are still present, while the advection and circulation driven by inflow,
314	outflow and wind disappear. The initial conditions of temperature and water quality,
315	meteorological conditions and SOD settings are the same as in 2017. In scenario B (S-
316	B) and scenario C (S-C), except for the spatial SOD patterns, the boundary condition,
317	initial condition and parameters are the same as in the 2017 simulation. The
318	downstream and upstream SOD, bounded by location 7 in Figure 3, are set to 0 in S-B

- and S-C, respectively. The Algal processes are calculated in three scenarios. The
- 320 detailed setting options for the three scenarios are given in Table 2.
- 321

	Flow and wind	Upstream SOD	Downstream SOD	Chemical reaction and
				Algae
Scenario A	-	+	+	+
Scenario B	+	+	_	+
Scenario C	+	-	+	+

322 Table 2. Model setting options for each scenario.

- 323 "+"means switch on, "-" means switch off.
- 324

325 **3. Results**

326 3.1 Model calibration

327 The hydrodynamic changes are the fundamental processes for the water environment,

328 while there are fewer observations of velocities or eddies, except for water levels. The

329 hydrodynamic calibration uses the daily observed water levels to check the modelling

- results to validate the inflow and outflow balance as they influence the heat budget.
- 331 The calculated water levels in 2017 and 2020 are in good agreement with the
- 332 measurements, which are not shown in this paper.
- 333 The model temperature and oxygen profiles are calibrated using in-situ vertical
- monitoring data from 2017 and 2020. Sites 1 to 8 are therefore shown in Fig. 1. The

335	comparisons between computed and measured water temperature and DO profiles in
336	2017 are shown in Fig. 4, and the comparisons of 2020 are shown in Fig. 5.
337	[Insert Figure 4 about here]
338	[Insert Figure 5 about here]
339	We mainly compared Chl_a and TP with the measured data, as shown in Fig. 6. The
340	contour plots of computed (a) diatom, (b)blue-green algae and (c)cyanobacteria
341	concentrations in 2020 at monitoring site 1 in PJKR are shown in Fig. 7.
342	[Insert Figure 6 about here]
343	[Insert Figure 7 about here]
344	The algae were calibrated against the measured Chl_a concentration. According to the
345	measurements in 2020, the Chl_a concentration from site 8 to site 1 were in the range
346	of 0.2~7.4 ug/L, and the concentration at site 8 was higher than that at site 3 and site
347	1, TP concentrations were 0.017~0.057mg/L. PJKR was in mesotrophic condition.
348	The low Chl_a level, indicating low algal biomass, causes the intense oxygen minima
349	locally, which is doubtful.
350	The calculation of water level and vertical water temperature has a high accuracy,
351	while the vertical oxygen has a lower accuracy but a good fit in the metalimnion. The
352	simulation accuracy of the water quality indicators is slightly less good. The local
353	mass inputs and the uneven distribution of meteorological factors could be the sources
354	of uncertainty due to the large catchment area of the reservoir. The error analysis data
355	are presented in Table 2.

356	Table 2. Summar	y of the	performanc	e indicators	for the '	W2 modeling of
		1				£)

357 hydrodynamic and water quality variables, RMSE = root mean squared error, $R^2 =$

Simulated Variables	RMSE	R ²	NSE
Water level (WL) (m)	0.06	0.99	0.98
Water temperature (T) (°C)	0.46	0.95	0.95
DO (mg/L)	1.88	0.58	0.57
Chl_a (ug/L)	0.3	0.54	0.55
TN (mg/L)	0.24	0.58	0.59
TP (mg/L)	0.01	0.55	0.55
NH ₃ -N (mg/L)	0.015	0.52	0.52

358 coefficient of determination, NSE=Nash-Sutcliffe efficient

359

360 3.2 Results analysis: seedbed, evolution and driving forces of MOM

Stratification is the primary prerequisite for MOM, shaping the vertical oxygen profiles. Further details can be obtained from the modelling results. The depth profiles of oxygen concentration in 2017and 2020 at site 5 and site 1, respectively, are shown in Fig. 8(b, c, e, f). As a relative comparison, the depth profiles of temperature in 2017 and 2020 at site 1 are plotted, and the thermocline depth is specified by the $\Delta T / \Delta$ $x>1^{\circ}C m^{-1}$ from bottom to surface, which are also shown in Fig. 8(a, d). [Insert Figure 8 about here]

368	Oxygen depletion in the metalimnion was much more pronounced in 2017 than in
369	2020. In 2017, the MOM started in mid-July and ended after turnover in November,
370	and the oxygen depletion at site 1 was more pronounced than that at site 5. In 2020,
371	the oxygen minima at site 5 were more intense than those at site 1 in mid-July, and the
372	metalimnetic depth corresponded to the bottom of the upstream site 8, where the
373	oxygen concentration was almost zero in Fig. 5.
374	Several types of images are combined to provide a comprehensive analysis of oxygen
375	changes. The 2D the magnitude contours of temperature, oxygen and velocities, with
376	streamlines are plotted in Fig. 9 (a, b, c). The velocities were calculated using $UW =$
377	$\sqrt{u^2 + w^2}$. The TP, TN, Chl_a, and DOM concentrations in the surface layer in the
378	longitudinal direction on Jul 23, 2020 are shown in Fig. 9 (d). The Chl_a
379	concentration at the surface by remote sensing interpretation is exhibited in Fig. 9 (e).
380	[Insert Figure 9 about here]
381	The vertical thermal gradient in the metalimnion has a high temperature at the top and
382	a low temperature at the bottom (Fig. 9(a)), similar to the "stratosphere" where
383	horizontal flow dominates with a low value of the vertical diffusion. The relatively
384	high-speed horizontal currents indicated in Fig. 9(c), transport the oxygen depletion
385	and the reduced compounds from the tail to the head of the reservoir in the
386	metalimnion. The upwelling against the bathymetric slope can be seen, which may be
387	a kind of similar phenomena observed and mentioned in stratified estuaries related to
388	shelf bed hypoxia (Wei et al., 2021). In addition, the vertical flow in front of the dam

389	region can	be seen.	Upstream	river	inflow	caused	concentration	changes i	n the

- 390 reservoir, particulate deposition, algal growth and sedimentation, together with the
- 391 upwelling, account for the high oxygen consumption sedimentary zone (HOCSZ). In
- 392 July 2020, hypoxia developed at the bottom of site 8 first, where the metalimnion is at
- 393 the same level, as shown in Fig. 9(a) and (b).
- 394 In terms of the evolutionary process, the MOM at site 1 lags behind that at site 5, and
- 395 the oxygen minima become less pronounced in Fig. 9(b). The intensity and depth of
- 396 advection in the metalimnion can shape the MOM differently. The stratification
- 397 disappears with the strong vertical mixing of the autumn turnover at site 8 and the
- 398 benthic hypoxia disappears, as seen in Fig. 5. The turnover characteristics and DO
- responses in PJKR can be seen in Du et al. (2023).
- 400
- In addition, 2D oxygen concentration and velocity distribution in Fig. 10 (a, b), are
 shown in conjunction with the oxygen and temperature profiles at site 1 in Fig. 10 (c)
 on 11 September 2017.
- 404

[Insert Figure 10 about here]

It can be clearly seen in Fig. 10 (a) that the oxygenated water was wedged into the upper metalimnion and inserted into the formed MOM. The front of the oxygenated water reached site 3. By presenting the oxygen and current distributions, we can easily explain the peculiar oxygen profile patterns at the upstream sites in Fig. 4. The oxygen profile at site 4 was similar to that at site 1, although the water depth was

410	different. The influence of the intruding current was attenuated in the wing area (Fig.
411	1) and near the dam area. The relatively high velocity in the metalimnion can also be
412	seen in the velocity magnitude contour in Fig. 10(b). Again, we found upwelling in
413	the hypolimnion along the bathymetric slope in Fig. 10(b) through the streamlines.
414	According to the 2-year modelling results, the benthic anoxic zone occurred around
415	the lower edge of the metalimnion at the end of the reservoir. Sediment oxygen
416	consumption on the reservoir tail shelf is the seedbed of MOM, and horizontal oxygen
417	advection in the metalimnion, is the driving force that develops MOM throughout the
418	reservoir. It can explain the conclusions of Williams (2007) that the withdrawal at the
419	metalimnion accelerated the horizontal flow intensity in the metalimnion, thereby
420	intensifying the MOM.
421	3.3 Scenarios Results
422	The results of the designed scenarios in 2.4 are used for further analysis, and the 2017
423	results in Fig. 6 are taken as the control. The computed depth profiles of oxygen
424	concentration at site 5 and site 1 of S-A, S-B, and S-C are plotted and shown in Fig
425	11.
426	[Insert Figure 11 about here]
427	The thermocline depths are shallow in summer when the water is essentially
428	stationary in the reservoir in Scenario A in Fig 11(a). The convective transport term
429	by currents becomes very small and the dispersion by the concentration gradient
430	dominates the distribution of temperature and dissolved matter. MOM was not

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4683905

431	observed throughout the reservoir, although oxygen depletion in the hypolimnion was
432	evident. The disappearance of advection in the metalimnion leads to the
433	disappearance of MOM in Fig. 11(a) and (d). The results of Scenario A again show
434	the crucial role of hydrodynamic forces and explain the MOM in 2020.
435	
436	When the upstream SOD was set in Scenario B, MOM was still produced throughout
437	the reservoir, but the intensities of oxygen depletion became subtle, especially in the
438	head of the reservoir, shown in Fig. 11 (b) and (e). In Scenario C with the downstream
439	SOD setting, MOM was evident in the downstream region but disappeared in the
440	upstream region, as shown in Fig. 11 (c) and (f). High inflow and outflow rates lead to
441	short HRT, and strong mixing effects vertically in the hypolimnion and advection in
442	the metalimnion, likewise to generate MOM. The strong MOM in 2017 was the
443	comprehensive function of advection in stratified reservoirs, upstream and
444	downstream SOD.
445	
446	4. Discussions
447	4.1 Relationship between HOCSZ distribution and upwelling in the hypolimnion
448	In the reservoir, HOCSZs on the bed are embodied in the larger sediment oxygen
449	demand (SOD), and the SOD distribution settings are based on the Wang et al. (2021).
450	The fieldwork for the study was carried out in May 2020. Although benthic water
451	temperature was not provided, DO concentrations at the sediment-water interface

452 were measured at several sites and reported to range from 9.64 to 11.8. According to 453 the modelling results shown in Fig. 5, the thermal stratification started. At the same 454 time, the DO concentration profiles were basically unstratified with high benthic DO, 455 which is consistent with the measurements in other studies. Hypoxia in the benthic 456 zone is a gradual process that was not fully synchronised with thermal stratification 457 (Du et al., 2023).

The modelling results for 2017 and 2020 show that there was upwelling against the 458 459 bed slope in the hypolimnion. Due to the long-term influence of upwelling during the 460 stratification periods, the flux of reducing substances from the sediment decreased, resulting in relatively lower SOD on the deep slopes. At the same time, upwelling and 461 462 inflow meet at the height of the metalimnion, causing strong sedimentation, altering 463 nutrient transport, and forming a high oxygen-consuming sedimentary zone at the 464 reservoir tail. The distributions of SOD in reservoirs are therefore shaped by the 465 specific hydrodynamics in stratified reservoirs. Once thermal stratification has started, 466 oxygen depletion usually occurs first at the bottom below the metalimnion due to 467 shallow depth and high sediment oxygen consumption at HOCSZ. During the 468 stratification, HOCSZs become the seebeds of the low-oxygen in the metalimnion. 469

470 4.2 Hydrological processes, trophic states and MOM displays

471 In Section 2.1, we mentioned that the variation of the vertical water temperature and472 oxygen profiles in September were different in 2017, 2019, and 2020. Since the

473	oxygen depletions in the metalimnion were most obvious in September, the
474	temperature and oxygen profiles in September 2017, 2019 and 2020 at sites 1, 5, and
475	8 were selected for comparison, as shown in Fig. 12. The depth of the metalimnion
476	determined the depth of MOM. The oxygen minimum at S1 was more pronounced in
477	the metalimnion in 2017 and 2019 than in 2020, and an oxygen protrusion occurred in
478	the middle of MOM at S5 in 2017. Compared to the temperature profiles, the spatial
479	variability of MOM profiles is more pronounced.
480	[Insert Figure 12 about here]
481	We were confused when we saw the zigzag oxygen profiles measured from S5 to S8
482	in Sep. 2017 as our first monitoring campaign, which were difficult to interpret using
483	previous theories before we received the hydrological data and ran the model. Based
484	on the modeling results, hydrological processes are used to further understand the
485	inter-annual MOM variations. The water level and total inflow rates of the reservoir in
486	2017, 2019, and 2020 are shown in Fig. 13.
487	[Insert Figure 13 about here]
488	Hydrodynamics determine the characteristics of the sediments, and long HRT enhance
489	sedimentation (Lindström and Bergström, 2004). Controlled by the average operating
490	water levels of the reservoir, the HOCSZs at the tail bed are considered at the specific
491	elevation zone, and the corresponding water surface elevation zone during
492	stratification was briefly denoted as WL-HOCSZ. The water levels and inflow rates in
493	2017, 2019, and 2020 are exhibited in Fig. 11, and the elevations of WL-HOCSZ in

494	the stratified period are also indicated in Fig 11. In order to clearly illustrate the
495	hydrological differences in these three years, the characteristic parameters such as
496	averaged water levels, inflow rates, and HRT during the stratified period of 2017,
497	2019, and 2020 were 334.7d, 396.1d and 412.8d respectively. HRT in 2019 and 2020
498	were over 1 year.
499	Combined with the analysis in 3.1 and 3.2, the formation of oxygen profiles in these
500	three years was reviewed. In 2017, the operating water levels ranged from 210.01m to
501	221.31m during the stratification period. In early July, the water level reached the
502	annual minimum, then rose significantly, and passed over WL- HOCSZ, with two
503	flood events in early and late August. Nix (1981) thought that the invasions of high-
504	concentration organic matter from the stormwater was a likely contributor to MOM.
505	In PJKR, an August flood contained high oxygen with high temperature, passed
506	through the high oxygen consumption zone, flowed along the upper edge of the
507	metalimnion, and reformed the MOM, as shown in Fig. 10. The oxygen-rich water
508	was transported horizontally from upstream to site 3, where there were two wings, and
509	the longitudinal movement was distributed, resulting in different oxygen profiles
510	throughout the reservoir. Therefore, inflow may be the destroyer rather than the
511	contributor of MOM. During the stratification period in 2019, the inflow rates were
512	low and the water levels varied between 213.08 and 219.27 m, which were consistent
513	with WL-HOCSZ, and the remarkable MOM profiles were observed throughout the
514	reservoir.

515	In 2020, the water levels during stratification were about 10~20m lower than those in
516	2017 and 2019, and also lower than WL-HOCSZ. The inflow rates remained as low as
517	in 2019, with no flooding events during the wet season. Referring to Fig. 5, the MOM
518	was pronounced near the tail region (S5), then gradually weakened along the
519	longitudinal direction (S3), and was almost invisible in the head of PJKR (S1) on 28
520	Aug 2020. The currents in the metalimnion in 2020 were assumed to be similar to
521	those in 2019, and the water levels may be one of the key reasons for the MOM
522	differences. The low water levels did not correspond to the HOCSZ at the tail, which
523	weakened the intensity of the metalimnetic oxygen depletion, while the remarkable
524	hypolimnetic oxygen depletion remained in contrast.
525	The oxygen depletion in the metalimnion was the most intense in 2017, secondary in
526	2019, and subtle in 2020 in the head of the reservoir (Fig. 11). In addition to the
527	hydrodynamic process, the trophic states are considered to be an influential factor for
528	MOM. According to the measurements in Fig. 2, Chl_a and TP concentrations
529	decreased significantly after 2017 with a decreasing trend from 2015 to 2020. The
530	eutrophication conditions and the high algal biomass induced heavy algal deposition
531	and consequently increased oxygen consumption, probably in the year and following
532	years. The benthic sediments are aerated by limnic turnover in winter in the seasonal
533	stratified reservoir(Du et al., 2023). The agitated turnover and long vertical mixing
534	periods result in sufficient sediment oxygenation and lower SOD. The lakes and
535	reservoirs have become significantly more stratified over the last half century as the

536	climate has warmed, reducing turnover and inhibiting the vertical mixing (Posch et
537	al., 2012). Oxygen consumption is not only related to trophic status, but is also
538	influenced by several other factors. MOM profiles in PJKR in three years have
539	illustrated the trophic influences that may be represented by the observed MOM in
540	Lake Constance (Rhodes et al., 2017). Based on the observed and simulated results
541	over three years, the drivers of the formation of metalimnetic dissolved oxygen
542	minima in a stratified reservoir are well interpreted in terms of hydrological processes,
543	hydrodynamics, and sediment oxygen consumption.
544	4.3 Summary of crucial impact factors on MOM
545	The metalimnetic dissolved oxygen minima are the result of comprehensive effects of
546	reservoir regulation and hydrodynamics, sedimentation patterns, and trophic status.
547	We have tentatively classified three types of flow intensity, combined the
548	sedimentation patterns, and summarized the corresponding MOM exhibitions, as

- shown in Table 3.
- 550 Table 3. MOM exhibitions in stratified reservoirs under different conditions

	El	Tail HOCSZ	Downstream	MOM exhibitions	Corresponding
	Flow intensity		HOCSZ		cases
	NO	+	+	Disappeared	Scenario A
5	Weak	+	+	Pronounced	2019
		-	+	Not obvious	2020

	+	+	Pronounced	2017
Modest	+	-	Appeared upsteam	Scenario B
	-	+	Appeared downstream	Scenario C

552	The cases summarized in Table 3 would be helpful in extending the theory to other
553	reservoirs or lakes to interpret the MOM formation. Many deep reservoirs (>100m)
554	have been constructed for hydropower generation in the upper reaches of Changjiang
555	Rivers in China. The inflow and outflow discharges of the reservoirs are larger, and
556	the depth of the metalimnion varies greatly in stratification seasons, with low nutrient
557	loads and oligotrophic conditions. The HOCSZ at the tail bed was not significant,
558	while HOCSZ at the head of the reservoir was distinct due to the dam interception.
559	Scenario C well explained the MOM in the large deep cascade hydropower reservoirs
560	(Chen et al., 2021). The results also reveal the synchrony of DO depletions in the
561	metalimnion and hypolimnion in some lakes(McDonald et al., 2022). Furthermore,
562	the top-layer water withdrawal facilities, designed to solve the problems of low-
563	temperature water release in stratified reservoirs, further reduce the DO concentration
564	in the hypolimnion (Weber et al., 2017), and consequently decrease the DO in then
565	metalimnion, which can bring a certain negative effect.
5((

566

567 5. Conclusions

568	• We have recorded the evolution of the metalimnetic oxygen minimum in
569	Panjiakou Reservoir over the years through field measurements. The numerical
570	modeling and scenario simulations reveal the mechanism of MOM formation, the
571	crucial factors and their effects. In general, the comprehensive functions of
572	hydrodynamics and benthic oxygen consumption, and trophic status generate MOM in
573	the stratified reservoirs.
574	• In the interfaces between the epilimnion and hypolimnion in stratified reservoirs,
575	there is very little vertical diffusion, which inhibits water exchange between the
576	epilimnion and hypolimnion, whereas there are relatively strong advections.
577	Circulation and mixing occur in the epilimnion and hypolimnion respectively. The
578	upwelling along the benthic slopes in the hypolimnion together with other features,
579	creates the High Oxygen Consuming Sedimentation Zones (HOCSZ) mainly on the
580	deepest bed and at the bottom of the metalimnetic elevation, where hypoxia first
581	appears after stratification. The HOCSZ are the seedbeds and the metalimnetic
582	advections become the drivers of the metalimnetic dissolved oxygen minima.
583	• By analyzing different scenarios, the intensities of oxygen depletion in the
584	metalimnion are related to the flow intensity during the stratification period. Weak
585	flow intensity attenuate the degree of oxygen depletion. Moderate flow intensity not
586	only maintain stable thermal stratification, but also enhance horizontal flow and
587	advection in the metalimnion, which tends to produce significant oxygen depletion.

588	Currently, upper-layer water withdrawals, which are common in stratified reservoirs,
589	have the potential to increase oxygen depletion in the metalimnion.
590	• The total oxygen consumption in reservoirs mainly originally comes from algae,
591	input of organic matter and reductants, which are decomposed and sedimented.
592	Eutrophication has a tendency to cause intense benthic HOCSZ in subsequent years.
593	Sediments can be aerated by the winter turnover and reduce the oxygen demand.
594	Although the climate, reservoir regulations can influence the sediment oxygen
595	consumption, reducing the trophic levels and algal biomass help to promote the
596	oxygen concentrations in the metalimnion.
597	• A better understanding of MOM will help us unravel the complex and variable
598	environmental problems of the limnic system in relation to pollution control and
599	reservoir regulation. With the increasing construction of reservoirs to cope with
600	extreme climates and clean energy demands in the future, the study provides ideas for
601	improving water management.
602	
603	List of abbreviations
604	Funding:
605	This work was jointly supported by National Natural Science Foundation of China
606	(NSFC) project (Ref. U2040211, 51861135314).
607	Acknowledgments:

- 608 The authors are grateful to Xiaoyu Ma, Yajian Li for the field works. We also greatly
- appreciate the three anonymous reviewers and the editor for their insightful comments.

610	Conflicts of	of Interest:

- 611 No
- 612

613	References

- 614 Antonopoulos, V.Z., Gianniou, S.K., 2003. Simulation of water temperature and
- 615 dissolved oxygen distribution in Lake Vegoritis, Greece. Ecological
- 616 Modelling, 160: 39-53.
- 617 Boehrer, B., Schultze, M., 2008a. Stratification of lakes. Reviews of Geophysics,
- 618 46(2). DOI:10.1029/2006rg000210
- 619 Boehrer, B., Schultze, M., 2008b. Stratification of lakes Rev. Geophys., 46: 2005.
- 620 Chen, Q. et al., 2021. Bacterial communities in cascade reservoirs along a large river.
- 621 Limnology Oceanography 66: 4363–4374. DOI:10.1002/lno.11967
- 622 Chen, Q. et al., 2020. Hydropower reservoirs on the upper Mekong River modify
- 623 nutrient bioavailability downstream. National Science Review, 7(9): 1449-
- 624 1457. DOI:10.1093/nsr/nwaa026
- 625 Dadi, T., Friese, K., Wendt-Potthoff, K., Marcé, R., Koschorreck, M., 2023. Oxygen
- 626 Dependent Temperature Regulation of Benthic Fluxes in Reservoirs. Global
- 627 Biogeochemical Cycles, 37(4). DOI:10.1029/2022gb007647
- Du, Y. et al., 2023. Turnover characteristics and dissolved oxygen responses in a large
 stratified reservoir. Journal of Hydraulic Engineering, (in Chinese) 54(7).

- 630 Effler, S.W. et al., 1998. Characteristics and Origins of Metalimnetic Dissolved
- 631 Oxygen Minima in a Eutrophic Reservoir. Lake and Reservoir Management,
- 632 14(2-3): 332-343. DOI:10.1080/07438149809354341
- 633 Giling, D.P. et al., 2017. Delving deeper: Metabolic processes in the metalimnion of
- 634 stratified lakes. Limnology and Oceanography, 62(3): 1288-1306.
- 635 DOI:10.1002/lno.10504
- 636 Jacox, M.G., Edwards, C.A., 2011. Effects of stratification and shelf slope on nutrient
- 637 supply in coastal upwelling regions. Journal of Geophysical Research,
- 638 116(C3). DOI:10.1029/2010jc006547
- 639 Joehnk, K.D., Umlauf, L., 2001. Modelling the metalimnetic oxygen minimum in a

640 medium sized alpine lake. Ecological Modelling, 136: 67–80.

- Jones, J.R., Knowlton, M.F., Obrecht, D.V., Graham, J.L., 2011. Temperature and
- oxygen in Missouri reservoirs. Lake and Reservoir Management, 27(2): 173-
- 643 182. DOI:10.1080/07438141.2011.583713
- Kreling, J. et al., 2017. The importance of physical transport and oxygen consumption
 for the development of a metalimnetic oxygen minimum in a lake. Limnology

646 and Oceanography, 62(1): 348-363. DOI:10.1002/lno.10430

- 647 Lindenschmidt, K.E., Carr, M.K., Sadeghian, A., Morales-Marin, L., 2019. CE-
- 648 QUAL-W2 model of dam outflow elevation impact on temperature, dissolved
 649 oxygen and nutrients in a reservoir. Sci Data, 6(1): 312. DOI:10.1038/s41597650 019-0316-y

651	Lindström, E.S., Bergström, AK., 2004. Influence of inlet bacteria on
652	bacterioplankton assemblage composition in lakes of different hydraulic
653	retention time. Limnology and Oceanography, 49(1): 125-136.
654	DOI:10.4319/lo.2004.49.1.0125
655	Lyman, F.E., 1944. Effects of a Flood upon Temperature and Dissolved Oxygen
656	Relationships in Cherokee Reservoir, Tennessee. Ecology, 25(1): 70-84.
657	Matzinger, A., Müller, B., Niederhauser, P., Schmid, M., Wüest, A., 2010.
658	Hypolimnetic oxygen consumption by sediment-based reduced substances in
659	former eutrophic lakes. Limnology and Oceanography, 55(5): 2073-2084.
660	DOI:10.4319/lo.2010.55.5.2073
661	McDonald, C.P., Saeed, M.N., Robertson, D.M., Prellwitz, S., 2022. Temperature
662	explains the formation of a metalimnetic oxygen minimum in a deep
663	mesotrophic lake. Inland Waters, 12(3): 331-340.
664	DOI:10.1080/20442041.2022.2029318
665	Mi, C. et al., 2020. The formation of a metalimnetic oxygen minimum exemplifies
666	how ecosystem dynamics shape biogeochemical processes: A modelling study.
667	Water Research, 175. DOI:10.1016/j.watres.2020.115701
668	Mitchell, S.F., Burns, C.W., 1979. Oxygen consumption in the epilimnia and
669	hypolimnia of two eutrophic, warm-monomictic lakes. New Zealand Journal
670	of Marine and Freshwater Research, 13(3): 427-441.
671	DOI:10.1080/00288330.1979.9515820

672	Müller, B., Bryant, L.D., Matzinger, A., Wuest, A., 2012. Hypolimnetic oxygen
673	depletion in eutrophic lakes. Environ Sci Technol, 46(18): 9964-71.
674	DOI:10.1021/es301422r
675	Nix, J., 1981. Contribution of hypolimnetic water on metalimnetic dissolved oxygen
676	minima in a reservoir. Water Resources Research, 17(2): 329-332.
677	Posch, T., Köster, O., Salcher, M.M., Pernthaler, J., 2012. Harmful filamentous
678	cyanobacteria favoured by reduced water turnover with lake warming. Nature
679	Climate Change, 2(11): 809-813. DOI:10.1038/nclimate1581
680	Raateoja, M., Kuosa, H., Flinkman, J., Pääkkönen, J.P., Perttilä, M., 2010. Late
681	summer metalimnetic oxygen minimum zone in the northern Baltic Sea.
682	Journal of Marine Systems, 80(1-2): 1-7. DOI:10.1016/j.jmarsys.2009.06.005
683	Rhodes, J., Hetzenauer, H., Frassl, M.A., Rothhaupt, K.O., Rinke, K., 2017. Long-
684	term development of hypolimnetic oxygen depletion rates in the large Lake
685	Constance. Ambio, 46(5): 554-565. DOI:10.1007/s13280-017-0896-8
686	Saeed, M.N., 2020. Metalimnetic Oxygen Minimum in Green Lake, Wisconsin,
687	Michigan Technological University. DOI:10.37099/mtu.dc.etdr/1154
688	Schram, M.D., Marzolf, G.R., 1994. Metalimnetic Oxygen Depletion: Organic
689	Carbon Flux and Crustacean Zooplankton Distribution in a Quarry
690	Embaymen. Transactions of the American Microscopical Society, 113(2):
691	105-116.

692	Shapiro, J., 1960. The cause of a metalimnetic minimum of dissolved oxygen.
693	Limnol. Oceanogr., 5(2): 216-227.
694	Steinsberger, T., Schwefel, R., Wüest, A., Müller, B., 2020. Hypolimnetic oxygen
695	depletion rates in deep lakes: Effects of trophic state and organic matter
696	accumulation. Limnology and Oceanography, 65(12): 3128-3138.
697	DOI:10.1002/lno.11578
698	Terry, J., Sadeghian, A., Lindenschmidt, KE., 2017. Modelling Dissolved
699	Oxygen/Sediment Oxygen Demand under Ice in a Shallow Eutrophic Prairie
700	Reservoir. Water, 9(2). DOI:10.3390/w9020131
701	Wang, H.W. et al., 2021. Occurrence characteristics and transport fluxes of nitrogen
702	and phosphorus at sediment-water interface of Panjiakou Reservoir in spring.
703	China Environmental Science, (Chinese), 41(9): 4284-4293.
704	DOI:10.19674/j.cnki.issn1000-6923.20210222.002
705	Weber, M., Rinke, K., Hipsey, M.R., Boehrer, B., 2017. Optimizing withdrawal from
706	drinking water reservoirs to reduce downstream temperature pollution and
707	reservoir hypoxia. J Environ Manage, 197: 96-105.
708	DOI:10.1016/j.jenvman.2017.03.020
709	Wei, Q. et al., 2021. Coastal Upwelling Combined With the River Plume Regulates
710	Hypoxia in the Changjiang Estuary and Adjacent Inner East China Sea Shelf.
711	Journal of Geophysical Research: Oceans, 126(11).
712	DOI:10.1029/2021jc017740

- 713 Wentzky, V.C., Frassl, M.A., Rinke, K., Boehrer, B., 2019. Metalimnetic oxygen
- 714 minimum and the presence of Planktothrix rubescens in a low-nutrient
- 715 drinking water reservoir. Water Res, 148: 208-218.
- 716 DOI:10.1016/j.watres.2018.10.047
- 717 Wiebe, A.H., 1939a. Density Currents in Norris Reservoir. Ecology, 20(3): 446-450.
- 718 DOI:10.2307/1930409
- 719 Wiebe, A.H., 1939b. Dissolved Oxygen Profiles at Norris Dam and in the Big Creek
- 720 Sector of Norris Reservoir (1937), with a Note on the Oxygen Demand of the
- 721 Water (1938). Ohio Journal of Science, 39(1): 27-36.
- 722 Williams, N.T., 2007. Modeling Dissolved Oxygen in Lake Powell using CE-QUAL-
- 723 W2, Brigham Young University.