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13 Abstract: Urban green spaces (UGS) have emerged as a main nature-based solution proven to 

14 effectively cool urban areas, and cooling efficiency (CE) serves as a prominent indicator for assessing 

15 the performance of UGS. Yet diurnal CE dynamics and the impact of 3D urban morphology remain 

16 underexplored. In this study, we employed diurnal land surface temperature (LST) data from Ecosystem 

17 Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) to delve into the diurnal 

18 dynamics of the CE of UGS within the urban core area of Paris, France. Meanwhile, using high-

19 resolution land cover data, digital height model, and explainable machine learning models, we 

20 elucidated the intricate relationship between various urban morphology metrics and CE during a 24-

21 hour cycle. In summary, city-scale continuous monitoring revealed diurnal CE variations, with values 

22 ranging from 0.008 ℃  to 0.13 ℃  and a standard deviation of 0.04 ℃ . On an average of a day, the 

23 relative importance of the 2D and 3D urban form indicators was 77.25% and 22.75%, respectively. 

24 Enhancing the dispersion of trees or improving the integrity of non-tree vegetation patches proves to be 

25 an effective strategy for augmenting CE. The results can be further used in urban planning to improve 

26 urban thermal resilience and adaptability.

27 Keywords: Cooling efficiency, ECOSTRESS LST, Urban morphology metrics, Urban green space
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29 Highlights

30  We explore diurnal variations of cooling efficiency of urban green space in the megacity Paris.

31  The relationship of cooling efficiency with urban forms varies across the day.

32  The cooling efficiency is more influenced by the 2D urban form than the 3D counterpart.

33  Taller trees had higher CEs, while more varied tree heights led to smaller CEs.

34
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35 1. Introduction

36 Urban heat island (UHI) is a phenomenon in which urban areas have higher air and surface 

37 temperatures than surrounding non-urban areas (Oke 1988; Rizwan et al. 2008; Voogt and Oke 2003).  

38 UHI has an adverse effect on society, economy, and ecology (Akbari et al. 1996; Battles and Kolbe 

39 2019; Herbel et al. 2018; Youngsteadt et al. 2015). It also detrimentally affecting the physical and 

40 mental well-being of its residents of citizens (Araujo et al. 2015; Robine et al. 2008; Rydin et al. 2012). 

41 Against the backdrop of global warming and rapid urbanization, the heightened occurrence of extreme 

42 heat events has emerged as a primary concern in urban areas (Habeeb et al. 2015; Tuholske et al. 2021). 

43 According to the World Health Organization, 166,000 people died from heat stress between 2000 and 

44 2017 globally, and the number of people exposed to heat waves increased by 125 million between 2000 

45 and 2016 (Howard and Krishna 2022). Consequently, addressing the mitigation of UHI has become an 

46 important focus in the realm of urban resilient development and research on urban sustainability (Akbari 

47 et al. 2016; Mohajerani et al. 2017; Wong et al. 2021).

48 Urban green space (UGS), recognized as nature-based solutions (Seddon et al. 2020), have been 

49 demonstrated as effective means to lower urban temperatures through the processes of 

50 evapotranspiration and shading (Akbari et al. 2016; Marando et al. 2022; Seddon et al. 2020). Cooling 

51 efficiency (CE), defined as the degree of temperature decrease resulting from a one-unit increase in 

52 vegetation abundance (such as a 1% increase in the extent of UGS) has been widely used to evaluate 

53 the function of UGS cooling functions (Cheng et al. 2023; Zhou et al. 2017). CE variations can arise 

54 from disparities in social and ecological context (Myint et al. 2015; Wang et al. 2020; Zhou et al. 2017). 

55 For instance, cities situated in hot and arid biomes exhibit higher CE values when contrasted with cities 

56 in hot and humid environments (Myint et al. 2015; Wang et al. 2020; Zhou et al. 2017). Furthermore, 

57 CE values can also vary across seasons (Zhou et al. 2017), different vegetation types (Pataki et al. 2011), 

58 and varying elevations (Zhao et al. 2014). However, how CE varies during a 24-hour cycle remains 

59 largely unexplored. 

60 This gap can now be filled with the data from the Ecosystem Spaceborne Thermal Radiometer 

61 Experiment on Space Station (ECOSTRESS), a mission that commenced on June 29, 2018. It provides 
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62 the highest spatial resolution (38m × 69m) thermal infrared data from space (Hulley et al. 2021). In 

63 contrast to polar satellites, ECOSTRESS can provide diurnal cycling of land surface temperature (LST) 

64 (Wang et al. 2023), and it has been widely used for urban thermal environmental research (Chang et al. 

65 2021; Kamaraj et al. 2021; Vo and Hu 2021). For example, ECOSTRESS LST data was employed to 

66 investigate diurnal variations in LST and heat exposure in Xi’an, China across diverse local climate 

67 zones (Chang et al. 2021; Yuan et al. 2022) . In a parallel study, ECOSTRESS LST data was harnessed 

68 to evaluate and model diurnal temperature buffering in the forest restoration area   (Hamberg et al. 

69 2022).

70 Comprehending the impact of intricate urban morphology on the spatial heterogeneity of the 

71 LST is pivotal in the context of mitigating the UHI effect (Berger et al. 2017; Guo et al. 2023; Huang 

72 and Wang 2019; Wu et al. 2022). Indeed, 2D urban morphology metrics, like UGS coverage and its 

73 proportion to impervious surface area, have been established as primary contributors to the spatial 

74 variability of LST (Henits et al. 2017; Kikon et al. 2016). Recent research has demonstrated that 

75 incorporating 3D urban morphology factors can enhance our explanatory power by up to 20% when 

76 assessing variations in UHI intensity (Wu et al. 2022). Among these 3D factors, building height and 

77 tree height stand out as significant determinants in delineating LST variations within urban 

78 environments (Berger et al. 2017; Guo et al. 2023; Yu et al. 2020). The above studies advance our 

79 comprehension of how urban morphology influences LST and the UHI effect. Nevertheless, the precise 

80 influence of 2D and 3D urban morphology on the diurnal CE of UGS remains unclear.

81 Here, we examined the diurnal fluctuations in CE during summertime in Paris, utilizing high-

82 resolution LST data provided by ECOSTRESS. To unravel the connections between urban morphology 

83 and CE, we derived various 2D and 3D urban morphology metrics from high-resolution land cover data 

84 and detailed information on building and tree heights. Moreover, a more in-depth analysis was 

85 conducted to examine the varied impacts of distinct urban form characteristics on CE during different 

86 time intervals. Our investigation aimed to address the following two questions: (1) What are the 

87 spatiotemporal patterns of diurnal CE variations in the mega-city Paris Region? (2) How does urban 

88 morphology influence diurnal CE?
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89 2. Study area and data collection

90 2.1 Study area

91 Paris, the capital of France, is a sprawling European megacity in Europe in the interior of the 

92 country with an area of 12,012 km2 and a population of 12 million residents. Paris has received a great 

93 deal of attention for its UHI problem, especially since the 2003 heatwave event in Paris resulted in many 

94 losses (Fouillet et al. 2008). The urban boundary is defined as an essential property of cities, and the 

95 global urban boundary (GUB) product was generated based on 30m global artificial impervious area 

96 data (Gong et al. 2020; Li et al. 2020).  Here we use GUB in 2015 to extract the urban core area of 

97 Paris, which is used as our study area. GUB data are accessible and can be downloaded from the website 

98 of https://data-starcloud.pcl.ac.cn/zh. 

99

100

101 Fig.1. (a) Study area and land-cover map, where IS means imperious surface. (b) 3D urban information 

102 in a sample case.

103 2.2 Land cover data

104 The high-resolution land cover dataset utilized in this study originates from diverse existing 

105 products., including the MOS+ 2017-81 (IPR 2017), the green cadaster of the Department Hauts-de-

106 Seine (DHS 2012), vegetation height (APUR 2017) and building footprints (IPR 2018), Copernicus 

107 Small and Woody features (Copernicus 2018a), and the Copernicus Street tree layer (Copernicus 2018b). 
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108 To accomplish this, data types were merged according to a ruleset, where priority is given to the highest 

109 resolution or thematic content. To reduce the number of thematic classes in the dataset, land- use and 

110 land-cover classes were harmonized and aggregated. The output was then rasterized to land cover map 

111 with seven types and 5 m resolution (Figure 1a). The identified categories cover building, non-building 

112 imperious surface (IS), grass, shrub, tree, water, and agricultural land cover.

113 2.3 Building and tree height

114 Building height and tree heights for the urban core area of Paris in 2015 were determined 

115 through the analysis of aerial photographs (Louis-Lucas et al. 2021), which were created by contrasting 

116 the Digital Surface Model (DSM) with the Digital Terrain Model (DTM). Both building footprint and 

117 tree height data are available on the website ( https://opendata.apur.org/search), stored in raster format 

118 with a spatial resolution of 1m. 

119 2.4 ECOSTRESS LST data

120 EOSTRESS LST data were obtained from ECOSTRESS Level-2 product, which is generated 

121 by a physic-based Temperature Emissivity Separation (TES) algorithm (Hook et al. 2019; Mira et al. 

122 2007). ECOSTRESS LST has a repeating cycle every three to five days and a spatial resolution of 70m, 

123 which is resampled from the original pixel size (Xiao et al. 2021). Based on a global scale validation, 

124 ECOSTRESS LST has a high accuracy compared to ground-based observations with an overall root 

125 mean square error of 1.07K, mean absolute error of 0.4K and high r2 (>0.988) (Hulley et al. 2021). Here 

126 we employed LST products from the warm summer months (June, July, August, September) from 2018 

127 to 2023. Figure2 shows the diurnal LST patterns in the study area. All the cloud pixels were excluded 

128 using ECOSTRESS L2 cloud mask (ECO2CLD) product (Anderson et al. 2021). Meanwhile, the time 

129 of all data is converted to local time by adding 2 hours according to the time zone of Paris (UTC+2). 

130 The ECOSTRESS LST and ECO2CLOUD products used in this study can be freely accessed from the 

131 website of https://www.earthdata.nasa.gov/. 

132
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133

134 Fig.2. (a)-(j) Diurnal variations and spatial pattern of LST over the urban area of Paris Region, all times 

135 are CEST time (UTC+2). (k) Regional average LST for different time slots (in 24h) in the GUB region 

136 of Paris.

137
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138 3. Method

139 3.1 Cooling efficiency calculation

140 According to the definition of CE, it signifies the reduction in temperature associated with a 

141 one-unit increase in vegetation abundance (e.g. 1% increase in UGS cover) (Wang et al. 2020; Zhou et 

142 al. 2017). The calculation of CE can be performed using the following equation. In this study, the urban 

143 green space coverage (UGSC) is defined as the total area covered by various types of vegetation, 

144 encompassing trees, shrublands, and grasslands. To elucidate the dynamics of CE at the city scale and 

145 discern the spatial nuances of CE, assessments were conducted at both city and grid scales using the 

146 Ordinary Least Squares (OLS) linear regression. At the city scale, UGSC and average LST were 

147 computed for each 840 m × 840 m grid and CE are conducted based on OLS linear regression. For the 

148 CE at grid-scale, the UGSC calculations were conducted for each 70m grid, with CE computed for each 

149 840 m × 840 m grid.

150 𝐶𝐸 = ―
∆𝐿𝑆𝑇

∆𝑈𝐺𝑆𝐶

151 3.2 Urban morphology metrics

152 To elucidate the influence of urban morphology metrics on CE, this study employs a diverse 

153 suite of urban morphology metrics. For 2D metrics, a nuanced consideration of patch density, edge 

154 density, largest patch index, landscape shape index, and percentage of patch type are undertaken across 

155 various land cover categories. The analysis encompasses four distinct land cover types: building, non-

156 building impervious surface (IS), tree, and non-tree vegetation, leading to the inclusion of a 

157 comprehensive set of 20 unique 2D metrics. Concurrently, the investigation extends to the realm of 3D 

158 metrics, where 17 distinct metrics are derived from building and tree height information. These 

159 encompass fundamental measures such as the mean and standard deviation of height, along with an 

160 array of metrics characterizing diverse aspects of building forms, including largest patch index based 

161 and landscape shape index based on building surface area, etc. Table 1 shows how all metrics are 

162 calculated and defined. The computation of all 2D landscape metrics is executed through the utilization 

163 of the "landscapemetrics" package (Hesselbarth et al. 2019) in R (version 4.0.2). This computational 
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164 process is conducted on an 840 m × 840 m grid size. Furthermore, the extraction of building landscape 

165 metrics in 3D space is facilitated through the application of the LPA3D software (Guo et al. 2022).

166 Table1. 2D and 3D urban morphology metrics

Urban 

forms
Metrics Abb. Description

Patch density PD
the ratio between number of patches to the areas, it 

describes the fragmentation of the landscape.

Edge density ED
all edges in the landscape in relation to the landscape 

area.

Largest patch index LPI
the percentage of the landscape covered by 

corresponding largest patch of each class.

Landscape shape index LSI
the ratio between the actual landscape edge length 

and the hypothetical minimum edge length.

2D

Percentage of patch type PLAND percentage of the landscape belonging to class i.

Sub-high building coverage Sub-high_BC
area percentage of subhigh-rise buildings (30m-

100m).

Middle building coverage Middle_BC area percentage of middle-rise buildings (20m-30m).

Sub-low building coverage Sub-low_BC area percentage of sublow-rise buildings (10m-20m).

Low building coverage Low_BC area percentage of low-rise buildings (below 10m).

Building Shade metrics CNI
the ratio between building height and building 

spacing.

Landscape division index LDI
aggregation degree of buildings. LDI =0 when the 

landscape consists of single patch.

Largest patch index LPI largest space occupation of single building.

Landscape shape index LSI
deviation between patch shape and regular circle or 

square with same.

3D

Proximity index PROX
the ratio between building height and square of 

building spacing.

Surface area SA surface fluctuation compared with plane area.
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Surface developed ratio SDR deviation of building surface to projected plane.

Building surface slope SSL
integral slope of building surface, which is the sum 

of surface fluctuation at adjacent building pixels.

Mean Volume index VOL mean volume of buildings.

Mean building height BH mean height of the buildings.

Standard deviation of 

building height
BH_Std undulation of the urban buildings surface.

Mean tree height TH average tree height.

Standard deviation of tree 

height
TH_Std undulation of the tree canopy.

167 3.3 Statistical analysis

168 The boosted regression tree (BRT) model has been widely employed for investigating intricate 

169 and non-linear relationships between variables due to its capacity to mitigate the risk of overfitting  

170 (Friedman 2002). Here, a series of BRT models was utilized to assess the relative importance of various 

171 urban metrics on CE across different time intervals. Metrics exhibiting a substantial relative importance 

172 value are indicative of their primary role in depicting the spatial variability of CE. The BRT models 

173 were fitted using the gbm.step function within the "dismo" package  (Elith and Leathwick 2017) in R 

174 (version 4.0.2). The four BRT parameters, learning rate, tree complexity, number of trees, and bag 

175 fraction, were set at 0.001, 5, 1000, and 0.75, respectively.

176 To examine the relationship between 2D/3D urban morphology metrics and diurnal CE, a series 

177 of generalized linear models (GLM) were constructed. Employing Akaike's Information Criterion 

178 corrected (AICc) through an information-theoretic approach, the best-fitting GLM model was 

179 determined based on the smallest AICc value. The correlation coefficient was utilized to gain further 

180 insights into the relationship between various urban morphology metrics and CE. Specifically, negative 

181 coefficients signify that a specific indicator is linked to a reduction in CE values. Conversely, positive 

182 coefficients indicate that an escalation in the indicator's value is correlated with an increase in CE values. 

183 Notably, only relationships deemed statistically significant (p-value < 0.05) were considered in this 

184 study.
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185 4. Result

186 4.1 Diurnal CE in city scale

187 As expected, the CE shows obvious diurnal variation, Fig.3 depicts the intricate association 

188 between UGSC and CE across an 840m × 840m grid on a city scale. The statistical analysis reveals a 

189 significant correlation between UGSC and LST (p-value < 0.05). On this scale, continuous monitoring 

190 exhibited a range of CE values from 0.008 ℃ (21:03) to 0.13 ℃ (12:43), showcasing a mean of 0.059 ℃ 

191 and a standard deviation of 0.04 ℃. Concurrently, the coefficient of determination (R²) exhibited a 

192 range from 0.013 (21:03) to 0.46 (08:34), illustrating a mean of 0.25 with a standard deviation of 0.15. 

193 Remarkably, this implies that up to 46% of the variations in LST can be elucidated by UGSC in urban 

194 areas. Examining the diurnal dynamic pattern, CE demonstrates an upward trajectory from the late-

195 night hours (00:22) to the peak at midday (12:43), registering a maximum value of 0.13 ℃, followed 

196 by a declining trend in the afternoon and evening hours. Similarly, the diurnal pattern of R² mirrors this 

197 trend, with the highest R² occurring at 08:34 (0.46). 
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198

199 Fig.3. (a)-(j) Scatter plots of the relationship between UGSC and LST at different times and the fitted 

200 line based on the OLS linear regression model, each point represents the average of the LST in an 840m 

201 grid cell and the coverage of the UGS in that grid. (k) is the time series of CE values and model R2 at 

202 the city scale.

203 4.2 Diurnal CE in grid scale

204 The diurnal variation of CE exhibits dynamic patterns at different times. During nighttime 

205 intervals such as 00:22, 02:50, and 21:03 (see Fig. 4a, b, j), substantial portions of the area, particularly 

206 in the core city center, manifest negative CE values. Interestingly, in the late afternoon, specifically at 

207 18:12 (Fig. 4i), a sizable area in the city center also reveals negative CE values. Contrastingly, for 

208 daytime periods (Fig. 4c-h), most of the region registers positive CE values. Notably, parks and forested 

209 areas exhibit significantly higher CE values compared to densely built-up areas. The cumulative 

210 analysis (Fig. 4k) underscores that, on average, the mean CE predominantly assumes positive values 
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211 throughout the study area, with discernibly elevated CE levels in the sub-core urban regions. Table 2 

212 presents the statistical outcomes of diurnal CE corresponding to distinct time intervals. The highest CE 

213 value during day and night in 840m × 840m grid was 0.613 ℃ (13:38). At 12:43, the highest mean CE 

214 value of 0.038 ℃ was observed, coupled with the maximum standard deviation value of 0.035 ℃. 

215 Conversely, the minimum CE value of 0.0005 ℃ occurred at 21:03. In terms of the proportion of the 

216 area exhibiting positive CE values, the urban core area of the study demonstrated values ranging from 

217 72.6% to 93.7% at daytime. Notably, at both 21:03 and 00:22, over 40% of the area exhibited negative 

218 CE values. On average, the mean CE value across all time intervals was calculated to be 0.016 ℃, 

219 accompanied by a standard deviation of 0.012 ℃. Remarkably, 94.5% of the urban core area in Paris 

220 Region exhibited positive average CE values.

221

222 Fig.4. The diurnal variations and spatial pattern of CE over Paris with a resolution of 840m. (a)-(j) 

223 illustrate the diurnal variations of CE at different times of the day. (k) shows the average CE over time, 
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224 while (l) presents the distribution of CE values for different times. The red dashed line indicates a CE 

225 value of 0.

226 Table2. Statistics of CE (℃) at different observation times as presented in this study, where SD 

227 represent standard deviation of CE values.

times Daytime/nighttime Max Min Mean SD Fraction (CE>0)

00:22 Nighttime 0.044 -0.045 0.001 0.009 58.6%

02:50 Nighttime 0.052 -0.025 0.004 0.005 78.2%

06:18 Daytime 0.042 -0.011 0.01 0.007 93.7%

08:34 Daytime 0.231 -0.041 0.023 0.02 91.4%

12:43 Daytime 0.405 -0.053 0.038 0.035 91.5%

13:38 Daytime 0.613 -0.068 0.029 0.029 90.5%

14:02 Daytime 0.423 -0.055 0.024 0.024 88.8%

16:45 Daytime 0.104 -0.034 0.02 0.017 90.2%

18:12 Daytime 0.042 -0.095 0.004 0.007 72.6%

21:03 Nighttime 0.024 -0.022 0.0005 0.004 52.6%

Average - 0.082 -0.014 0.016 0.012 94.5%

228

229 4.3 Relative importance or urban morphology metrics for CE

230 Fig. 5 presents an assessment of the relative importance of the different urban morphology 

231 metrics in influencing diurnal CE. On average, the top five influential urban morphology metrics are 

232 tree coverage (22.3%), tree largest patch index (19.3%), non-tree coverage (9.6%), tree height (7%), 

233 and tree edge density (4.4%). Notably, at 6:18, tree coverage exhibits the highest relative importance 

234 value, reaching 49.6%. The pivotal role of 2D and 3D urban morphology metrics in influencing CE is 

235 underscored in Fig. 6, where, on average, the relative importance of 2D and 3D urban morphology 

236 metrics are 77.25% and 22.75%, respectively. To the relative importance of CE across the entire day. 

237 The cumulative impact of 2D and 3D urban morphology metrics on CE varies temporally. Specifically, 
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238 2D metrics assume heightened importance at 13:38, reaching 86.6%, whereas 3D metrics peak at 00:22, 

239 constituting 39.94% of the total relative importance.

240

241 Fig.5. Relative importance of urban morphology metrics on diurnal CE.

242

243 Fig.6. Relative importance changes of 2D and 3D urban morphology metrics in the day.
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244 4.4 Relationships between urban morphology metrics and CE

245 To enhance our comprehension of the intricate relationship between CE and diverse urban 

246 morphology metrics, we employed a series of GLM regression analyses encompassing 37 urban 

247 morphology metrics. Figure 7 illustrates the regression coefficients elucidating the associations between 

248 urban morphology metrics and diurnal CE.

249 In the realm of 2D urban morphology metrics, both land cover composition and configuration 

250 exert substantial influence on diurnal CE. Robust associations were observed, particularly in relation to 

251 building coverage and vegetation coverage. Notably, during daytime hours, UGS exhibit heightened 

252 cooling efficiency in areas characterized by elevated building coverage, contrasting with the nighttime 

253 scenario. Regarding vegetation cover, a conspicuous positive correlation is evident between CE and 

254 both non-tree vegetation and tree coverage during day and night. Land cover configuration metrics also 

255 manifest notable effects on diurnal CE. For instance, an increase in the LSI of impervious surfaces 

256 during the daytime was found to be associated with a decrease in CE. The relationship between CE and 

257 LSI exhibited variations between trees and non-tree vegetation. Specifically, heightened shape 

258 complexity of non-tree vegetation significantly increased CE, whereas the LSI of tree patches showed 

259 a significant negative correlation with CE as does non-treen vegetation patch density. Simultaneously, 

260 tree patch density demonstrated a significant positive relationship with CE.

261 For 3D urban morphology metrics, CE values increase as low-rise building coverage increases 

262 during daytime. The SA shows a negative correlation with CE both during day and night, while the 

263 SDR exhibits a negative correlation with CE during the day but a positive correlation at night. SSL is 

264 positively correlated with CE during the day but negatively correlated at night. The imagery of CE is 

265 influenced similarly by building height and tree height, during the day, both tall buildings and tall trees 

266 contribute to increased CE values. However, higher heterogeneity in building and tree heights results 

267 in smaller CE values.
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268

269 Fig7. Coefficients of various urban morphology metrics based on a series of GLM regression models. 

270 Only model results that pass the significance test (p-value<0.05) are shown here.

271 To further understand the image of LST for CE, Figure 8 shows the scatterplot distribution of 

272 LST vs. CE. The results show that there is a nonlinear relationship between LST and CE, which is 

273 manifested by the fact that when the temperature is lower than a certain threshold, the higher the 

274 temperature is, the larger the value of CE is, but when LST is higher than a certain value, the value of 

275 CE decreases as the temperature becomes higher. Based on the change-points estimation (with possibly 

276 random effects) algorithm (Muggeo and Muggeo 2017), the threshold value of LST can be estimated 

277 as 36.15℃.
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278

279 Fig.8. Relationship between LST and CE. The green point represents the mean LST and CE in an 840m 

280 grid. The purple dotted line indicates the turning point of LST change when CE starts a new trend. The 

281 turning point was extracted using the ‘segmented’ package (Muggeo and Muggeo 2017) in R (version 

282 4.02). The red line represents the linear fitted relationship in the two stages.

283 5. Discussion

284 5.1 Diurnal dynamics of CE

285 By means of using the ECOSTRESS LST, the study showed how CE changes throughout the 

286 day and explored the influence of 2D and 3D urban structures. Unlike traditional analysis based on 

287 polar orbiting satellites thermal data like from Landsat (Kong et al. 2014), ASTER (Myint et al. 2015), 

288 and MODIS (Yang et al. 2022), ECOSTRESS LST allows us to examine UGS cooling abilities 

289 throughout the entire day because it’s unfixed observation time (Hulley et al. 2019). By focusing on the 

290 Paris region, our case study showcases ECOSTRESS LST's effectiveness in revealing the spatial 

291 patterns of CE during a 24-hour cycle. Our findings enhance our understanding of intra-city urban heat 

292 dynamics and highlight the role of UGS in cooling the city during over the course of day and night. CE 
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293 varies greatly over the course, ranging from 0.008 °C to 0.13 °C in the city scale, this is consistent with 

294 previous studies (0.023°C to 0.318°C) (Wang et al. 2020; Yang et al. 2022). There was a large difference 

295 between daytime and nighttime CE, with nighttime CE being smaller compared to daytime, possibly 

296 due to the absence of transpiration and shading effects of vegetation at night.

297 In addition, unlike previous studies on the variation of CE at the regional scale (Kong et al. 

298 2014; Wang et al. 2020). Based on refined temperature and land cover data, this study attempts to 

299 compute CE in a smaller grid scale (840 m) to better understand the spatial distribution as well as the 

300 diurnal variation characteristics of CE in a large city. The results demonstrated that CE is highly 

301 heterogeneous in both time and space, for example, the average CE value in one day has a standard 

302 deviation of 0.012°C. The spatial distribution of CE at different times (Figure 4) also indicates that the 

303 cooling benefit of UGS has a strong inequality in the spatial distribution, and the map of CE can provide 

304 an effective reference to minimize this inequality.

305 5.2 Significant effects of urban morphology on CE

306 Based on explainable machine learning model, we find out that both 2D and 3D urban 

307 morphology metrics have significant effects on the CE of UGS. Specifically, the 2D urban forms play 

308 a more important role compared to 3D urban forms, because the 2D urban heterogeneity, such as land 

309 cover composition, is the main cause of land surface temperature variations (Rahimi et al. 2021). 

310 Meanwhile, the relative importance of 2D and 3D urban morphology metrics on CE shows a significant 

311 diurnal variation, where especially the 3D urban morphology metrics increase their relative importance 

312 in the midday (13:38) and in the deep night (00:22). This could be attributed to the increased prominence 

313 of tree shadows at 13:38, as the three-dimensional structure of the building significantly amplifies the 

314 heterogeneity of thermal storage capacity during nighttime.

315 Buildings exert a pronounced influence on the cooling efficiency of urban green spaces. On 

316 one hand, areas with higher building coverage experience enhanced cooling efficiency of vegetation, 

317 possibly attributed to the elevated surface temperatures in densely built areas, enabling vegetation to 

318 yield more substantial cooling effects. However, it is noteworthy that the cooling impact of vegetation 
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319 becomes subdued as temperatures reach a certain threshold (Figure 8), as illustrated in Figure 7 where 

320 the correlation coefficient between building coverage and cooling efficiency peaks at 12:43.

321 Although CE can be significantly improved by increasing UGS cover, there are differences in 

322 the effects of tree and non-tree vegetation patterns on cooling efficiency. For example, increasing patch 

323 density or edge density of tree patches can significantly improve CE. This was mainly because that 

324 increasing edge density has the potential to allow trees to provide greater shading on continuous 

325 impervious surfaces (Wu et al. 2022). In addition, it expands energy flow and exchange between UGS 

326 and their surroundings (Cadenasso et al. 2003). However, non-tree vegetation (e.g., grasses and shrubs) 

327 lacks a shading effect, so increasing its degree of fragmentation (high ED and PD) rather reduces its 

328 cooling effect.

329 5.3 Implications for urban heat island effect mitigation

330 By engaging in this research, urban planners can gain important perspectives that will help them 

331 in designing urban areas and managing UGS to effectively counteract the impacts of urbanization on 

332 UHI. Based on the results of this study, we proposed the following recommendations for improving CE 

333 of UGS.

334 (1) Increased shape complexity and irregularity of tree patches decreases the CE of UGS, but 

335 increased edge density and patch density improves the CE, so when constructing new tree, 

336 consider laying out trees in a decentralized manner, and, at the same time, pursuing regularity 

337 in the shapes of individual patches.

338 (2) In contrast to trees, increasing the shape irregularity and complexity of non-tree vegetation can 

339 effectively optimize CE, while increasing ED or PD of non-tree vegetation can lead to lower 

340 CE. Therefore, when constructing new vegetation, such as grass and shrubs, continuous, 

341 complete, and more complex forms should be introduced rather than fragmented regular UGS.

342 (3) Considering taller trees when selecting tree species and ensuring consistency of tree heights in 

343 patches can effectively optimize CE.
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344 5.4 Limitations and future research directions

345 Limitations and uncertainties accompany this study. The ECOSTRESS LST data were acquired 

346 from different days, even though we filtered the data from summertime, but there still have uncertainties 

347 for diurnal variation of CE research. More investigations on the method for adjusting ECOSTRESS 

348 LST data may need to be conducted in the future. CE of UGS can be affected by many factors such as 

349 tree species, leaf size and color, climatic background of the region, and even anthropogenic heat 

350 emissions. More fieldwork and measurements of tree species and detailed climate records will support 

351 a better understanding of factors affecting CE. Meanwhile, a machine learning model can elucidate the 

352 intricate relationship between urban morphology and CE. However, it falls short in providing a 

353 comprehensive understanding of the complete trajectory of these influences. Future research endeavors 

354 could explore the incorporation of indicators such as shadows and evapotranspiration (ET) as 

355 interpermeates, aiming to deepen our comprehension of the intricate ways in which urban morphologies 

356 impact CE. In this study, a grid-based method was employed, yet it focused solely on a single scale. It 

357 is imperative to acknowledge that varying grid scales may yield divergent results (Guo et al. 2023). 

358 Consequently, the exploration of scale-effect phenomena should be prioritized in future investigations. 

359 Lastly, owing to the unavailability of spatial-temporal continent air temperature data, our assessment 

360 was confined to evaluating diurnal CE dynamics based on LST. The evaluation of spatial-temporal 

361 changes in canopy temperature-based CE holds significant value and should be a focal point in 

362 forthcoming studies.

363 6. Conclusions

364 The main objective of this study is to investigate the diurnal dynamics of CE and, subsequently, 

365 to explore the impact of urban form (both 2D and 3D) on CE. To achieve this objective, we utilize 

366 ECOSTRESS LST data, overcoming the limitations associated with polar-orbiting satellites (e.g., 

367 Landsat and MODIS) observed in previous studies. The ECOSTRESS LST data allows us to acquire 

368 diurnal LST information, enabling a detailed analysis of the diurnal CE patterns in the study area, here 

369 in the Paris Region. To better understand the relationship between urban form and CE, we constructed 
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370 twenty 2D morphological indicators and seventeen 3D morphological indicators based on high-

371 resolution land cover data and urban 3D morphological information (including building and tree height 

372 information). The relative importance and relevance of different urban morphological indicators for CE 

373 are analyzed using BRT and GLM models. The results reveal a pronounced heterogeneity of CE both 

374 temporally and spatially throughout the day. Additionally, the influence of urban structure on CE 

375 exhibits significant variations at different times of the day. Drawing from the study's outcomes, practical 

376 suggestions are presented to enhance the CE of UGS, with potential applications in real-world scenarios. 

377 This study marks the first analysis of the diurnal variation of CE and its correlation with the 2D and 3D 

378 morphology of the city, introducing a novel perspective to the study of the urban thermal environment. 

379 The insights gained from this research can be instrumental in optimizing the CE of UGS in urban areas, 

380 thereby mitigating the adverse effects of extreme heat and enhancing urban resilience.

381
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