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Abstract 29 

Catchment-scale nitrate dynamics involve complex coupling of hydrological transport and 30 

biogeochemical transformations, imposing challenges for source control of diffuse pollution. The 31 

Damköhler number (Da) offers a dimensionless dual-lens concept that integrates the timescales 32 

of exposure and processing, but quantifying both timescales in heterogeneous catchments 33 

remains methodologically challenging. Here, we propose a novel spatio-temporal framework for 34 

catchment-scale quantification of Da based on the ecohydrological modeling platform EcH2O-35 

iso that coupled isotope-aided water age tracking and nitrate modeling. We examined Da 36 

variability of soil denitrification in the heterogeneous Selke catchment (456 km2, central 37 

Germany). Results showed that warm-season soil denitrification was of catchment-wide 38 

significance (Da >1), while its high spatial variations were co-determined by varying exposure 39 

times and removal efficiencies (e.g., channel-connected lowland areas are hotspots). Moreover, 40 

Da seasonally shifted from processing-dominance to transport-dominance during the wet-spring 41 

season (from >1 to <1), implying important linkages between summer terrestrial denitrification 42 

and subsequent winter river water quality. Under the prolonged 2018-2019 droughts, 43 

denitrification removal generally reduced, resulting in further accumulation in agricultural soils. 44 

Moreover, the space-time responses of Da variability indicated important implications for 45 

catchment water quality. The older water in lowland areas exhibited extra risks of groundwater 46 

contamination, whilst agricultural areas in the hydrologically responsive uplands became 47 

sensitive hotspots for export and river water pollution. Importantly, the lowland pixels 48 

intersecting river channels exhibited high removal efficiencies, as well as high resilience to the 49 

disturbances (wet-spring Da shifted to >1 under drought conditions). The proposed catchment-50 

wide Da framework is implied by mechanistic modeling, which is transferable across various 51 

environmental conditions. This could shed light on understanding of catchment N processes, and 52 

thus providing site-specific implications of non-point source pollution controls.   53 
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1 Introduction 54 

Highly elevated nutrient levels in freshwaters are threatening the safe functioning of 55 

ecosystems and the provision of ecosystem services across extensive areas (Richardson et al., 56 

2023). Further mitigations of such environmental problems focus on the difficult challenge of 57 

identifying and managing non-point sources, e.g., particularly under the prolonged droughts in 58 

Europe (Reusch et al., 2018; Yang et al., 2022). This inevitably requires advancing quantitative 59 

understanding of how catchment hydrology and biogeochemical processes interact and change. 60 

However, identifying and quantifying of complex transport-processing interactions at catchment 61 

scales remain fundamentally challenging (Abbott et al., 2016).  62 

Several integrating frameworks have been proposed to explicitly characterize and classify 63 

transport-reaction interactions (Pinay et al., 2015). Amongst these, the widely used Damköhler 64 

number (Da)  is defined as the ratio of exposure timescale (over which material has the 65 

opportunity to be processed) and processing timescale (the time for biogeochemical processes to 66 

reach equilibrium or substrate depletion) (Li et al., 2021; Oldham et al., 2013). Da is a 67 

dimensionless metric that is  spatially and temporally scalable, and more uniquely, it 68 

quantitatively estimates the integration of nitrate transport and processing (Abbott et al., 2016). 69 

However, to quantify both timescales remains methodologically challenging. Current 70 

applications of the Da framework have been mostly restricted to steady-state groundwater 71 

systems or riparian/hyporheic zones (Ocampo et al., 2006). Catchment-scale applications are 72 

largely underexplored, particularly in terms of the space-time variability of Da (Oldham et al., 73 

2013). Building on the process-specific feature of Da concepts, here we focus on terrestrial 74 

denitrification, because it is one of the dominant nitrate (𝑁𝑂3
−) removal processes that influences 75 

catchment water quality (Pinay et al., 2015).  76 

Acknowledging that hydrological processes are the first-order drivers of nutrient transport 77 

through catchment landscapes, some recent catchment water quality models have been developed 78 

based on advanced (eco-)hydrological platforms (Yang et al., 2018). However, many modeling 79 

platforms focus on simulating the celerity of hydrological responses and do not explicitly 80 

account for the velocities of water particles (Hrachowitz et al., 2016; McDonnell & Beven, 81 

2014); consequently, the temporal dynamics of transport pathways affecting substances like 𝑁𝑂3
− 82 

and their exposure to biogeochemical transformations are either highly uncertain or not 83 
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considered explicitly in water quality modeling. To address this fundamental celerity-velocity 84 

issue, stable isotopes of water (𝛿2𝐻 and 𝛿18𝑂) are the most effective and popular natural tracers 85 

used in hydrology research (Abbott et al., 2016). In addition to the complementary role for 86 

improving model performance and process realism (Stadnyk & Holmes, 2023), isotope tracers 87 

can be used to infer catchment transit times and water ages, serving as a potential link between 88 

hydrology and water quality (Hrachowitz et al., 2016; Tunaley et al., 2016). Recent incorporation 89 

of isotopic tracers in fully distributed (eco-)hydrological platforms offers the potential for better 90 

representation of catchment heterogeneities in flow pathways and material transport. In 91 

particular, the tracer-aided ecohydrological model EcH2O-iso (Kuppel et al., 2018; Maneta & 92 

Silverman, 2013) features a flux tracking module that takes the water age, together with 𝛿2𝐻 and 93 

𝛿18𝑂, as generic tracers, thereby uniquely providing catchment-scale perspective of how water 94 

ages vary in storage and flux dynamics (Yang et al., 2023). 95 

Based on the EcH2O-iso model platform, this study proposed a model-based, catchment-96 

scale Da integration framework. In addition to the isotope-aided water age tracking, we further 97 

coupled a process-based 𝑁𝑂3
− module developed by Yang et al. (2018). Specifically, considering 98 

the distributed N inputs (e.g., from agriculture activity), quantitative characteristics of 𝑁𝑂3
− 99 

residence and transport across the catchment were estimated from EcH2O-iso hydrological states 100 

and fluxes. Meanwhile, the effective processing timescales of particular biogeochemical 101 

transformations were concurrently derived from simulations of the 𝑁𝑂3
− module. We examined 102 

the spatio-temporal Da integration of terrestrial denitrification in the data-rich, heterogenous 103 

Selke catchment (456 km2, central Germany), where the high 𝑁𝑂3
− concentrations in surface 104 

water and groundwater are one of the major environmental concerns. This builds on earlier 105 

applications of EcH2O-iso  (Yang et al., 2021, 2023) and 𝑁𝑂3
− modeling (Yang et al., 2018) in 106 

this catchment, particularly the respective understanding of the catchment ecohydrological and 107 

𝑁𝑂3
− dynamics under the disturbances of 2018-2019 droughts.  108 

The overarching aims of this study were (a) to facilitate a fully distributed mechanistic 109 

catchment modeling framework that benefits from information from both conservative tracers 110 

and reactive nutrients, and (b) based on incorporation of Da concepts, to reveal the linkages 111 

between catchment biogeochemical processes (here the denitrification removal), hydrological 112 

transport and water quality. The specific research questions were:  113 
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(1) How to facilitate the coupled mechanistic modeling and to evaluate model performance 114 

based on multi-criteria calibrations?   115 

(2) Based on the coupled modeling, how to quantify timescales of exposure and processing 116 

at catchment scales? 117 

(3) What are the spatio-temporal patterns of Da variations and how they respond to drought 118 

disturbances? 119 

The proposed model-based Da space-time analysis was anticipated to reveal landscape-120 

scale “hot spots” and “hot moments” of 𝑁𝑂3
− removal via denitrification, as well as their impacts 121 

on catchment water quality. The insights would provide important implications for catchment 122 

pollution controls, especially under the changing environments. 123 

2 Study area and data 124 

2.1 The Selke catchment and monitoring networks 125 

The Selke catchment (456 km2) is located in central Germany (Figure 1a), with a 126 

transitional landscape from headwaters in the Harz Mountains to the lowland plain. Along with 127 

the elevation gradients (ranging from circa 600 m to 100 m), the catchment exhibits 128 

heterogenous hydro-climatic conditions. Annual precipitation decreases from 790 to 450 mm, 129 

and average annual temperature increases from 4.7 to 8.5 ℃. The catchment geographic 130 

properties are also highly heterogenous (Figure 1b and c): the hilly uplands occupied mostly by 131 

forests with cambisols overlying shallow schist bedrock, while the flat lowland loess areas have 132 

long been intensively cultivated primarily due to the highly fertile chernozem soils. Major crops 133 

are rotated between winter wheat, winter rape-seed, and sugar beet, with typical N fertilizer 134 

applications of 175, 190, and 96 𝑘𝑔𝑁ℎ𝑎−1𝑦𝑟−1, respectively (Yang et al., 2022).  135 

The catchment is extensively equipped from multiple data monitoring initiatives (Figure 136 

1a). The hydrology and water quality gauging stations on the main Selke River (Hausneindorf-137 

HAUS, Meisdorf-MEIS and Silberhütte-SILB), are operated by the State Agency for Flood 138 

Protection and Water Management of Saxony-Anhalt (LHW) and Helmholtz-Centre for 139 

Environmental Research (UFZ). These nested stations capture dynamics of flow and riverine 140 

𝑁𝑂3
− − 𝑁 concentrations from heterogeneous sub-areas. The monitoring of stable isotopes of 141 
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water (𝛿2𝐻 and 𝛿18𝑂) was conducted by UFZ (Department of Catchment Hydrology), and water 142 

samples were simultaneously taken from precipitation and stream water.  143 

2.2 The multi-source data availability and pre-processing 144 

Daily simulations were set-up for the study period during 2012-2020 (with 2010-2011 used 145 

as the model warm-up period). Meteorological observations were collected from the German 146 

Weather Service stations (DWD, https://opendata.dwd.de/climate_environment/CDC/, last 147 

accessed 22nd February, 2024) near the Selke catchment, including daily precipitation from 51 148 

stations and daily meteorological elements (i.e., daily mean, maximum and minimum air 149 

temperature; daily wind speed, and relative humidity) from 15 stations. The spatial modeling 150 

resolution was set as 1 km × 1 km, and DWD meteorological data inputs were interpolated into 151 

this resolution as gridded inputs. Radiation data were retrieved from the ERA5 reanalysis with a 152 

resolution of 0.25°×0.25° (Hersbach et al., 2018), due to the limited DWD observations.  153 

At the three gauging stations, daily discharge was collected directly from LHW (Figure 1d, 154 

https://gld.lhw-sachsen-anhalt.de/, last accessed 28th August, 2023). Continuous 15-min 𝑁𝑂3
− −155 

𝑁 concentrations has been collected using the ultraviolet spectral sensor OPUS (precision of 0.03 156 

𝑚𝑔𝑙−1 and accuracy of ±2%; TriOS, Germany), from which daily 𝑁𝑂3
− − 𝑁 concentrations were 157 

derived (Figure 1e). The isotope monitoring was conducted during 2012-2018, including 158 

monthly composite precipitation sampling at 27 sites in the larger Bode catchment (Lutz et al., 159 

2018). All of these precipitation isotope data were spatio-temporally interpolated to derive the 160 

gridded daily inputs (1 km × 1 km). Seven precipitation sites located in the Selke catchment and 161 

their 𝛿2𝐻 isotope observations were presented in Figure 1a and 1d, respectively. The sampling 162 

points are mainly distributed in the upper mountainous part given the more heterogeneous 163 

climatic and landscape conditions, compared to the flat, homogeneous lowlands. Moreover, this 164 

study selected monthly grab sampled stream water isotopes from 5 sites (Figure 1d). Please refer 165 

to Yang et al. (2023) for detailed input data processing in the Selke catchment. 166 

Figure 1 near here 167 

Figure 1. The Selke catchment and the multi-source data monitoring. (a) monitoring network and 168 
DEM elevation above sea levels, (b) land covers, (c) soil types, (d) catchment average 169 
precipitation, discharge at the outlet HAUS and isotopes of precipitation and stream water 170 
samples at various sites, and (e) nitrate-nitrogen (𝑁𝑂3

− − 𝑁) concentration observations at the 171 
three major gauging stations. Note that precipitation deuterium (𝛿2𝐻) values in (d) are shown as 172 

https://opendata.dwd.de/climate_environment/
https://gld.lhw-sachsen-anhalt.de/
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monthly mean ± standard deviation among the 7 Selke sampling sites. Subplots (a), (b) and (c) 173 
are modified from Yang et al. (2023). 174 

3 Method 175 

3.1 The tracer-aided ecohydrological EcH2O-iso model 176 

The EcH2O-iso model is process-based, tracer-aided ecohydrological model developed by 177 

Maneta & Silverman (2013) and Kuppel et al. (2018). In each of the grid cells, the model 178 

integrates modules of vertical energy balance, vertical and lateral water balance and vegetation 179 

dynamics (deactivated in this study). The energy balance is solved for each vegetation type at 180 

both canopy and land surface levels, from which evapotranspiration associated latent heat fluxes 181 

were calculated. Evaporation is considered at the canopy and top-layer soil and constrained by 182 

respective water storages. Plant transpiration is explicitly related to canopy conductance 183 

properties. The stomatal conductance is calculated using a Jarvis-type multiplicative model, and 184 

then upscaled to canopy conductance by leaf area index. The calculated transpiration flux is 185 

derived from root water uptake in three soil layers.  186 

The water balance is conceptualized based on a bucket-type approach (Figure S1a for a 187 

schematic model structure). Vertical hydrological processes include precipitation, canopy 188 

interception, snowpack/snowmelt, surface infiltration and further infiltrating into three soil 189 

layers. A parsimonious conceptualization of deeper groundwater dynamics was added by Yang 190 

et al. (2021) to account for deeper baseflow sources. Lateral water exchanges between cells are 191 

considered as surface overland flow (from the surface ponding storage), subsurface interflow 192 

(from gravitational soil water drainage) and baseflow (from the deeper groundwater storage). 193 

Notably, EcH2O-iso implements an independent river mask in accordance to the actual river 194 

network. This means only grid cells intersecting actual river channels (defined as channel-195 

connected grid cells) contribute to runoff generations and channel routing (Figure S1a).  196 

The flux-tracking module is fully integrated into the water balance component of the model 197 

(Kuppel et al., 2018). The generic tracer concentration is defined representing isotopic 198 

composition of 𝛿2𝐻 and 𝛿18𝑂, as well as water ages. In each water storage, a full mixing 199 

assumption is applied at the end of each time step. Thus, the outgoing fluxes have the same 200 

tracer signals as their source storages. Isotopic fractionation is considered in the upper soil layer 201 

based on the Craig-Gordon model (Craig & Gordon, 1965). Precipitation and throughfall enter 202 
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into the system with the age of zero, and all ages increase by one time-step at end of each model 203 

time step. Detailed model descriptions and adaptations are referred to previous publications 204 

(Kuppel et al., 2018; Maneta & Silverman, 2013; Yang et al., 2021, 2023). 205 

3.2 The catchment 𝑁𝑂3
− model and the denitrification calculation 206 

We further loosely coupled EcH2O-iso with catchment water quality modeling (particularly 207 

𝑁𝑂3
−). The fully distributed EcH2O-iso platform was adapted to account for the spatial variability 208 

in 𝑁𝑂3
− inputs (e.g., due to different agricultural activity). Moreover, EcH2O-iso simulated water 209 

fluxes and state variables were used to drive 𝑁𝑂3
− transport and storage patterns across 210 

hydrological compartments (see Figure S1b). 𝑁𝑂3
− balances and conceptualizations of 211 

biogeochemical transformations were introduced from the work of Yang et al. (2018) and 212 

implementation in the Hydrological Predictions for the Environment-HYPE model (Lindström et 213 

al., 2010). Potential crop/plant N uptake is calculated using a three-parameter logistic growth 214 

function and partitioned into three soil layers according to root distributions. The actual uptake N 215 

amount is further constrained by soil water and N availability in each layer. N inputs from 216 

fertilizer/manure applications and plant residues are added to the top two layers (with the depth 217 

of 0~0.5 m). Four pools of soil N forms are defined for each soil layer, including dissolved pools 218 

of inorganic and organic nitrogen and solid pools of active and inactive organic nitrogen (Figure 219 

S1b). Terrestrial biogeochemical transformations are considered as denitrification removal, 220 

mineralization from organic to inorganic pools, dissolution equilibrium between dissolved and 221 

solid organic pools, and immobilization from inactive to active organic pools. In-stream nitrate-222 

related transformations includes permanent removal via denitrification, temporary assimilatory 223 

uptake and the reverse re-mineralization.  224 

As a process-based model, biogeochemical transformations are conceptualized according to 225 

the availability of sources and impacts of bio-environmental factors. The latter are often 226 

quantified in two ways: empirical functions for well-understood factors (e.g., temperature 227 

effects) and calibrated model parameters. For example, the amount of 𝑁𝑂3
−  removed out of soil 228 

storage by the denitrification process, 𝑅𝐷(𝑘𝑔𝑁ℎ𝑎−1𝑑−1), is calculated following the non-linear 229 

kinetics: 230 

𝑅𝐷 = 𝑟𝐷 ∙ 𝑓𝑆𝑇 ∙ 𝑓𝑆𝑀 ∙ 𝑓𝑆𝑀𝐶 ∙ 𝑆𝑁                                                   (1) 231 
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where 𝑟𝐷 denotes the reaction rate as a model parameter (𝑑−1); 𝑆𝑁 denotes the soil 𝑁𝑂3
− storage 232 

(𝑘𝑔𝑁ℎ𝑎−1); 𝑓𝑆𝑇 , 𝑓𝑆𝑀 and  𝑓𝑆𝑀𝐶  denote efficiency functions of soil temperature, soil moisture 233 

and soil 𝑁𝑂3
− − 𝑁 concentration, respectively (Lindström et al., 2010). 234 

From previous modeling in the Selke catchment, large-scale EcH2O-iso simulations are less 235 

successful at capturing isotopic signals in relatively wet years with higher influence of overland 236 

flow contributions (Yang et al., 2023). This is likely due to significant, but unknown, mixing 237 

between top-layer soil water and surface overland flow (Shi et al., 2011). Therefore, we 238 

parsimoniously introduced a mixing ratio (𝑟𝑚, as a model parameter) to adjust the solute 239 

concentrations of surface overland flow: 𝑟𝑚 ∙ 𝐶𝑡𝑠𝑜𝑖𝑙 + (1 − 𝑟𝑚)𝐶𝑠𝑟𝑓 (where 𝐶𝑡𝑠𝑜𝑖𝑙 and 𝐶𝑠𝑟𝑓 denote 240 

solute concentrations of the top-layer soil water and surface overland flow, respectively). This 241 

mixing adjustment was applied to both tracer and 𝑁𝑂3
− calculations. 242 

3.3 Model parameterizations and the step-wise multi-criteria calibration 243 

For the coupled modeling, the EcH2O-iso parameters were assigned as either land cover or 244 

soil type dependent, and the nitrate module parameters were assigned as land cover type 245 

dependent and further simplified as agricultural and non-agricultural types. Sensitivity analysis 246 

has been previously conducted using the Morris method in the study catchment (Yang et al., 247 

2018, 2023). Therefore, here we adapted the most sensitive parameters (listed in Table S1) and 248 

involved them in multi-criteria calibrations. 249 

In accordance to the informal coupling strategy, the multi-criteria model calibrations were 250 

conducted step-wisely (see schematic diagram in Figure S2). The EcH2O-iso model was firstly 251 

calibrated using the Monte Carlo based method (Ala-aho et al., 2017) against discharge and 252 

isotope observations from multiple sites, and the best 1000 runs were selected (out of 400 000 253 

random sampling). Model performance metrics are Kling-Gupta Efficiency coefficient (KGE) 254 

and percentage bias (PBIAS) for discharge and Mean Absolute Error (MAE) for isotopes. 255 

Secondly, each of the 1000 EcH2O-iso best runs was used to drive the 𝑁𝑂3
− module, and the 256 

Dynamically Dimensioned Search method (Tolson & Shoemaker, 2007) was used to calibrate 257 

parameters of the 𝑁𝑂3
− transformations. As such, the 𝑁𝑂3

− performance metrics were obtained 258 

accordingly (i.e., 1000 KGE values at each station). Finally, all of the 1000 metrics of discharge, 259 
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isotopes and 𝑁𝑂3
− − 𝑁 concentrations were considered together to select the common best 100 260 

runs. Details on the calibration methods and schemes are provided in Text S1 and Figure S2. 261 

3.4 The model-based Da integration of the terrestrial denitrification process 262 

The coupled mechanistic modeling provides explicit spatio-temporal information of age 263 

tracking and 𝑁𝑂3
− transformations, providing unique potential for a dual-lens analysis between 264 

hydrological and biogeochemical processes. The Da framework has been extensively used for 265 

the exposure-processing integration of specific processes, as following Oldham et al. (2013): 266 

𝐷𝑎 =
𝜏𝐸

𝜏𝑅
                                                                       (2) 267 

where Da is the dimensionless Damköhler number; 𝜏𝐸 denotes the generalized exposure 268 

timescales and 𝜏𝑅 denotes the processing timescales. Specifically, when Da<1, 𝑁𝑂3
− transport is 269 

more dominated; when Da>1, 𝑁𝑂3
− will have plenty of opportunity to be denitrified.  270 

As suggested by Oldham et al. (2013), this generalized Da concept can be applied to various 271 

regimes of advection- and diffusion-dominance, as well as hydrological disconnection. Thus, the 272 

modelled soil water ages are a proxy for residence times under various hydrological conditions; 273 

furthermore, they can be assumed to be equivalent to exposure times of dissolved 𝑁𝑂3
− to soil 274 

denitrifiers. For 𝜏𝑅, we adopted the concept of effective processing timescale (i.e., derived from 275 

model or experimental fitting under various conditions(Oldham et al., 2013)), and used the 276 

calculation as follows: 277 

𝜏𝑅 = (
𝑅𝐷

𝑆𝑁
)−1                                                                   (3) 278 

where values of 𝑅𝐷 and 𝑆𝑁 (Eq. (1)) can be derived from the calibrated simulations. Note that the 279 

model calculated the above information separately for each soil layer. Thus, the whole-profile 280 

water ages were averaged with weights of each-layer water volumes, and both 𝑅𝐷 and 𝑆𝑁 were 281 

summed from all layers. Moreover, both 𝜏𝐸 and 𝜏𝑅 can be obtained for each model grid cell at 282 

each time step, thereby enabling an explicit spatio-temporal Da analysis. 283 
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4 Results 284 

4.1 Performance of the coupled mechanistic modeling 285 

Based on step-wise multi-criteria calibration, the model performances of discharge, 286 

isotopes and 𝑁𝑂3
− − 𝑁 concentrations were all reasonably good (Table 1 and Figures S3-S5). 287 

With overall KGEs ≥0.48 among all stations, discharge simulations captured the flow dynamics 288 

in terms of seasonal and inter-annual variability; particularly, the prolonged low-flows during the 289 

2018-2019 droughts were reasonably reproduced (Figure S3). The isotope simulations also 290 

performed reasonably well at all sampling sites, with MAEs of 𝛿2𝐻 mostly < 4‰ at the 291 

upstream sites and around 6.5‰ at the outlet HAUS. The highly damped temporal patterns of 292 

stream water isotopes were also well reproduced; more importantly, the isotope-informed stream 293 

water age estimates exhibited seasonality and inter-annual variability that were consistent with 294 

catchment characteristics (Figure S4). For example, spring high-flows generally exhibited 295 

younger ages (≤ 1.0 year) than summer low-flows (3-4 years), and the normal years 2013-2017 296 

exhibited much younger ages than the drought 2018-2019 (>5 years).  297 

Driven by the EcH2O-iso water fluxes, simulations of riverine 𝑁𝑂3
− − 𝑁 concentrations 298 

also performed well. The goodness-of-fit metrics were consistently good at all stations, with 299 

KGE and MAE means being > 0.50 and < 0.60 𝑚𝑔𝑙−1, respectively (Table 1). Moreover, the 300 

model nicely reproduced the observed seasonal patterns at each station (although missed some of 301 

the winter high values), as well as the upland-lowland differences (Figures 1e and S5). 302 

Particularly at the outlet HAUS, 𝑁𝑂3
− − 𝑁 concentrations exhibited complex changing patterns, 303 

representing dynamic loading contributions from the upper forested areas (gauged by the MEIS 304 

station) and the lowland intensive agricultural areas (where groundwater 𝑁𝑂3
− − 𝑁 concentration 305 

can be higher than 10  𝑚𝑔𝑙−1, from LHW measurements). Note that our simulations captured the 306 

increases of river 𝑁𝑂3
− − 𝑁 concentrations but notably underestimated the observed peaks 307 

during the wet season after the extreme drought in 2018 (Figure S5).  308 

Table 1 near here 309 

4.2 Spatio-temporal timescales of exposure and denitrification processing  310 

 The estimated soil water ages (i.e., the exposure times 𝜏𝐸) showed high spatial variability 311 

(Figure 2). The upland forested mountains exhibited much younger ages than the lowland arable 312 
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areas, primarily due to the upland-lowland hydro-climatic contrasts (i.e., semi-humid versus 313 

semi-arid climates and hilly-mountainous flashy versus low-gradient steady flow regimes (Dupas 314 

et al., 2017)). Moreover, the lowlands exhibited scattered spots with soil water ages >1500 days. 315 

The whole-profile averaged ages did not show significant seasonal differences (the ANOVA test 316 

𝑝 values > 0.1, Figure 2a-d). The soil water ages demonstrated different responses to the 317 

prolonged 2018-2019 droughts, though the upland-lowland contrasts were maintained (Figures 318 

2e-h and 2i-l). In the uplands, the ages were extensively younger than the normal years during 319 

the wet (January-March) and drying seasons (April-Jun), primarily due to relatively higher soil 320 

water replenish rates after severe soil-water storage depletion under droughts; but the pattern 321 

shifted to be generally older than normal years during the dry (July-September) and drying 322 

seasons (October-December). The whole lowland areas showed age increases in all seasons, with 323 

the old-aged areas (>1500 days) exhibiting up to more than 500 days of increases. Moreover, the 324 

old-aged areas expended largely under droughts.  325 

 326 

Figure 2 near here 327 

Figure 2. Spatial distributions of profile-averaged soil water ages in different seasons in the 328 

normal years 2012-2017 (a-d), the drought years 2018-2019 (e-h), and their age differences (i-l). 329 

All values are based on the means of the best 100 runs, and the annotated values of mean ± 330 

standard deviation are derived from drainage areas above station MEIS (Upland) and between 331 

MEIS and HAUS (Lowland). 332 

The denitrification processing time scales (𝜏𝑅) also exhibited spatio-temporal variations 333 

(Figures 3 and S6), while exhibiting less upland-lowland contrasts compared to denitrification 334 

removal rates (Figure S7) and soil 𝑁𝑂3
− stocks (Figure S8). In the normal years (Figures 3a and 335 

S6a), 𝜏𝑅 was the lowest during the warm seasons (July-October), which also exhibited the lowest 336 

spatial variance. This well indicated the strong denitrifying activity under less constraints of 337 

temperature and water conditions. Due to the seasonal cycling of the temperature constraint, 338 

catchment-wide 𝜏𝑅 increased to the highest in the coldest February and then starting to decrease 339 

as temperature increasing. Accordingly, the spatial variability of 𝜏𝑅 was enlarged (as indicated 340 

upland-lowland differences of means). Particularly, the lowland old-aged (Figure 2a-d) and 341 

channel-connected areas exhibited consistently low values and seasonal variations of 𝜏𝑅, 342 

indicating more robust and active denitrification removal. The prolonged 2018-2019 droughts 343 
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have induced substantial impacts, that 𝜏𝑅 increased substantially during the warm season 344 

throughout the catchment (Figures 3b-c and S6b-c). This is primarily caused by the largely 345 

reduced denitrify activity under strong water constraints (particularly in July-September, Figure 346 

S7b). The most dramatic changes occurred in the upland forests, which exhibited substantial 𝜏𝑅 347 

increases since April, the beginning of the drought development. The impacts were further 348 

enlarged during the driest July-August (e.g., 𝜏𝑅 became mostly > 1500 days), coincident with the 349 

extremely decreased denitrification rates (almost by 100%, Figure S7c). In contrast, the upland 350 

agricultures exhibited much moderate 𝜏𝑅 increases throughout the warm season. The overall 351 

drought impacts were much relaxed from October as the catchment gets seasonally rewetted, and 352 

the 𝜏𝑅 during the wet season was relatively shorter than that of the normal years. This primarily 353 

due to the slightly stimulated denitrification, although the absolute rates were small (Figure S7b).  354 

 355 

Figure 3 near here 356 

Figure 3. Spatial distributions of monthly averaged processing times of soil denitrification (Eq. 357 

3) during the normal years (a), the drought years (b) and their differences (c). Results of all 12 358 

months are shown in Figure S6. 359 

4.3 The spatio-temporal Da distributions and the changes under droughts 360 

The integrated Da values exhibited high spatio-temporal variations, which also evolved 361 

differently in response to the prolonged droughts (Figures 4 and S9). In the normal years 362 

(Figures 4a and S9a), Da values were homogeneously >1 during the warm season when 363 

denitrification is mostly active. Moreover, the Da spatial distributions reflected both upland-364 

lowland contrasts and the lowland variability, which are more in accordance to water ages 365 

(Figure 2) and processing times (Figure 3), respectively. The uplands exhibited relatively 366 

reduced Da ranges compared to the lowlands, and the latter exhibited areas with high Da values 367 

(i.e., reached up to >10 in old-aged and channel-connected areas), which were further 368 

consistently higher than other normal agricultural lowlands, where Da values were mostly less 369 

than 3. In general, obvious seasonal patterns were apparent, i.e., Da decreased during the 370 

rewetting November-December, gradually to be <1 during the wettest months, and then 371 

increased and shifted to be homogeneously >1 as the catchment becomes drying again. Notably, 372 
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the timing of Da shifts was likely earlier in the lowlands than the uplands (e.g., after April and 373 

May, respectively, Figure S9). 374 

The space-time Da distributions responded differently to the prolonged droughts (Figures 375 

4b-c and S9b-c). The lowland Da showed a similar seasonal pattern to the normal years, while 376 

with decreased Da values during the driest July-September (Figure 4b-c). However, the upland 377 

Da emerged contrasting responses between the forests and the arable lands. The forests exhibited 378 

extended durations of Da<1, and particularly, Da exhibited shifts from the normal-year >1 to the 379 

drought-year <1 during warm seasons (Figures 4a-b and S9a-b), primarily due to higher 380 

increases of processing times than those of water ages (Figure 3c vs Figure 2j-k). However, Da 381 

in the upland agricultures continued to be >1, although they also decreased. In terms of relative 382 

Da changes (Figure 4c), there were catchment-wide decreases during the major drying-dry 383 

seasons (being directly impacted by the droughts), whereas increases were substantially observed 384 

during the relatively wet December-February. 385 

Figure 4 near here 386 

Figure 4. Spatial distributions of monthly averaged Damköhler number (Da) during the normal 387 

years (a) and the drought years (b), as well as Da relative changes (c). Results of all 12 months 388 

are shown in Figure S9. 389 

5 Discussion 390 

5.1 The coupled catchment modeling of conservative isotopes and reactive 𝑁𝑂3
− − 𝑁 391 

dynamics 392 

This study proposed a framework for fully distributed, mechanistic catchment modeling 393 

that couples tracer-aided ecohydrological and water quality simulations. The coupled modeling 394 

benefits from the advantages of the EcH2O-iso model in terms of comprehensively representing 395 

the heterogeneity of catchment storage-flux interactions (Maneta & Silverman, 2013) and 396 

incorporating isotopic tracers for age tracking (Kuppel et al., 2018). Such methodological 397 

advances have been shown to be effective tools for constraining model performances in larger 398 

catchments (Smith et al., 2021; Yang et al., 2023). The seasonal patterns and inter-annual 399 

dynamics of discharge and stream isotopes (Section 4.1 and Figures S3 and S4) were in line with 400 

previous EcH2O-iso modeling by Yang et al. (2023), who also explicitly demonstrated that the 401 

inclusion of isotopes in calibrations derives reasonable seasonal patterns of water ages (as shown 402 



 

15 

 

in Figure S4). Notably, this study improved isotope performances during the wetter years of 403 

2013-2014 (Table 1 and Figure S4) by parsimoniously considering the solute mixing between 404 

surface overland flow and top soil water (Shi et al., 2011). We acknowledge that such small-405 

scale, non-linearity in overland flow and solute mixing are very challenging to be captured in 406 

larger-scale modeling (Yang et al., 2023). Future research needs to advance physical 407 

understanding at small scales and further address the scaling issues (Ke & Zhang, 2024). 408 

Moreover, more detailed isotope tracer or 𝑁𝑂3
− − 𝑁 data will be helpful to further constrain 409 

these processes at larger scales (e.g., using daily or sub-daily measurements for process 410 

conceptualization and parameter calibration). 411 

Tracer-aided (eco-)hydrological modeling can provide more realistic runoff partitioning 412 

and internally consistent catchment storage-flux interactions (Stadnyk & Holmes, 2023). A more 413 

reliable basis for representing hydrological fluxes and storage states are an essential prerequisite 414 

for catchment reactive solute modeling, which superimposes complex biogeochemical processes 415 

for water quality simulations. Moreover, the fully distributed structure can accommodate spatial 416 

variability of 𝑁𝑂3
− inputs and relevant environmental factors. The overall performance of river 417 

𝑁𝑂3
− − 𝑁 simulations was comparable to Yang et al. (2018), where 𝑁𝑂3

− dynamics are driven by 418 

a different hydrological model. Note that the observed spring concentration peaks after the 419 

drought 2018 were much-increased (up to 6.0 𝑚𝑔𝑁𝑙−1), primarily due to the mobilization of 420 

further accumulated soil N from 2018 droughts (Winter et al., 2023). This is supported by our 421 

simulations of soil water concentrations in upland agricultural areas, which reached up to >7.0 422 

𝑚𝑔𝑁𝑙−1 in December 2018 (not shown), although the observed riverine high concentrations 423 

were missed. As an initial step of catchment integration of conservative and reactive solutes, this 424 

study adopted only loosely coupled models and the two-step calibration strategies (Section 3.3) 425 

to avoid time-consuming coding. We acknowledge that the nitrate model performance 426 

(particularly during winter and drought years) could be further improved if the information 427 

content of daily 𝑁𝑂3
− − 𝑁 data can be used to constrain flow dynamics under the high-flow 428 

and/or non-stationary drought conditions. Moreover, given the overall complexity of the coupled 429 

modeling system, future calibration efforts (e.g., considering the equifinality issue) should be 430 

advanced to improve the model performance and reliability. 431 
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5.2 Catchment-scale quantifications of nitrate exposure and processing timescales 432 

One of the key objectives of this study was to address the challenges of applying Da 433 

concepts for heterogeneous, large-scale catchments (Kumar et al., 2020; Li et al., 2021). This 434 

study, for the first time, facilitated model-based inferences of both timescales and particularly 435 

focused on denitrification process and its impacts on catchment water quality.  436 

Being fully integrated into water balance calculations, water ages of each storage and flux 437 

can be uniquely inferred from the EcH2O-iso flux tracking (Kuppel et al., 2018; Smith et al., 438 

2021; Yang et al., 2023). For the soil domain, the inferred soil water ages can be a proxy of 439 

residence times of soil water and 𝑁𝑂3
−  solutes therein. Given the continuity in the modeling, this 440 

also provides an index for potential contact times for dissolved 𝑁𝑂3
− to be denitrified. Thus, the 441 

soil water ages fitted well to the concept of the exposure timescale (Frei & Peiffer, 2016; 442 

Oldham et al., 2013). More importantly, the fully distributed model structure enabled a spatial 443 

representation of the exposure times (Figure 2). Of course, the distributed exposure times can be 444 

explicitly inferred through particle tracking approaches (Frei & Peiffer, 2016), while to 445 

determine whether the biogeochemical turnover of interest is stimulated or suppressed along with 446 

the particle transport pathways will always remain challenging and highly uncertain for real 447 

systems (Frei & Peiffer, 2016). Therefore, we view the coupled-modeling approach, with 448 

Eulerian based flux tracking, used here to be a “middle-path” inference of the spatial exposure 449 

timescales. 450 

Quantifying catchment-scale processing times of denitrification is even more challenging. 451 

First, natural catchment conditions are more complex than laboratory experiments that assume 452 

full exposure to reactants, thus the actual processing times could significantly differ from 453 

intrinsic processing times usually derived from the latter (Oldham et al., 2013). On the other 454 

hand, catchment models are advantageous in capturing the space-time variability of controlling 455 

environmental conditions of denitrification process, but they often do not explicitly simulate 456 

microbial dynamics (Boyer et al., 2006). Thus, the characteristic processing times cannot be 457 

inferred directly from kinetic theories (e.g., the common assumption of first-order kinetics). 458 

Here, we proposed an approach that directly estimates information of processing timescales 459 

using the modeled information (Eq. 3). The derived processing time represents the time it would 460 

take for denitrification rates to proceed to soil 𝑁𝑂3
− depletion at each time step (Li et al., 2021). 461 

The estimated space-time patterns of processing times (Figure 3) were reasonably in line to 462 
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general understanding of denitrification characteristics (Seitzinger et al., 2006). Moreover, it is 463 

virtually equivalent to the inverse of denitrification removal efficiency, which has shown to be 464 

correlated to Da (Ocampo et al., 2006), thus it fitted well to the Da framework for catchment-465 

scale integrated transport-processing analysis.  466 

5.3 Space-time Da integrations of denitrification removal: insights into the linkages to 467 

catchment water quality and implications for management 468 

Here we enabled explicit Da distributions throughout the catchment. Rather than the exact 469 

magnitudes of Da that may be more sensitive to model uncertainties (as discussed in Section 470 

5.1), we were particularly interested in the space-time patterns of Da under different seasons and 471 

climatic conditions (Figures 4 and S9).  472 

During conditions of normal-years between June-October, when denitrification is 473 

potentially most active, Da was consistently >1 (Figures 4a), supporting that the actual 474 

denitrification was significant in regulating catchment 𝑁𝑂3
− dynamics for both upland forests and 475 

lowland agricultural areas. Notably, the lowlands exhibited substantial areas with Da≥5, which 476 

are more extensive than the areas of older water (>1500 days in Figure 3); the emergent extra 477 

areas aligned well with locations of lowland channel network with relatively low processing 478 

times (Figures 2c-d, 3a and 4a). These low processing times were more due to the simulated 479 

year-round low soil 𝑁𝑂3
− stocks (Figure S8a). Such low stocks can be co-resulting from (1) the 480 

continuous supply of 𝑁𝑂3
− export to river channels (EcH2O-iso only allows terrestrial exports 481 

from channel-connected grid cells) and (2) more active removal by denitrification especially 482 

during the wet-dry transition in May and November (Figure S7a). In the uplands, although 483 

exposure times were much shorter, Da values were homogeneously >1, with scattered high-484 

values in non-channel forested areas (Figure 4a). Generally, the upland denitrification was 485 

strongly limited by soil 𝑁𝑂3
− sources availability (Dupas et al., 2017), resulting in much shorter 486 

processing times compared to the exposure times. However, once this source constraint was 487 

relaxed in agricultural areas, the significance of denitrification reduced, as reflected by slightly 488 

lower Da values compared to forests. In other words, these agricultural spots are potentially 489 

high-risk areas of 𝑁𝑂3
− accumulation; this further implies that agricultures could be 𝑁𝑂3

− export 490 

hotspots in such flashy uplands and should be cautiously managed, e.g., with reduced fertilizer 491 

applications and increased buffer space before exporting to rivers. Overall, the spatial variability 492 
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of the warm-season Da values revealed that the significance of denitrification was not only 493 

reliant on sufficient exposure of 𝑁𝑂3
− to denitrifiers, but also the removal efficiency. 494 

Due to the strong seasonality in both catchment hydrology and denitrifier activity, Da 495 

showed clear seasonal patterns (monthly averaged spatial distributions in Figures 4 and S9, and 496 

daily variations of typical grid-cells in Figure 5). The overall Da seasonal changes indicted the 497 

general shifting balance between 𝑁𝑂3
− processing (Da>1) and transport (Da<1) in dry summers 498 

and wet springs, respectively. Meanwhile, such seasonal shifts showed substantial spatial 499 

variations. First, the flashy uplands experienced a longer period of Da≤1 that persisted to May, 500 

while the lowland Da shifted to >1 in March (Figures 4a and 5). In other words, catchment 𝑁𝑂3
− 501 

transport during wet-spring seasons was of much more relevance in the uplands than the 502 

lowlands. This explains why the high 𝑁𝑂3
− loading (as well as riverine concentrations) during 503 

high-flow seasons are mostly contributed from the uplands (Figures S5), although the 504 

agricultural lowlands are extremely enriched in N. Second, in the homogeneous agricultural 505 

lowlands, Da showed contrasting seasonal variations that are also coincide with the warm-season 506 

spatial distributions. The high-Da areas with older soil water exhibited year-round Da>2, 507 

indicating a much lower influence of hydrological connectivity even during wet seasons. 508 

Compared to non-channel areas, lowland channel-connected areas exhibited consistently higher 509 

Da values (due to shorter processing times as shown in Figure 3a), forming year-round hot spots 510 

of denitrification removal.  511 

Figure 5 near here 512 

Figure 5. Averaged daily Da variations in various typical landscapes in the normal (2012-2017) 513 

and the drought (2018-2019) conditions. Two grid cells for each landscape type were selected 514 

and their locations were shown in Figure S10). 515 

The prolonged droughts of 2018-2019 provided an opportunity to unravel catchment 516 

responses to climatic conditions that are expected to become more common in future (Figures 517 

2e-h, 3b, 4b and dashed lines in Figure 5). During the warm seasons in the drought, the uplands 518 

experienced dramatic Da decreases, of which agricultures approached ~1 and forests shifted to 519 

≪1. This is caused by the extremely depleted soil water availability (supported by local soil 520 

moisture data, as shown in Yang et al. (2021)), which constrained the anaerobic denitrification. 521 

Particularly for forests, the water constraints were superimposed on the source limitations, 522 

thereby resulting in extremely long processing times. The lowland also exhibited extensive Da 523 
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decreases, indicating reduced dominance of removal processing due to denitrification being 524 

further water-limited. This resulted in extensive soil 𝑁𝑂3
− accumulations in lowland agricultures 525 

(Figure S8b). Moreover, it is likely that areas with high normal-year Da exhibited higher 526 

proportional decreases (e.g., more than 50% in the old-aged areas in July-September, Figure 5); 527 

consequently, these areas experienced more significant increases in soil stock (e.g., nearly 528 

doubled in November-December, Figure S8c). These drought sensitive “hot spots” are likely 529 

imposing high risks of groundwater contaminations, and thus are potential priorities for 530 

catchment management.  531 

In addition, Da patterns during drought rewetting and wet seasons were largely maintained 532 

(i.e., Da generally reverted back to similar levels to those of normal years), indicating that 533 

catchment transport reestablished its dominance. This further means that the drought impacts on 534 

terrestrial denitrification would be eventually transmitted to river water quality. In fact, we did 535 

observe the elevated riverine 𝑁𝑂3
− − 𝑁 concentrations during January-March of drought years 536 

(ca. 6 𝑚𝑔𝑁𝑙−1, Figure S5). Although the observed peak riverine concentrations were missed, the 537 

simulated soil water 𝑁𝑂3
− − 𝑁 concentrations of the upland agricultures reached to be >7.0 538 

𝑚𝑔𝑙−1 in 2018 December (results not shown), which would be flushed out to rivers during the 539 

following transport-dominant seasons. Therefore, the upland agricultural areas are particularly 540 

high-risk hot spots for high terrestrial 𝑁𝑂3
− exports under droughts. The lowland channel-541 

connected areas exceptionally exhibited Da shifting to above 1 during January-February under 542 

droughts (Figure 5). This suggests that these areas not only exhibit high terrestrial denitrification 543 

removal efficiencies under normal conditions, but also prevent extra diffuse source exports under 544 

droughts, showing higher resilience to environmental changes. Moreover, these areas often 545 

associate with riparian/hyporheic zones, where the land-water interfaces are important  546 

biogeochemical hotspots benefiting catchment environments (Englund et al., 2021). This 547 

strongly implies that such a landscape type could play critical role on catchment environmental 548 

management under changing climates, and thus, promising pollution control measures could be 549 

to increase the lowland river connectivity with restored riparian wetlands. 550 

6 Conclusion 551 

Catchment-scale nutrient dynamics involve complex interactions between hydrology and 552 

biogeochemistry, thus requiring a dual-lens approach that integrates both exposure and 553 
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processing timescales. Using Da concepts, this study proposed a novel spatio-temporal 554 

framework for Da quantification in relation to soil denitrification based on a coupled mechanistic 555 

modeling of isotope-aided water age tracking and 𝑁𝑂3
− turnover. The Da values revealed the 556 

general significance of denitrifying activity during dry-summer seasons, and particular hot spots 557 

included agricultural areas in the flashy uplands and channel-connected areas in the flat 558 

lowlands. Moreover, Da seasonal patterns demonstrated a systematic shift to transport 559 

dominance during wet-spring seasons, implying that terrestrial denitrification impacts on river 560 

water quality are mediated by hydrological connectivity. Importantly, the space-time changes of 561 

Da under droughts helped identify high-risk “hot spots” of catchment water pollution whilst also 562 

identifying less-sensitive areas exhibiting high resilience to environmental changes. These 563 

insights into integrated hydrological and biogeochemical dynamics have important implications 564 

for modern nature-based catchment non-point source pollution control, e.g., through 565 

implementing buffer zones in risky uplands to prevent high N-export and increasing lowland 566 

river connectivity with restored riparian wetlands along lowland rivers to increase 567 

biogeochemical N removal. In addition, the proposed catchment Da framework is 568 

methodologically transferable to other processes of interest and to other regions under various 569 

climate and landscape conditions.  570 
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Table 1. The coupled model performance based on the multi-criteria, multi-site calibrations. 
Mean ± Standard Deviation values were calculated among the best 100 runs. KGE – Kling Gupta 
Efficiency, PBIAS and MAE – the mean percentage bias and mean absolute errors, respectively, 
between the simulations and observations.  

Data type Metric HAUS MEIS SILB MM KB 

Discharge 
KGE [-] 0.48±0.056 0.52±0.076 0.69±0.051 -- -- 

PBIAS [%] 22.78±9.06 17.91±9.19 15.54±8.54 -- -- 

Isotope 𝛿2𝐻 MAE [‰] 6.44±0.64 2.93±0.36 3.11±0.38 3.08±0.28 3.87±0.36 

𝑁𝑂3
− − 𝑁 

concentration 
KGE [-] 0.52±0.049 0.57±0.060 0.64±0.044 -- -- 

MAE [𝑚𝑔𝑙−1] 0.53±0.056 0.58±0.045 0.60±0.048 -- -- 
 

Table 1 Click here to access/download;Table (Editable version);Table
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