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Abstract 38 

Application of household sand filters (SFs) is widespread in low-income regions, such as West 39 

Bengal, Bangladesh and Vietnam, for removal of groundwater contaminants including Fe, Mn 40 

and As. SF operation typically transitions from (oxic) unsaturated conditions to saturated 41 

conditions creating oxygen-limited zones within sand layers. To ensure safe and effective use 42 

of SFs, understanding filter performance and spatiotemporal changes of solid-associated Fe, 43 

As, and Mn in different saturation conditions are crucial but remains unknown. Therefore, 44 

column experiments were conducted to follow Fe, As, and Mn removal and their distribution 45 

and speciation on sand grain surfaces under unsaturated and saturated conditions. On average, 46 

99±0.2, 93±0.7, and 91±8% of Fe(II)aq, As(III)aq, and Mn(II)aq were removed under unsaturated 47 

conditions. Under saturated conditions, Fe and As removal remained constant, whereas up to 48 

5 mg/L of Mn(II)aq was leached from columns. µXANES analysis showed that solid-associated 49 

Fe(III), As(V), and Mn(III)/(IV) dominated in unsaturated sand. However, under saturated 50 

conditions, up to 46 and 15% of Fe(III) and As(V) were reduced and the presence of Mn(II) 51 

was confirmed in the anoxic zones. The results suggest that Mn(IV) oxides formed during 52 

unsaturated conditions, serving as hosts and oxidants for Fe and As in SFs under reducing 53 

conditions.  54 

 55 

Keywords: sand filters, biogeochemical processes, Fe, Mn, As 56 

 57 

Synopsis: Formation of Mn(IV) oxides under the oxic flow acted as the host and oxidant for 58 

Fe(II) and As(III)/(V) under saturated conditions.   59 
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1. Introduction 62 

Water filtration by household sand filters (SFs) is one the oldest point-of-use water treatment 63 

techniques that has been recommended by the World Health Organization (WHO) to provide 64 

safe drinking water for people living in rural areas1,2. In the Red River delta, Vietnam, 65 

groundwater is acutely contaminated by As; up to 3000 µg/L of As was detected in some 66 

places3. Household SFs have been used in this area to eliminate As(III) and other contaminants 67 

such as Fe(II) and Mn(II) from groundwater for more than 30 years4,5. Groundwater is pumped 68 

intermittently onto the top of the sand surface followed by gravitational trickling through the 69 

sand layer. Filtered water is collected in a lower compartment for cleaning and drinking5,6. 70 

As(III), Fe(II) and Mn(II) are co-oxidized in the filter, followed by the precipitation of As(V)-71 

bearing Fe(III) (oxyhydr)oxides and Mn(III/IV) oxides on sand particle surfaces7,8. 72 

The operation of the SF starts with unsaturated flow when sand layers maintain oxic conditions 73 

and is followed by saturated flow when an oxygen gradient is formed along the sand column 74 

creating semi-oxic (top layer) and anoxic zones (bottom layer). When the filters get clogged 75 

(every 3-6 months), 10-20 cm of the top sand is scraped off for unclogging. Thus, SFs are 76 

usually operated under alternating unsaturated and saturated flow for many years.  77 

Under unsaturated conditions, Fe-, Mn- and As-species in the groundwater are almost 78 

completely oxidized (Fe(III), Mn(IV) and As(V)). Mn oxides are therefore constantly formed 79 

in SFs, forming distinguished black patches or layers in the filters6,9. The formation of Mn(IV) 80 

oxides is due to i) microbial activity of Mn(II)-oxidizing bacteria (MnOB)10,11 and ii) abiotic 81 

oxidation of Mn(II) by O2 catalyzed at Fe(III) (oxyhydr)oxide mineral surfaces12–14. Since 82 

Mn(IV) oxides are strong oxidants they can directly oxidize dissolved As(III) and Fe(II) in the 83 

groundwater (Eq 1, 2).  84 

MnO2
 + AsO3

3- + 2H+ → Mn2+ + AsO4
3- + H2O (Eq. 1) 85 

2MnO2
 + Fe2+ +5H+ → Fe(OH)3 + 2Mn2+ + H2O (Eq. 2) 86 
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Over a long operational time (several months to years), the filter surface gets blocked by 87 

precipitation of carbonate minerals and metal (oxyhydr)oxides, thus inhibiting the abiotic 88 

oxidation of Fe(II) and As(III) by O2
15

. Under such conditions, Mn oxides might complement 89 

the heterogeneous oxidation of As(III) and Fe(II) by O2 (Eq 1, 2) to enhance As and Fe 90 

retention in SFs. Indeed, under O2-depleted conditions, Mn(IV) oxides (either as abiotic or 91 

biogenic birnessite) prevented As mobilization in soil and sand columns16–18. However, until 92 

now, there is no direct evidence that under O2-depleted conditions the presence of Mn(IV) 93 

oxides can control the immobilization of As and Fe in household SFs. One of the issues is that 94 

most studies have examined As, Fe, and Mn removal by sampling at specific timepoints to 95 

confirm the high removal efficiency. There is inadequate data regarding long-time monitoring 96 

of Fe, As, and Mn effluent over unsaturated (fully oxic) to saturated (O2-depleted) operational 97 

phases in SFs. Obtaining such analyses at different timepoints (with different saturation status 98 

and different redox conditions) is essential as it will reveal whether As removal mechanisms 99 

change during redox fluctuations and can reveal the impact of Mn(III/IV) oxides on As and Fe 100 

retention in SFs.  101 

Therefore, in this study, series of column experiments were conducted in the lab and in the 102 

field in which sand columns were fed by sterile artificial and local native groundwater, 103 

respectively. We aimed at i) monitoring the performance of the sand filter applied to remove 104 

As, Fe, and Mn over time from unsaturated to saturated conditions, ii) quantifying the 105 

distribution of total As, Fe, and Mn along the depth of sand columns, and iii) identifying the 106 

location and speciation of As, Fe, and Mn on the surface of sand particles under unsaturated 107 

and saturated conditions.  108 

  109 
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2. Materials and methods  110 

2.1 Column setup 111 

The glass columns (inner diameter 4.5 cm, length 25 cm) consisted of support layers filled with 112 

2 cm gravel (particles size 6-8 mm, Flairstone, Germany) and 3 cm sterilized quartz sand 113 

(particle size 0.4-0.8 mm, Carl Roth GmbH, Germany) at the bottom, followed by a reactive 114 

layer filled with 10 cm of sand filter materials. Columns were intermittently operated in 115 

gravitational down-flow mode 2-3 times per day. Two similar column setups were running in 116 

the field (20°55′08.63” N, 105°53′47.61″ E, Van Phuc village in the Red River delta, Vietnam) 117 

(field site description see SI, section S1) and in the lab.  118 

2.2 Column flow experiment 119 

2.2.1 Columns in the field 120 

In the field, the biotic columns contained the reactive layer (top 10 cm) filled with sand 121 

collected from the local sand supplier. 250 ml of natural groundwater was pumped directly on 122 

top of the sand columns each time. The inflow water contained 16.1 mg/L of Fe(II), 1.4 mg/L 123 

of Mn(II), and 240 µg/L of As(III). The filtration rate, and the concentrations of Fe, Mn, As in 124 

the effluent were recorded at every feeding batches. The experiment ran over 1.5 months, 125 

equaling 169 pore volumes under temperature ranging from 20-25oC.  126 

2.2.2 Columns in the lab 127 

In the lab, the duplicate biotic columns contained a reactive layer (top 10 cm) filled with sand 128 

collected from a frequently running household filter at the same location with the field 129 

experiment (sample collection is described in SI, section S1). Additionally, an abiotic control 130 

column was setup in the lab, with the reactive layer (top 10 cm) filled with sterile quartz sand 131 

(particle size: 0.4-0.8 mm, Carl Roth GmbH, Germany). To follow the dissolved oxygen (DO) 132 

in the sand columns (biotic and abiotic setups), six pieces of oxygen optode foil (PreSens, 133 

Germany) were glued inside at different depths along the columns. Sterile artificial 134 
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groundwater (AGW) was freshly prepared every week and contained 20.9±1.5 mg/L of Fe(II), 135 

1.8±0.6 mg/L of Mn(II), and 307.0±24.4 µg/L of As(III). The preparation of AGW is described 136 

in SI section S2 and Table S1. The pH of AGW was adjusted to 7.3 which is the average pH 137 

value of groundwater in the Red River delta5. Every time, up to 150 ml of ARW was fed to the 138 

columns. In total, the experiment was operated over two months equaling 141 pore volumes 139 

and the columns experienced two clogging events at pore volumes 93 and 141. After the first 140 

clogging event, 3 cm of top sand was scraped off the column to unclog the sand column, and 141 

the experiment was continuously running until the second clogging. The column experiments 142 

in the lab were performed at a temperature ranging from 20-25oC similar conditions as the field 143 

experiment.  144 

2.3 Aqueous analysis  145 

At every filtration time, inflow and outflow water was collected. To quantify dissolved As, Fe 146 

and Mn, 2 ml of inflow and outflow water were filtered (0.22 μm cellulose filter, EMD 147 

Millipore) and diluted with 1% HNO3 before analysis by inductively coupled plasma mass 148 

spectrometry (ICP-MS) (Agilent 7900, Agilent Technologies) 149 

2.4 Solid phase analysis  150 

After the experiments, to prevent further oxidation of solid-associated Fe(II), As(III) and 151 

Mn(II), filter materials were collected from 2-5 cm depth in the glovebox (100% N2, <30 ppm 152 

O2, MBRAUN UNIlab). Samples were stored anoxically in 100 ml Schott bottles in the freezer 153 

(-20oC) until further analysis. 154 

2.4.1 Elemental composition analysis  155 

12 ml of aqua-regia solution (9 ml of 37% HCl and 3 mL of 65% HNO3) were added slowly to 156 

the Xpress Plus Teflon vessels containing 0.5 gram of dried sand materials. The samples were 157 

digested in the Microwave Accelerated Reaction System, MARS 6 (CEM, USA) (details in SI 158 

section S3). Afterwards, the digested samples were adjusted to a final volume of 50 ml by 159 
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adding milliQ H2O under the fume hood. The samples were centrifuged at 16,873 g for 15 min 160 

(Thermo Scientific Sorvall LYNX6000). 100 μl of the supernatant were collected and diluted 161 

100-fold in 1% HNO3. Samples were stored at 4°C in the dark until analysis via the Agilent 162 

7900 ICP-MS.  163 

2.5.2 X-ray fluorescence imaging 164 

The distribution of As, Fe, and Mn on the surface of sand particles was visualized with X-ray 165 

fluorescence (XRF) mapping using beamline 7-2 at Stanford Synchrotron Radiation 166 

Lightsource (SSRL). Samples were freeze-dried and transferred to wells with 5 mm diameter 167 

on multi-well sample holders. Samples were embedded in Epotek 301-1 resin (Epoxy 168 

Technology). All preparatory steps were performed in a glovebox (100% N2, <30 ppm O2). 169 

Epoxied samples were polished to 5 mm thickness under oxic (ambient) conditions.  170 

Beam line 7-2 is equipped with a bend magnet, capillary optics, and a double crystal (Si 111) 171 

monochromator. Samples were placed at a 45° to the incoming focused beam with a 50 µm 172 

spot size and a 100 ms dwell time per pixel. Samples were imaged at two energies 12,000 eV 173 

for obtaining As and total elemental maps, and 8000 eV for obtaining accurate Fe and Mn 174 

maps. Fluorescence intensities of selected elements were monitored with a four-element Vortex 175 

Silicon Drift Detector. 176 

As, Fe and Mn maps were visualized in SMAK19 with details in SI section S4. Locations with 177 

a simultaneous presence of high counts of As, Fe and Mn were identified and selected for µ-178 

X-ray Absorption Near Edge Structure (µ-XANES) spectroscopy. Mn K-edge, Fe K-edge, and 179 

last As K-edge µXANES data were obtained in this order at the same locations (50-micron 180 

spot), starting with the lowest energy to prevent beam redox changes. Three to six spectra were 181 

obtained per spot, depending on spectra quality. The spectra were processed in Athena20 with 182 

details in SI section S5. 183 

2.5.3 Scanning electron microscopy (SEM) 184 
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The morphology of precipitates coated on the sand particles surface was analyzed by SEM 185 

using a Zeiss Crossbeam 550L Scanning Electron Microscope (Zeiss, Germany). Filter 186 

materials collected from saturated and unsaturated columns were dried in an oven at 30°C, then 187 

placed on aluminum SEM sample holders onto carbon adhesive tabs. The samples were sputter-188 

coated with 8 nm platinum with a BALTEC SCD 500 sputter coater. SEM micrographs were 189 

collected using the Secondary Electrons Secondary Ions (SESI) detector with an accelerating 190 

voltage of 5 kV. 191 

 192 

  193 
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3. Results and discussion 194 

3.1 Long-term monitoring of As, Mn and Fe in the effluent  195 

Field column experiment  196 

Column experiments in the field were performed over 169 pore volumes in 1.5 months under 197 

unsaturated conditions (flow rate ranged from 0.3-0.15 ml/s) (Figure 1A). The columns were 198 

fed twice per day by natural groundwater containing 16.1 mg/L of Fe(II), 1.4 mg/L of Mn(II), 199 

and 240 µg/L of As(III) (Table S2). Low concentrations of Fe, Mn, and As in the outflow 200 

indicated high and stable removal efficiencies by the SFs. The relative effluent values (C/C0, 201 

where C and C0 are effluent and influent concentration, respectively) for Fe, Mn, and As were 202 

0.002, 0.08, and 0.07 (Figure 1) which corresponded to effluent concentrations of 38, 117, and 203 

17.5 μg/L, respectively (Figure S3). The residual As concentration in the water after filtration 204 

was higher than the WHO drinking water standard (10 μg/L). Our observation is consistent 205 

with other studies investigating full-scale household filters in the Red River delta6,7,9, 206 

suggesting further As treatment steps are required for drinking purposes.  207 

Lab column experiment  208 

To further investigate the effect of saturated versus unsaturated conditions on the filter 209 

performance, we conducted a similar column experiment in the lab. The aim of the lab 210 

experiment was to investigate the filter performance under saturated conditions. Therefore, a 211 

slower flow regime than in the field experiment was selected, starting from 0.14 ml/s (the flow 212 

rate in the field ranged from 0.3-0.15 ml/s) (Fig 1A). The abiotic control was performed with 213 

sterile quartz sand added to the column instead of native sand materials collected from 214 

household filters in Vietnam. Both abiotic and biotic setups were fed by sterile, anoxic, 215 

artificial groundwater containing 20.9±1.5 mg/L of Fe(II), 1.8±0.6 mg/L of Mn(II) and 216 

307.0±24.4 µg/L of As(III) (Table S2).  217 
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The performance of the biotic sand column was divided into two phases (Figure 1B). In the 218 

first phase (93 pore volumes, before the first clogging), the sand column remained oxic with a 219 

DO in the porewater ranging between 4-6 ppm (Figure S4). Fe, Mn, and As were effectively 220 

removed with relative effluent concentrations (C/C0) of 0.0004, 0.13 and 0.04, respectively 221 

(Figure 1B). We noticed that the Fe and As removal efficiency in the lab setup was higher than 222 

in the field probably due to the absence of Si and higher Ca in the AGW relative to natural 223 

groundwater. Silicate has a weaker adsorption affinity to Fe(III) (oxyhydr)oxides compared to 224 

As(III) and As(V)21, therefore Si is only a weak competitor of As regarding adsorption on 225 

Fe(III) phases during filtration. In contrast, Ca was shown to enhance As retention by forming 226 

Ca-As(V) bonds on the sand particle surface22,23.  227 

During the second phase between the 1st and 2nd clogging (pore volumes 93-141) the column 228 

was operated under semi-oxic conditions (DO of porewater <0.5 ppm) (Figure S4). After the 229 

1st clogging, 3 cm of the top sand was scraped off, then the column was continuously run until 230 

the second clogging event. Fe removal efficiency was comparable to phase 1 (C/C0 (Fe): 0.009), 231 

while Mn breakthrough occurred throughout this phase as the Mn concentration in the effluent 232 

was constantly higher than in the influent with C/C0 ranging between 1 and 3.5 (Figure 1B). 233 

Arsenic removal slightly changed from 8.9 to 12.6 µg/L in the effluent (Figure S3). The drop 234 

in DO along the sand column in the second phase compared to the first phase suggests a 235 

formation of anoxic zones along the sand column. Under such conditions, it might lead to a 236 

reduction As-bearing Fe(III) (oxyhydr)oxides forming As(III) and Fe(II). Therefore, MnO2 237 

could be involved in the oxidation of reduced As(III) and Fe(II) to varying extents (Ep 1, 2). 238 

This explained an increase of mobile Mn(II) at the effluent and the high retention of Fe and As 239 

in the sand column. In the abiotic control column, 99% of the Fe(II) was removed by abiotic 240 

oxidation with O2, but As and Mn removal were limited to 70 and 66%, respectively (Figure 241 

1C). These findings clearly show the important roles of microbial oxidation of Fe(II), As(III) 242 
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and Mn(II) in order to complement the abiotic processes to maintain high removal rates of Fe, 243 

As and Fe in the sand column as shown before by Van Le et al9.  244 

 245 

 246 

Figure 1. Filtration rate (upper panel) and relative effluent concentration (C/C0, where C and 247 

C0 are effluent and influent concentration, respectively) of Fe, Mn and As (lower panel) in the 248 

field-based biotic setups (A), lab-based biotic setups (B) and the abiotic control (C). The 249 

filtration rate as well as the concentrations of Fe, Mn, As in the influent and effluent were 250 

recorded at every feeding batches.  251 

 252 
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3.2 Distribution of solid Fe, As and Mn in unsaturated and saturated columns  253 

To understand changes in Fe, As, and Mn distribution in different depth layers in the 254 

unsaturated column (field setup) and saturated column (lab setup), total Fe, As, and Mn 255 

associated with sand materials at every 2-5 cm depths were analyzed by ICP-MS after 256 

microwave digestion. 257 

Fe, As, and Mn accumulated in the top 2-3 cm of the sand columns and their concentrations 258 

decreased with filter depth. Since the groundwater in the Red River delta is enriched with 259 

Fe(II), Fe showed the highest abundance in the sand column. Up to 18.5-22.0 g/kg and 26.5-260 

28.8 g/kg were found in unsaturated and saturated columns, respectively (Figure 2A). 261 

Manganese in the solid phase of the saturated sand column was between 744-991 mg/kg, twice 262 

as much as in the unsaturated column (Figure 2B). Arsenic was enriched in the saturated 263 

column with a concentration between 159 and 178 mg/kg, which was three times as high as As 264 

in the unsaturated column (Figure 2C). Since the removal efficiency of the abiotic columns 265 

was lower than in the biotic ones, the Fe, As, and Mn retained in the sand was up to 10 times 266 

less than in the biotic setups.   267 

At the macro scale, both As and Mn linearly correlated with Fe with correlation factors R2 from 268 

0.82 to 0.99 in both unsaturated and saturated columns (Figure S5, S6), suggesting that As 269 

adsorbed on Fe(III) (oxyhydr)oxides on the sand particles as reported before6,7. In contrast, As 270 

and Mn was less co-located indicated by lower correlation factors which were 0.55 and 0.8 for 271 

unsaturated and saturated columns, respectively. The element distribution in unsaturated and 272 

saturated columns followed the same pattern. Thus, we hypothesize that the changes of Fe, As, 273 

and Mn concentrations might occur due to changes in speciation and binding environment. It 274 

has to be noted that new sand material was used for the field experiment (unsaturated 275 

conditions). In contrast, sand material collected from existing household filters was used for 276 

the lab experiment (saturated conditions) to utilize the microbial activities in the sand. 277 
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Therefore, filter materials in the saturated column already contained higher amounts of Fe, As, 278 

and Mn than the unsaturated column, which could lead to catalytic effects8,24. 279 

280 

Figure 2. Vertical distribution of Fe (A), As (B), and Mn (C) in abiotic control (black), 281 

unsaturated (orange) and saturated (brown) columns. All samples were analyzed in triplicate, 282 

and error bars indicate the standard deviation. 283 

 284 

3.3 Morphology of precipitates and elemental distribution on sand particle surface  285 

Scanning electron microscopy (SEM) and micro-X-ray fluorescence (µXRF) were combined 286 

for assessing the sand particle size (Figures 3A and S7), the morphology of minerals (Figure 3 287 

B, C, D), and the elemental distribution on the sand particle surfaces (Figures 4, S8, and S9). 288 

The results indicated a heterogenous elemental distribution and micro- to nano-sized mineral 289 

structures coating sand particle surfaces. Three mineral structures were identified including 290 

micro-platelets associated with nano-globular-aggregates (Figure 3C, D) and nano-flower 291 

shaped structures (Figure 3E, F). The nano-globules had a similar structure to Fe nano-292 
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aggregates found on the surface of sand particles in other Fe-Mn-based sand filtration 293 

systems25,26. We suggest that the flower-like nano morphology is similar to the birnessite 294 

structure reported in previous studies26,27. The identified mineral structures could originate 295 

from the filter materials or were newly formed during filtration. Further SEM imaging of the 296 

local raw sand materials should be included in future studies to better distinguish the origins 297 

of these precipitates. 298 

Pixel fluorescence counts of Fe, As, and Mn collected from µXRF maps indicated a stronger 299 

correlation of Fe and Mn (R2 = 0.5-0.6) than Fe and As (R2 = 0.2-0.4) in both unsaturated and 300 

saturated columns. However, at selected areas, both As and Mn were strongly correlated with 301 

Fe with R2 > 0.8 (Figure 4E, 4F, S8, S9), while the correlation factor of Mn and As was lower 302 

(R2 < 0.7) (Figure 4F). The Fe, As and Mn correlations at the micro scale were in line with the 303 

findings at the macro scale. Additionally, Mn was associated with Fe(III) (oxyhydr)oxides in 304 

the unsaturated sample (R2 = 0.73) (Figure S8), while in the saturated sample, Fe-Mn-rich areas 305 

were detected in fewer locations indicated by a lower correlation factor (R2 = 0.6) (Figure 4B). 306 

Arsenic possessed a lower concentration than Mn and Fe and enriched as rims at the mineral's 307 

surface-water (solid-water) interface (Figure 4C), that is also described in previous 308 

studies7,28,29. 309 

Additionally, other elements such as P, Ca, and Si also showed a strong partitioning into the 310 

Fe(III) (oxyhydr)oxide phase (Figure S10), probably influencing As removal in SFs. Iron was 311 

well co-located with P in all samples as phosphate is preferentially adsorbed to Fe(III) 312 

(oxyhydr)oxide compared to As(V), As(III) and silicate21,30. Thus, low Fe/P ratios (0.05-1) of 313 

the groundwater were an asset for high As retention. Tricolor maps of Si, Ca, and Fe indicated 314 

a lower amount of Si and Ca associated with Fe (Figure S10). Most detected Si fluorescence 315 

counts stemmed from the sample holder (made from quartz). Ca-rich sand crusts were found 316 

separately from the Fe signal, probably precipitated as calcite in the filters.  317 
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 318 

Figure 3. Scanning electron micrographs showing the distribution of precipitates on the sand 319 

particle surface (A, B). The most dominant mineral structures were micro-platelets (green 320 

arrows) associated with nano-globular-aggregates (orange arrows) (C, D) and nano-flower 321 

shapes (blue arrows) (E, F).  322 

 323 



 18 

 324 

Figure 4: Multiple energy µ-XRF maps of sand filter materials from saturated columns 325 

operated in the lab. µ-XRF maps of Fe (A), Mn (B), As (C) distributed on sand surfaces and 326 

their tricolor map (D).  Correlations of Mn vs Fe (E), As vs Fe (F), As vs Mn (G) and their 327 

correlation co-efficiency (R2) were displayed for 4 selected areas from tricolor map.  328 
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3.4 Fe, As and Mn speciation in saturated and unsaturated sand columns  329 

Filter materials were collected from different depth layers (2-5 cm) in unsaturated and saturated 330 

columns. Redox states of Mn, Fe and As on selected areas from µXRF maps were analyzed by 331 

X-ray absorption near edge structure (µXANES) spectroscopy using linear combination fitting 332 

(LCF) (Figure 5 A,B,C). µXANES spectra of different areas on the same sample were almost 333 

identical indicating that the speciation distribution was homogenous and representative for that 334 

sample. The proportions of Fe(II) and As(III) in each sample were converted to concentrations 335 

for a better quantitative comparison between unsaturated and saturated columns (Figure 5D,E). 336 

The results indicated that oxidized species such as Mn(III)/(IV), Fe(III), and As(V) dominated 337 

in unsaturated columns while reduced Mn(II), Fe(II), and As(III) were identified at a higher 338 

relative contribution in saturated columns.  339 

Under the unsaturated flow conditions, adsorption maximum positions of Mn, Fe and As were 340 

near 6563, 7134, and 11875 eV, respectively (Figure 5 A,B,C), indicating the presence of 341 

Mn(III)/(IV), Fe(III), As(V) and in the sand columns31,32. LCF fitting results of Fe showed a 342 

mixture of ferrihydrite and goethite contributed between 61 and 80% along the unsaturated 343 

column except in the sample collected at 6-8 cm depth that contained only 36% of Fe(III) 344 

(Figure 5B, Table S4). Additionally, up to 87-93% of As(V) were detected along the 345 

unsaturated columns (Figure 5C, Table S3). The speciation contribution of Mn, Fe and As in 346 

unsaturated columns is comparable to the solid phase analysis results obtained from a series of 347 

household filters in Vietnam7,9.  348 

Under the saturated conditions, Mn K-edge XANES spectra of samples taken from top (0-349 

2 cm) and bottom (5-10 cm) layers showed an adsorption maximum at 6563 eV representing 350 

Mn(IV) and indicating a more diffused distribution than in the unsaturated sample (black 351 

arrow, Figure 5D). A shift of the edge position toward lower energy and a concomitant 352 

appearance of a shoulder at 6554 eV indicated the presence of Mn(II). Similarly, we also 353 
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observed an energy shift toward the positions of Fe(II) (7125 eV) from the Fe k-edge XANES 354 

spectra of 5-10 cm sand samples (arrow, Figure 5A). LCF fitting results confirmed that Fe(II) 355 

was contributing up to 44% to the total Fe pool equaling 11.6 g/kg (Figure 5D). This finding 356 

revealed an expansion of the Fe(III) reduction zone from 6-8 cm (in the unsaturated column) 357 

to 5-10 cm under saturated conditions. As(III) increased to 15% in the saturated sand column 358 

equaling 26-22 mg As(III)/kg which is 10 times more than the amount of As(III) in the 359 

unsaturated column. 360 
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 361 

Figure 5. Normalized K-edge µXANES spectra of Mn (A), Fe (B) and As (C) in filter materials 362 

at different depths in the saturated and unsaturated columns. Experimental and linear 363 
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combination fit curves are plotted as black and red lines, respectively. The concentrations of 364 

solid-phase Fe(II) (D) and As(III) (E) in saturated and unsaturated columns were calculated by 365 

combining µXANES data and extraction data.  366 

 367 

3.5 MnO2 controlling the Fe and As retention under semi-oxic and anoxic zones in the 368 

saturated sand columns 369 

Under unsaturated conditions, Fe, As, and Mn were primarily present as As(V) adsorbed on 370 

Fe(III) (oxyhydr)oxide and Mn(III)/(IV) oxide minerals. Under saturated flow conditions, we 371 

found evidence that microbial Fe(III) and As(V) reduction led to elevated Fe(II) and As(III) in 372 

the solid phase that might be oxidized by and/or associated with Mn(IV) oxides to different 373 

extents. The mechanisms of As(III) and Fe(II) oxidation in the presence of Mn(III)(IV) oxides 374 

and Fe(III) (oxyhydr)oxide are complex, involving many simultaneously occurring reactions. 375 

Based on our observations, the following mechanistic reaction network is proposed to explain 376 

Fe-, As- and Mn-redox speciation in the top and bottom layers of sand columns.  377 

Under saturated conditions, the presence of Mn(II) and As(III) at the top layer (0-2 cm) 378 

indicated Mn(II) and As(III) adsorbed to the surfaces of Fe(III) (oxyhydr)oxide and previously 379 

formed Mn oxide minerals. Since the artificial groundwater contained high concentrations of 380 

bicarbonate, solid-associated Mn(II) also could be present as MnCO3 (rhodochrosite) as 381 

previously reported33. 382 

The oxidation of As(III) by Mn(IV) oxides in the top layer of the sand column was limited due 383 

to i) the high amount of Fe(II) of 21 mg/L as well as high Fe/As ratio of 68 in the groundwater 384 

so that Fe(II) outcompeted As(III) for adsorption and oxidation on Mn(IV) oxides surface34,35 385 

and ii) the formation of Fe(III) (oxyhydr)oxide minerals with adsorbed Mn(II) might cause a 386 

surface passivation of Mn oxides thus slowing down As(III) and Fe(II) oxidation34,36,37. Even 387 
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though Mn(IV) oxides might not directly oxidize As(III)16,34,37–39, these studies confirmed that 388 

the presence of Mn oxides maintain high As(V)/As(III) ratios in the solid phase, thus enhancing 389 

As immobilization. Additionally, the intermittent feeding of oxygenated water into the sand 390 

columns allowed O2 re-penetration into the pore spaces to enhance oxidation processes in the 391 

top layers of the SFs28,40.  392 

At the bottom layer (5-10 cm), under saturated flow, almost no dissolved oxygen was detected 393 

(Figure S3), leading to an increase of Fe(III) reduction (up to 44% of Fe(II) detected in the 394 

sand column). The main reason is the microbial reduction of As-bearing Fe(III) 395 

(oxyhydr)oxides, as demonstrated in our previous study41. The mobilized Fe(II) and desorbed 396 

As(V)/(III) likely re-adsorbed to the remaining Fe(III) (oxyhydr)oxide and Mn(III)/(IV) oxide 397 

minerals. While at the sand filter surface constantly new Fe(III) (oxyhydr)oxides formed, there 398 

was a decrease in available binding sites for Fe(II) and As(III)/(V) on the Fe(III) minerals at 399 

the bottom layer. These differences highlight the role of Mn(III)/(IV) oxides on the one hand 400 

as secondary hosting phase and on the other hand as oxidant for Fe(II) and As(III). The stronger 401 

correlation of Mn with Fe compared to As at the sand surfaces lead to the conclusion that Fe(II) 402 

adsorbed on Mn oxides was instantaneously oxidized to Fe(III) sequestering As(V) and As(III) 403 

into the solid phase. This finding is in line with previous studies on the role of Mn(IV) oxides 404 

controlling As mobilization in floodplain soils16,42 and paddy soils43. In addition to the abiotic 405 

reduction of Mn(IV) oxides by Fe(II), microbial reduction pathways44 were probably involved 406 

in the elevated Mn(II) concentrations in the effluent in our columns. Nevertheless, bulk XAS 407 

for Fe, Mn, and As should be done in the future to obtain better insights into Fe, Mn and As 408 

binding environment under unsaturated and saturated conditions.  409 

4. Conclusions 410 

The operation of household SFs for removal of Fe, Mn and As from water is divided into two 411 

phases, it starts with unsaturated flow when the sand column maintains oxic conditions and is 412 
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followed by saturated flow when an oxygen gradient is formed along the sand column creating 413 

a semi-oxic (top) and anoxic zone (bottom). By conducting lab and field-based column 414 

experiments, this study showed groundwater Fe(II) and As(III) were effectively immobilized 415 

in sand columns under unsaturated (oxic) and saturated flow conditions. Mn(IV) oxides that 416 

formed during the oxic flow were acting as a secondary hosting phase and oxidant for Fe(II) 417 

and As(III)/(V). Consequently, removal rates of As(III) and Fe(II) were stable at 95 and 99% 418 

respectively, while Mn(II) was leached from the sand column, and up to 5.5  mg/L was detected 419 

in the effluent. Based on our findings, we therefore provide a few suggestions to improve the 420 

performance of household/ small-scale SFs applied to remove Mn(II), As(III) and Fe(II) from 421 

groundwater as follows. First, intermittent feeding is recommended rather than continuous 422 

flow. The intermittent feeding allows the SFs to completely drain between filtration periods, 423 

pulling new air into the pore spaces and reducing the hydraulic conductivity, thus prolong the 424 

time until filter clogging28. Second, backwashing as a method to unclog the filter surface is 425 

more benefitial than scrapping off the top sand layer. The scrapping removes a substantial 426 

amount of microorganisms accumulated at the top layer, which contribute to Fe, As and Mn 427 

oxidation9,17,45 while backwashing can preserve better the SF‘s microbial community46. Third, 428 

the risk of Mn contamination in the effluent should be reduced. In the household filters without 429 

backwashing, the top layer of the SF will be removed once the SF is clogged, leading to 430 

prolonged saturated conditions in the SFs and, consequently, Mn remobilization from the filter. 431 

Even though Mn(II) is not as toxic as As(III) or As(V), long-term chronic exposure to elevated 432 

Mn levels can lead to several adverse health effects47–49.  433 
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