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Abstract

Water resources play a crucial role in sustaining life on earth yet chemicals of emerging concern 

(CECs) arising from extensive human applications are an increasing threat towards their 

existence. In this study, we examined the occurrence, removal and potential risk of CECs found 

in rivers and wastewater treatment plants (WWTPs) in western Kenya. Samples were prepared 

by solid-phase extraction and analysed using high performance liquid chromatography-mass 

spectrometry with a target list of 785 compounds. Out of these, 333 and 353 compounds were 

quantified in rivers and wastewater respectively, with pharmaceuticals, industrial compounds, 

and pesticides being frequently detected in both rivers and WWTPs. Compounds with highest 

concentrations included saccharin (9.9 µg/L), metformin (7.5 µg/L), and oxypurinol (6.5 µg/L) 

in rivers whereas caffeine (280 µg/L), deoxycholic acid (179 µg/L), 2-oxindole (10.9 µg/L) and 

ibuprofen (8.1 µg/L) were found at high concentrations in WWTPs. Based on the crop types, 

samples from maize growing regions recorded the highest number of pesticides (75) which 

coincided with the spraying season. The WWTP showed the capacity to eliminate some 

compounds although the removal efficiencies varied greatly with 204 compounds exhibiting an 

average removal efficiency exceeding 50%. Based on the risk assessment, crustaceans had the 

highest potential risk for toxicity with toxic unit (TU) values up to 5.4 driven primarily by 

diazinon and dichlorvos followed by algae (TU up to 0.07) and fish (TU up to 0.01) in rivers. A 

similar trend was observed in WWTP with diazinon (TU up to 5.5), diuron (TU up to 0.07) and 

carbendazim (TU up to 0.006) driving the risk for crustaceans, algae and fish respectively. These 

findings highlight the significance of surface water and WWTPs as sources and sinks of CECs in 

the environment translating to potential risks on aquatic organisms and humans.
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1 Occurrence, removal and risk assessment of emerging chemicals in selected rivers and 

2 wastewater treatment plants in western Kenya
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2

3 Abstract

4 Water resources play a crucial role in sustaining life on earth yet chemicals of emerging concern (CECs) 

5 arising from extensive human applications are an increasing threat towards their existence. In this study, 

6 we examined the occurrence, removal and potential risk of CECs found in rivers and wastewater 

7 treatment plants (WWTPs) in western Kenya. Samples were prepared by solid-phase extraction and 

8 analysed using high performance liquid chromatography-mass spectrometry with a target list of 785 

9 compounds. Out of these, 333 and 352 (influent 322, effluent 265) compounds were quantified in rivers 

10 and wastewater respectively, with pharmaceuticals, industrial compounds, and pesticides being 

11 frequently detected in both rivers and WWTPs. Compounds with highest concentrations included 

12 saccharin (9.9 µg/L), metformin (7.5 µg/L), and oxypurinol (6.5 µg/L) in rivers whereas caffeine (280 

13 µg/L), deoxycholic acid (179 µg/L), 2-oxindole (10.9 µg/L) and ibuprofen (8.1 µg/L) were found at 

14 high concentrations in WWTPs. Based on the crop types, samples from maize growing regions recorded 

15 the highest number of pesticides (75) which coincided with the spraying season. The WWTP showed 

16 the capacity to eliminate some compounds although the removal efficiencies varied greatly with 204 

17 compounds exhibiting an average removal efficiency exceeding 50%. Based on the risk assessment, 

18 crustaceans had the highest potential risk for toxicity with toxic unit (TU) values up to 5.4 driven 

19 primarily by diazinon and dichlorvos followed by algae (TU up to 0.07) and fish (TU up to 0.01) in 

20 rivers. A similar trend was observed in WWTP with diazinon (TU up to 5.5), diuron (TU up to 0.07) 

21 and carbendazim (TU up to 0.006) driving the risk for crustaceans, algae and fish respectively. These 

22 findings highlight the significance of surface water and WWTPs as sources and sinks of CECs in the 

23 environment translating to potential risks on aquatic organisms and humans.

24 Keywords: pharmaceuticals; pesticides; land use; removal efficiency; toxicity 
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3

25 1.0 Introduction

26 Globally, over 350, 000 chemicals have been licensed and approved for manufacture and sale (Brack et 

27 al., 2022). The production, use and disposal of these chemicals result in their occurrence in the 

28 environment. Additionally, these chemicals can be biologically metabolised within an organism or 

29 transformed in the environment forming products which consequently increases the number of 

30 contaminants in the environment. These chemicals of emerging concern (CECs) include a diverse class 

31 of chemicals such as pesticides and biocides, pharmaceuticals, personal care products, industrial 

32 chemicals, and human metabolites (Khan et al., 2019; Rasheed et al., 2019). 

33 Wastewater treatment plants (WWTPs) are a major pathway of CECs into aquatic ecosystems (Luo et 

34 al., 2014) since they were initially designed to remove conventional pollutants (Ferreiro et al., 2020) 

35 and not CECs through primary, secondary, and tertiary treatment processes. These processes have been 

36 proven to be inefficient especially for compounds that are hydrophobic with high Kow >5 (Tadkaew et 

37 al., 2011) resulting in the release of CECs into the receiving rivers. Additionally, a common occurrence 

38 in developing countries is that not all the residents and industries are connected to a WWTP and 

39 therefore run off and direct discharge of domestic and industrial wastewater is a major source of CECs 

40 in the aquatic ecosystem. Storm water runoffs in residential, agricultural and industrial areas contribute 

41 significantly as a nonpoint water pollution source in rivers (Busch et al., 2016). 

42 Several studies have reported CEC occurrence in surface water systems in developed countries (Löffler 

43 et al., 2023; Finckh et al., 2024) with limited information from developing countries especially in Africa 

44 (Aus der Beek et al., 2016; Fekadu et al., 2019; K’oreje et al., 2020; Okeke et al., 2022). Concentrations 

45 of reported CECs varied greatly and ranged from ng/L to as high as g/L (Vasilachi et al., 2021). 

46 Exposure of these chemicals to aquatic organisms result in adverse toxicological effects (Gogoi et al., 

47 2018; Mishra et al., 2023) including changes in ecosystem structure and function (Schuijt et al., 2021), 

48 endocrine disruption due to their deleterious effects on endocrine systems (Kumar et al., 2020), acute 

49 and chronic toxicity (Wollenberger et al., 2000) and antimicrobial resistance (Arguello-Pérez et al., 

50 2020). Indirect and direct effects of CECs on human health have also been shown. As an example, a 

51 study by Becker et al.(2020) found that pesticides in surface water increases the transmission of 
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52 schistosomiasis resulting in high prevalence of the disease. Although there has been an increase in 

53 studies focusing on the occurrence and risk assessment of CECs in Kenyan aquatic ecosystems, only 

54 few compounds have been monitored, in addition, their removals in WWTPs have been limited. This 

55 study aimed to fill this knowledge gaps by focusing on i) the identification and quantification of CECs 

56 in rivers and wastewater treatment plants in western Kenya, ii) the removal efficiency of the WWTPs 

57 in eliminating CECs, and iii) the ecotoxicological risk assessment on three standard test organisms 

58 (algae, crustaceans and fish).

59 2.0 Materials and methods

60 2.1 Chemicals

61 Methanol (MeOH), ethyl acetate, water and formic acid (all LC grade) were sourced from Sigma 

62 Aldrich. Analytical standards were of highest purity (>98%) and were sourced from various suppliers. 

63 A list of internal and analytical standards used in the study is provided in the Supplementary Information 

64 (SI A, Table S1).

65 2.2 Description of study area 

66 The study was conducted in western Kenya covering Trans Nzoia, Uasin Gishu, Kisumu and Nandi 

67 counties. The regions experience different agricultural and economic activities, forming the basis of our 

68 selection. Maize and wheat are extensively grown in Trans nzoia and Uasin-Gishu counties while tea 

69 and rice are predominantly grown in Nandi and Kisumu respectively. The prevalence of Malaria is high 

70 in Kisumu county and thus the application and consumption of anti-malarial drugs is expected to be 

71 high. Four WWTPs in the region including Nzoia Water Services Company (NZOWASCO), Eldoret 

72 Water and Sanitation Company (ELDOWAS), Moi University WWTP (Moi WWTP), and D.L. 

73 Koisagat WWTP were selected, and influent and effluent samples collected. A comprehensive 

74 description of the WWTPs is provided in the Supplementary Information B, section A. In addition, 6 

75 rivers were selected based on the dominant land use representing five crops: maize (R. Chetoto), wheat 

76 (R. Chepkoilel), flowers (R. Marura), rice (R. Miriu) and tea (R. Ndururo) plantations, more information 

77 is provided in Supplementary Information B, section A. Water samples were collected from upstream 

78 and downstream of the plantation except for R. Sosiani which was sampled before, within and after the 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4860719

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



5

79 Eldoret town. River Chetoto and R. Sosiani receive effluents from NZOWASCO and ELDOWAS 

80 WWTPs respectively.

81 2.3 Sampling and sample preparation 

82 Sampling was done in May 2022 and a total of eight WWTP samples and 13 river samples collected. In 

83 each sampling site, 500 mL grab water samples were collected in pre-cleaned Nalgene bottles and in 

84 addition, 1 mL sample water pipetted into a 2 mL amber autosampler vials. For quality control, a trip 

85 blank and a sample blank consisting of 1 mL LC grade water was taken as described in Kandie et al. 

86 (2020). Samples were transported to the lab at < 4 oC in a cool box containing ice packs and transferred 

87 to -20 oC freezer awaiting sample preparation the following day. The samples were filtered through 50 

88 mm glass fibre filters (Whatman GF/F) with a pore size of 0.7 µm using a vacuum filtration pump 

89 (Rocker Chemker). Prior to solid-phase extraction (SPE), HR-X cartridges containing 200 mg sorbent 

90 (Milford, USA) were conditioned using 5 mL of MeOH, 5 mL of ethyl acetate and rinsed with 10 mL 

91 of water (all LC grade). Thereafter, 350 mL of river samples and 400 mL of WWTP samples were 

92 extracted at a flow rate of 5 mL/min. After extraction, the cartridges were air dried for 30 minutes using 

93 the vacuum manifold and stored at -20 oC awaiting elution. Elution of the samples was carried out into 

94 20 mL amber glass vials using solvents starting with 5 mL of ethyl acetate, followed by 5 mL of MeOH, 

95 4 mL of MeOH containing 1.0 vol% of formic acid, and 4 mL of MeOH containing 2.0 vol% of 7N 

96 ammonia. The eluate was thereafter evaporated using a gentle stream of nitrogen gas (99% purity) to a 

97 final volume of 1 mL. The samples were then filtered through 0.2 µm PTFE syringe filters (Whatman) 

98 into 2 mL amber glass vials, dried using nitrogen stream and then reconstituted with methanol (LC-MS 

99 grade) to a volume of 350 µL and 400 µL for river and wastewater samples, respectively (enrichment 

100 factor (EF-1000)).  The samples were finally vortexed for 2 minutes to ensure thorough mixing prior to 

101 instrumental analysis.

102 2.4. Instrumental analysis

103 2.4.1 Solid Phase Extracted samples

104 Instrumental analysis was performed as described in Finckh et al. (2022). Briefly, 50 µL of the enriched 

105 sample extract (EF1000) was taken and MeOH (15 µL), water (30 µL) and 5 µL of an internal standard 
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6

106 (1 µg/mL, containing 48 isotope-labelled compounds) added prior to instrumental analysis. Eleven 

107 matrix-matched calibration were prepared by spiking Wormsgraben water obtained from the Harz 

108 Mountains, Germany with isotope labelled compounds from levels of 0.5 ng/L to 1000 ng/L, before 

109 extracting in the same procedure as the samples. An aliquot (5 µL) of the sample was injected into the 

110 Thermo Ultimate 3000 LC system coupled to a QExactive Plus high-resolution mass spectrometer (LC-

111 HRMS, Thermo) with separate runs in negative and positive electrospray ionization modes. 

112 Chromatographic separation in both modes utilized a Kinetex Biphenyl LC column (100 x 2.1 mm, 2.6 

113 µm particle size Phenomenex) equipped with an inline filter and a pre-column (5x 2.1 mm) at a 

114 temperature of 40 °C. The HRMS analysis involved a full scan acquisition (m/z 80-1200) at a nominal 

115 resolving power of 70,000 along with six data-independent acquisition scans (m/z 80-182, 178-282, 

116 278-382, 378-482, 478-682, 682-1200) at a nominal resolving power of 35,000.

117 2.4.2 Direct injection samples

118 This was performed for the 1 mL water samples and quality control samples. Methanol (25 µL), internal 

119 standard containing 48 isotope labelled standards (40 ng/mL; 25 µL) and 10 µL buffer (2M ammonium 

120 formate of pH 3.5) was added to the samples prior to instrumental analysis. Thirteen matrix-matched 

121 calibration standards spiked at levels ranging from 1-10,000 ng/L were prepared using 1 mL aliquots 

122 of the Wormsgraben water and processed the same way as samples. Aliquots of 100 µL were injected 

123 into the LC-HRMS (QExactive Plus, Thermo) and analysed the same way as SPE extracted samples 

124 described above.

125 2.5. Data analysis

126 Peak detection and identification of target compounds was done using MZmine (Version 2.38, Pluskal 

127 et al., 2010) and MSconvert by first converting the raw data to mzML format (Proteowizard version 

128 3.0.18265) (Chambers et al., 2012). Subsequently, the detected target compounds were processed using 

129 MZquant (R Package, version 0.8.3) and Trace Finder 5.1 (Thermo Scientific) as performed by Beckers 

130 et al. (2020). Method detection limits (MDLs) were established based on replicate injection of the  

131 calibration standards as outlined in U.S EPA guidelines  (U.S. EPA, 2016). Graphical representation 
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7

132 and statistical analysis were performed using R Software version 4.2.1 and Origin2024 SR1 version 

133 10.10.178.

134 2.6 Removal efficiency

135 Removal efficiency was calculated using Equation 1, as applied by (Golovko et al., 2021; Khasawneh 

136 & Palaniandy, 2021; Li et al., 2019).

137 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
([𝐶𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡] ― [𝐶𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡])

[𝐶𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡] × 100                Equation 1

138 Where, Cinfluent and Ceffluent represents the concentration of compound detected in the influent and 

139 effluent respectively for each WWTP. 

140 2.7 Risk assessment

141 To assess the potential risk of the detected compounds on organisms, Toxic Unit (TU) approach was 

142 used for each trophic level (fish, crustaceans and algae). TU is defined as a ratio obtained by dividing 

143 the measured environmental concentration (MEC) of a specific compound by the effect concentration 

144 values (EC50) (Equation 2). The effect values were extracted from ECOTOX database  and applied as 

145 described by Finckh et al. (2022) . All used EC50 values are provided in Supplementary Information A 

146 (Tables S6, S7 and S8)

147 𝑇𝑈 = 𝑀𝐸𝐶
𝐸𝐶50               Equation 2
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148 3.0 Results and discussion

149 3.1 Compound detection frequencies in rivers

150 A total of 333 compounds were detected in rivers (SI A, Table S2). Eight compounds namely; 

151 trimethoprim, amantadine, atrazine, quinoline n-oxide, tetrabutylammonium, 2-amino-3-

152 methylpyridine, zearalenone, and octyl-methoxycinnamate were detected in all the sites (Figure 1). 

153 Among the pharmaceuticals, anti-hypertensives (bisoprolol and pravastatin) and antibiotics 

154 (trimethoprim, acetyl-sulfamethoxazole and sulfamethoxazole) were detected up to 100% (Figure 1). 

155 The frequent detection of bisoprolol could be attributed to the prevalence of hypertension in Kenya 

156 which has been detected in frequencies up to 50% (Syed et al., 2018). Pesticides including imidacloprid, 

157 atrazine, terbuthylazine and metolachlor, and the transformation products of metolachlor (metolachlor 

158 OA and metolachlor ESA) were detected in more than 60% of the sites. The frequent detection of 

159 herbicides could be linked to the extensive application within the study area which also coincided with 

160 the sampling time. Industrial compounds such as quinoline N-oxide, tetrabutylammonium and 2-amino-

161 3-methylpyridine were ubiquitously detected (up to 100% detection) and in high numbers (146). To the 

162 best of our knowledge, this study reports for the first time the presence of human metabolites (bile acids) 

163 in the study area and these included 7-oxolithocholic acid, cholic acid, deoxycholic acid, and 

164 chenodeoxycholic acid with frequencies up to 92%. These compounds are used as a biomarkers of 

165 faecal contamination in rivers (Elhmmali et al., 2000). 

166 3.2 Compound concentrations in rivers

167 Individual pharmaceutical concentration ranged from below method detection limit (< MDL) to 7.5 

168 µg/L and this was reported for the antidiabetic drug metformin (Figure 2). This compound is commonly 

169 used in the management of diabetes and is excreted in its parent form (Bradley et al., 2016). The 

170 antifungal fluconazole and antibiotic oxytetracycline had maximum concentrations of 306 ng/L and 260 

171 ng/L respectively (SI A Table S2). Fluconazole exceeded the predicted no effect threshold (250 ng/L) 

172 for antimicrobial resistance (Bengtsson-palme & Larsson, 2016) suggesting the potential development 

173 of resistance. To the best of our knowledge, we report for the first time the antiviral emtricitabine (856 

174 ng/L) in Kenyan surface water. 
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175 Pesticide concentrations ranged from <MDL to 1521 ng/L with amitrole and metolachlor being reported 

176 above 1 µg/L (Figure 2). Carbendazim, carbofuran, and diazinon were detected with maximum 

177 concentrations of 134 ng/L, 47 ng/L and 54 ng/L respectively. These compounds have been banned in 

178 Europe (Pesticides Action Network Europe, 2020) but still find their way to the Kenyan markets and 

179 are frequently detected in the Kenyan aquatic environment (K’oreje et al., 2020; Kandie, et al., 2020)

180 Artificial sweeteners (AS) including saccharin, cyclamate, acesulfame and sucralose were detected with   

181 concentrations of up to 9.9 µg/L, 4.0 µg/L, 3.1 µg/L, and 0.6 µg/L respectively. High concentrations of 

182 AS were detected in two of our study sites (Rivers Sosiani and Chetoto) and could be linked to effluent 

183 discharges from WWTPs which drain into the rivers. Similar trend in concentration of AS were reported 

184 in Nairobi river (Sumida et al., 2024). Other industrial compounds included lubricants such as methyl 

185 diethanolamine (2.8 µg/L), perfluoropropanoic acid (2.4 µg/L), TMDD, perfluorobutanoic acid (2.3 

186 µg/L), 2,2,6,6-tetramethylpiperidin-4-ol (1.9 µg/L) and triethylene glycol monobutyl ether (1.1 µg/L) 

187 which could be attributed to the indiscriminate washing of motorcycles and cars along the rivers and 

188 storm water drain from urban areas. 

189 3.3 The influence of crop type in contamination of rivers by pesticides

190 Based on the crop types, the maize growing regions had the highest median concentrations of pesticides 

191 in the upstream (2.7 µg/L) and downstream (4.9 µg/L) of R. Chetoto with herbicides (41) and 

192 insecticides (24) being mostly detected. Amitrole had the highest concentration in the upstream (1521 

193 ng/L) whereas metolachlor (1069 ng/L) was detected downstream of R. Chetoto (SI A, Figure S1). 

194 These compounds were previously reported to have positive correlation between their use and 

195 concentrations in surface water (Stackpoole et al., 2021). River Miriu, which is in rice growing fields, 

196 had upstream and downstream sum concentrations of 66 ng/L and 374 ng/L respectively, which was 

197 greatly contributed by concentrations of imidacloprid, metalaxyl and carbendazim. The river is a source 

198 of drinking water for the local community and yet concentrations of  metalaxyl (130 ng/L) and 

199 imidacloprid (148 ng/L) exceeded the threshold for water quality for human consumption set at 100 

200 ng/L (Manjarres-López et al., 2021). Contrary to maize and rice plantations, River Ndururo located in 

201 the tea plantations had the least (6) number of compounds and sum concentration up to 8 ng/L. This is 
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202 in line with the findings from Kandie et al. (2020) who found surface water in tea growing areas less 

203 polluted. This could be attributed to the lower utilization of pesticides among tea growers and the 

204 presence of buffer zones between tea plantations and the rivers. Similarly, lower concentrations were 

205 found in wheat areas as the wheat growing season had not started thus a mismatch between sampling 

206 and spraying season. The upstream notable concentration could be linked to other agricultural practices 

207 and untreated household waste connected to the rivers upstream.

208 The hierarchical clustering revealed several clusters (Figure 3) based on the compounds that were 

209 commonly detected in more than three rivers. The first cluster (a) comprised of metolachlor, 

210 terbuthylazine, atrazine and transformational product desethylatrazine which were detected in three 

211 rivers (R.Chetoto, R.Chepkoilel and R.Sosiani). These rivers are situated in maize and wheat growing 

212 areas where metolachlor and terbuthylazine are predominantly used (Karlsson et al., 2020; Kruć-

213 Fijałkowska, 2022). Metolachlor and terbuthylazine easily degrade to their transformation products 

214 (metolachlor ESA (ethanesulfonic acid) and terbutylazine-2-hydroxy) respectively forming (cluster b), 

215 are weakly adsorbed into the soil, increasing their mobility to surface water (Nagy-Kovács et al., 2018) 

216 were detected in R.Chetoto, R.Chepkoilel and R. Marura. Another interesting cluster was that of 

217 insecticides carbendazim and imidacloprid (cluster c) that were detected in R. Chetoto, Miriu and 

218 Sosiani. The presence of these insecticides can be linked to their extensive use in rice and maize growing 

219 farms (Negi et al., 2014; Singh & Kaur, 2018)

220 3.4 Compound detections in WWTPs

221 Pharmaceuticals, personal care products, and industrial chemicals were detected in the WWTP samples 

222 with pharmaceuticals having the highest number of compounds detected (102 compounds, SI A Table 

223 S3). Two hundred and fifty-one (174) of the detected compounds were found in more than 50% of the 

224 influent samples and included TMDD, 2-oxindole, dichlorvos, atrazine, diazinon, diuron, carbendazim, 

225 trimethoprim which were detected in all the WWTPs (SI A Table S4). 

226 The high detection of trimethoprim could be linked to its use in management of a broad spectrum of 

227 bacterial infections, as well as daily prophylaxis in HIV-infected adults (K’oreje et al., 2018; Chiller et 

228 al., 2009). Trimethoprim is commonly used in combination with sulfamethoxazole to treat various 
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229 bacterial infections (K’oreje et al., 2018). Sulfamethoxazole, which is normally administered in 

230 combination with trimethoprim as co-trimoxazole was detected at a lower frequency (75%) compared 

231 to trimethoprim and could be attributed to sulfamethoxazole metabolism to acetyl-sulfamethoxazole 

232 which also had a detection frequency of 75%. The high frequency of detection of antibiotics (up to 

233 100%) and NSAIDs (up to 88%) (SI A Table S4) can be attributed to their easy accessibility as an over 

234 the counter drug and have been frequently detected in African wastewater (K’oreje et al., 2020; Necibi 

235 et al., 2021).The low detection of psychiatric drug flupentixol can be associated with the low prevalence 

236 rate of schizophrenia in sub-Saharan Africa, and its low daily dosage (maximum. 3mg daily) prescription 

237 (Mamah et al., 2021). 

238 For pesticides, atrazine, diazinon, dichlorvos, imidacloprid-urea, metolachlor, and terbuthylazine 

239 registered 100% detection frequency (Figure S4). The presence of pesticides in WWTPs is could be due 

240 to their use in households for pest control (Powell & Cuthbertson, 2013). Furthermore, WWTPs receive 

241 wastewater from sources such as slaughterhouses, where residues from veterinary medicines and 

242 products used in animal husbandry (Kolar et al., 2015). The neonicotinoids acetamiprid, imidacloprid 

243 and thiamethoxam registered a considerable high detection frequency >50% which could be attributed 

244 to their extensive use in the region (PCPB 2018). Industrial chemicals 2,2-dihydroxybiphenyl, 2-

245 hydroxyquinoline, 2-oxindole, 4-(4-hydroxyphenyl)-butan-2-one, quinoline N-oxide, TMDD and Tri 

246 ethylene glycol monobutyl ether were detected in all the WWTPs showing their ubiquitous nature. 

247 High detection (100%) of CECs in the WWTP effluent was observed for compounds including, 

248 carbendazim, diuron, TMDD, diazinon, trimethoprim, cetirizine, 2-oxindole, triethylene glycol 

249 monobutyl ether, and terbuthylazine (SI B, figure S2). The low log Kow (2.8) and biodegradability of 

250 15.7% after 57 days and retention time of 10 days (Guedez et al., 2010; Blum et al., 2018) could explain 

251 its high detection frequency of TMDD in the effluents. The pesticide imidacloprid undergoes 

252 biodegradability in WWTPs treatment processes to form imidacloprid-urea, and  imidacloprid-

253 guanidine (Gautam & Dubey, 2022), which had 75% detection frequency in this study. Low detection 
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254 frequency (25%) was also observed for venlafaxine-o-desemethyl, clarithromycin, bisphenol B,1-

255 naphthol, diclosan, fipronil and its metabolites fipronil desulfinyl, and fipronil sulfide.

256 3.5 Compound concentrations in WWTPs

257 Stimulants had the highest influent concentrations (up to 830 µg/L) across all the WWTPs, followed by 

258 industrial chemicals (up to 28 µg/L), pharmaceuticals (up to 8.9 µg/L) and pesticides (up to 5.6 µg/L). 

259 In the influent, caffeine registered the highest concentration at 830 µg/L, likely due to increased 

260 consumption of caffeinated beverages. Caffeine is a common active ingredient found in most soft and 

261 energy drinks including tea which is majorly consumed in Kenya with 41 million kilograms sold 

262 domestically in 2022 (Egunjobi & Asatsa, 2022). The human metabolites deoxycholic acid (179 µg/L), 

263 cholic acid (149 µg/L), 7-oxolithocholic acid (55 µg/L), and chenodeoxycholic acid (44 µg/L) were 

264 also detected at high concentrations in the influent (Figure 4, SI A Table S4).

265 Pharmaceuticals such as ibuprofen (8.1 µg/L), trimethoprim (5.7 µg/L), cetirizine (5.7 µg/L) and 

266 fluconazole (2.5 µg/L) also exhibited notable influent concentrations. Pesticides and biocides exhibited 

267 varying concentrations from <MDL to 5.6 µg/L across the WWTPs. Dichlorvos, an organophosphorus 

268 insecticide was detected at concentrations up to 5.6 µg/L and could be linked to its extensive utilization 

269 in pests control within  households (USEPA, 2000).

270 In the effluent, caffeine concentration was the highest with 170 µg/L followed by sucralose (3.5 µg/L), 

271 TMDD (1.4 µg/L), dichlorvos (1.1 µg/L), and cetirizine (827 ng/L). TMDD has been reported in 

272 previous studies to be persistent during WWTP treatment processes resulting to its partial discharge 

273 into the environment in a concentration ranging from <MDL- 5.8µg/L (Blum et al., 2017; Guedez & 

274 Püttmann, 2011). High concentration of sucralose in the effluent has been linked with its high-water 

275 solubility, its chemical and biological stability (Yang et al., 2021). 10,11-dihydro-10,11-

276 dihydroxycarbamazepine, a metabolite of carbamazepine utilized in the management of epilepsy and 

277 bipolar disorder, was found at high concentrations (1.5µg/L), along with acetyl-sulfamethoxazole (1.2 

278 µg/L) usually excreted in urine (Göbel et al., 2004).  

279 3.6 Removal efficiency of CECs in wastewater treatment plants
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280 Removal efficiencies varied greatly with 204 compounds exhibiting an average removal efficiency 

281 above 50%, (SI A Table S5). Figure 5 shows removal efficiencies of selected compounds from each 

282 compound class. 

283 Based on the removal efficiencies, the compounds were divided into two groups: positive removal 

284 efficiency for compounds with effluent concentrations lower than the influent concentrations and 

285 negative removal efficiency for compounds with effluent concentrations higher than influent 

286 concentrations. A total of 286 had positive removal efficiencies while 67 had negative removal 

287 efficiencies. (SI A Table S5). Positive removals above 80% were observed for NSAIDs (ibuprofen, 

288 diclofenac), antibiotics (trimethoprim, sulfamethoxazole), industrial chemicals (2-oxindole, TMDD, 4-

289 chlorophenol), and pesticides (diazinon, methylparaben, and 4-(2,4-dichlorophenoxy) butyric acid) 

290 (Figure 5). Compounds such as diclofenac, methylparaben, ibuprofen, and trimethoprim displayed 

291 removal efficiencies exceeding 95% which was consistent with previous studies (Carazo-Rojas et al., 

292 2018; Khasawneh & Palaniandy, 2021; Ofrydopoulou et al., 2022). Biosorption, bioaccumulation, 

293 photodegradation and biodegradation processes employed in the WWTPs aided their high removal 

294 efficiencies. Caffeine and nicotine exhibited high removal efficiencies up to > 99 % and could be 

295 attributed to their high biosorption and biodegradation abilities (Golovko et al., 2021; Rigueto et al., 

296 2020). Negative removals were obtained for 67 compounds including 10,11-Dihydro-10,11-

297 dihydroxycarbamazepine, 2-hydroxyatrazine, terbuthylazine-2-hydroxy, azithromycin, carbamazepine, 

298 primidone, and bisphenol Z. Increased compound concentrations in the effluent could be explained by 

299 their fate including transformation of metabolites excreted by humans (mainly conjugates) to parent 

300 compounds and partitioning from solid phase into the aqueous phase (Golovko et al., 2021; Jelic et al., 

301 2011; Ofrydopoulou et al., 2022). It could also be attributed to the sampling time since the samples were 

302 taken at the same time hence representing different portions of wastewater and did not consider 

303 differences in residence time. Additionally, compound concentrations close to the method detection 

304 limits could introduce uncertainties in calculation of the removal efficiencies (Golovko et al., 2021; Ort 

305 et al., 2010). 
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306 Among the WWTPs, NZOWASCO had the highest (126) number of compounds which exhibited 100% 

307 removal efficiencies, followed by ELDOWAS (105 compounds), Moi WWTP (60 compounds) and 

308 D.L. Koisagat with (12 compounds). The high number of compounds with > 99% removal efficiencies 

309 in NZOWASCO can be as a result of environmental factors such as sunlight and temperature in the 

310 region which promotes photodegradation and biodegradation processes. Disparities in removal 

311 efficiencies can also be attributed to differences in plant design, technologies, and treatment 

312 methodologies employed across the various WWTPs (K’oreje et al., 2018; Ofrydopoulou et al., 2022). 

313 For example, the high number of positive removal efficiency compounds in ELDOWAS could be 

314 attributed to the implementation of trickling filters applied in the treatment process.

315 3.7 Risk assessment

316 3.7.1 Risk assessment in rivers

317 Among the organisms, crustaceans had the highest potential risk for acute toxicity (TUsum 8.6), followed 

318 by algae (TUsum 0.29) and fish (TUsum 0.03) (SI A, Table S9, S10 and S11). The TU values for 

319 crustaceans ranged from 4.43 x 10-12 to 5.4 with diazinon being the compound driving this risk (Figure 

320 6). Other compounds including dichlorvos, pirimiphos-methyl, imidacloprid and salicylic acid 

321 exceeded the acute risk threshold (ART; TU 0.1) as set by Malaj et al. (2020). Diazinon has been 

322 previously associated with adverse inhibition of cholinesterase enzyme activity (Santos et al., 2022; 

323 Siregar et al., 2021) in mytella charruana. For algae, TU values ranged from 5.11 x10-11 to 6.96 x10-2 

324 with the herbicide diuron (TU 0.07) driving this risk. Terbuthylazine (TU 0.06), triclosan (0.04), 

325 dichlorvos (TU 0.04), and metolachlor (TU 0.03) exceeded the chronic risk threshold (TU 0.02). Diuron 

326 and terbuthylazine have been previously reported to be very toxic to algae causing inhibition of 

327 photosynthesis (DeLorenzo & Fulton, 2012; Sbrilli et al., 2005). Unlike in crustaceans and algae, the 

328 risk towards fish was considerably lower and ranged from 3.6 x 10-12 to 0.012. The risk towards fish 

329 was found to be driven by carbendazim which also exceeded the chronic risk threshold (CRT, TU 0.01). 

330 Carbendazim has been previously reported to induce indicative stresses and gulping of air in Zebrafish 

331 (de Oliveira et al., 2024).

332
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333 3.7.2 Risk assessment in WWTP effluents

334 Crustaceans had the highest potential risk of toxicity (TUsum up to 9.6), followed by algae (TUsum up to 

335 0.5) and fish (TUsum up to 0.06) (SI A, Table S12, S13 and S14). Diazinon (TU 5.5) and dichlorvos (TU 

336 4.6) were responsible for the risk in crustaceans (Figure 7) and exceeded the acute risk threshold (TU 

337 0.1) (Malaj et al., 2020). Diuron has been reported to cause changes in feeding behaviour and oxidative 

338 stress when exposed to Tigriopus japonicus (Yun et al., 2023). Dichlorvos (TU up to 0.07), diuron (TU 

339 up to 0.07), and terbuthylazine (TU up to 0.03) were driving the risk for algae and exceeded the CRT 

340 (0.02) whereas didecyldimethylammonium (TU up to 0.009), carbendazim (TU up to 0.006) and 

341 dichlorvos (TU up to 0.005) were driving the risk for fish but were below the CRT (0.01)

342 4.0 Conclusion

343 This comprehensive study shows that rivers and WWTPs are potential sources and sinks of emerging 

344 contaminants in the study area. Pesticides and biocides, pharmaceuticals and industrial compounds were 

345 frequently detected with concentrations up to 9.9 µg/L (saccharin) in river samples and up to 280 µg/L 

346 (caffeine) in WWTP influent. Antifungal fluconazole exceeded the predicted no effect threshold (250 

347 ng/L) for antimicrobial resistance indicating potential risk for antibiotic resistance development within 

348 the aquatic ecosystem. The removal efficiencies of the WWTPs varied with ibuprofen, trimethoprim, 

349 and sulfamethoxazole being completely eliminated while others including 10,11-Dihydro-10,11-

350 dihydroxycarbamazepine and cetirizine were recalcitrant. Diuron and diazinon were the risk drivers for 

351 algae and crustaceans respectively in both the rivers and the WWTPs. Lower but substantial risk was 

352 found towards fish in both surface water and WWTP effluent. This study aided to close the data gaps 

353 on emerging contaminants in Kenyan aquatic ecosystems and their elimination during WWTP treatment 

354 process. There is need for more studies to focus on antimicrobial resistance and effect of seasonal 

355 variation which will contribute towards data-based policy formulation and implementation in the 

356 region.
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Figure 1: Detection frequencies of compounds found in the rivers. TMDD: 2,4,7,9-tetramethyl-5-

decindiol; 10,11-Dihydro-10,11DCBZ: 10,11-Dihydro-10,11Dcarbamazepine.
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Figure 2. Compounds present at concentrations > 500 ng/L in river samples. TMDD: 2,4,7,9-tetramethyl-5-

decindiol, TriEGME: Triethylene Glycol Monomethyl Ether, 2,6,6,6-TMP:2,2,6,6-tetramethylpiperidin-4-ol. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4860719

Preprint not peer re
viewed



Figure 3: Spatial pesticide pollution patterns based on compound concentrations (ng/L) detected in the study

sites (data scaled and centred). UP: Upstream; DN: Downstream
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Figure 4: CECs found in the effluent of WWTPs with median concentrations > 200 ng/L. TMDD: 2,4,7,9-

tetramethyl-5-decindiol; 2,4-DB: 4-(2,4-dichlorophenoxy) butyric acid; 10,11-dihydro-10,11-

dihydroxyCBZ:10,11-dihydro-10,11-dihydroxycarbamazepine; TriEGME: Triethylene Glycol Monomethyl

Ether.
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Figure 5: Removal efficiencies of selected CECs in WWTPs in western Kenya. TMDD: 2,4,7,9-tetramethyl-5-decindiol; 2,4-DB:

4-(2,4-dichlorophenoxy) butyric acid; 10,11-dihydro-10,11dihydroxyCBZ: 10,11-dihydro-10,11dihydroxycarbamazepine;

TriEGME: Triethylene Glycol Monomethyl Ether; TXIB: 2,2,4-trimethyl-1,3-pentanediol diisobutyrate; 10,11-dihydro-10-

hydroxyCBZ: 10,11-dihydro-10-hydroxycarbamazepine.
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Figure 6: Risk assessment for crustaceans in rivers. R1, R2, R3, R4, R5, and R6 are R. Chetoto, R. Chepkoilel, R. Sosiani, R. 

Marura, R. Miriu and R. Ndururo respectively; UP, DN and MID are upstream, downstream and midstream respectively.
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Figure7: Compounds driving the toxicity risk to crustaceans based on the effluent concentrations from 

the four selected WWTPs
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