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Abstract

This work extends the hydro-mechanical phase-field fracture model to non-isothermal conditions
with micromechanics based poroelasticity, which degrades Biot’s coefficient not only with the phase-
field variable (damage) but also with the energy decomposition scheme. Furthermore, we propose
a new approach to update porosity solely determined by the strain change rather than damage evo-
lution as in the existing models. As such, these poroelastic behaviors of Biot’s coefficient and the
porosity dictate Biot’s modulus and the thermal expansion coefficient. For numerical implementa-
tion, we employ an isotropic diffusion method to stabilize the advection-dominated heat flux and
adapt the fixed stress split method to account for the thermal stress. We verify our model against a
series of analytical solutions such as Terzaghi’s consolidation, thermal consolidation, and the plane
strain hydraulic fracture propagation, known as the KGD fracture. Finally, numerical experiments
demonstrate the effectiveness of the stabilization method and intricate thermo-hydro-mechanical
interactions during hydraulic fracturing with and without a pre-existing weak interface.

Keywords: Phase-field; Hydraulic fracturing; Thermo-hydro-mechanical coupling; Thermo-poroelasticity;
Fixed stress split; Isotropic diffusion method

1. Introduction

Nucleation and propagation of fractures are one of the most significant interests or concerns for
geo-energy applications such as geothermal/hydrocarbon production, energy storage, or CO2/nuclear
waste disposal [21, 40, 43, 55]. As we exploit deeper subsurface formations, higher surrounding pres-
sures and temperatures impose higher differential pressures and temperatures in the multi-physical
processes of fracturing [34]. In deep strata, one may encounter a lower critical pressure [78] that can
lead to larger crack openings [25, 44], and at high temperatures, thermal branching fractures may
initiate normal to the main fracture [37, 72]. Also, thermal erosion may cause cracks to penetrate
the caprock in CO2 sequestration operations [29]. Furthermore, the thermal stress can result in
tensile fracture following the cooled area for long-term water injection [56].
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Because of high pressure and temperature conditions and the large scale involved in geoen-
ergy applications, numerical modeling has been instrumental in forecasting fracture evolution and
analyzing seal integrity over time [3]. In the numerical simulations of thermo-hydro-mechanical hy-
draulic fracture, two main challenges still exist. One is to properly capture the interactions between
fluid flow, heat transfer and fracture mechanics – particularly the fracturing criteria [15, 67]. The
other challenge is the numerical representation of fractures, sharp discontinuities that evolve [17].
Fractures often propagate in a complex topology in rocks, but numerous models impose limitations
on the propagation paths. Cohesive zone models [14] insert lower-dimensional interface elements
along the crack surface, constraining the fracture propagation to the prescribed surfaces. Extended
finite element methods [4, 39] address this drawback but struggle to simulate fracture branching
and merging. Discrete element [58] and lattice based methods [20] still pose the weaknesses on
element dependency, parameter calibration, and calculation scale.

Phase-field models of fracture [10, 11] have emerged as an effective computational approach in the
last couple of decades, overcoming many of these shortcomings. For fluid-driven (hydraulic) fracture,
phase-field modeling has been first applied by Bourdin et al. (2012) [9] and Chukwudozie et al.
(2013) [16] for elastic media and then further extended to poroelastic media by Wheeler et al.
(2014) [68] and Mikelic et al. (2015) [52]. Subsequently, many studies have been carried out on the
hydro-mechanical phase-field method over various aspects, including non-porous fluid flows [51, 69],
crack opening calculation [41, 76] and approximate treatment for hydraulic parameters [50, 70].

For thermo-hydro-mechanical (THM) coupled modeling, which is the main topic in this study,
Noii and Wick (2019) [54] first extended the hydro-mechanical phase-field fracture model to in-
clude thermal effects by introducing the work of temperature from thermo-poroelasticity in the
total energy functional. However, their model neglected spatial variations of the pressure field
and, consequently, the convective heat transfer. For a more complete coupling of thermo-hydro-
mechanical processes, Li et al. [42] implemented the multi-physics interactions during the fracture
propagation. Suh and Sun (2021) [61] proposed a thermo-hydro-mechanical phase-field model and
applied an asynchronous operator-split framework to capture the heat transfer between the fracture
and matrix. Yi et al. (2024) [74] conducted numerical experiments of thermo-hydro-mechanical
hydraulic fractures under more complicated settings like natural fracture networks, temperature
variations, and multi-mineral rocks. In addition to the thermo-hydro-mechanical coupling, Feng et
al. (2023) [26] introduced effects of CO2 fracturing, and Dai et al. (2024) [19] incorporated reactive
chemistry to simulate acid fracturing.

Despite all the recent developments in thermo-hydro-mechanical coupled phase-field fracture
models, the existing works have not adequately addressed the following three aspects. The first
is the degradation of poro-thermo-elastic strain energy. While the degradation of elastic strain
energy has been more or less established, somewhat ad-hoc and various ways to degrade the poro-
thermo-elastic strain energy have been employed in [54, 61, 66, 74]. The second is the transition
of the hydraulic and thermal material parameters from intact to fractured material. Although the
most popular approach is to use a linear indicator function [26, 42], a linear interpolation does not
conserve the mass or energy. Lastly, the advection-dominated heat transfer in fractures can cause
numerical oscillation [67], and some stabilization methods may be required [66].

In this study, we aim to address these three aspects. First, we extend the existing hydro-
mechanical phase-field fracture model to thermo-poro-elastic media by introducing the thermal
strain. The degradation of the thermo-poro-elastic strain energy is achieved through micromechan-
ically derived Biot’s coefficient, and its degradation depends on the phase-field (damage) and the
energy decomposition scheme. Then, we propose a new way to update the porosity that only de-
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pends on the strain change rather than the damage. From the degraded poro-elastic coefficients and
porosity, we approximate hydraulic and thermal properties that transition from a fully-damaged
to an intact state of the material. Finally, we employ an isotropic diffusion method to stabilize
the advective dominated heat flow in fracture. For numerical implementation, we apply a hybrid
staggered scheme and adapt the fixed stress split stabilization method by accounting for thermal
stress. Our proposed model is then tested by a series of analytical solutions verifying different
implementation modules.

The structure of this paper is as follows. In Section 2, we propose a thermo-hydro-mechanical
phase-field fracture model in thermo-poro-elastic media. Section 3 discusses the numerical imple-
mentation of the new proposed model with the isotropic diffusion method and the adapted fixed
stress split strategy for the thermo-hydro-mechanical phase-field coupling problem. In section 4,
we verify the proposed model against a series of analytical solutions. The accuracy of the newly
proposed porosity update is highlighted against the existing hydro-mechanical phase-field model.
Section 5 studies the impacts of thermo-hydro-mechanical on hydraulic fracture, followed by con-
clusions and possible future studies.

We use the following notations throughout the paper. The second-order identity tensor is
denoted by I. The symbol ||A|| =

√
A : A is used to calculate the norm of any second-order tensor

A. The fourth order projectors J and K are expressed in the component form as Jijkl = (δikδjl/3
and Kijkl = (δikδjl + δilδjk)/2 − δijδkl/3. The trace operator Tr(·) acting on the second-order
tensors A is defined as Tr(A) = δ : A. ∇(·) is the gradient of (·).

2. Mathematical model

Consider a thermo-poro-elastic medium that occupies the domain Ω ∈ Rd, d = 2, 3. In Ω, a
lower dimensional set of fractures is denoted by Γ ∈ Rd−1 (Fig. 1a). The body is subjected to
a possible flux q̄ and a surface force t̄ on the boundary ∂NΩ := CN ∪ ∂Γ , where CN denotes the
outer domain boundary and ∂Γ the fracture boundary. The prescribed displacement ū, pressure p̄
and temperature T̄ can be applied on the boundary ∂ΩD. We consider a single-phase Newtonian
fluid (liquid) in both pore and fracture spaces, and for injected fluid. Furthermore, we assume
a local thermal equilibrium in the domain in which the fluid and porous solid temperatures are
equilibrated.

We first derive the mechanical equilibrium in the setting with a discrete crack set Γ (Fig. 1a).
Then, we regularize the discrete crack set with the now-classical phase-field approach [10, 11] and
derive equivalent hydraulic and thermal properties in the setting with diffused cracks (Fig. 1b) so
that the conservation laws apply over the entire domain Ω. Subsequently, mass and heat balances
are derived with the equivalent properties in the diffused crack setting.
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Fig. 1 (a) The schematic of porous medium with an existing fracture and (b) the diffused repre-
sentation of a fracture Γ in the poroelastic medium.

2.1. Mechanical equilibrium with discrete cracks

The mechanical equilibrium and fracture evolution in the thermo-poroelastic medium can be
derived based on the variational approach proposed by Francfort and Marigo (1998) [27]. They
defined the total energy of a homogeneous isotropic and linearly elastic material with a set of
fractures as a sum of the strain energy, the surface energy of fracture, the body force b and the
traction t̄ on the boundary CN:

EΓ(u, Γ ) :=
∫
Ω\Γ

ψ(u) dV +

∫
Γ

Gc dS −
∫
Ω\Γ

b · udV −
∫
CN

t̄ · udV (1)

where Gc is the critical surface energy release rate, u is the displacement field, and ψ(u) is the
strain energy density described by the elastic stiffness tensor Cm and linearized strain ε(u) =
1
2 (∇u+∇uT):

ψ(u) =
1

2
Cm : ε(u) : ε(u). (2)

Following [48, 61], we propose the form of total energy in thermo-poroelastic medium

FΓ(u, p, T, Γ ) :=W (u, p, T ) +

∫
Γ

Gc dS −
∫
Ω\Γ

b · udV −
∫
CN

t̄ · udV, (3)

where thermo-poro-elastic strain energy W is assumed to decompose into elastic, hydraulic, and
thermal parts:

W (u, p, T ) :=Welastic(u, T ) +Wfluid(u, ζ) +Wthermo(T ). (4)

The thermo-elastic strain energy is generated by the intergranular stress acting on the solid
skeleton and is given as:

Welastic(u, T ) :=

∫
Ω\Γ

ψe(u, T ) dV. (5)
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Thermo-poro-elastic analyses in a small strain theory show that the total strain is decomposed into
the elastic strain εe and the thermal strain εt induced by the temperature difference between the
current temperature and the initial temperature T0, i.e., ∆T = T − T0 [59]:

ε = εe + εt = εe + β∆T I, (6)

where β is the thermal expansion coefficient. The elastic strain energy, ψ(u), is solely contributed
by the elastic strain [2] and thus we have

ψe(u, T ) =
1

2
Cm : εe(u) : εe(u) =

1

2
Cm :

(
ε(u)− β∆T I

)
:
(
ε(u)− β∆T I

)
. (7)

Following [18, 42, 74, 77], the energy of pore fluid can be defined as

Wfluid(u, ζ) :=

∫
Ω\Γ

ψf (u.ζ) dV =

∫
Ω\Γ

Mp

2
[αmTr(εe)− ζ]

2
dV, (8)

where αm andMp are Biot’s coefficient and Biot’s modulus, and ζ is the variation of fluid content [8,
52]. Neglecting the effect of thermal expansion of the pore fluid, we have

ζ = αmTr(εe) +
p

Mp
. (9)

Assuming that the mechanical or hydraulic energy does not contribute to the thermal energy [61],
we have

Wthermo(T ) :=

∫
Ω\Γ

ψT (T ) dV =

∫
Ω\Γ

(ρc)m

[
(T − Tref)− T ln

(
T

Tref

)]
dV. (10)

With the local thermal equilibrium assumption, T represents the unified temperature in the domain,
and Tref is the reference temperature. (ρc)m is the equivalent heat storage coefficient, and for porous
medium, it is given by

(ρc)m = ϕcfρp,f + (1− ϕ)csρp,s, (11)

where c is the specific heat, ρ is the density, and ϕ is the porosity.
Substituting Eq. (5), (8), (7), (10) into the elastic strain energy in Eq. (4) yields

W (u, p, T ) =

∫
Ω\Γ

ψe(u, T ) dV +

∫
Ω\Γ

Mp

2
[αTr(εe)− ζ]

2
dV

+

∫
Ω\Γ

(ρc)m

[
(T − Tref)− T ln

(
T

Tref

)]
dV

=

∫
Ω\Γ

1

2
Cm : εe(u) : εe(u) dV +

∫
Ω\Γ

Mp

2
[αTr(εe)− ζ]

2
dV

+

∫
Ω\Γ

(ρc)m

[
(T − Tref)− T ln

(
T

Tref

)]
dV.

(12)

From Eq. (12), we obtain the total Cauchy stress tensor σ, which can be decomposed into
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effective stress tensor σeff , pore pressure and thermal stress1:

∂W

∂ε
:= σ

= σeff − αmpI− 3βK∆T I

= Cm : ε(u)− αmpI− 3βK∆T I

, (13)

where K is the drained bulk modulus.
Substituting Eq. (12) into Eq. (3) yields

FΓ(u, Γ, p, T ) =W (u, p, T ) +

∫
Γ

Gc dS −
∫
Ω\Γ

b · udV −
∫
CN

t̄ · udV

=

∫
Ω\Γ

1

2
Cm : εe(u) : εe(u) dV +

∫
Ω\Γ

Mp

2
[αTr (εe)− ζ]

2
dV

+

∫
Ω\Γ

(ρc)m

[
(T − Tref)− T ln

(
T

Tref

)]
dV +

∫
Γ

Gc dS −
∫
Ω\Γ

b · u dV −
∫
CN

t̄ · udV

,

(14)
where t̄ contains the thermal stress as

t̄ =
(
Cm : ε(u)− 3βK∆T I

)
· n (15)

with n being the outward unit normal vector to the outer surface CN. To sum up, the potential
energy consists of the following parts: mechanical term, i.e., the strain energy from the linear elastic
constitutive relationship; hydrothermal work in the domain; surface energy of fracture; the work of
body force and the external load from the traction force.

2.2. Mechanical equilibrium with phase-field approximation

To alleviate the implementational difficulties of the sharp fractures, we apply the now-classical
phase-field approach [10, 11]. Bourdin et al. (2000) [10] introduced a phase-field variable υ that
represents a state of the material from intact (υ = 1) to fully broken (υ = 0) and regularized the
Francfort-Marigo energy functional as

E(u, υ) :=
∫
Ω

ψ(u, υ) dV +

∫
Ω

Gc

4cn

[
(1− υ)n

ℓ
+ ℓ∇υ · ∇υ

]
dV −

∫
Ω\Γ

b ·u dV −
∫
CN

t̄ ·udV, (16)

where cn is the normalizing parameter defined as cn =
∫ 1

0
(1 − s)n/2 dS [46, 62]. For n = 1, the

model is called AT1 model, and for n = 2, AT2 model [57]. Also, ℓ is the characteristic parameter
with the dimension of a length that controls the phase-field profile transition. The strain energy
density ψ(u, υ) in Eq. (16) acknowledges the phase-field variable υ and is continuous over Ω for
integration.

Now, extending the regularized functional in Eq. (16) to the thermo-poro-elastic medium, we

1We follow the engineering sign convention for stresses (positive for tension).
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can write

F(u, p, T, υ) :=

∫
Ω

ψe(u, T, υ) dV +

∫
Ω

ψf (u, ζ, υ) dV +

∫
Ω

ψT (T, υ) dV

+

∫
Ω

Gc

4cn

[
(1− υ)n

ℓ
+ ℓ∇υ · ∇υ

]
dV −

∫
Ω

b · u dV −
∫
CN

t̄ · udV.

(17)

The total stress can be found by taking the derivative of F with respect to εe as

σ = Ceff(υ) : ε(u)− α(υ)pI− 3βK∆T I, (18)

where Ceff(υ) and α(υ) are the effective stiffness tensor and effective Biot’s coefficient. Comparing
with Eq. (13), we note that Ceff(υ) and α(υ) represent both intact and the fractured medium while
Cm and αm represent only the intact material.

The expressions of Ceff(v) and α(υ) can be derived from the strain energy decomposition
scheme [77]. The elastic strain energy density is generally split into the positive (tension) and
negative (compression) parts, ψ = ψ+ + ψ−, to differentiate the contributions between positive
(tension) and negative (compression) parts to the damage evolution. With a degradation function
g(υ)2, ψe(u, T, υ) is rewritten as [1, 28, 49]

ψe(u, T, υ) = g(υ)ψ+(u) + ψ−(u)

=
1

2
g(υ)C+ : εe : εe +

1

2
C− : εe : εe

=
1

2
Ceff(υ) : εe : εe,

(19)

where Ceff(υ) = g(υ)C+ + C−. Similarly, Biot’s coefficient evolves with the phase-field as the
drained bulk modulus is degraded with damage as [77]

α(υ) = 1− Keff(υ)

Ks
. (20)

The expressions of Ceff(υ) and Keff(υ) depend on the specific energy decomposition model
applied as discussed in [77]. We employed the volumetric-deviatoric (V-D) energy split [1] in this
study and then the strain energy is split into [1]

ψvd(u, v) = g(v)

[
Km

2
⟨Tr(εe)⟩2+ + µεe : K : εe

]
+
Km

2
⟨Tr(εe)⟩2−, (21)

where ⟨·⟩ denotes the Macaulay brackets defined as ⟨·⟩± = (| · | ± ·)/2. Accordingly, we can derive
the tangential stiffness (∂2ψvd/∂ε2) as

Ceff(v) = 3 [g(υ)H(Tr(εe)) +H(Tr(−εe))]KmJ+ 2g(υ)µK
= 3KeffJ+ 2g(υ)µK

, (22)

2In this study, we employed g(υ) = (1−k)υ2+k where k is a phase-field parameter representing residual stiffness,
which keeps the system of equations well-conditioned for the partly-broken state [45].
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with
Keff = [g(υ)H(Tr(εe)) +H(Tr(−εe))]Km, (23)

where H(·) is the Heaviside step function defined as

H(x) :=

{
0, x < 0

1, x ≥ 0
. (24)

Substituting Eq. (23) into Eq. (20), degraded Biot’s coefficient based on its initial value αm is

α(v) = 1− [g(υ)H(Tr (εe)) +H(Tr (−εe))]
Km

Ks

= 1− [g(v)H(Tr (εe)) +H(Tr (−εe))] (1− αm).

(25)

Eq. (25) shows that Biot’s coefficient depends both on the damage and the crack opening. When
the fracture opens, i.e., Tr (ε) ≥ 0, it is enhanced to α = 1 − g(υ) + g(υ)αm = 1. Otherwise, the
fracture is closed, and αmm = 1− (1− αm) = αm.

2.3. Fluid flow model

Considering the equivalent properties over Ω, the mass balance is given as

∂

∂t

(
α(υ)∇ · u+

p

Mp(υ)
− T

MT (υ)

)
+∇ · (qf ) = Qf in Ω, (26)

whereMT (υ) is the effective thermal storage coefficient that describes the thermal expansion in the
incremental content of pore fluid. Before we derive the expressions of Mp(υ) and MT (υ), we first
discuss how the permeability tensor, K, is obtained and the porosity ϕ is updated in our model.
The fluid flux qf is given by Darcy’s law as

qf = −K

µ
∇(p+ γfz) in Ω, (27)

with µ the fluid viscosity, γf the specific weight of water and z the vertical coordinate, and Qf the
source term. In the following derivation, the gravity can be neglected without loss of generality.

For permeability enhancement by fractures, we apply a formulation of anisotropic permeability
which implicitly takes into account for the Poiseuille-type flow in fractures [50, 51]

K = KmI+ (1− υ)ξ
w2

12
(I− nΓ ⊗ nΓ ) , (28)

where Km is the isotropic permeability, ξ ≥ 1 is a weighting exponent, and the fracture has an
aperture of w with the normal vector nΓ along the interface. The weighting exponent ξ controls
the intensity of permeability enhancement to ensure numerical stability.

One may approximate the crack normal vector (nΓ ) from the gradient of the phase-field ∇υ,
but ∇υ deviates from the normal direction near the crack tip [9]. Moreover, ∇υ is not defined on
a fully broken element where υ = 0. To avoid these problems, we decompose a strain tensor into
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principal strains as

ε =

3∑
i=1

εiei (29)

where εi are the principal strains (ε1 > ε2 > ε3) and ei are the associated eigenvectors. Considering
an internally pressurized crack, the crack normal deformation must be dominant, and thus we assign

nΓ = e1. (30)

This approach enables simple code parallelization because the computation is performed at each
integration point, while some other methods like line integral [9] or level-set [41] based approach
require a global phase-field profile.

To estimate the fracture width (ω), Miehe et al. (2015) [51] proposed:

ω = heεvol, (31)

where he is the corresponding element size, and εvol represents the volumetric strain. Eq. (31)
can approximate the fracture width accurately as reported in [77] because the volumetric strain
is almost identical to the strain in the crack normal opening direction for fluid-driven fractures.
However, this approximation can lead to spurious crack opening profiles when thermal stress is
present. Instead, in this study, we approximate the fracture width using the maximum principal
strain:

ω = heε1. (32)

For further discussions, we refer to Appendix C, where we compared crack opening profiles from
Eq. (31) with those from Eq. (32).

Regarding the porosity update, existing studies undertook various ways to account for evolving
phase-field (damage). Lee and Wick (2017) [41] first proposed a linear indicator function with
threshold values to define the effective porosity distinguishing between the matrix and fracture

ϕ(υ) = XR

(
1

M
pR + α∇ · u

)
+ XF (cfpf ) (33)

where XR ∈ [0, 1] and XF ∈ [0, 1] are two linear indicator functions for the reservoir domain and
the fracture domain. XF (υ) is 0 and XR(υ) is 1 in the reservoir domain while XF (υ) is 1 XR(υ) is
0 in the fracture domain. And XF (υ) and XR(υ) vary linearly in the transition zone. This concept
has been used in may works [25, 33, 36, 71, 79]. Similarly, Li et al. (2021) [42] linearly interpolated
the matrix porosity (ϕm) and the fracture porosity (1) as

ϕ(υ) = XRϕm + XF . (34)

Zhou et al. [79, 80] also applied a similar expression without considering the fluid compressibility

ϕ(υ) = XRϕm. (35)

In [74], the initial porosity ϕm is degraded with the phase field υ as

ϕ(υ) = ϕm + (1− ϕm)(1− (1− υ)2). (36)
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Suh and Sun [61] additionally considered the effect of volumetric strain:

ϕ(υ) = ϕm + g(υ)(1− ϕm)(1−∇ · u). (37)

Lastly, You and Yoshioka (2023) [77] updated the porosity in a similar manner to Biot’s coefficient
(Eq.(25)) as

ϕ0(υ) = 1− [g(υ)H(Tr (εe)) +H(Tr (−εe))] (1− ϕm). (38)

All of these approaches consider the transition of porosity from the matrix (ϕm) to fracture
(ϕ = 1) relying on the phase-field profile, υ(x). While the phase-field profile, υ(x), is a diffused
representation of crack, it does not physically represent the porosity at the corresponding location
x. This is obvious because of the impacts of the characteristic length ℓ on the phase-field transition.
The longer ℓ, the wider the transition zone. However, the porosity profile should not change with
ℓ.

Considering that a hydraulic fracture width is generally in the order of 10−2 m, it is likely smaller
than a computational element size he, which is typically in the order of 10−1 ∼100 m. Therefore,
one can consider that a physical crack opening is well contained within one element as depicted in
Fig. 2. Accordingly, we can write the porosity change in a 2D quadrilateral element with the edge
length he containing a line crack parallel to the edge as

ϕ1 = ϕm +
ωhe

he
2 = ϕm +

ω

he
. (39)

Recalling Eq. (32), the porosity is given as:

ϕ1(ε) = ϕm + ε1. (40)

Fig. 2 Physical crack opening within quadrilateral elements.

Using this porosity expression and effective Biot’s coefficient, we can write effective Biot’s mod-
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ulus (Mp(υ)) and the average thermal expansion coefficient (MT (υ)) as

1

Mp(υ, ε)
= ϕ(ε)cf +

α(υ)− ϕ(ε)

Ks
, (41)

1

MT (υ, ε)
= ϕ(ε)αf + 3β (α(υ)− ϕ(ε)) . (42)

where cf is the fluid compressibility, Ks is the solid phase’s intrinsic bulk modulus, and αf is the
fluid volumetric thermal expansion coefficient.

2.4. Heat transfer model

Assuming the local thermal equilibrium and neglecting thermal effects due to deformation, we
obtain the energy conservation equation in the porous medium as

(ρc)m
∂T

∂t
+∇ · (qT ) = QT , (43)

where QT is the thermal source term. The total heat flux qT in Eq. (44) is decomposed into the
advective and the conductive terms using Fourier’s law:

qT = ρfqfcfT − λeff∇T, (44)

with the effective thermal conductivity given as

λeff(ε) = ϕ(ε)λf + (1− ϕ(ε))λs. (45)

Similarly, the effective heat storage coefficient (Eq. (11)) is rewritten as

(ρc)m(ε) = ϕ(ε)cp,fρf + (1− ϕ(ε))cp,sρs. (46)

Substituting Eq.(44) into Eq. (43), we have

(ρc)m
∂T

∂t
+ cp,fρfqf · ∇T −∇ · λeff∇T = QT . (47)

3. Numerical implementation

In a quasi-static setting, we obtain a solution pair of (ui, υi) that minimizes F (Eq. (17)) each
time as

(ui, υi) = argmin {F(u, υ, p, T ) : u ∈ U(ti), υ ∈ υ(ti, υi−1)} , (48)

where U is the kinematically admissible displacement set:

U(ti) =
{
u ∈ H1(Ω) : u = 0 on ∂NΩ

}
. (49)

The kinematically admissible set of υ requires an irreversible condition as:

V(ti, υi−1) =
{
υ ∈ H1(Ω) : 0 ≤ υ(x) ≤ η ∀x

}
. (50)
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where

η =

{
1 if υi−1(x) ≥ υir
υi−1(x) otherwise

and υir is the irreversible threshold ∈ [0, 1] (e.g. 0.05). Following [10], we apply an alternate
minimization scheme which minimizes F with respect to u while fixing υ and then minimizes F
with respect to υ while fixing u with the irreversible condition. Therefore, the variations of F with
respect to u and υ are given:

δuF =

∫
Ω

g(υ)σe : δεdV −
∫
Ω

α(υ)pδεdV −
∫
CN

t̄ · δudS −
∫
Ω

b · udV

=−
∫
Ω

∇ · (g(υ)σe) · δu dV +

∫
∂NΩ

g(υ)Ceff : εe · n · δu dS −
∫
CN

α(υ)pI · n · δu dS

+

∫
Ω

∇ · (α(υ)pI) · δu dV −
∫
CN

t̄ · δudS −
∫
Ω

b · δudV

=0,

(51)

and

δυF =

∫
Ω

2(1− k)υψ+(u)δυ dV +

∫
Ω

p2

2

∂1/Mp(υ, ε)

∂υ
δυ dV

+
Gc

4cn

∫
Ω

[−n
ℓ
(1− υ)n−1δυ + 2ℓ∇υ · ∇δυ] dV

=

∫
Ω

2(1− k)υψ+(u)δυdV +

∫
Ω

p2

2

∂1/Mp(υ, ε)

∂υ
δυ dV

+
Gc

4cn

∫
Ω

[−n
ℓ
(1− υ)n−1δυ − 2ℓ∆υδυ] dV +

Gc

4cn

∫
∂Ω

2ℓ∇υ · nδυ dS

= 0.

(52)

Note that the thermal energyWthermo cancels because the porosity does not change with the phase-
field [23, 53, 61]. The derivative of the reciprocal of Biot’s modulus Mp(υ) in Eq. (52) with respect
to υ writes

1/Mp(υ, ε)

∂υ
=

2εvol
p

υ(1− k)H(Tr (ε)) (1− αm) , (53)

and its derivation details are given in Appendix A.
From Eqs. (51) and (52), we arrive at the strong forms of the coupled problem. For the me-

chanical deformation, we have
∇ · [g(υ)C+ : εe − α(υ)pI] + b = 0 in Ω

g(υ)C+ : εe · n− t̄ = 0 on CN
g(υ)C+ : εe · n = 0 on ∂Γ

, (54)
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and for the phase-field evolution,(1− k)υC+ : εe : εe +
Gc

4cn

[
−n
ℓ
(1− υ)n−1 − 2ℓ∆υ

]
+
p2

2

∂1/Mp(υ)

∂υ
= 0 in Ω

∇υ · n = 0 on ∂NΩ

. (55)

Multiplying Eqs. (54) and (55) with the weighting functions wu ∈ H1 and wυ ∈ H1 and
integrating over Ω, we obtain the weak forms:∫

Ω

∇wu · [g(υ)σe − α(υ)pI] dV −
∫
Ω

b ·wu dV −
∫
CN

t̄ ·wu dS = 0 (56)

∫
Ω

wυ

[
2(1− k)υψ+(u)−

p2

2

∂1/Mp(υ)

∂υ

]
dV −

∫
Ω

wυ
Gc

4cn

n

ℓ
(1− υ)n−1 dV,

−
∫
CN

Gc

2cn
ℓ∇wυ · ∇υ dV = 0.

(57)

Similarly, with wp ∈ H1 and wT ∈ H1(Ω), the weak forms of the mass and energy balances are∫
Ω

∂

∂t

(
α(υ)∇ · u+

1

Mp(υ, ε)
p− 1

MT (υ, ε)
T

)
wp dV +

∫
Ω

K

µ
∇p · ∇wp dV

=

∫
Ω

Qfwp dV −
∫
CN

qnwp dS,

(58)

and ∫
Ω

(ρc)m(ε)
∂T

∂t
wT dV +

∫
Ω

wT cfρfqf · ∇T dV +

∫
Ω

λeff(ε)∇T · ∇wT dV

=

∫
Ω

QTwp dV −
∫
CN

qTnwT dS.

(59)

3.1. The staggered solution scheme

Eqs. (56), (57), (58) and (59) form the non-linear system of partial differential equations describ-
ing thermo-hydro-mechanical phase-field coupled problem. We employed a staggered scheme based
on [12, 65] to split the system into four sub-problems in a sequence of υ − (T − p − u). Globally,
we have a staggered loop between the process of υ and a paired process of (T − p−u). Within the
(T − p− u) loop, T , p, and u are solved in a staggered manner until convergence.

Specifically, at time step k, the backward Euler scheme for the time derivative is

∂(∇ · u)
∂t

=
εkvol − εk−1

vol

∆t
∂p

∂t
=
pk − pk−1

∆t
∂T

∂t
=
T k − T k−1

∆t

. (60)

Then, the mth (m ≥ 1) iteration scheme reads
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• Step 1: Given (T k,m−1, pk,m−1,uk,m−1), solve for υk,m:∫
Ω

wυ

[
2(1− k)υk,mψ+(u)

k,m−1 −
(
pk,m−1

)2
2

∂1/Mp

∂υ

]
dV

−
∫
Ω

wυ
Gc

4cn

n

ℓ
(1− υk,m)n−1 dV −

∫
CN

Gc

2cn
ℓ∇wυ · ∇υk,m dV = 0.

(61)

• Step 2: Given (pk,m−1, υk,m), find T k,m independently:∫
Ω

(ρc)m(ε)
T k,m − T k−1

∆t
wT dV +

∫
Ω

wT cfρfq
k,m−1
f · ∇T dV +

∫
Ω

λeff(ε)∇T k,m · ∇wT dV

=

∫
Ω

QTwp dV −
∫
CN

qTnwT dS.

(62)

with

qk,m−1
f = −K

µ
∇pk,m−1 (63)

• Step 3: Given (T k,m,uk,m−1, pk,m−1, υk,m), solve for pk,m:∫
Ω

(α
εv(u

k,m)− εv(u
k−1)

∆t
+

1

Mp

pk,m − pk−1

∆t
− 1

MT

T k,m − T k−1

∆t
)ψpdV +

∫
Ω

K

µ
∇pk,m · ∇ψpdV

=

∫
Ω

QfψpdV −
∫
∂NΩ

qnψpdS.

(64)
We apply the fixed-stress splitting method proposed by [38] for the stability of the fluid flow
equation. Freezing the volumetric stress, we eliminate the volumetric strain in the last iteration
from the mass balance:

Keffεvol(u
k,m)− αpk,m − 3αsKeff(T

k,m − T0)

= Keffεvol(u
k,m−1)− αpk,m−1 − 3αsKeff(T

k,m−1 − T0).
(65)

Then we have
Keffεvol(u

k,m) =
α

Keff
(pk,m − pk,m−1) + 3αs(T

k,m − T k,m−1). (66)
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Substituting Eq. (66) into Eq. (64), the fluid flow equation now depends only on pk,m as∫
Ω

(
α2

K

pk,m − pk,m−1

∆t
+ 3ααs

T k,m − T k,m−1

∆t

)
wpdV

+

∫
Ω

(
1

Mp

pk,m − pk−1

∆t
− 1

MT

T k,m − T k−1

∆t

)
wpdV

+

∫
Ω

K

µ
∇pk,m · ∇wpdV =

∫
Ω

(
Qf − α

εvol(u
k,m−1)− εvol(u

k−1)

∆t

)
wpdV −

∫
∂NΩ

qnwpdS.

(67)

• Step 4: Given (T k,m, pk,m, υk,m), solve for uk,m:∫
Ω

∇wu ·
[
g(υk,m)σk,m

e − α(υk,m)pk,mI
]
dV −

∫
Ω

b ·wu dV −
∫
CN

t̄ ·wu dS = 0. (68)

The proposed thermo-hydro-mechanical phase-field model has been implemented in an open
source code, OpenGeoSys [5], and discretization details are provided in Appendix B.

3.2. Isotropic diffusion stabilization method

For hydraulic fracturing problems, a mass source term imposes a strong advective term in heat
transfer, and the standard Galerkin finite element method may generate non-symmetric coefficient
matrices, which lead to numerical instabilities and spurious oscillations [24, 63]. To address this
issue, Burman and Ern (2002) proposed the isotropic diffusion method [13], which adds an artificial
isotropic balancing dissipation to the diffusion coefficient and forces the Péclet number to be smaller
than 1. The isotropic balancing dissipation is defined as

Ks =
1

2
s||q||heI, (69)

where s ∈ [0, 1] is the tuning parameter and is set to s = 0.15 in this study.

4. Model verification

This section aims to verify our numerical model against known closed-form solutions. No closed-
form solution is known to couple all thermo-hydro-mechanical components with fracture propaga-
tion. Thus, we present three verification tests that test different aspects of the model: (1) Terzaghi’s
problem for the hydro-mechanical part, (2) the thermal consolidation problem for thermo-hydro-
mechanical part, and (3) the KGD problem for the hydraulic fracture propagation part.

4.1. Terzaghi’s consolidation problem

Firstly, we verified the hydro-mechanical module (i.e. the thermal and fracture modules were
turned off) against Terzaghi’s consolidation problem. Fig. 3 illustrates a fluid-saturated soil col-
umn’s geometry and boundary conditions. For the mechanical boundary conditions, a constant
stress σx = 2 MPa was applied on the left boundary while the normal displacement was fixed on
the right boundary. For the flow boundary conditions, all the boundaries were set to be no-flow
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except the left edge, where the pressure was set to 0 MPa (drained condition). Table 1 lists the
material parameters. The analytical solutions for pressure and displacement profile evolution are
given as [7]

p(x, t) =
4dσx
π

∞∑
m=0

{
1

2m+ 1
exp

(
− (2m+ 1)2π2

4L2
ct

)
sin

(
(2m+ 1)πx

2L

)}

u(x, t) = cmdσk

[
L− x− 8L

π2

∞∑
m=0

{
1

(2m+ 1)2
exp

(
− (2m+ 1)2π2

4L2
ct

)
cos

(
(2m+ 1)πx

2L

)}]
+ bσx(L− x)

where

a =
(1 + v)(1− 2v)

E(1− v)
, S =

α− ϕ

Ks
+ϕmcf , b =

a

1 + aα2/S
, d =

a− b

aα
, c =

Km

(aα2 + S)µ
, cm =

a− b

d
.

Fig. 3 Schematic of Terzaghi’s consolidation problem.

The total simulation time was 1000 s with a time increment of 1 s. Simulated pressure and
displacement closely match the analytical solution (Fig. 4).

Table 1 Parameters for Terzaghi’s problem.

Input parameters Value Unit

Young’s modulus (E) 0.3 GPa

Poisson’s ratio (v) 0 -

Biot coefficient (αm) 1 -

Porosity (ϕm) 0.3 -

Permeability (Km) 2× 10−12 m2
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Fig. 4 Comparisons of numerical results and analytical solution of Terzaghi’s consolidation problem
for (a) pressure and (b) displacement.

4.2. Thermal consolidation problem

In this benchmark example, we verified the thermo-hydro-mechanical coupling module against
the analytical solution provided by [60] for the thermal consolidation problem [6]. Fig. 5 shows
a consolidated soil column [0m, 1m] × [0m, 0.2m] with the initial temperature of 293.15 K and
the initial pressure of 0.1 MPa. A constant temperature of 343.15 K was applied on the left edge
while the pressure was fixed as 0 MPa. The remaining three boundaries were considered impervious
and insulated. For the mechanical boundary conditions, the displacements were constrained in the
y-direction at y = 0 m and y = 0.2 m while the displacements were constrained in both the x- and
y-directions at x = 1 m. Table 2 lists the properties of soil and fluid.

Fig. 6 compares the simulated evolution of pressure, temperature, and displacement at differ-
ent locations against the analytical solution. Although the displacement evolution shows slight
differences at a distance, the results agree well.
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Fig. 5 Schematic of the thermal consolidation problem.

Table 2 Parameters for the thermal consolidation problem.

Input parameters Value Unit

Young’s modulus (E) 60 MPa

Poisson’s ratio (v) 0.4 -

Biot coefficient (αm) 1 -

Porosity (ϕm) 0.4 -

Permeability (Km) 1e-16 m2

Thermal conductivity (λ) 0.5 W/(m· K)

Thermal expansivity of soil (αs) 3e-7 −
Specific heat capacity of soil and fluid (cp,s, cp,f ) 800, 4200 J/(kg· K)
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Fig. 6 Comparison of numerical results and analytical solution of Terzaghi’s problem for (a)
pressure, (b) temperature, and (c) displacement.

4.3. Fluid-driven fracture propagation in plane-strain

As our last benchmark, we verified our model’s hydro-mechanical module with a propagating
fracture (phase-field) in the plane strain condition against a so-called KGD (Kristianovich–Geertsma–de
Klerk) model without fluid leak-off. Assuming a symmetry over the y-axis, a line fracture [0m, 2m]×
{30m} is considered in a domain [0m, 45m] × [0m, 60m] (Fig. 7). We considered incompressible
fluid (cf = 0) injection into the impermeable elastic medium (αm = 0 and ϕm = 0) to propagate
the line fracture. The smallest element size is 0.05 m and ℓ/he = 4. In the first 10 time steps,
∆t = 0.01 s and then ∆t = 0.1 s in the remaining simulation time. Table 3 lists the mechanical
and flow parameters.

Table 3 Mechanical and flow parameters for KGD problem.

Input parameters Value Unit

Young’s modulus (E) 17 GPa

Poisson’s ratio (v) 0.2 -

Permeability (Km) 1× 10−18 m2

Fluid viscosity (µ) 1× 10−8 Pa·s
Injection rate (Q) 2× 10−3 m2/s

Critical surface energy release rate (Gc) 300 N/m

The hydraulic fracture propagation in this setting is considered a toughness-dominated regime [22]
in which the fluid viscous dissipation is negligible compared to the energy release by fracture propa-
gation. To judge the fracture propagation regime, we can use the dimensionless viscosity M defined
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for the KGD fracture as [30]

M =
µ′Q
E′

(
E′

K ′

)4

, (70)

with K ′ =
√

32GcE′

π , µ′ = 12µ, E′ = E
1−ν2 . And if M < Mc = 3.4 × 10−3, the KGD fracture is

toughness dominated. In our setting, M = 3.8× 10−7 and M <Mc
3.

Here, we compare the simulation results from 2 different porosity models – ϕ0 (Eq. 38) and ϕ1
(Eq. 39) – against the analytical solution [30] in Fig. 8. The results show that our proposed porosity
model (ϕ1) improves the solution accuracy in the pressure and fracture width at the injection point
and the fracture length evolution.

As theoretically demonstrated in [10], the phase-field approximation approaches the sharp crack
representation as ℓ → 0. In practice, however, he has to be greater than ℓ (i.e. ℓ/he > 1) [9].
This implies that simulation results converge to the sharp crack result (analytical solution) as we
refine the mesh (he), and it was also demonstrated in [77]. For the same element resolution, Fig. 8
suggests that our proposed porosity model (ϕ1) represents the sharp fracture behaviors more closely
than the phase-field dependent porosity model (ϕ0).

Fig. 7 Geometry and boundary conditions of the KGD hydraulic fracture problem with a half
symmetry across the y-axis.

3The effective critical surface energy release rate Gc in the phase-field model needs to be adjusted to account for
the discretization [11, 62, 76]. With the mesh size he and the characteristic length ℓ, the modification is given by

Geff
c = Gc

(
1 +

he

4cnℓ

)
.
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(c) Fracture width evolution at the injection point.

Fig. 8 Comparisons of the KGD hydraulic fracture model between different degraded porosity
models.

5. Numerical experiments and discussion

This section presents several numerical fracturing examples to study the complex interactions
between thermal, hydraulic, and mechanical effects, including an advection-dominated problem and
propagation of a single fracture under different injection temperatures with and without a weak
interface.

5.1. Stabilization for the advection-dominated problem

First, we tested the isotropic diffusion stabilization method for an advection-dominated problem.
With the same parameters in the KGD verification example (Table 3), we simulated cold fluid
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injection with a temperature difference of 30 K and compared the temperature profiles along the
propagating fracture with and without the stabilization method (Fig. 9). Without the stabilization
term, the temperature profile shows unrealistic behaviors such as dropping below the injection
temperature or increasing above the initial reservoir temperature. On the other hand, with the
stabilization term, the model was able to remove such spurious temperature behaviors, generating
a smooth temperature profile along the fracture.

0.0 0.1 0.2 0.3 0.4 0.5

x [m]

290

295

300

305

310

315

320

325
w

[m
]

No stabilization

Isotropic diffusion

Fig. 9 Temperature profiles along the fracture with and without the isotropic diffusion stabilization
method.

5.2. Cold fluid injection into a single fracture

In this example, we simulated cold fluid injection into a single fracture in a poro-elastic medium
as illustrated in Fig. 10. Consider a computation domain [0m, 0.8m]× [0m, 0.4m] with an initial
fracture [0.38m, 0.42m]×{0.4m}. With fluid injection at a rate of 2×10−5 m2/s at (0.4m, 0.2m),
we imposed 4 different temperature differences (∆T = 0 K, 30 K, 60 K and 90 K) between the
injection fluid (T ) and the initial reservoir (T0 = 383.15 K) by decreasing the injection temperature.
The initial pressure in the domain is 0 MPa, and all the boundaries are in the drained condition
(p = 0 MPa) with the normal displacement constrained. The material properties are listed in
Table 4.

As the injection temperature decreases, the critical pressure for fracture propagation decreases
slightly (Fig. 11(a)). This is because the contraction of rock contributes to the strain energy, and
less pore fluid energy is required to reach the critical pressure. Once the fracture starts to propagate,
the pressure diffuses more quickly with lower injection temperature because of the longer fracture
length and the larger crack opening as shown in Fig. 11(b) and (c). The pressures oscillate after
the onset of fracture propagation, compared to the no leak-off case in Fig. 8. This is because the
fracture pressure drops not only with fracture growth but also with fluid leak-off to the formation.
As a result, the pressure drop is more unstable.

A lower injection temperature promotes the propagation of the fracture (Fig. 11) as a temper-
ature drop reduces the effective stress acting on the fracture boundaries. Fig. 12 indicates how the
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Table 4 Parameters for single-cracked model.

Input parameters Value Unit

Young’s modulus (E) 17 GPa

Poisson’s ratio (v) 0.2 -

Biot’s coefficient (αm) 0.6 -

Permeability (Km) 1e-16 m2

Thermal conductivity of soil and fluid (λ) 3, 0.5 W/(m·K)

Thermal expansivity (αs) 8× 10−6 -

Specific heat capacity of soil and fluid (cp,s, cp,f ) 800, 4200 J/(kg·K)

Fluid viscosity (µ) 1× 10−4 Pa·s
Critical surface energy release rate (Gc) 100 N/m

effective stress in the y-direction is reduced around the injection point, which is more pronounced
with a higher temperature difference.

Fig. 10 The schematic of a single fracture in the middle of the domain.
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Fig. 11 Propagation of a single fracture under different temperature differences (∆T = 0 K, 30 K,
60 K and 90 K).
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Fig. 12 The profiles of the stress in the y component (σyy) with (a) ∆T = 0 K (b) ∆T = 30 K (c)
∆T = 60 K, and (d) ∆T = 90 K.

5.3. Interaction with an interface

This section explores hydraulic fracture interactions with a weak interface (pre-existing nat-
ural fracture). Consider the same computational domain in Sec. 5.2 with an initial fracture
[0.39m, 0.41m] × {0.4m}. We added a weak interface {0.04m} × [0.15m, 0.25m] whose fracture
toughness is lower than the intact rock (Gint

c /Gc = 0.5) following the interface modeling approach
proposed in [75]. The material properties and injection rate are the same as the previous case in
Sec. 5.2.

We simulated fracture propagation for 4 temperature differences (0 K, 30 K, 60 K, and 90 K)
with and without the weak interface. With the weak interface, the fracture tends to grow more
towards the interface in all the cases to some degree, though the weak interface does not alter the
fracture propagation orientation (Fig. 14). Fracture width comparisons at time = 10 s also show
the attraction of the fractures to the weak interface (Fig. 15).

Though the fracture tends to grow towards the weak interface, colder injection temperatures
(higher ∆T s) inhibit this tendency. As demonstrated in the single fracture case in the previous
section (Fig. 11), a higher ∆T leads to a longer and wider fracture with a lower propagation pressure.
Thus, with a higher ∆T , the presence of the weak interface is overshadowed by the thermal stress
impacts. A higher temperature difference also induces larger fracture openings around the injection
point where the temperature is colder, and the stress is reduced more (Fig. 15). The reduced stress
can also be seen in the pressure responses at the injection point (Fig. 16), which show a pressure dip
when the fracture reaches the interface. Similarly to the previous single fracture cases, the fracture
propagation starts earlier with a higher temperature difference.
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Fig. 13 The schematic of a single fracture in the middle with an orthogonal weak interface (natural
fracture). The injection point is marked with a yellow dot.

(a) ∆T = 0 K. (b) ∆T = 30 K.

(c) ∆T = 60 K. (d) ∆T = 90 K.

Fig. 14 Hydraulic fracture interactions and propagation for (a) ∆T = 0 K (b) ∆T = 30 K (c)
∆T = 60 K, and (d) ∆T = 90 K. The injection point, located in the middle of the initial fracture,
is marked with a yellow dot. In all the cases, the fracture propagation is attracted to the weak
interface at time = 10 s.
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(b) Temperature difference is 30 K.

0.30 0.35 0.40 0.45 0.50

x [m]

0

1

2

3

4

5

6

7

w
[m

]

×10−5

(c) Temperature difference is 60 K.
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(d) Temperature difference is 90 K.

Fig. 15 Comparisons of the fracture width (ω) with and without the weak interface (natural
fracture) for (a) ∆T = 0 K (b) ∆T = 30 K (c) ∆T = 60 K, and (d) ∆T = 90 K at time = 10 s.
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Fig. 16 Pressure responses at the injection point with the weak interface under different tempera-
ture differences (0 K, 30 K, 60 K, and 90 K).

6. Conclusions

This study proposed the thermo-hydro-mechanical phase-field model based on the microme-
chanically derived strain energy degradation with a new approach to update the porosity and a
modified fixed stress split scheme with the thermal stress. Furthermore, our results demonstrated
the isotropic diffusion method’s effectiveness in stabilizing the advection-dominated heat flux in
hydraulic fracture. Our model was verified against hydro-mechanical and thermo-hydro-mechanical
problems and plane-strain hydraulic fracture propagation. For hydraulic fracture propagation, we
compared the results from our newly proposed porosity formulation against the existing model. We
found that the new porosity formulation more accurately represents the sharp fracture behavior
than the existing one.

Then, we illustrated the impacts of thermal stress on hydraulic fracture propagation through
the examples with a single fracture and its interactions with a pre-existing weak interface under
various temperature differences. The higher the temperature difference, the less the critical pressure
and the more fracture growth in both length and width. Moreover, because of this decrease in the
critical pressure, higher temperature differences can suppress the hydro-mechanical attraction of
the single fracture to the weak interface.

As a future study, the thermal equilibrium assumption between the fracture and matrix may
need to be relaxed as in [31, 32], and some analytical approaches may be implemented to ensure
the continuity on the fracture boundary [54, 64]. Furthermore, the model may be extended to
account for various working fluids such as supercritical CO2 [47] or liquid nitrogen [35]. These
unconventional fracturing fluids will likely go through the phase transition at the crack tip [73],
which remains to be addressed in phase-field modelling of hydraulic fractures.

28



Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

This work is supported by the National Key Research and Development Project (No.2023YFE0110900)
and National Natural Science Foundation of China (No.42320104003, 42077247).

Appendix

Appendix A. Derivative of the Biot’s modulus with respect to the phase field

Recalling the incremental content of the fluid in Eq. 9, Biot’s modulus can also be written as

1

Mp
=

(ζ − αTr(εe))

p
. (A.1)

Considering p and ζ as the independent variables, the derivative of Biot’s modulus with respect to
the phase field is

∂(1/Mp)

∂υ
=

−Tr(εe)

p

∂α

∂υ
, (A.2)

and the derivative of Biot’s coefficient with respect to phase field writes

∂α

∂υ
= −2υ(1− k)H(Tr (ε)) (1− αm) . (A.3)

Substituting Eq. A.3 into Eq. A.2 yields

∂1/Mp

∂υ
=

2εvol
p

υ(1− k)H(Tr (ε)) (1− αm) . (A.4)

Appendix B. Discretization of THM phase-field modelling with FEM

The variables υ, T , p and u are defined at integration points as nodal values so that the field
discretization form for the variables themselves and the respective gradients can be written as

u =

n∑
i=1

Nu
i ui = Nuû, υ =

n∑
i=1

Nυ
i υi = Nυυ̂, p =

n∑
i=1

Np
i pi = Npp̂, T =

n∑
i=1

NiTi = NT T̂

ε =

n∑
i=1

Bu
i ui = Buû, ∇υ =

n∑
i=1

Bυ
i υi = Bυυ̂, ∇p =

n∑
i=1

Bp
i pi = Bpp̂, ∇T =

n∑
i=1

BT
i Ti = BT T̂

(B.1)
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where T̂ , p̂, û and υ̂ represent the vectors of the integration point values in one element. Note
that ε is a vector of independent strain variables but not a tensor, e.g., ε = [εxx, εyy, εxy]

T
in 2D

problem. Shape functions Nu, NT , Np and Nυ are represented as matrixes for vector field u and
a vector for scalar field like p, υ and T and they are also used as test functions for each process:

Nu =

[
Nu

1 0 ... Nu
i 0 ... Nu

n 0
0 Nu

1 ... 0 Nu
i ... 0 Nu

n

]
NT =

[
NT

1 ... NT
i ... NT

n

]
Np =

[
Np

1 ... Np
i ... Np

n

]
Nυ =

[
Nυ

1 ... Nυ
i ... Nυ

n

]
. (B.2)

The Galerkin finite element method considers the same shape functions in the present work, i.e.,
Nu

i = NT
i = Np

i = Nυ
i .

{T }m = {T }m−1 −
[
KTT

]−1

m−1

{
rT

}
m−1

, (B.3)

{p}m = {p}m−1 − [Kpp]
−1
m−1 {rp}m−1 , (B.4){

u
υ

}
m

=

{
u
υ

}
m−1

−
[

Kuu 0
0 Kυυ

]−1

m−1

{
ru

rυ

}
m−1

. (B.5)

The residuals of each field are given as

rTm−1 =

∫
Ω

NT
T NT (ρc)m

T̂ k,m − T̂ k−1

∆t
dV −

∫
Ω
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TNT ρf q̂f
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+

∫
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T QT dV +
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T qTndS (B.6)

rpm−1 =

∫
Ω

αNT
p

εv(û
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∫
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and the Jacobian matrices for each field are given as

KTT =
∂rT

∂T̂
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Ω
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1
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∫
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∂û
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Appendix C. Approximation of the fracture width

The fracture width expression of Eq. (31) is accurate for hydraulic fracturing under hydro-
mechanical coupling because, without the thermal effect, ε1 can be approximated closely by the
volumetric strain, i.e., εx + εy in a 2D problem [77]. However, the thermal strain is isotropic and
deforms in both the crack normal and tangential directions. Thus, ε1 deviates from εvol when the
thermal strain is involved.

To demonstrate this point, we simulated the single fracture model presented in section 5.2 with
a temperature difference of 30 K using both Eq. (31) and Eq. (32) to compute the fracture width
(Fig. C.17).The results show that the fracture width calculated by Eq. (31) exhibits an oscillating
fracture width profile around the injection point.
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Fig. C.17 Approximation of the fracture width with ε1 and εvol.
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