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Abstract: 15 

Agricultural carbon footprint (CF) evaluation plays an important role in climate 16 

change mitigation and national food security. Many studies have been conducted 17 

worldwide to evaluate the CF of rapeseed and its byproducts; however, only few of 18 

these studies have considered finer-scale spatial-temporal heterogeneity at the 19 

regional scale. Considering the superiority of the use of detailed crop information 20 

extracted by remote sensing (RS) techniques, we attempted to integrate RS into life 21 

cycle assessments to improve rapeseed CF evaluation. The results of our case study 22 

suggest that (1) the proposed approach is applicable for high-resolution (10 m *10 m) 23 

rapeseed distribution mapping in Southwest China and that (2) the farm-based CFs 24 

(FCFs) of rapeseed in the studied region range from 3,333.08 to 4,572.82 kgCO2-eq 25 

ha-1, while the product-based CFs (PCFs) vary from 1,316.23 to 2,443.95 kgCO2-eq t-26 

1. Nitrogen fertilizer processing and its application are identified as the dominant 27 
 

1 Corresponding authors: Xueqing Yang, xueqing.yang@ufz.de and Yang Liu, yang1.liu@uni-a.de. 



contributors to upstream and downstream greenhouse emissions (GHGs), respectively. 28 

(3) The significant role of soil properties and soil organic carbon in influencing crop 29 

PCFs indicates good GHG offsets. The method used in the current study has strong 30 

adaptability and universality in different areas with various climatic conditions and 31 

can provide a solid basis for policymakers to formulate differentiated agricultural 32 

carbon reduction policies. 33 
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1. Introduction 40 

Climate change is, by far, the greatest challenge that human society has faced together 41 

(Rosenzweig et al., 2020). Among the different sectors, global food systems 42 

contribute approximately one-third of global anthropogenic greenhouse gas (GHG) 43 

emissions (Menegat et al., 2022). In the face of both climate change and food security 44 

issues caused by population expansion, increasing agricultural production efficiency 45 

from the perspective of decreasing GHG emissions is urgent (Zhang et al., 2021). To 46 

achieve this goal, the quantification of the GHG emissions of entire crop production 47 

systems plays a crucial role in identifying emission hotspots and further improving 48 

carbon emission performance (Tian et al., 2021; Liu et al., 2022; Feng et al., 2023). 49 

The carbon footprint (CF) is an effective indicator for calculating carbon emissions in 50 

a product system with a specific system boundary, and is expressed as CO2 51 

equivalents (CO2-eq) (ISO14067, 2013). The whole life cycle of agricultural 52 

production activities includes the substances and agricultural inputs comsumption, 53 

planting management, harvesting and transportation, and waste recycling (Boettcher 54 

et al., 2020). Depending on the system boundary, the life cycle assessment (LCA) 55 

approach is adopted to quantify the environmental impacts of products ranging from 56 

“cradle to grave”, “cradle to gate” and “gate to grave”. However, the quality of the 57 



classic LCA results highly depends on accessible inventories, which are normally 58 

aggregated or averaged conditions at a higher level, and thus have poor spatial and 59 

temporal resolution (Reap et al., 2008). To cope with this, there is an emerging trend 60 

to improve the spatial and temporal heterogeneity of LCA by integrating geographic 61 

information systems (GISs) (Gasol et al., 2011; O’Keeffe et al., 2016b; Escobara et al., 62 

2020; Yang et al., 2022) or coupling with process-based models for better simulation 63 

of the carbon nitrogen cycle, such as DNDC (DeNitrification-DeComposition) 64 

(Tabatabaie et al., 2018; Medel-Jiménez et al., 2022; Medel-Jiménez et al. 2024), 65 

NUFER (NUtrient flows in Food chains, Environment and Resources use) (Guo et al., 66 

2022), Candy (CArbon and Nitrogen DYnamics) (O’Keeffe et al., 2016b) and so forth. 67 

Nevertheless, due to the complex nature of crop growth, variations in regional 68 

management strategies and local economic development levels, the CF results are still 69 

regarded with great uncertainty (Finnveden, 2000; Hellweg and Milà, 2014). 70 

Rapeseed (Brassica napus L.) is widely cultivated as an important biomass energy 71 

source in Europe, and is considered as the major edible oil crop and ornamental and 72 

economic crop in China (Yang et al., 2022). Chinese rapeseed can be divided into 73 

spring- and winter- rapeseed varieties, which have different phenological calendars 74 

both spatially and temporally. The winter rapeseed is dominant in Southwest China, 75 

and is mainly distributed in the lower reaches of the Yangtze River (LYRB), including 76 

Yunnan, Guizhou, and Sichuan provinces and Chongqing municipality. This region is 77 

dominated by smallholder-owned agricultural land, which has complex agricultural 78 

planting structures, small-scale agricultural systems and diverse agricultural 79 

management methods, leading to additional difficulties in mitigating CO2 emissions. 80 

Referring to GHG emission evaluation, existing studies offer certain insights into the 81 

CF of rapeseed production at the national level. As documented in previous studies, 82 

the CF of rapeseed during production ranges from 1.45 to 2.26 t CO2-eq ha-1 in 83 

various regions of China (Wang et al., 2019; Guo et al., 2022). Among the four 84 

rapeseed production subregions in China, the highest CF was observed in the LYRB, 85 

which also has the highest N application rate (Guo et al., 2022). Farm surveys, 86 



agricultural statistics or estimated data were adopted in these studies; however, the 87 

average value estimated for each province is obviously too coarse to discuss the 88 

spatial pattern of CFs at the regional- scale. Moreover, the comprehensiveness and 89 

objectiveness of farm surveys are easily influenced by the quality of farmers’ 90 

feedback, and large-scale surveys cannot always be guaranteed when considering 91 

workload. Thus, the existing studies failed to underpin a useful strategy that 92 

guarantees finer spatial-temporal information on rapeseed CF in Southwestern China. 93 

Remote sensing (RS) technology has the obvious advantages of objectivity, efficiency, 94 

cost and large-scale synchronous observation. In particular, RS can obtain key 95 

biophysical and chemical parameters related to rapeseed production, providing 96 

reliable input data and spatial distribution patterns for crop growth models, data 97 

assimilation systems and yield estimations. There are already successful rapeseed 98 

mapping studies, which can be categorized as empirical index-based, machine 99 

learning-based and hybrid methods. Nevertheless, there are no golden-rules for 100 

choosing the best method, as they inevitably have their respective advantages and 101 

limitations. For instance, the empirical index-based method is commonly based on the 102 

spectral features of the rapeseed flowering period, which is straightforward to 103 

implement. Representative examples include the Canola index (CI) (Ashourloo et al., 104 

2019), normalized difference vegetation index (NDVI) (Han et al., 2021a), enhanced 105 

vegetation index (EVI) (Tao et al., 2020) and enhanced area yellow index (EAYI) 106 

(Zeng et al., 2020). However, these phenology-based rapeseed mapping methods rely 107 

heavily on images of flowering periods, and are easily disturbed by cloud noise (Zeng 108 

et al., 2020). Machine learning-based approaches, such as artificial neural networks 109 

(ANNs) (Tao et al., 2019) and random forest regression (RFR) (Meng et al., 2020), 110 

can overcome this problem by learning nonflowering features from training samples 111 

for rapeseed mapping. Unfortunately, machine learning-based approaches require 112 

large training sample, and sample collection and validation are usually time-113 

consuming and labour-intensive. The hybrid approach combines the advantages of 114 

both empirical index-based and machine-learning methods, such as seamless and 115 



automated rapeseed mapping (SARM) (Zhang et al., 2022) and rule-based sample 116 

generation and a one-class classifier (RSG-OC) (Zang et al., 2023). Regrettably, the 117 

limitations of applying SARM to large-scale and long-term rapeseed mapping in 118 

complex cultivation systems are obvious that due to the inability of the winter 119 

rapeseed index to distinguish rapeseed from other non-rapeseed classes. Additionally, 120 

the application of RSG-OC in regions of Southwest China displayed relatively poorer 121 

performance due to the difficulty of capturing flowering stage from cloud noise. 122 

To address the abovementioned issues, in this study we attempted to (1) generate 123 

finer-resolution rapeseed distribution maps via the RS technique in regions of 124 

Southwest China; (2) assess the product carbon footprint (PCF) and farm carbon 125 

footprint (FCF) of rapeseed production; (3) and analyse the GHG emission hotspots in 126 

the studied region and their environmental and socioeconomic effects. To our 127 

knowledge, this is the first study in which RS is integrated into LCA for improving 128 

rapeseed CF evaluation; we consider this a promising way to solve the common 129 

challenges faced by agricultural CF assessments and address the practical demand for 130 

more detailed crop information in this region. The method used in the current study 131 

has strong adaptability and universality in different areas with various climatic 132 

conditions and can provide a solid basis for policymakers to formulate differentiated 133 

agricultural carbon reduction policies. 134 

2. Materials and methods 135 

2.1 General information on the study region 136 

The Chengdu Plain is located in the centre of Sichuan Province and covers a total area 137 

of 18,810.00 km2; it consists of six cities: Meishan, Leshan, Chengdu, Mianyang, 138 

Yaan and Deyang, as shown in Fig. 1a. This plain is one of the most important grain- 139 

and rapeseed-producing areas in China and has been known as the “Tianfu Granary” 140 

since ancient times. As the largest plain in Southwest China, the Chengdu Plain has 141 

diverse environmental and climatic conditions. The elevation ranges from 248.00 to 142 

5,694.00 m above sea level, as illustrated in Figure 1b. The Chengdu Plain belongs to 143 

the warm and humid subtropical southeast monsoon climate zone of the Pacific Ocean, 144 



and the annual average temperature and precipitation are 16.10°C and 929.40 mm, 145 

respectively. The soil types on the plain are mainly paddy soil and purple soil. The 146 

cultivation system, rather than animal husbandry, serves as the major income source 147 

for the local people. In the paddy rice-dryland crop rotation system, the dominant 148 

dryland crops are wheat, rapeseed, vegetables and orchards. 149 

 150 

Figure 1. The geographic location of the study site: a) municipal units and b) 151 

elevations above sea level. 152 

2.2 Agricultural data 153 

We chose the city level as the primary spatial scale for collecting the main agricultural 154 

data; at this level, the finest and most complete data could be obtained. The main 155 

agricultural crop production data on sowing area, yield, fertilizer application, 156 

irrigation, and agronomic machinery application were collected for each studied city 157 



in 2021, namely, Meishan, Leshan, Chengdu, Mianyang, Yaan and Deyang, as 158 

displayed in Fig. 1a. Additional rapeseed fertilizer was obtained from the National 159 

Agricultural Products Input Summary (Appendix, Table S.1). 160 

2.3 RS-based crop mapping information 161 

2.3.1 Rapeseed mapping based on optical and SAR characteristics 162 

We collected RS images of the Chengdu Plain from the Sentinel-2 (S-2) and Sentinel-163 

1 (S-1) satellites launched by the European Space Agency. The S-1/2 imagers were 164 

collected during the dominant flowering season of rapeseed from March 5th to 20th, 165 

2021. Due to differences in crop rotation (rice and rapeseed) and management 166 

practices, there are significant differences in the flowering period of rapeseed between 167 

Deyang and Mianyang, while in other rapeseed growth regions, the flowering periods 168 

are mainly concentrated around March 10th. Using 2021 as the baseline, we obtained 169 

red (b4), green (b3) and blue (b2) spectral bands with 10 m spatial resolution top-of-170 

atmosphere (TOA) reflectance observations based on S-1/2 satellite images. The 171 

quality assessment band of the S2 TOA product was adopted to remove poor-quality 172 

images, such as severe cloud-obscured images. Then, we followed the approach 173 

proposed by Han et al. (2021) to use both optical and SAR features to identify 174 

rapeseed flowering and pod periods. The normalized difference yellow index (NDYI), 175 

which can capture increasing yellowness in a time series during the flowering period 176 

of rapeseed, is calculated as follows (Han et al., 2021b): 177 

𝑁𝐷𝑌𝐼 =  
𝑔𝑟𝑒𝑒𝑛−𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛+𝑏𝑙𝑢𝑒
    (1) 178 

The ground truth data were further collected for the same region in 2021 from the 179 

time of rapeseed flowering until the pod season. In total, 101 rapeseed ground truth 180 

points were obtained. According to the rapeseed sample data, we assigned different 181 

thresholds for regions to further conduct RS classification and extraction. The 182 

classification results were obtained by overlaying RS images to remove small patches, 183 

so we were able to construct a standardized distribution map of rapeseed plants on the 184 

Chengdu Plain. 185 



2.3.2 Assessment of the accuracy of rapeseed classification 186 

To ensure accuracy, the rapeseed areas derived from RS images were further 187 

compared with the data from statistical books, and the total area of rapeseed 188 

distribution in each city of the Chengdu Plain was compared with the baseline 2021 189 

regional statistics. We used the RMSE, MAE and coefficient of determination (R2) to 190 

quantify the classification accuracy (Eqs. (2) - (4)). These three indicators are 191 

constructed as follows: 192 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑓𝑖)2

𝑛

𝑛
𝑖=1   (2) 193 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|𝑛

𝑖=1   (3) 194 

𝑅2 =
(∑ (𝑦𝑖−𝑦�̅�)(𝑓𝑖−𝑓�̅�)𝑛

𝑖=1 )
2

∑ (𝑦𝑖−𝑦�̅�)2 ∑ (𝑓𝑖−𝑓�̅�)𝑛
𝑖=1

2𝑛
𝑖=1

  (4) 195 

In addition, we used 416 ground truth points from the field sample to overlay with the 196 

created rapeseed distribution map to generate the confusion matrix and calculate the 197 

kappa index. By doing so, the classification consistency was evaluated. The main 198 

methodology framework is shown in Figure 2. 199 

 200 

Figure 2. Workflow of rapeseed mapping by applying the NDYI and its accuracy test 201 

methodology 202 

2.4 Carbon footprint evaluation 203 

2.4.1 System boundary and functional unit of an LCA 204 

In the present study, we set the system boundary from the cradle to the farm gate. The 205 



system boundary included both the background system and foreground system, as 206 

illustrated in Figure 3. Upstream emissions are released from the production of 207 

agronomic input materials, and downstream emissions are generated during field 208 

operations, such as sowing, irrigation, fertilization, harvesting and transportation. 209 

Other downstream processes, such as rapeseed oil production, transport, and 210 

consumption, were not considered in this study. We used yield-scaled GHG emissions, 211 

i.e., the product carbon footprint (PCF, kg CO2-eq t-1), and area-scaled GHG 212 

emissions, namely, the farm carbon footprint (FCF, kg CO2-eq ha-1), to evaluate the 213 

CF during rapeseed cultivation. 214 

 215 

Figure 3. The system boundary set in the current study 216 

2.4.2 GHG emission calculation 217 

The GHG emissions during rapeseed production include both indirect and direct 218 

emissions. The indirect carbon emissions from rapeseed production systems include 219 

carbon emitted from the use of electricity, diesel oil, crop protection chemicals and 220 



other materials. The indirect emissions were calculated by summing the emissions 221 

from each agricultural input and multiplying by its emission coefficient via Eq. (5). 222 

The agricultural inputs in each system are illustrated in Figure 3, and their 223 

corresponding carbon emission coefficients are listed in Appendix, Table S.2. 224 

𝐶𝐸𝑖,𝐶𝑂2
= ∑ (𝐴𝑀𝑖,𝑗  × 𝐸𝐹𝑗

𝑖
𝑗 )      (5) 225 

Where CEi,CO2 represents the sum of the emissions induced by the annual input of the 226 

jth AM in kg CO2-eq ha-1 yr-1, where i and j are the respective crop and agricultural 227 

material amounts, respectively, and EFj is the CO2 emission factor of the 228 

corresponding AMj. 229 

The direct and indirect N2O emissions from in-field nitrogen (N) fertilizer application 230 

were estimated using the following equation (IPCC, 2019): 231 

𝐶𝐸𝑖,𝑁2𝑂 =  𝑁2𝑂𝑖,𝐷 + 𝑁2𝑂𝑖,𝐼𝑁 =  {𝐶𝑁 × (𝐸𝐹𝐶−𝑁2𝑂 + 𝐸𝐹𝐶−𝑁𝐻3 × 0.01 +232 

𝐸𝐹𝑅𝐿 × 0.0075)} ×
44

28
× 265 (6) 233 

where CEi,N2O represents the direct and indirect N2O emissions from the application of 234 

chemical N fertilizer in kg CO2-eq ha-1. CN is the quantity of N in chemical fertilizer 235 

applied during the annual production season (kg ha-1). EFC-N2O (= 0.01), EFC-NH3 (= 236 

0.1) and EFRL (= 0.3) represent the default emission factors of N2O, NH3 and NO3
- 237 

runoff and leaching from chemical N fertilizer application, respectively; 44/28 is the 238 

molecular conversion factor of N2 to N2O; and 265 is the global warming potential of 239 

N2O for the 100-year period (IPCC, 2014). The values 0.0100 and 0.0075 are the 240 

conversion coefficients of NH3 volatilization and NO3
- runoff and leaching in N2O 241 

equivalents, respectively (IPCC, 2006). 242 

Carbon sequestration by crop production systems includes carbon absorption by 243 

plants and soil organic carbon (SOC) due to straw and root residue return. Other 244 

sources, such as manure application and non-tillage management, were not considered 245 

in the present study. Normally, plant-absorbed carbon is harvested after growth. Thus, 246 



the change in SOC (ΔSOC, unit kg CO2-eq yr-1) during rice-rapeseed rotation was 247 

calculated as follows (Chen et al., 2021): 248 

∆𝑆𝑂𝐶𝑖 = (𝑆𝑂𝐶𝑡1 − 𝑆𝑂𝐶𝑡2) ×
44

12
       (7) 249 

𝑆𝑂𝐶𝑡1 =
𝑆𝑅𝑡1,𝑖+𝑅𝐵𝑡1,𝑖

1000
× 29.025 + 272.33 (8) 250 

𝑆𝑂𝐶𝑡2 =
𝑆𝑅𝑡2,𝑖+𝑅𝐵𝑡2,𝑖

1000
× 29.025 + 272.33 (9) 251 

𝑆𝑅𝑖 = 𝑌𝑖 × 𝑅𝑆𝑌𝑖 × 𝑃𝑆𝑅𝑖  (10) 252 

𝑅𝐵𝑖 =
𝑆𝑅𝑖+𝑌𝑖

𝑅𝐴𝑅𝑖
  (11) 253 

where 𝑆𝑂𝐶𝑡1 and 𝑆𝑂𝐶𝑡2 represent the soil organic carbon in the pre-rapeseed crop, 254 

namely, rice, and in rapeseed production, respectively. SRi and RBi represent the 255 

amount of crop straw and biomass of the root residue returned to the soil, respectively. 256 

Yi represents the yield of the crop in dry weight (kg ha-1). RSYi represents the ratio of 257 

straw to yield (Zhang et al., 2010), and PSRi is the proportion of straw return to the 258 

total biomass, which is calculated using the conversion of the harvest index of the 259 

crop, i.e., 0.3 (Peng et al., 2023). RARi refers to the ratio of aboveground biomass to 260 

root biomass (IPCC, 2019). The value 44/12 is the molecular conversion factor of C 261 

to CO2. 262 

The net carbon emissions (NCEi, in kg CO2-eq ha-1 yr-1) of rapeseed were calculated 263 

as the difference between the total carbon emissions (TCE) and ∆𝑆𝑂𝐶  using Eqs. 264 

(12)-(13). The yield-scaled GHG emissions of rapeseed (PCF) were calculated as the 265 

net carbon emissions divided by the yield (Yi) of rapeseed relative to the dry weight 266 

(Eq. (14)). The farm/area-scaled GHG emissions of rapeseed (FCFs) were computed 267 

by the net carbon emissions divided by the cultivation area (A) of rapeseed, as 268 

illustrated in Eq. (15). 269 

𝑇𝐶𝐸𝑖 = 𝐶𝐸𝑖,𝐶𝑂2 + 𝐶𝐸𝑖,𝑁20          (12) 270 

𝑁𝐶𝐸𝑖 = 𝑇𝐶𝐸𝑖 − ∆𝑆𝑂𝐶𝑖          (13) 271 

𝑃𝐶𝐹𝑖 = 𝑁𝐶𝐸𝑖/𝑌𝑖            (14) 272 



𝐹𝐶𝐹𝑖 = 𝑁𝐶𝐸𝑖/𝐴            (15) 273 

2.5 Pixel-level rapeseed yield map for PCF estimation and its influencing 274 

environmental and socioeconomic factors 275 

The rapeseed FCF and PCF values were upscaled to the per-pixel level (10 m * 10 m) 276 

via integration into the rapeseed map. We could only access published statistical 277 

records, which have relatively coarse resolutions up to the city level. Moreover, it is 278 

known that the importance of rapeseed yield for calculating PCF and yield could be a 279 

good indicator of rapeseed genotype, growth environment and management strategies 280 

with high spatial heterogeneity. Thus, we conducted a rapeseed yield survey at the 281 

township level in the Chengdu Plain from 2022-2023 by interviewing village leaders 282 

and farmers. In total, 980-point specific yield information was collected and further 283 

used to interpolate the Chengdu Plain rapeseed yield map (Appendix, Figure S.1). The 284 

inverse distance weight (IDW) interpolation method of the “Interpolation analysis” 285 

toolbox in GIS was applied. Then, the interpolated yield map was overlayed with the 286 

rapeseed distribution map to skip the non-rapeseed area. The new PCFs of rapeseed 287 

can be updated by dividing the FCFs by the surveyed grain yield data. To clarify the 288 

driving factors of GHG emissions during rapeseed production, principal component 289 

analysis (PCA) was conducted to analyse the relationships of PCFs with 290 

environmental and socioeconomic factors. The environmental and socioeconomic 291 

influential factors were adopted and revised from Tian et al. (2021). All the factors 292 

considered were analysed by ArcMap 10.2 in raster format. 293 

Pearson’s correlation test was employed to detect factors with high multicollinearity. 294 

Only one factor was retained for further PCA if two significantly correlated factors 295 

were identified. The detailed information on the influential factors is listed in 296 

Appendix, Table S.3. 297 

3. Results 298 

3.1 Rapeseed mapping based on the RS approach 299 

Based on the workflow of mapping rapeseed areas, as displayed in Fig. 2, in the first 300 



step, we determined the threshold of the feature indicators. The imagery showed that 301 

the majority of the rapeseed pixels had the following values: red > 0.21, green > 0.24 302 

and NDYI > 0.09. In the second step, we identified all rapeseed pixels from different 303 

images during the flowering period and subsequently aggregated them into annual 304 

rapeseed planting areas. To avoid misclassification due to poor-quality observations, 305 

we aggregated all the results classified from available S2 images to create a 306 

multitemporal dataset, which was assumed to have better performance. In the third 307 

stage, we combined the optical data with the SAR images to ensure the accuracy of 308 

the rapeseed maps. In the last step, we removed the “salt and pepper” noise by 309 

applying the threshold defined based on the number of connected objects and then 310 

filled the gaps inside the parcels. The output map is shown in Figure 4. 311 

 312 

Figure 4. The rapeseed distribution map and three regions (a and c are mountainous 313 

areas, b is a plain area) demonstrating the spatial heterogeneity of the rapeseed field 314 

patches 315 

3.2 Assessment of the mapping accuracy of the rapeseed 316 

According to comparisons with regional agricultural statistics records, the identified 317 



cultivation area of rapeseed was smaller than the reported area. As illustrated in 318 

Appendix, Figure S.2, the RMSE, MAE and R2 were 47,418.00 ha, 39,603.00 ha, and 319 

0.8409, respectively. In addition, the RMSE and MAE accounted for less than 10% of 320 

the statistically reported rapeseed area. As illustrated in Appendix, Figure S.3, 321 

rapeseed cultivated in mountainous and plain areas exhibited significantly different 322 

patterns. The complexity of topographic conditions together with local agricultural 323 

management strongly affected the classification accuracy. After testing the rapeseed 324 

map with 416 ground truth points, a confusion matrix was generated, as reported in 325 

Appendix, Table S.4. The calculated kappa value was 0.7860, which represents good 326 

consistency with the classified rapeseed distribution map. 327 

 328 

3.3 Spatial variation in GHG emissions from rapeseed production 329 

We found large regional variations in GHG emissions from rapeseed production on 330 

the Chengdu Plain. As indicated in Figure 5 and Table 1, the FCFs of rapeseed on the 331 

Chengdu Plain ranged from 3,333.08 to 4,572.82 kgCO2-eq ha-1, with an average 332 

value of 3,892.25 kgCO2-eq ha-1. The rapeseed PCF varied from 1,316.23 to 2,443.95 333 

kgCO2-eq t-1, with an average value of 170.18 kgCO2-eq t-1. N fertilizer processing 334 

accounted for approximately 43.09 - 66.52% of the upstream emissions, while the 335 

other main contributors were electricity usage (10.13 - 33.00%), NPK fertilizer 336 

production (7.57 - 20.90%) and diesel fuel production (1.11 - 20.37%). The dominant 337 

emission within downstream carbon emissions was the direct N2O emission caused by 338 

N fertilizer application, which accounted for approximately 75.47%. A negative SOC 339 

change indicates soil carbon sequestration during rice-rapeseed rotation. 340 

The spatial patterns of rapeseed FCFs and PCFs are displayed at the city level (Figure 341 

6a and b) and at the pixel level (Figure 6c and d), respectively. Although the rapeseed 342 

cultivation area in Ya’an comprises only approximately 5.00 - 16.00% of the areas in 343 

the other five cities, it had the highest FCF and PCF values among all the studied 344 

areas on the Chengdu Plain. The main reason is that, from our point of view, the 345 

highest net carbon emissions in Ya’an resulted from the field N2O emissions caused 346 



by intensive N fertilizer input. According to regional agricultural statistics, the yields 347 

of rapeseed from the highest to the lowest are as follows: Deyang (2,891.00 kg ha-1), 348 

Mianyang (2,572.26 kg ha-1), Chengdu (2,532.30 kg ha-1), Meishan (2,162.02 kg ha-1), 349 

Ya’an (1,871.08 kg ha-1) and Leshan (1,752.81 kg ha-1). Thus, the PCF values 350 

indicated that carbon hotspots were distributed in Leshan and Yaan, while other higher 351 

yield cities had relatively lower PCF values. 352 

 353 

Figure 5. GHG emissions and key components in different regions of the Chengdu 354 

Plain.355 



Table 1. The GHG emissions from agricultural inputs for various regions of the Chengdu Plain in 2020. 356 

 357 
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PCF 

 

 

PCF 
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fertilizer 
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fertilizer 

NPK 

Fertilizer 
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Electricity 
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NH3 

emission 

Leaching 

and 

runoff 

SOC change 

 
FCF PCF 

 
(kgCO2-eq ha-1 yr-1) 

 

(kgCO2-eq 

t-1 yr-1) 

MY 917.43 33.80 9.44 384.65 165.80 142.91 186.41 460.29 46.03 103.57 -1524.78 3975.09 1374.988 

% 49.85 1.84 0.51 20.90 9.01 7.77 10.13 75.47 7.55 16.98     

DY 618.80 32.60 13.33 137.55 5.98 153.81 473.82 310.46 31.05 69.85 -1485.83 3333.082 1316.229 

% 43.09 2.27 0.93 9.58 0.42 10.71 33.00 75.47 7.55 16.98     

CD 985.83 54.15 8.16 136.93 4.65 165.86 453.86 494.61 49.46 111.29 -1453.78 3918.589 1523.404 

% 54.48 2.99 0.45 7.57 0.26 9.17 25.08 75.47 7.55 16.98     

YA 1466.42 36.02 24.64 210.43 16.36 24.46 426.00 735.73 73.57 165.54 -1393.64 4572.819 2443.948 

% 66.52 1.63 1.12 9.55 0.74 1.11 19.33 75.47 7.55 16.98     

MS 838.92 22.28 5.39 146.54 7.62 347.43 337.52 420.91 42.09 94.70 -1495.08 3758.49 2144.271 

% 49.18 1.31 0.32 8.59 0.45 20.37 19.79 75.47 7.55 16.98     

LS 844.75 33.17 22.68 276.74 7.92 312.46 226.67 423.83 42.38 95.36 -1515.46 3801.417 1758.27 

% 48.99 1.92 1.32 16.05 0.46 18.12 13.14 75.47 7.55 16.98     

Mean 945.36 35.34 13.94 215.47 34.72 191.16 350.71 474.31 47.43 106.72 -1478.10 3893.248 1760.185 

% 52.91 1.98 0.78 12.06 1.94 10.70 19.63 75.47 7.55 16.98     



 
Figure 6 The spatial patterns of rapeseed FCFs (a, b) and PCFs (c, d) at the city and 

pixel levels, respectively 

3.4 Main contributors to GHG emissions during rapeseed production 

The rapeseed yield map generated by the GIS-based approach is displayed in 

Appendix, Figure S.4a. The surveyed grain yield ranged from 1.30 -5.20 t ha-1, with 

an average value of 2.30 t ha-1, while regional agricultural static yield ranged from 

2.60 - 3.10 t ha-1, with an average yield of 2.10 t ha-1, on the Chengdu Plain. The 

geographic location of the PCF hotspots (Appendix, Figure S.4b) was consistent with 

 

    

 

    

 

    

 
    

 



the low rapeseed yield area (Appendix, Figure S.4a). Based on the Pearson correlation 

test results reported in Appendix., Figure S.5 and Table S.5, we excluded variables 

with high correlations, namely, those with correlation coefficients greater than 0.65 

with other variables, to avoid multicollinearity in our subsequent analysis. The 

remaining eight variables were per capita GDP (CapGDP), total agronomic 

machinery power (Machinery), topsoil silt fraction (Sand), topsoil clay fraction (Clay), 

topsoil organic carbon (SOC), topsoil PH (PH), elevation above sea level (Altitude) 

and Rapeseed yield (Yield) (Appendix, Table S.6). The PCA results shown in Figure 7 

revealed that the first and second principal components explained 52.70% and 19.00%, 

respectively, of the total variance in the rapeseed PCFs. Specifically, we observed 

positive relationships between PCF and SOC, soil clay proportion and altitude, while 

PCF was negatively correlated with per capita GDP, soil conductivity (PH), rapeseed 

yield, machinery and the soil-sand proportion. In addition, the weighted average PCF 

values from various regions did not exhibit a scattered distribution pattern, indicating 

that the PCFs exhibited a high degree of heterogeneity on the Chengdu Plain. 

 

 
Note: PC1 and PC2 represent the first and second principal components, respectively. The explanatory 

variables are CapGDP, PH, yield, machinery, altitude, clay, SOC and sand. The response variable was 

the PCF of rapeseed. 

Figure 7. Principal component analysis of selected variables and PCF. 

 

4. Discussion 



4.1 The novelty of the current study and implications for crop carbon footprint 

evaluation 

Some studies have attempted to link GIS with LCA to explore spatial-temporal 

patterns of carbon footprints in bioenergy (O’Keeffe et al., 2016a; O’Keeffe et al., 

2016b; Yang et al., 2022), biodiversity (Di Fulvio et al., 2019) and other relevant 

studies (Loiseau et al., 2018). However, studies using RS to extract crop information 

for improving LCA-based CF evaluation are still scarce. The novelty of our study is 

that it is the first to introduce RS together with GIS into rapeseed CF assessment. The 

motivation behind this approach is that the key information of crops used for CF 

evaluation, such as crop distribution, phenology and yield information, obtained from 

RS has the advantages of revealing fine spatial patterns and saving costs when 

compared to traditional approaches (O’Keeffe et al., 2016b). This study showed that 

RS can provide an acceptable basemap of rapeseed distribution, as illustrated in 

Figure 4. We did not use RS-based yield estimation for improving the PCF of 

rapeseed, which is beyond the scope of the current study. Nevertheless, there are 

already successful RS-based case studies in which rapeseed yield prediction models 

were developed using linear (Sulik and Long, 2015; Fang et al., 2016; Kern et al., 

2018) and nonlinear models (Fan et al., 2021; Rajković et al., 2021), which can make 

good use of rapeseed phenological patterns and vegetation indices, e.g., NDVI and 

NDYI, for yield estimation. This study can serve as a good foundation for future crop 

CF assessment improvements. In summary, we encourage future studies to exploit RS 

and GIS to capture the spatial-temporal heterogeneity of rapeseed CFs at finer 

resolutions. This approach can also be applied to other crops or different regions with 

updated local information. 

4.2 Spatial heterogeneity in rapeseed carbon footprints and its driving forces 

The evaluation of rapeseed production and its byproducts, e.g., biodiesel and 

associated GHG emissions, currently attracts the attention of scholars worldwide. We 

observed large spatial heterogeneities in the rapeseed-associated CFs in the present 

study, as presented in Figure 6 and Appendix, Figure S.4b, which are generally in line 

with the findings of other studies. Due to the differences in rapeseed types, cultivation 

modes, hydrothermal conditions and management practices, the FCF of rapeseed is 

approximately 308-6,200 kg CO2 eq ha-1 (Brandao et al., 2010; Forleo et al., 2018; 

Kesieme et al., 2019), and that of PCF is approximately 794.00 - 5,904.00 kg CO2-eq 



t-1 worldwide (Iriarte et al., 2010; Palmieri et al., 2014; Bieńkowski et al., 2015; 

Forleo et al., 2018), suggesting significant spatiotemporal heterogeneities. In addition, 

during the whole process of rapeseed cultivation, transportation, refining and 

biodiesel extraction, rapeseed cultivation has a global warming potential ranging from 

53.30 - 79.00% (González-García et al., 2013; Yang et al., 2022). During this process, 

the consumption of N fertilizer, pesticides and agricultural machinery fuel are the 

main sources of carbon emissions (Wu et al., 2021). As the second largest consumer 

of rapeseed oil in the world, China’s energy utilization does not comply with the basic 

national policy of food security, resulting in a delay in research on the CF of rapeseed. 

However, in recent years, a growing body of literature has been published on this 

topic. Ji et al. (2021) analysed the spatial distribution pattern of rapeseed growth in 

China on a provincial basis and reported that the CF value of Chinese rapeseed plants 

was approximately 2,117.05 kg CO2-eq ha-1 (1021.63 kg CO2-eq t-1). The direct 

carbon emission source is rapeseed cultivation, while indirect emissions mainly 

originate from fertilizer processing and manufacturing. Bai et al. (2021) conducted a 

life cycle-based CF analysis for major oil crops in China and reported that the CF of 

rapeseed oil was approximately 3,354.55 kg CO2-eq t-1. Guo et al. (2022) conducted 

province-level analysis and reported that the rapeseed FCP and PCF in Sichuan 

Province were 2122 kg CO2-eq ha-1 and 1014 kg CO2-eq t-1, respectively. 

With respect to the influencing factors, a positive relationship between PCF and 

agricultural materials was observed, while PCF was negatively related to rapeseed 

yield (Guo et al., 2022). In addition, a study of the main grains (rice, wheat and maize) 

in China reported that 11 variables had significant impacts on the PCF: longitude, 

topsoil conductivity, latitude, topsoil organic carbon, population per land area, topsoil 

silt fraction, proportion of mechanical operation, total fertilizer consumption, topsoil 

sand fraction, and per unit area yield. Each factor displays a positive or negative 

relationship with a specific crop type (Tian et al., 2021). Consistent with other studies, 

our study highlighted the importance of SOC in rapeseed PCF estimation (Figure 7). 

SOC sequestration plays a fundamental role in mitigating CF under long-term 

fertilization, and SOC sequestration can change over time and vary substantially 

among cropping systems (Gan et al., 2012; Saeed et al., 2022). The offset of GHG 

emissions from SOC change can decrease the overall emissions in crop systems and 

provide a soil C sink in agricultural systems (Gan et al., 2012; Xue et al., 2014; Liu et 



al., 2018; Wang et al., 2021). Against this background, the third national soil condition 

census from 2022 to 2025 in China (PRC, 2022) can provide valuable inputs, such as 

comprehensive information on soil properties and geographic locations, for crop CF 

estimation soon. 

4.3 Limitations and uncertainties of the current study 

The present study on the estimation of rapeseed CF has several limitations. First, 

accurate detection of the flowering period is the foundation of RS-based rapeseed 

mapping. Therefore, the availability of flowering images directly affects the 

effectiveness of rapeseed monitoring. Due to the monsoon climate characteristics of 

most rapeseed planting areas in China, images of flowering periods are not always 

available. In addition, small patches of rapeseed fields and complex agronomic 

management can cause uncertainty during image classification. Thus, sufficient 

ground truth points are needed to guarantee map classification accuracy. Apart from 

the abovementioned aspects, the rapeseed yield information varies by publication 

source, data collection time and collection approach. We believe that if the rapeseed 

yield can obtain a relatively finer spatial-temporal resolution, the PCF might be closer 

to real-world conditions. For example, we can clearly observe the improvement of 

rapeseed PCF estimation with support of various resolutions of rapeseed yield 

information. The classic agricultural-statistic-based approach is shown in Figure 6b, 

the RS-mapping approach is shown in Figure 6d, and the surveyed yield information 

is shown in Appendix, Figure S.4b. Certainly, depending on the orientation of 

different studies, this is not a golden-rule to suggest a finer resolution of crop yield 

collection. Here, we recommend this approach under the context of regional studies. 

In addition to the abovementioned uncertainties and limitations, the present study 

could still provide a useful reference for identifying GHG emission hotspots and 

guiding effective agricultural carbon reduction policies. 

5. Conclusion 

In this study, we developed a novel rapeseed carbon footprint evaluation approach by 

integrating a fine-resolution rapeseed map developed by RS techniques. This method 

shows its superiority over previous GIS-LCA integrated studies in taking rapeseed 

physiological growth and phenological stages into account. Large variations in the 

rapeseed FCF and PCF are observed in the studied area. Additionally, the surveyed 



regional rapeseed yield map plays an important role in improving PCF estimation 

both quantitively and spatially. Furthermore, the current study revealed positive 

relationships between PCF and SOC, soil clay proportion and altitude, while PCF was 

negatively correlated with per capita GDP, soil conductivity, rapeseed yield, 

machinery and soil sand proportion. This implies the significant role of soil properties 

and SOC in influencing crop PCF. The findings of our study call attention to 

exploring the potential of remote sensing in crop yield estimation, which is considered 

a crucial parameter for PCF assessment. The integration of RS and GIS can capture 

spatial-temporal heterogeneity and thus provide dynamic monitoring of rapeseed 

carbon footprint evaluation. The method itself is transferable to other crops and 

regions with updated local information. 
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