This is the accepted manuscript version of the contribution published as:

Durka, W., Michalski, S.G., Höfner, J., Kolár, F., Müller, C.M., Oberprieler, C., Semberová, K., RegioDiv-Konsortium, (2024):

Projekt RegioDiv - genetische Vielfalt krautiger Pflanzen in Deutschland: Ergebnisse und Empfehlungen für die Regiosaatgut-Praxis. RegioDiv project - Genetic diversity of herbaceous plants in Germany: Results and recommendations for seed zone management *Nat. Landschaft* **99** (7), 322 - 332

The publisher's version is available at:

https://doi.org/10.19217/NuL2024-07-02

Text: RegioDiv_Text_V2.docx

RegioDiv – Genetische Vielfalt krautiger Pflanzen in Deutschland: Zusammenfassung und Empfehlungen für die Regiosaatgut-Praxis

1. Einleitung

Die Erhaltung der Biodiversität und essentieller Ökosystemfunktionen, das Verhindern und Umkehren weiterer Habitatzerstörung und die Wiederherstellung von vielfältigen Lebensräumen ist eine globale Herausforderung (https://www.decadeonrestoration.org/). Dem Aspekt der innerartlichen Vielfalt als Grundlage für die Vielfalt der Arten und Ökosysteme kommt dabei auf allen räumlichen Skalen eine besondere Bedeutung zu, weswegen sie eines der drei zentralen Schutzgüter der Konvention über die biologische Vielfalt (CBD) und damit auch der Nationalen Biodiversitätsstrategie (NBS) ist. In der Natur- und Kulturlandschaft Mitteleuropas beherbergen Wiesen, Weiden und andere baumfreie Offenlandhabitate eine aussergewöhnlich große Biodiversität, die stark gefährdet ist (Poschlod 2017). Ein Werkzeug zur Erhaltung und Wiederherstellung verschiedener artenreicher Grasland-Habitattypen und zum Erhalt der innerartlichen Vielfalt ist das in Deutschland etablierte Regiosaatgut-System, das den genehmigungsfreien Einsatz von gebietseigenen Herkünften weitverbreiteter Arten ermöglicht. Die biologische Begründung für eine solche, im §40 BNatSchG niedergelegte Regelung liegt in der für viele Pflanzenarten vorhandenen Anpassung an ihre lokale Umwelt (Leimu und Fischer 2008, Bucharova et al. 2017) und in der durch die Evolutionsgeschichte der Arten geprägten räumlich-genetischen Muster (Durka et al. 2019).

In Deutschland werden für die praktische Umsetzung dieser Vorgabe die in Prasse et al. (2010) definierten 22 Ursprungsgebiete (UG) unterschieden, die in die Erhaltungsmischungsverordnung (ErMiV 2011) übernommen wurde. In ihnen wird Saatgut gesammelt, welches nach Vermehrung dort wieder genehmigungsfrei ausgebracht werden kann. Deutschland verfügt damit über ein funktionierendes Regiosaatgutsystem (Bucharova et al. 2019), das zwei Grundanliegen vereint: "mix and match", "vielfältig und passgenau". Passgenau, weil die UG eine regionale Anpassung an Umweltbedingungen sicherstellen. Vielfältig, weil das in einem UG angebotene Saatgut aus mehreren Ursprungspopulationen stammt und damit eine große genetische Vielfalt umfasst. Unterschiedliche Zertifikate sichern die jeweilige Qualität in einem wachsenden Markt.

Der Zuschnitt der 22 UG beruht auf naturräumlichen Einteilungen (Meynen und Schmithüsen 1953-1962) und ist damit im Wesentlichen durch abiotische Faktoren begründet. Dies kann kritisch betrachtet werden, da keine spezifischen, empirischen Informationen über diejenigen Pflanzenarten eingingen, für welche das System geschaffen wurde. Einzig aus generellen genetischen Überlegungen wurden einige langgestreckte Gebiete (>300 km) geteilt. Von Seite der Samenproduzenten wurde ausserdem kritisiert, dass die Ursprungsgebiete grundsätzlich zu klein seien (Mainz und Wieden 2019). Der Zuschnitt der UG sollte daher vor dem Hintergrund der pflanzengenetischen Tatsachen überdacht werden.

Regiosaatgut umfasst sehr viele Pflanzenarten, die sich in ihrer Biologie und Evolutionsgeschichte stark unterscheiden. Neben klar umrissenen und unterscheidbaren Arten sind darunter auch sogenannte gemischt-ploide Arten, die mehrere Ploidiestufen umfassen. Solche genetischen Linien mit unterschiedlicher Ploidie können getrennte biologische Arten darstellen, die nicht mehr im Genaustausch stehen (Kolář et al. 2017). Diese zum Teil morphologisch kryptische Diversität ist nur unzureichend untersucht und die räumliche Verteilung unbekannt. Für die Wildsamenproduktion und

die Ausbringen in der Landschaft ist diese Information jedoch hoch relevant, da mehr als ein Viertel (27 %) der Regiossatgut-Arten und darunter sehr häufig genutzte Arten gemischt-ploid sind (vgl. Anhang in Durka et al. 2024). Das Regiosaatgutsystem beruht auf generell gültigen Ursprungsregionen, die für alle Arten in gleicher Weise gelten; daher muss eine große Zahl an Arten untersucht werden, um die Plausibilität der UG zu prüfen.

Das Projekt RegioDiv wurde mit dem expliziten Ziel durchgeführt, eine breite empirische Datenbasis der genetischen Vielfaltsmuster von Wiesenpflanzen zu erarbeiten, um auf dieser Basis Empfehlungen für das Regiosaatgutsystem ableiten zu können. Dieser vorliegende Text stellt wichtige Aspekte des frei verfügbaren RegioDiv-Abschlußberichtes (Durka et al. 2024) dar.

2. Projekt-Organisation und Methoden

Zusammen mit einer projektbegleitenden Arbeitsgruppe (PAG), in der VertreterInnen des Bundes, der Länder, der Wissenschaft und der Wildsamenproduzenten vertreten waren, wurde eine Liste zu untersuchender Arten abgestimmt, die alle häufig als Regiosaatgut produziert werden. Die Liste umfasste 7 Gräser und 21 Kräuter, teilweise taxonomisch weit gefasst (Tab. 1).

Die 22 UG wurden in jeweils 3-4 Teilgebiete (TG, insgesamt N=72) unterteilt, mit dem Ziel, alle Arten aus möglichst vielen TG zu sammeln, um so eine repräsentative, flächendeckende Probenahme zu gewährleisten. Wir luden Freiwillige ein, gemäß einem Protokoll Blattproben in einem oder mehreren TG zu sammeln. Ziel war es, in jedem Teilgebiet insgesamt mindestens fünf individuelle Proben von insgesamt mindestens drei Populationen in möglichst natürlichen Habitaten zu gewinnen. Die 160 SammlerInnen sammelten an über 2500 Standorten insgesamt ca. 19.000 Pflanzenproben. Wegen begrenztem Budget charakterisierten wir in der Regel nur für eine Probe pro Art und Sammelort den individuellen Genotyp (SNP-Marker, single nucleotide polymorphism), d.h. für ca. 12.000 Proben. Wir werteten schließlich 33 Taxa aus, davon 31 Arten und eine Art mit zwei Ploidie-Stufen. Die Zahl der aus Deutschland stammenden Proben in den finalen Datensätzen lag zwischen 89 (Östlicher Wiesen-Bocksbart, *Tragopogon orientalis*) und 891 (Acker-Witwenblume, *Knautia arvensis* 4x), im Mittel bei 339. Die Zahl der SNP Marker lag zwischen 1.465 (Wiesen-Platterbse, *Lathyrus pratensis*) und 11.341 (Rotes Straußgras, *Agrostis capillaris*) (Mittelwert 5521).

Die Datenanalyse umfasste unter anderem eine Hauptkomponentenanalyse und eine Clusteranalyse mit dem Programm Admixture (Alexander et al. 2009). Dieses identifiziert Genpools, die als innerartliche Gruppen gedeutet werden können, und weist jedem Pflanzenindividuum eine Wahrscheinlichkeit der Zugehörigkeit zu diesen Genpools zu. Die individuelle Zuweisungswahrscheinlichkeit zu den innerartlichen Gruppen wurde dann räumlich interpoliert (Kriging) als Karte dargestellt. Außerdem analysierten wir den Zusammenhang zwischen der genetischen und der geographischen Distanz zwischen UG-Paaren, die als jeweils als Population interpretiert wurden. Eine signifikante Korrelation wird als Isolation-durch-Distanz (isolation-by-distance, IBD) bezeichnet und ist gekennzeichnet durch das Zusammenspiel von Genfluss (Samen- und Pollenausbreitung) und genetischer Drift (Hutchison und Templeton 1999). Die Methoden sind ausführlich in Durka et al. (2024) dargestellt.

3. Ergebnisse und Diskussion

3.1. Räumlich-genetische Strukturen

Wir untersuchten Datensätze für 33 verschiedene Taxa, wobei zwischen zwei und acht innerartliche genetische Gruppen unterschieden werden konnten (Abb. 1, Kasten 1). Die innerartlichen Gruppen

bildeten in der Regel räumlich kohärente, artspezifische geographische Gebiete ab. Nur in Ausnahmefällen (z.B. *Bistorta officinalis, Silene vulgaris*) treten innerartlichen Gruppen räumlich verteilt auf, was auf Fernausbreitung zurückzuführen sein könnte. Bei wenigen Arten sind Gruppen sehr schwach ausgeprägt mit entsprechend diffusen Grenzen, z.B. beim Glatthafer, *Arrhenatherum elatius*. Die Verbreitungsgrenzen der innerartlichen Gruppen stimmen nur in Ausnahmefällen mit den jetzigen UG-Grenzen überein. Oft gibt es große Übergangsbereiche, in denen sich die genetischen Gruppen mischen. Über mehrere Arten hinweg sind einige geographische Regionen durch bestimmte innerartliche genetische Gruppen gekennzeichnet , z.B. der Norden (z.B. *Agrostis capillaris, Campanula rotundifolia* (4x), *Cynosurus cristatus*), Nordwesten (z.B. *Agrimonia eupatoria, Lotus corniculatus, Lychnis flos-cuculi*), aber auch im NO, SO, SW, W oder in Mitteldeutschland. Allerdings sind diese geographischen Regionen in der jeweiligen konkreten Ausdehnung und Abgrenzung artspezifisch und nicht generalisierbar.

Zusätzlich zu den innerartlichen Gruppen ist die genetische Diversität durch kontinuierliche Gradienten gekennzeichnet. Mit einer Ausnahme (*Leucanthemum vulgare* s.str.) folgt die genetische Struktur aller Arten dem Muster von Isolation-durch-Distanz (IBD), d.h. einer stetigen Vergrößerung der genetischen Distanz mit zunehmender geographischer Distanz. Allerdings unterscheiden sich die Arten in der Stärke dieser Veränderung. Die geringsten Veränderungen in der genetischen Zusammensetzung mit zunehmender räumlicher Distanz hatten die Gräser Glatthafer (*Arrhenatherum elatius*), Aufrechte Trespe (*Bromus erectus*) und Rot-Schwingel (*Festuca rubra* s.str.) und die Fettwiesen-Margerite (*Leucanthum ircutianum*). Zu den Arten mit der stärksten Veränderung gehörten der Kleine Odermennig (*Agrimonia eupatoria*) (siehe Kasten 1), die Kuckucks-Lichtnelke (*Lychnis flos-cuculi*) und die Bocksbart-Arten (*Tragopogon orientalis*, *T. pratensis* inkl. *minor*). Unter der Annahme einer stetig linearen Beziehung zwischen genetischer und geographischer Distanz erhöht sich aber bei all diesen Arten die genetische Distanz um 10 % pro 70 km.

Sowohl die Existenz der innerartlichen Gruppen als auch das IBD-Muster belegen, dass die Ausbreitung von Samen und Pollen räumlich begrenzt ist und daher die sich aus der Evolutions- und Besiedlungsgeschichte ergebenden Muster relativ stabil bleiben.

3.2 Gemischt-ploide Arten

Einige der untersuchten Taxa sind bekanntermaßen "schwierige" Gruppen, bestehend aus mehreren Arten oder Linien. Polyploidisierung kann eine Ursache für die Ausbildung solcher Komplexe sein. Die Ploidiestufen sind dabei nicht immer morphologisch unterschieden so dass bei vielen gemischt-ploiden Arten sowohl die ökologische als auch die räumliche Verbreitung der Cytotypen ungeklärt ist. Das gemeinsame Vorkommen verschiedener Cytoypen am selben Wuchsort ist in der Natur selten, da die Kreuzung zwischen Di- und Tetraploiden in der Regel zu nicht lebensfähigen oder sterilen triploiden Nachkommen führt, womit der Samenertrag reduziert ist. Daher sollten sowohl in der Wildsamenproduktion als auch in der Renaturierung gemischt-ploide Populationen vermieden werden. Bei der Auswahl der Entnahmeorte und Vermehrung des Saatgutes ist daher besondere Sorgfalt nötig. Aufgrund der Bedeutung dieser Thematik für das Regiosaatgutsystem stellen wir im Folgenden die Hauptergebnisse der gemischt-ploiden Arten im Einzelnen vor.

Wir stellten fest, dass die tetraploide Unterart der Ackerwitwenblume (*Knautia arvensis*) überall in Deutschland die häufigste ist, die diploide dagegen sehr selten. Tatsache ist aber, dass die Diploiden

teilweise mit Regiosaatgut ausgebreitet wurden (Durka et al. 2017, Kaulfuß und Reisch 2019). Hier sollten die zu vermehrenden Herkünfte genauer geprüft werden.

Bei der Rundblättrigen Glockenblume (Campanula rotundifolia) kommen beide, die diploide und die tetraploide Form häufig vor, wobei von Tschechien ausgehend in der Mitte Deutschlands eher die Diploiden, weiter westlich und nördlich dagegen ausschließlich die Tetraploiden vorkommen. Die Grenzen sind relativ scharf, aber nicht mit UG-Grenzen identisch (Abb. 2), weswegen hier die im neuen Leitfaden zur Verwendung von gebietseigenem Saatgut (Skowronek et al. 2023) eröffnete Möglichkeit genutzt werden sollte, subregionale Herkünfte entsprechend der Ploidiestufe zu verwenden. Weitere gemischt-ploide Arten sind die Kleine Bibernelle (Pimpinella saxifraga) mit weniger klar getrennten Arealen, das Wiesenmargeriten-Aggregat mit der diploiden L. vulgare und der tetraploiden L. ircutianum, die beide in fast allen UG vorkommen. Allerdings ist die sonst meist seltenere L. vulgare s. str. im N Deutschlands (UG 1, 3, 22) ebenso häufig wie L. ircutianum, so dass dort auch, nicht wie aktuell üblich, nur die Tetraploiden, sondern auch die Diploiden – allerdings jeweils getrennt voneinander – im Regiosaatgut eingesetzt werden sollten. Bei der Zypressenwolfsmilch (Euphorbia cyparissias) besetzen, neben den überall sonst vorkommenden Tetraploiden, die diploiden Individuen ein kleines, bisher unbekanntes Areal im äußersten Westen Deutschlands (gelbe Gruppe in Abb. 1). Für das Aggregat der Wiesenschafgarbe (Achillea millefolium agg.) haben sich vor allem die beiden schwer zu unterscheidenden Arten der Gewöhnlichen Wiesenschafgarbe (A. millefolium s. str) (6x) und die erst vor 30 Jahren beschriebene Dichtrasige Wiesenschafgarbe (A. pratensis) (4x) als weit verbreitet festgestellt, wobei letztere z.B. im Alpenvorland vorzuherrschen scheint.

Aufgrund der guten Datenlage können wir für die oben genannten Arten und ihre Ploidiestufen detaillierte Empfehlungen über das nötige Management im Regiosaatgut machen. Das Ziel muss es sein, diese Arten mit teilweise kryptischer Diversität nicht per Artenfilter auszuschließen, sondern entsprechend ihrer räumlichen Verbreitung und Häufigkeit im Regiosaatgut zu verwenden.

3.3 Bewertung des derzeitigen Gebietssystems

In einem System von Ursprungsgebieten, das generelle öko-genetischen Einheiten repräsentiert, sollten die Teilgebiete (TG) eines UG untereinander genetisch ähnlicher sein als im Vergleich mit TG anderer UG. Eine entsprechende Analyse über alle Arten hinweg zeigte, dass es mit Ausnahme des UG 05 in allen UG ein bis mehrere Teilgebiete gibt, die eher Teilgebieten anderer UG nahestehen. Diese Ergebnisse zeigen allgemeine Schwächen der derzeitigen Gebietsabgrenzung auf und könnten als Ausgangspunkt für Veränderungen der Gebiete dienen.

In ähnlicher Weise kann artspezifisch getestet werden, ob aus genetischer Sicht der Ersatz einer bestimmten Herkunft durch eine Nachbarregion akzeptabel ist, wie es derzeit laut Erhaltungsmischungsverordnung (ErMiV §4 (2)) noch möglich ist. Es wurde also untersucht, ob die genetische Ähnlichkeit zwischen Ursprungs- und Nachbargebiet nicht größer ist, als die Ähnlicheit innerhalb des betrachteten Ursprungsgebiets. Die Ergebnisse der Analyse zeigen, dass die Verwendung von Ersatzgebieten im Allgemeinen nicht empfohlen werden kann. Tatsächlich gibt es große Unterschiede zwischen den Arten, wobei zwischen 22 % (Gewöhnlicher Rotschwingel, *Festuca rubra* s. str.) und 79 % (*Knautia arvensis* 4x) der betrachteten Ersatzgebiete ungeeignet sind. Auf Basis der Ergebnisse sind jedoch art- und UG-spezifische Angaben für Ersatzgebiete möglich (Abb. K4). Diese Spielräume könnten in der Praxis genutzt werden.

3.4 Alternative Vorschläge für ein Gebietssystem

Ein Vergleich der derzeitigen Ursprungsgebiete mit alternativen Gebietszuschnitten auf Basis der hier erhobenen Daten setzt einen über Arten hinweg gültigen Bewertungsparameter vorraus. Hier nutzen wir die mittlere, standardisierte erklärte genetische Varianz (sV_{UG}), welche erfasst, wie gut die genetischen Muster aller betrachteter Arten durch ein bestimmtes Ursprungsgebietssystem repräsentiert sind. Das aktuelle System der 22 UG erreicht hier einen Referenzwert von sV_{UG}=0,7. Alternative Gebietssysteme sollten daher mindestens diesen Wert erreichen. Wir ermittelten dann alternative Ursprungsgebiete auf Basis der innerartlichen genetischen Gruppen in den 72 Teilgebieten. Mit unterschiedlichen Ansätzen zur Beschreibung der genetischen Muster und mehrstufigen automatisierten Klassifikationsalgorithmen setzten wir dabei die TG zu einer vorher festgelegten Zahl an neuen UG so zusammen, dass die UG möglichst homogen sind.

Generell nimmt sV_{UG} mit der Anzahl der Ursprungsgebiete zu. Die algorithmisch erzeugten Gebietssysteme konnten bereits mit 16 UG den Referenzwert für das derzeitige System erreichen und übertreffen ihn zunehmend mit weiter steigender Zahl der Gebiete. Die Grenzen der so erzeugten alternativen UG weichen dabei deutlich von den derzeitigen UG ab (Abb. 3A).

Diese neuen UG waren, obwohl keine geographische Information in die Analyse eingegangen war, meist räumlich kohärent und relativ kompakt. Langgestreckte Naturräume wurden aufgetrennt, z.B. wird die aktuell gültige Trennung von Schwäbischer und Fränkischer Alb, und die Teilung der herzynischen Gebirge (Bayerischer Wald, Frankenwald, Erzgebirge) in mehrere UG, konsequent bestätigt. Auch langgestreckte UG werden aufgeteilt (z.B. UG 11, 16, 17). Diese Bildung kompakter Gebiete ist die Konsequenz des generell gefundenen IBD-Musters und von Grenzen zwischen innerartlichen Gruppen mehrerer Arten (vgl. Abb 1).

Im Vergleich verschiedener algorithmischer Lösungen bildeten sich so konsistent einige charakteristische Gruppen von Gebieten heraus, z.B. 1) die beiden Teile von UG 1 und UG 3 in Schleswig-Holstein wurden nie getrennt, sondern waren immer in derselben Gruppe; 2) eine "West-Gruppe" wurde aus Teilen von UG 2, 7 und 9 gebildet; 3) das kleine UG 22 wurde immer zwischen UG 3 und UG 4 aufgespalten; 4) das Voralpenland (UG 16 + 17) wurde in West-Ost-Richtung aufgeteilt. Interessanterweise wurde das Vorland von Mittelgebirgen und Alpen nicht von den Hochlagen getrennt, sondern mit ihnen vereinigt, aber gemeinsam quer zur Längsachse geteilt.

Ein grundsätzlicher Befund war jedoch, dass keine objektive Lösung für eine optimale Zahl an UG existiert und es auch für eine bestimmte Zahl an UG keine "einzig richtigen" UG-Zuschnitte gibt, sondern viele ähnlich gute. Diese Tatsache spiegelt einerseits die Unterschiedlichkeit der Arten, kann andererseits aber als Chance und Verhandlungsspielraum bei der Entwicklung eines alternativen Gebietssystems verstanden werden.

Diese algorithmisch erzeugten Gebietszuschnitte können nur ein erster Schritt bei der Entwicklung eines möglichen neuen Systems an Ursprungsgebieten sein. Praktische Erwägungen von Seiten der Wildsamenproduzenten und der zuständigen Behörden müssen hier integriert werden. Die Erarbeitung einer eventuellen Neufassung der Ursprungsgebietskulisse war nicht Aufgabe des Projektes. Dennoch wurden erste Versuche in diese Richtung im Rahmen der PAG unternommen (Abb. 3B), ohne allerdings eine zu einem abschließenden Vorschlag zu kommen.

4. Empfehlungen

Aus den vorgelegten Befunden zur Strukturierung der genetischen Vielfalt können eine Reihe von Empfehlungen für die Regiosaatgutpraxis und alle beteiligten Akteure gegeben werden:

- Bezüglich der **Problematik gemischt-ploider Arten** sollten die Saatgutproduzenten sich Klarheit über die Ploidie ihrer Vermehrungslinien schaffen. Wir empfehlen, für die Arten, von denen ausreichende Daten vorliegen, art- und UG-spezifisch die Verwendung der dominierenden Ploidiestufe oder, falls Verbreitungsgrenzen durch ein UG verlaufen, die Verwendung von subregionalem Saatgut für das ploidie-spezifische Verbreitungsgebiet. Es besteht weiterer **Forschungsbedarf** bezüglich der Verbreitung der Ploidiestufen bei gemischt-ploiden Arten sowie grundsätzlich zu kryptischer Diversität bei weit verbreiteten Arten.
- Grundsätzlich bildet das derzeitige UG-System, wie auch jedes andere System mit genügend räumlichen Einheiten, das generell vorhandene Isolation-durch-Distanz Muster (IBD) ab. Dies bedeutet, dass die Orientierung an einem **Gebietssystem grundsätzlich vorteilhaft** ist, auch wenn nicht alle Arten optimal im System abgebildet werden. Allerdings zeigen die kontinuerlichen genetischen Muster auch, dass **UG-Grenzen im Einzelfall nicht starr zu interpretieren** sind. So ist die Verwendung von UG-eigenem Samenmaterials innerhalb einer Maßnahme über die UG-Grenze hinaus (einige 100 m) aus genetischer Sicht grundsätzlich unkritisch, z.B. wenn eine Begrünungsmaßnahme mit einem kleinen Flächenanteil über eine UG-Grenze hinaus reicht. Grundätzlich, d.h. unabängig von den UG, wäre auch eine projekt- und ortsspezifische Verwendung von Saatgut innerhalb eines bestimmten Umkreises empfehlenswert (Distanzregel bis z.B. 70 km Entfernung), soweit auch hier mehrere Ursprungspopulationen gemischt werden.
- Noch bis zum 01.03.2027 ist laut ErMiV §4 (2) bei Nichtverfügbarkeit von Saatgut eines bestimmten UG der Ersatz durch benachbarte UG geduldet. Unsere Ergebnisse sprechen klar gegen eine solche pauschale Praxis, aber wir definieren für die in RegioDiv untersuchten Arten genetisch begründete artspezifische Ersatzregeln zwischen benachbarten UG (Abb. K4, für weitere Arten siehe Durka et al. 2024).

5. Zusammenschau

RegioDiv hat eine umfassende Datenbasis der genetischen Struktur von Grünlandpflanzen in Deutschland gelegt. Das Schutzgut innerartliche Vielfalt wird damit für Deutschland erstmals repräsentativ und vergleichend für eine Reihe von häufigen Grünlandarten quantifiziert und räumlich beschrieben. Alle Arten zeigten räumlich strukturierte genetische Differenzierung, so dass zum Schutz der gesamten genetischen Diversität ein Gebietssystem notwendig ist, das die genetisch differenzierten innerartlichen Gruppen abbildet.

Das bestehende System der Ursprungsgebiete bildet – allein auf Grund der relativ großen Zahl an Ursprungsgebieten – schon jetzt einen Teil der innerartlichen, genetischen Strukturen ab, ist aber verbesserungsfähig. Dies betrifft sowohl den Zuschnitt als auch die Zahl der UG, wobei ein großer Gestaltungsspielraum vorhanden ist. Wie die Diskussion in der PAG jedoch zeigt, ist die Abwägung zwischen wissenschaftlichen Grundlagen zur genetischen Vielfalt, den Interessen des behördlichen Naturschutzes und der angewandten Regiosaatgutpraxis ein anspruchsvoller, aber notwendiger Prozess. Dieser muss in naher Zukunft weitergeführt und abgeschlossen werden. Vor dem Hintergrund des

immer deutlicher werdenden Klimawandels sind die vorhandenen Produktionskapazitäten für regionales Saatgut und ein funktionierendes Regelsystem die Vorausetzungen für in der Zukunft mögliche, flexible Anpassungen im Umgang mit gebietseigenem Saatgut. Perspektivisch müssen dazu neben den räumlichgenetischen Grundlagen auch ein phylogeographisches Verständnis auf überregionaler, paneuropäischer Skala sowie wissenschaftlich fundierte Zukunftsszenarien und Risikobewertungen geschaffen werden.

6. Literatur

- Alexander, D.H., Novembre, J., Lange, K. (2009): Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655-1664. DOI: 10.1101/gr.094052.109 ((https://doi.org/10.1101/gr.094052.109))
- Bucharova, A., Michalski, S.G., Hermann, J.M. et al. (2017): Genetic differentiation and regional adaptation among seed origins used for grassland restoration: lessons from a multi-species transplant experiment. Journal of Applied Ecology 54:127-136. DOI: 10.1111/1365-2664.12645 ((https://doi.org/10.1111/1365-2664.12645))
- Bucharova, A., Bossdorf, O., Hölzel, N. et al. (2019): Mix and match! Regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conservation Genetics 20:7-17. DOI: 10.1007/s10592-018-1067-6 ((https://doi.org/10.1007/s10592-018-1067-6))
- Durka, W., Michalski, S.G., Berendzen, K.W. et al. (2017): Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. Journal of Applied Ecology 54:116-126. DOI: 10.1111/1365-2664.12636 ((https://doi.org/10.1111/1365-2664.12636))
- Durka, W., Bossdorf, O., Bucharova, A. et al. (2019): Regionales Saatgut von Wiesenpflanzen: genetische Unterschiede, regionale Anpassung und Ökosystem-Effekte. Natur und Landschaft 94:146-153. DOI: 10.17433/4.2019.50153679.146-153 ((https://doi.org/10.17433/4.2019.50153679.146-153))
- Durka, W., Michalski, S.G., Höfner, J. et al. (2024): RegioDiv Genetische Vielfalt krautiger Pflanzenarten in Deutschland und Empfehlungen für die Regiosaatgut-Praxis. BfN Schriften, eingereicht. https://www.bfn.de/publikationen?f[0]=type:publication_bfn))
- ErMiV (2011): Verordnung über das Inverkehrbringen von Saatgut von Erhaltungsmischungen (Erhaltungsmischungsverordnung), zuletzt geändert durch Artikel 1 der Verordnung vom 17. Oktober 2023 (BGBI. 2023 I Nr. 281). ((https://www.gesetze-iminternet.de/ermiv/BJNR264110011.html))
- Hutchison, D.W., Templeton, A.R. (1999): Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898-1914. DOI: 10.1111/j.1558-5646.1999.tb04571.x ((https://doi.org/10.1111/j.1558-5646.1999.tb04571.x))
- Jedicke, E., Aufderheide, U., Bergmeier, E. et al. (2022): Gebietseigenes Saatgut Chance oder Risiko für den Biodiversitätsschutz? Ein Thesenpapier zur Umsetzung des § 40 BNatSchG. Naturschutz und Landschaftsplanung 04/2022. DOI: 10.1399/NuL.2022.04.01 ((https://doi.org/10.1399/NuL.2022.04.01))
- Karlik, P., Poschlod, P. (2019): Identifying plant and environmental indicators of ancient and recent calcareous grasslands. Ecological Indicators 104:405-421. DOI: 10.1016/j.ecolind.2019.05.016 ((https://doi.org/10.1016/j.ecolind.2019.05.016))
- Kaulfuß, F., Reisch, C. (2019): Restoration of grasslands using commercially produced seed mixtures: genetic variation within and among natural and restored populations of three common

- grassland species. Conservation Genetics 20:373–384. DOI: 10.1007/s10592-018-01138-0 ((https://doi.org/10.1007/s10592-018-01138-0))
- Kolář, F., Čertner, M., Suda, J. et al. (2017): Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science 22:1041-1055. DOI: 10.1016/j.tplants.2017.09.011 ((https://doi.org/10.1016/j.tplants.2017.09.011))
- Leimu, R., Fischer, M. (2008): A meta-analysis of local adaptation in plants. Plos One 3:e4010. DOI: 10.1371%2Fjournal.pone.0004010 ((https://doi.org/10.1371%2Fjournal.pone.0004010))
- Mainz, A.K., Wieden, M. (2019): Ten years of native seed certification in Germany A summary. Plant Biology 21:383-388. DOI: 10.1111/plb.12866 ((https://doi.org/10.1111/plb.12866))
- Prasse, R., Kunzmann, D., Schröder, R. (2010). Entwicklung und praktische Umsetzung naturschutzfachlicher Mindestanforderungen an einen Herkunftsnachweis für gebietseigenes Wildpflanzensaatgut krautiger Pflanzen. Abschlußbericht zum Forschungsprojekt (DBU FKZ: 23931), Hannover. ((https://www.dbu.de/OPAC/ab/DBU-Abschlussbericht-AZ-23931.pdf))
- Taberlet, P, Fumagalli, L, Wust-Saucy, AG et al. (1998): Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7:453-464. ((https://doi.org/10.1046/j.1365-294x.1998.00289.x))
- Van Rossum, F, Martin, H, Le Cadre, S et al. (2018): Phylogeography of a widely distributed species reveals a cryptic assemblage of distinct genetic lineages needing separate conservation strategies. Perspectives in Plant Ecology, Evolution and Systematics 35:44-51. ((https://doi.org/https://doi.org/10.1016/j.ppees.2018.10.003))
- Xue, Z, Chiapella, JO, Paun, O et al. (2023): Phylogeographic patterns of *Deschampsia cespitosa* (Poaceae) in Europe inferred from genomic data. Botanical Journal of the Linnean Society 201:341-360. ((https://doi.org/10.1093/botlinnean/boac067))

Förderung und Dank

Das RegioDiv Projekt wurde gefördert durch das Bundesamt für Naturschutz, Förderkennzeichen 3520 82 06A-AW, Modul 2. Wir danken Ina Geier und Martina Herrmann (UFZ) und Sabine Härtl, Maximilian Kurz, Sandra Rast und Maximilian Schall (Univ. Regensburg) für ihre engagierte und zuverlässige Laborarbeit und allen nicht genannten SammlerInnen.

Zusammenfassung: RegioDiv_Zus_V2.docx

Zusammenfassung

RegioDiv – Genetische Vielfalt krautiger Pflanzen in Deutschland: Zusammenfassung und Empfehlungen für die Regiosaatgut-Praxis Gebietseigenes Saatgut für Begrünungen und Renaturierungen in der Freien Landschaft wird in Deutschland nach Regeln des Regiosaatgutkonzeptes in 22 Ursprungsgebieten (UG) produziert. Das Projekt RegioDiv untersuchte die genetische Diversität von über 30 Pflanzenarten deutschlandweit, um zu überprüfen wie gut die beobachtete genetische Struktur dem geographischen Zuschnitt der Ursprungsgebiete entspricht. Es werden wichtige Einzelergebnisse vorgestellt und Empfehlungen für die Praxis gegeben. Jede Art zeigte ein artspezifisches innerartliches Diversitätsmuster, aber fast alle Arten zeigten das Muster von Isolationdurch-Distanz, also zunehmende genetische Distanz mit zunehmender räumlicher Entfernung. Bei einigen Arten mit mehreren Ploidiestufen, die eigenständige biologische Arten darstellen können, konnten auf Basis ihrer Verbreitungsgebiete spezifische Regeln entwickelt werden. Die Synthese der Verbreitungsmuster der innerartlichen Gruppen über alle Arten hinweg identifzierte Schwächen des aktuellen Ursprungsgebietssystems. Vorschläge für alternative Zuschnitte der UG, welche die genetische Vielfalt besser repräsentieren, werden vorgestellt. Diese bilden die Grundlage für mögliche Änderungen am UG-System, die in naher Zukunft mit den relevanten Akteuren erarbeitet werden müssen.

Stichworte: genetische Variation, genetische Differenzierung, Regiosaatgut, Ursprungsgebiet, Herkunftsregion, Polyploidie, Anpassung

Abstract

RegioDiv – Genetic diversity of herbaceous plants in Germany: summary and recommendations for seed zone management

Autochthonous seed material for ecological restoration is produced in accordance with the rules of the German Regiosaatgut system in 22 seed zones. The RegioDiv project analysed genetic diversity of more than 30 plant species in all seed zones to test how well seed zones represent genetic patterns. Important exemplary results and recommendations are presented. Each species showed a species specific pattern of genetic variation but nearly all species showed an isolation-by-distance pattern of increasing genetic distance with increasing geographic distance. For some species with multiple ploidy levels, which likely represent separate biological species, species-specific management rules were developed based on cytotype distribution. The synthesis of the distribution patterns of intraspecific genetic groups identified mismatches with current seed zones. Alternative seed zones that better integrate genetic patterns across all species are presented. They are the basis for potential changes to the seed zone system which have to be developed together with relevant stake holders in the near future.

Keywords: genetic variation, genetic differentiation, Regiosaatgut, seed transfer zone, region of origin, polyploidy, adaptation

Kasten 1 RegioDiv_NuL_Textbox_V2.docx

Genetische Struktur von Agrimonia eupatoria, Gemeiner Odermennig

Genetic structuring of Agrimonia eupatoria, common agrimony

Der Gemeine Odermennig, *Agrimonia eupatoria* (Abb. K1), ist eine in ganz Europa heimische Art, in Deutschland im Flach- und Hügelland weit verbreitet, im Nordwesten und den Mittelgebirgsregionen aber selten bis fehlend. Die Art ist tetraploid, im Gegensatz zum in Deutschland nur zerstreut vorkommenden *A. procera* (Großer Odermennig, oktoploid). Zwischen beiden Arten kann es zur Hybridisierung kommen, wobei die Nachkommen steril sind. Die Blüten des Gemeinen Odermennig werden von Schwebfliegen und Bienen besucht. Die mit Haken besetzten Früchte werden von größeren Tieren verbreitet. Die Art wurde als Zeigerpflanze für historisch altes Grasland identifiziert (Karlik, Poschlod 2019).

Hier wurden 355 Proben aus allen Ursprungsgebieten (UG) untersucht und an 3067 SNP-Markern genotypisiert. Einige der gesammelten Proben stellten sich als *A. procera* heraus und wurden aus dem Datensatz entfernt. Entsprechend der Gesamtverbreitung sind die herzynischen Mittelgebirge, der Schwarzwald, die Alpen und Voralpen schlecht repräsentiert.

Mittels Hauptkomponenten-Analyse (PCA) lassen sich die genetischen Distanzen zwischen den Proben darstellen (Abb. K1 A,B). Die PCA zeigt eine deutliche, räumlich-genetische Strukturierung, wobei sich entlang der ersten Achse (PC1) Proben aus dem Nordosten Deutschlands von eher südwestlich gelegenen Proben trennen. Entlang der zweiten Achse (PC2) trennt sich diese zweite Gruppe entlang einer Nordwest-Südost-Achse weiter auf. Die relative scharfe Trennung zwischen den Gruppen deutet auf langanhaltende Isolation hin und wäre kompatibel mit historischen disruptiven Ereignissen während der letzten Eiszeit. Auf pan-europäischer Skala sind die populationsgenetischen Signaturen, von z.B. verschiedenen glazialen Refugialgebieten und entsprechender postglazialer Migration bei vielen Grasslandarten erkennbar (z.B. Xue et al. 2023, Van Rossum et al. 2018)

Die modellbasierte Clusteranalyse weist ebenfalls auf eine ausgeprägte Populationsstruktur hin. Biologisch plausibel, d.h. mit eindeutigen individuellen Gruppenzuweisungen, und räumlich kohärent sind Lösungen mit zwei bis sechs Gruppen (Abb. K2). Mit zunehmender Gruppenzahl zeigt sich hier die Hierarchie der räumlich genetischen Struktur.

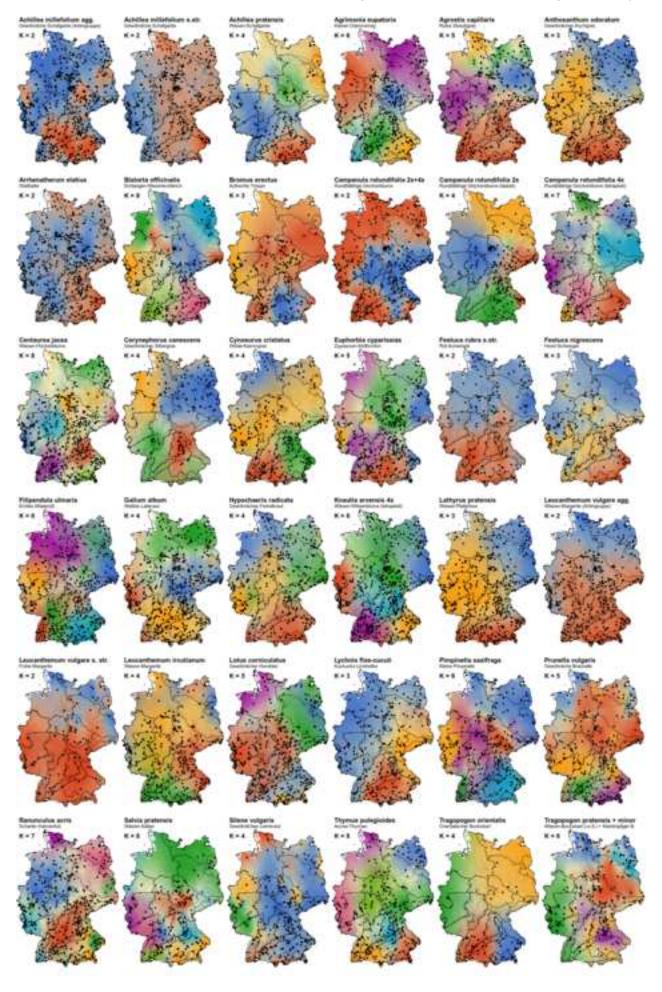
Wie in der PCA wird in der Clusteranalyse bei K=2 der Nordosten vom Südwesten getrennt, bei K=3 trennt sich die letztere Gruppe in eine West- und eine Südgruppe auf. Bei K=4 teilt sich diese Südgruppe weiter auf, bei K=5 trennt sich von der Nordostgruppe der mitteldeutsche Raum ab, bei K=6 separiert sich noch einmal eine kleine Gruppe im äußersten Südwesten. Einige der 22 Ursprungsgebiete lassen sich diesen Gruppen eindeutig zuordnen. Bei K=6 entsprechen die UG 3, 4 und 22 der nordöstlichen Gruppe (lila in Abb. K2), das UG 5 der mitteldeutschen Gruppe (blau) und die UG 11, 12 und 13 der mittleren Südgruppe (grün). Andere UG zeigen ein eher heterogenes Bild mit unterschiedlichen Gruppenanteilen, z.B. UG 6, 16, 17, 21.

Die globale Analyse der genetischen Varianz zeigt, dass für *A. eupatoria* die UG 6.4% der Gesamtvarianz erklären können. Dieser Anteil übersteigt den Mittelwert über alle untersuchten Arten deutlich (2.6 %). Dies belegt erneut die starke räumlich-genetische Strutur für diese Art.

Die genetische Differenzierung zwischen UG, gemessen an den paarweisen F_{ST} -Werten, ist daher ebenfalls vergleichsweise hoch. Alle UG sind signifikant voneinander differenziert mit F_{ST} -Werten meist zwischen 0.05 und 0.1. Diese paarweise Differenzierung steigt deutlich mit zunehmender räumlicher Distanz der UG, d.h. es besteht eine deutlich ausgeprägte Isolation-durch-Distanz mit – im Vergleich zu anderen Arten – hoher Steigung von 0.012 F_{ST} / 100 km (Abb. K3). Diese kontinuierliche Änderung der genetischen Zusammensetzung im Raum besteht auch innerhalb der durch die Clusteranalyse identifizierten Gruppen (Daten nicht gezeigt) und quantifiziert damit die kleinskaligste der von uns erfassbaren räumlich-genetischen Strukturen.

Bei einem Mangel an verfügbarem Saatgut könnte für ein bestimmtes Ursprungsgebiet Ersatz-Saatgut aus einem angrenzenden UG verwendet werden. Ob dies aus populationsgenetischer Sicht zulässig ist, läßt sich durch einen Vergleich der genetischen Distanzen zwischen Individuen innerhalb des Ziel-UG mit den genetischen Distanzen zwischen Ziel- und Ersatzgebiet bewerten. Nach dieser Analyse (Abb. K4) sind für *A. eupatoria* die Mehrzahl der möglichen Ziel- und Ersatzgebietskombinationen nicht tauglich. Für neun UG ist keine Nachbarregion als Ersatz geeignet, für elf UG kommen ein bis zwei Ersatzregionen in Frage und nur für die UG 15, 17 und 19 wäre ein Ersatz aus der Mehrzahl angrenzender UG möglich. *A. eupatoria* ist aber in den meisten der letztgenannten UG jedoch nur wenig verbreitet und wird damit über den Artenfilter ohnehin nicht als Regiosaatgut empfohlen.

Die Analysen zeigen detailliert die Muster der genetischen Vielfalt der Art in den Grenzen Deutschlands. Allerdings ist aufgrund der geographischen Beschränkung bei dieser und den anderen Arten ein umfassendes Verständnis der beobachteten räumlich-genetischen Muster nicht möglich. So können einzelne Befunde nur spekulativ interpretiert werden, z.B. die Besiedlungsgeschichte, die sich erst aus einer Areal-weiten oder zumindest gesamteuropäischen Perspektive erschließt (vgl. Taberlet 1998).


Abbildungsunter-/Tabellenüberschriften: RegioDiv_Leg_V2.docx

- Abb. 1: Verbreitung der innerartlichen genetischen Gruppen in Deutschland für 36 unterschiedene Taxa. Schwarze Linien stellen die Grenzen der 22 Ursprungsgebiete dar. Jede Farbe entspricht einer genetischen Gruppe, Farbmischung entspricht der Vermischung der Gruppen. Bei den gemischt-ploiden Arten Achillea millefolium agg., Campanula rotundifolia und Leucanthemum vulgare agg. wird sowohl die Karte der Ploidiestufen als auch die der intra-Ploidie-Variation gezeigt. Die Interpolation umfasst auch Gebiete, in denen die Arten nicht verbreitet sind (z.B. bei Salvia pratensis).
- Fig. 1: Distribution of intraspecific genetic groups in Germany for 36 plant taxa. Black lines represent the boundaries of the 22 seed zones. Colors represent genetic groups, mixed colors indicate mixture or admixture of genotypes. In mixed-ploid taxa *Achillea millefolium* agg., *Campanula rotundifolia* and *Leucanthemum vulgare* agg. both a map of ploidy levels and of intra-ploidy groups is shown. The interpolation covers whole Germany irrespective of distribution gaps (e.g. in *Salvia pratensis*).
- Abb. 2: Verbreitung der diploiden und tetraploiden Cytotypen von *Campanula rotundifolia* in Deutschland. Schwarze Linien stellen die Grenzen der 22 Ursprungsgebiete dar.
- Fig. 2: Distribution of diploid and tetraploid cytotypes of *Campanula rotundifolia* in Germany. Black lines represent the boundaries of the 22 seed zones.
- Abb. 3: Aktuelle (schwarze Grenzen) und alternative (farbige Polygone) Ursprungsgebiete, aggregiert aus Teilgebieten der Ursprungsgebiete. **A** Rein algorithmisch erzeugte Variante mit 19 UG auf Basis der PCA-Analysen (sV_{UG} = 0.748, Abb. 89H in Durka et al. 2024). **B** Expertenvorschlag mit 19 UG (sV_{UG} = 0.724), der wesentliche Ergebnisse der algorithmischen Lösungen integriert, ganze UG vereinigt, z.B. um Angebotsengpässe zu mindern und eigenständigen (Mittel-)Gebirgen wegen derer biogeographischer Eigenständigkeit.
- Fig. 3: Current (black outline) and alternative (colored polygons) seed zones, aggregating partial seed zones. **A** Purely algorithmic solutions with 19 zones based on PCA analysis ($sV_{UG} = 0.748$, Abb. 89H in Durka et al. 2024). **B** Expert proposal with 19 seed zones ($sV_{UG} = 0.724$) which integrates major findings of algorithmic solutions, unites whole zones, e.g. to reduce shortage of seed supply and which keeps mountain ranges separate due to their biogeographic uniqueness.

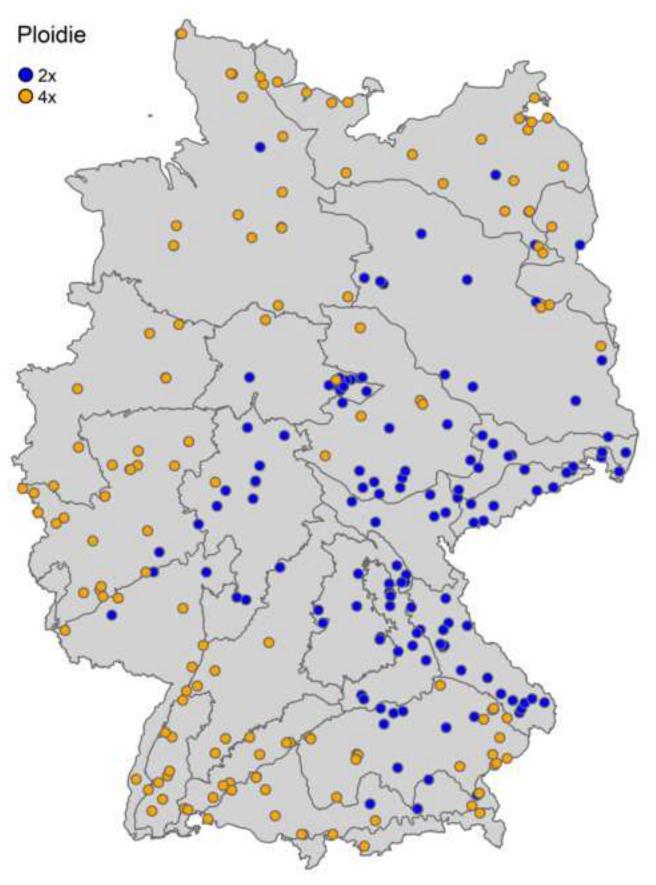
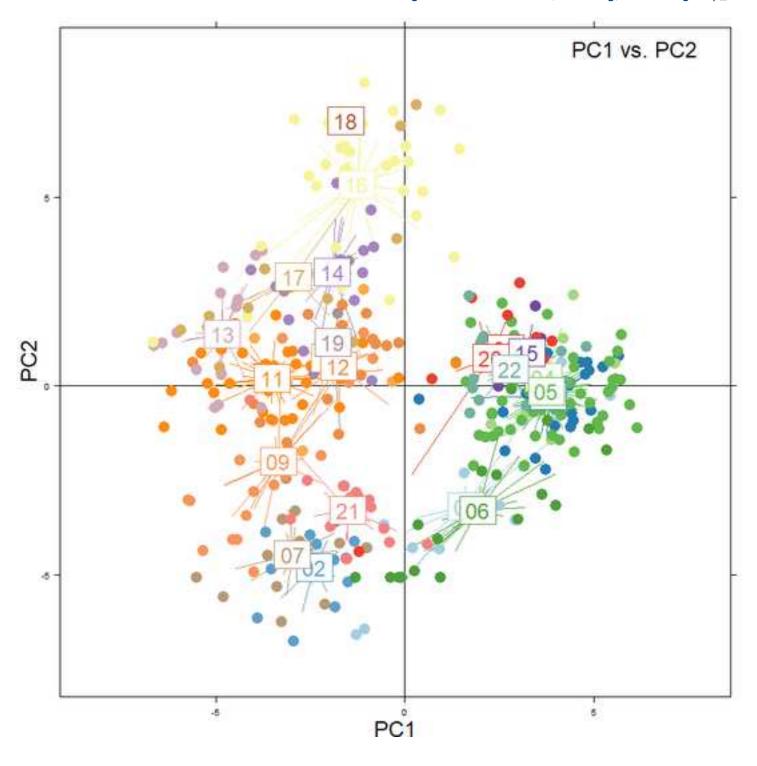
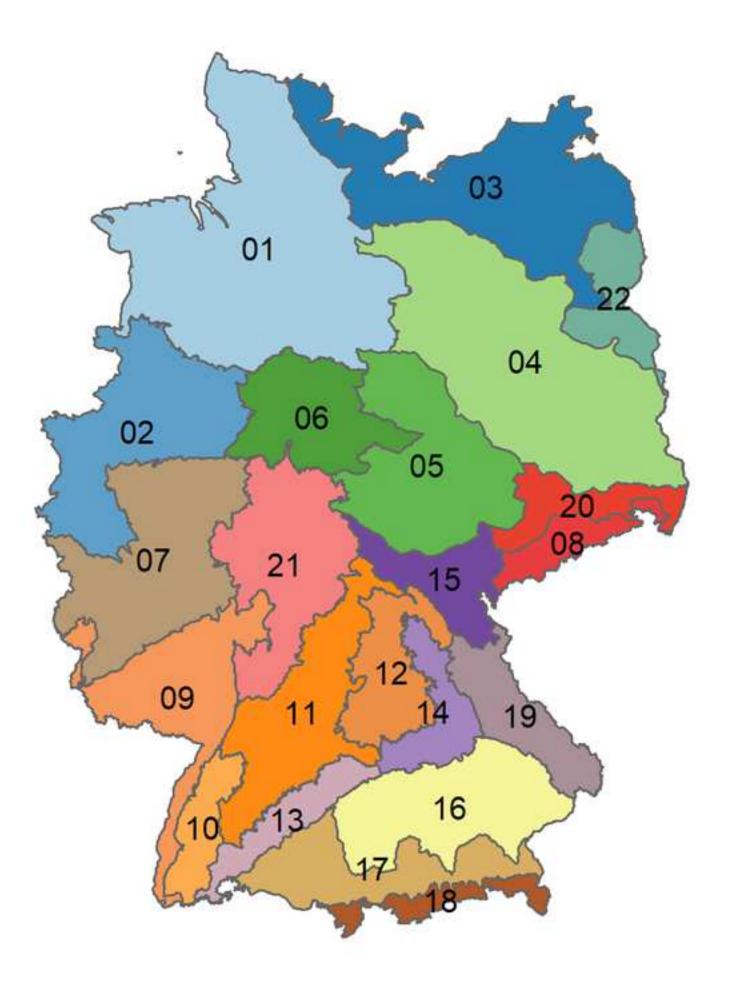
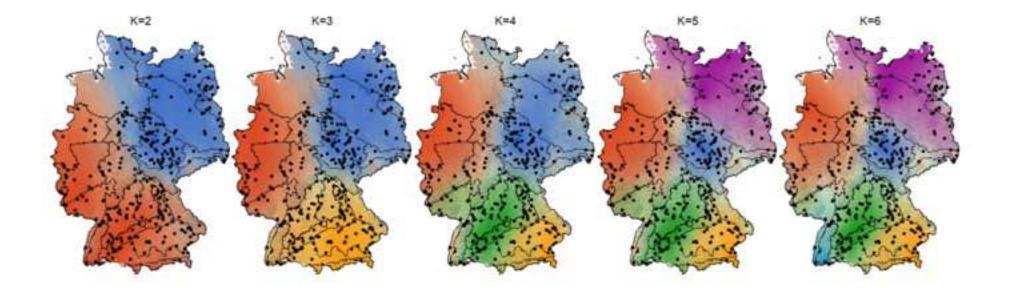

Abbildungen im Kasten

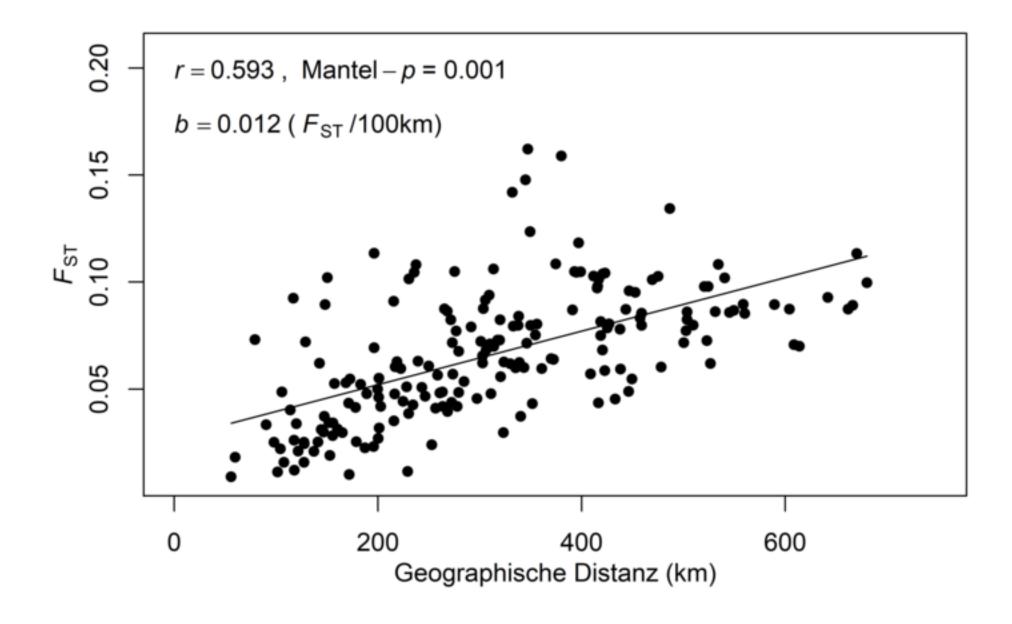
Abb. K1: **A** Darstellung der genetischen Distanzen zwischen den Proben zwei Achsen einer PCA für *A. eupatoria*, den Gemeinen Odermennig. Farben und Nummern repräsentieren das Ursprungsgebiet der jeweiligen Probe. **B** Karte der 22 Ursprungsgebiete. **C** *Agrimonia eupatoria* L., Aufnahme von Donald Hobern, Wikimedia Commons.

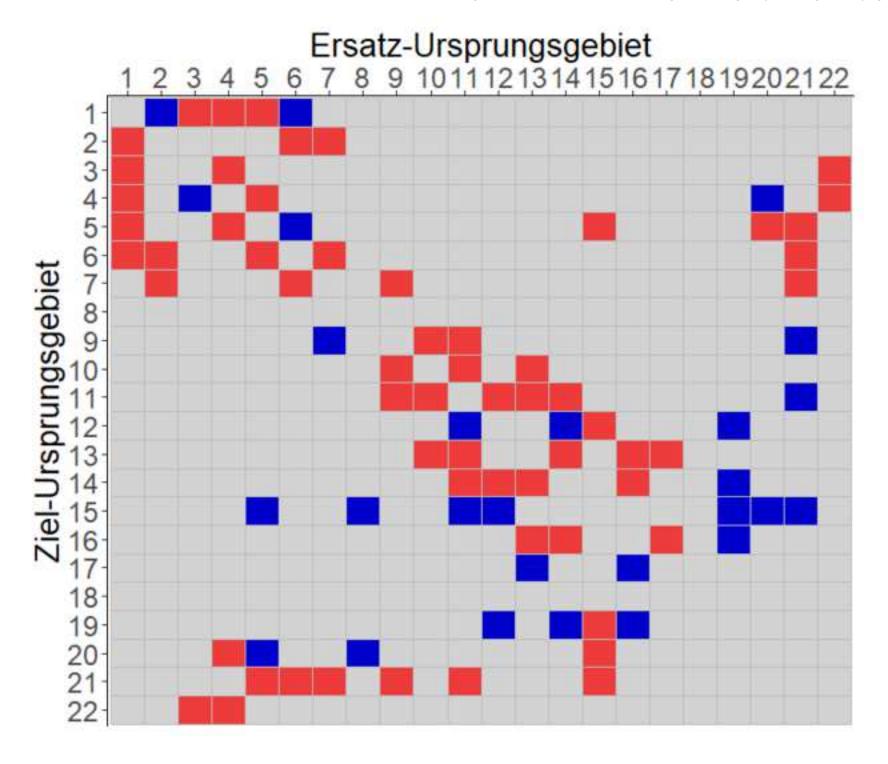
- Fig. K1: A Visualisation of the first two axis of a PCA for *A. eupatoria*. Colors and numbers represent seed zones. **B** Map of the 22 seed zones in Germany. **C** *Agrimonia eupatoria* L., picture by Donald Hobern, Wikimedia Commons.
- Abb. K2: Verbreitung innerartlicher genetischer Gruppen auf Basis der räumlichen Interpolation individueller Abstammungskoeffizienten für zwei bis sechs Gruppen (K=2-6) in *Agrimonia eupatoria*.
- Fig. K2: Distribution of intraspecific genetic groups based on spatial interpolation of individual ancestry coefficients for two to six ancestral groups (K=2-6) in *Agrimonia eupatoria*.
- Abb. K3: Isolation-durch-Distanz bei A. eupatoria. Dargestellt ist die paarweise genetische Differenzierung (F_{ST}) in Abhängigkeit von der räumlichen Distanz zwischen Ursprungsgebieten, welche hier als Population interpretiert werden.
- Fig. K3: Isolation-by-distance pattern in *A. eupatoria*. Plot of pairwise genetic differentiation (F_{ST}) in relation to spatial distances among seed zones, which were here interpreted as populations.
- Abb. K4: Zulässige (blau) und unzulässige (rot) Kombinationen aus Zielgebiet und Ersatzgebiet für *A. eupatoria*. Aus populationsgenetischer Sicht mögliche Kombinationen aus Zielursprungsgebiet mit einem benachbarten Ersatzgebiet sind in blau, ungeeignete in rot dargestellt. Grau hinterlegt sind Kombination nicht benachbarter Gebiete, bzw. mit ungenügenden Daten für eine Bewertung.
- Fig. K4: Visualization of the potential of neighboring seed zones to substitute seed for a given seed zone in *A. eupatoria*. Possible combinations in blue, unsuitable combinations in red. In gray, combinations between non-neighboring seed zones, or combinations with lacking data.
- Tab. 1: Untersuchte Arten bzw. Taxa mit der Anzahl an beprobten Sammelorten, der Anzahl an genetisch untersuchten Proben, der Anzahl an SNP-Markern und der Anzahl an Chloroplasten-Markern.
- Tab. 1: Study species and taxa with number of sampling sites, number of samples analysed genetically, number SNP markers and number of chloroplast markers.




Campanula rotundifolia







Art / Taxon	N Sammelorte	N Proben	N SNP-Marker	N. cpSNP-Marker
Achillea millefolium agg.	577	639	5813	69
Achillea millefolium	375	378	5047	60
Achillea pratensis	167	173	4409	57
Agrimonia eupatoria	343	355	3067	57
Agrostis capillaris	365	368	11341	60
Anthoxanthum odoratum	382	598	9392	133
Arrhenatherum elatius	497	517	10318	56
Bistorta officinalis	209	222	8122	61
Bromus erectus	201	224	10319	69
Campanula rotundifolia	337	348	4482	117
Campanula rotundifolia 2x	149	153	3713	78
Campanula rotundifolia 4x	188	195	4261	102
Centaurea jacea	492	522	10139	220
Corynephorus canescens	136	188	9018	61
Cynosurus cristatus	260	270	6984	49
Euphorbia cyparissias	367	389	6974	177
Festuca rubra agg.	327	332	7194	64
Festuca nigrescens	152	155	5697	48
Festuca rubra s. str.	154	156	5572	53
Filipendula ulmaria	420	431	5646	116
Galium album	518	538	9403	70
Hypochaeris radicata	315	345	3286	98
Knautia arvensis	533	961	6397	113
Knautia arvensis 2x	28	56	2510	53
Knautia arvensis 4x	515	891	6103	109
Lathyrus pratensis	423	428	1465	19
Leucanthemum vulgare agg.	387	507	3451	81
Leucanthemum ircutianum (4x)	305	394	3352	79
Leucanthemum vulgare (2x)	95	113	2410	56
Lotus corniculatus	460	477	3669	54
Lychnis flos-cuculi	293	454	2457	27
Pimpinella saxifraga	317	347	3106	108
Prunella vulgaris	288	295	3517	62
Ranunculus acris	448	458	2982	34
Salvia pratensis	216	220	4268	78
Silene vulgaris	275	297	4288	64
Thymus pulegioides	306	318	5012	278
Tragopogon pratensis agg.	354	380	7581	171
Tragopogon pratensis incl. minor	261	236	3439	123

Traaopoaon orientalis	83	29	4653	115
i iraaoboaon onentans	00	1 09	4000	112

RegioDiv Konsortium / RegioDiv Consortium

Im RegioDiv Konsortium arbeiten verschiedene Privatpersonen und VertreterInnen öffentlicher Behörden, von Landschaftspflegevereinen, Naturschutzverbänden, ökologischen Dienstleistern und aus der Wissenschaft zusammen, um Material von Wildpflanzen für die Analyse der genetischen Vielfalt zu sammeln. Weitere Informationen unter https://www.ufz.de/regiodiv/.

The RegioDiv consortium is a cooperation platform consisting of many private persons and representatives of public administration, landscape conservancy associations, nature conservation organizations, ecological service providers and from science with the aim to collect plant material from wild plant species for the analysis of genetic variation. Further information at https://www.ufz.de/regiodiv/.

Das RegioDiv-Projekt wurde gefördert vom Bundesamt für Naturschutz im Auftrag des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, Geschäftszeichen: 3520 82 06A-AW, MODUL 2

RegioDiv was funded by Bundesamt für Naturschutz on behalf of the Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz, reference number: 3520 82 06A-AW, MODUL 2

Das RegioDiv Konsortium umfasst folgende Personen:

The RegioDiv consortium consists of the following people:

Nr	Titel	Name	Institution	Stadt
1		Wolfram Adelmann	Bayerische Akademie für Naturschutz und Landschaftspflege (ANL)	83410 Laufen
2		Markus Bauer	Technische Universität München, TUM School of Life Sciences, Lehrstuhl für Renaturierungsökologie, https://orcid.org/0000-0001-5372-4174	85354 Freising
3		Robert Bauer	Landschaftserhaltungsverband Landkreis Ravensburg e.V.	88212 Ravensburg
4		Birgit Beermann		69115 Heidelberg
5	Dr.	Walter Bleeker	Biodiversitätsmanagement	49082 Osnabrück
6		Rainer Borcherding	Schutzstation Wattenmeer	25813 Husum

Nr	Titel	Name	Institution	Stadt
7		Barbara Bouillon	Biologische Station im Rhein-Sieg-Kreis e.V.	53783 Eitorf
8		Stefan Brändel	Botanischer Garten der Universität Ulm	89081 Ulm
9		Lara Braun		72525 Münsingen
10		Thomas Braun	Haus der Natur - Biologische Station im Rhein-Kreis Neuss e.V.	41540 Dormagen
11		Thomas Breunig	Institut für Botanik und Landschaftskunde	76185 Karlsruhe
12	Prof. Dr.	Anna Bucharova	Conservation Biology, Philipps-University Marburg	35043 Marburg
13		Franziska Bucher		07743 Jena
14		Michael Buß	Landschaftserhaltungsverband Hohenlohekreis e.V.	74653 Künzelsau
15		Cora Carmesin	Universität Ulm, Institut für Botanik	89081 Ulm
16		Silke Dehe		56355 Hunzel
17		Anja Dichtl		84371 Triftern- Anzenkirchen
18		Wolfgang Diewald	Büro für Botanik	94315 Straubing
19		Christian Dolnik	Stiftung Naturschutz Schleswig-Holstein	24113 Molfsee
20	Dr.	Walter Durka	Helmholtz Zentrum für Umweltforschung- UFZ GmbH	06120 Halle
21		Julia Eberl		96123 Litzendorf
22		Pia Eibes	Institute of Physical Geography, Goethe- Universität Frankfurt	60438 Frankfurt am Main
23		Annika Eickelmann	Biologische Station Hochsauerlandkreis e.V.	59929 Brilon
24	Dr.	Michael Ewald	Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie	76131 Karlsruhe
25		Thomas Frankenberg		54316 Pluwig
26		Klara Friederich	Landschaftserhaltungsverband Hohenlohekreis e.V.	74653 Künzelsau

Nr	Titel	Name	Institution	Stadt
27		Vinzenz Gilgenreiner		93049 Regensburg
28		Ronny Goldberg	Nationalpark Sächsische Schweiz -SBS	01814 Bad Schandau
29		Andreas Golde		09599 Freiberg
30	Dr.	Kerstin Grant	Landwirtschaftliches Zentrum Baden- Württemberg (LAZBW)	88326 Aulendorf
31		Claudia Gruber	Landschaftspflegeverband Ostallgäu e.V.	87616 Marktoberdorf
32		Kerstin Günther		16515 Oranienburg
33		Sebastian Haas		90537 Feucht
34	Prof. Dr.	Sylvia Haider	Leuphana Universität Lüneburg, Institut für Ökologie	21335 Lüneburg
35		Bernhard Hake	Naturschutzbeauftragter Schwarzwald- Baar-Kreis	79215 Biederbach
36		Alexander Harpke	Helmholtz Zentrum für Umweltforschung- UFZ GmbH	06120 Halle
37		Friedhelm Haun	Landratsamt Kulmbach	95326 Kulmbach
38		Peter Heffner	Landschaftserhaltungsverband LK Biberach e.V.	88400 Biberach
39		Johannes Höfner	Helmholtz Zentrum für Umweltforschung- UFZ GmbH	06120 Halle
40		Birgitta Hohnheiser	Naturpark Altmühltal (Südliche Frankenalb) e.V.	85072 Eichstätt
41		Alexander Holstein	Landwirtschaftliches Technologiezentrum Augustenberg LTZ	75334 Straubenhardt
42		Jakob Huber	Lehrstuhl für Renaturierungsökologie, Technische Universität München	55758 Stipshausen
43		Desiree Jakubka		07743 Jena
44	Dr.	Rico Kaufmann		75323 Bad Wildbad
45	Dr.	Stefan Kesting	LFULG Sachsen	08543 Pöhl
46		Gitte Kieke		15537 Gosen-Neu Zittau
47		Uta Kietsch	Wildsamen-Insel	17268 Temmen-
		1		

Nr	Titel	Name	Institution	Stadt
				Ringenwalde
48		Karsten Kindermann		32139 Spenge
49		Karel Kleijn		94545 Hohenau
50		Astrid Kohl	Landschaftserhaltungsverband KN e.V.	78333 Stockach
51		Anna Kohnle		72401 Haigerloch
52		Filip Kolar	Department of Botany, Faculty of Science, Charles University	128 01, Prague
53	Dr.	Lotte Korell	Department Biozönoseforschung, Helmholtz-Zentrum für Umweltforschung GmbH - UFZ	06120 Halle
54		Birgit Krummhaar	Förder- und Landschaftspflegeverein BR Mittlere Elbe e.V.	06844 Dessau-Roßlau
55	Dr.	Dierk Kunzmann	ILÖC	26215 Wiefelstede OT Ofenerfeld
56		Sabrina Laufenburg	Pamme Saatgut und Wildpflanzen	37671 Höxter
57	Dr.	Daniel Lauterbach	Botanischer Garten der Universität Potsdam	14469 Potsdam
58		Simon Leib	Rieger-Hofmann GmbH	74523 Schwäbisch Hall
59		Katharina Leib		99097 Erfurt
60	Dr.	Nikola Lenzewski	Universität Hamburg, Institut für Pflanzenwissenschaften und Mikrobiologie	22609 Hamburg
61		Cora Leroy		92360 Weihersdorf
62	Prof. Dr.	Ilona Leyer	Hochschule Geisenheim	65366 Geisenheim
63		Holger Loritz	Bürogemeinschaft ABL : Arten - Biotope - Landschaft	79102 Freiburg
64		Anna-Maria Madaj	Department Biozönoseforschung, Helmholtz-Zentrum für Umweltforschung GmbH - UFZ	06120 Halle
65	Dr.	Elke Maier		80997 München

Nr	Titel	Name	Institution	Stadt
66	Dr.	Ann Kareen Mainz	Verband deutscher Wildsamen- und Wildpflanzenproduzenten e.V.	35428 Langgöns
67		Rene Mause	Biologische Station im Kreis Düren e. V.	52385 Nideggen
68		Kristine Mayer		54497 Morbach-Hoxel
69		Philipp Meinecke	Ausgleichsagentur Schleswig-Holstein GmbH	23829 Kükels
70		Hanna Mertens		52066 Aachen
71		Maren H. Meyer	Hochschule Anhalt, Fachbereich Landwirtschaft, Ökotrophologie und Landschaftsentwicklung	06406 Bernburg (Saale)
72		Stefan Michalski	Helmholtz Zentrum für Umweltforschung- UFZ GmbH	06120 Halle
73		Jörg Mildenberger	Stadtgärtnerei Stadt Straubing	94315 Straubing
74		Marco Müller	Naturpark Bayerischer Wald	94065 Waldkirchen
75	Dr.	Christina M. Müller	Justus-Liebig-Universität Giessen AG Spezielle Botanik	35390 Giessen
76		Martin Musche	Department Naturschutzforschung, Helmholtz-Zentrum für Umweltforschung GmbH - UFZ	06120 Halle
77	Prof. Dr.	Christoph Oberprieler	Universität Regensburg, Institut für Pflanzenwissenschaften, Professur für Evolution und Systematik der Pflanzen	93053 Regensburg
78		Wolfgang Petrick		
79		Simone Peuleke	Naturpark Nördlicher Oberpfälzer Wald	92660 Neustadt an der Waldnaab
80	Dr.	Hans Pfestorf	Büro für Wissenschaftlichen Naturschutz	99094 Erfurt
81		Barbara Pfitzner		86529 Schrobenhausen
82		Elisabeth Pleyl		82057 Icking
83		Simon Reith		94032 Passau
84		Martin Renger		

Nr	Titel	Name	Institution	Stadt
85		Tina Richter	Landschaftsplanung Freital	01705 Freital
86		Kerstin Rieche	LfLSA-Landesverband für Landschaftspflege Sachsen-Anhalt e. V.	38899 Hasselfelde
87		Michael Ristow	Universität Potsdam, Vegetationsökologie und Naturschutz	14476 Potsdam
88		Christoph Rosche	Martin-Luther-Universität Halle- Wittenberg, Institut für Biologie / Geobotanik	06108 Halle (Saale)
89	PD Dr.	Christiane Roscher	Department Physiologische Diversität, Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, und Deutsches Zentrum für Integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig	04103 Leipzig
90		Annemarie Röske		06110 Halle (Saale)
91		Jessica Rossow	Landschaftspflegeverband Dingolfing- Landau e.V.	84130 Dingolfing
92	Dr.	Jochen Späth	Landschaftspflegeverband Dingolfing- Landau e.V.	84130 Dingolfing
93	Prof. i.R. Dr.	Barbara Ruthsatz	Universität Trier	54296 Trier
94		Beate Rutkowski	Bund Naturschutz Traunstein e.V., Landschaftspflegeverband Traunstein e.V.	83278 Traunstein
95	Dr.	Daniel Rutte	Universität Bonn, Institut für Geowissenschaften	53115 Bonn
96		Ariane Sambataro	Bund Naturschutz Seubersdorf	92358 Seubersdorf/Schnufenho fen
97	Dr.	Annemarie Schacherer		30853 Langenhagen
98		Leonie Schaefer	Landschaftspflegeverband Oberallgäu- Kempten	87527 Sonthofen
99		Sabine Schlenkermann		04838 Eilenburg
100	Prof. i.R.	Wolfgang Schmidt		37136 Waake

Nr	Titel	Name	Institution	Stadt
	Dr.			
101		Joraine Schmoldt	Universität Greifswald	17489 Greifswald
102	Dr.	Simone Schneider	Nationalmuseum für Naturgeschichte Luxemburg	2160 Luxembourg, Luxemburg
103		Robert Schönfeld	Gartengestaltung	79299 Wittnau
104	Dr.	Roland Schröder	DBU Naturerbe GmbH	49090 Osnabrück
105		Werner Schubert	Biologische Station Hochsauerlandkreis e.V.	59929 Brilon
106		Friederike Schumann	Biologische Station Minden- Lübbecke e.V.	32425 Minden
107		Jan-Hinnerk Schwarz		17489 Greifswald
108		Helene Seitz	Verein Naturpark Oberpfälzer Wald e.V.	92507 Nabburg
109	Dr.	Kristýna Šemberová	Czech Academy of Sciences, Institute of Botany	CZ-25243, Průhonice, Czech Republic
110		Birgit Simmeth	Landkreis Schwandorf	92421 Schwandorf
111	Dr.	Sandra Skowronek	Bundesamt für Naturschutz	53179 Bonn
112	Dr.	Stephanie Socher	Paris Lodron University Salzburg, Botanical Garden	A-5020 Salzburg, Austria
113		Monika Sommer		33397 Rietberg
114	Dr.	Nils Stanik	Universität Kassel, Fachgebiet Landschafts- und Vegetationsökologie	34127 Kassel
115		Laura Steiner	Naturpark Oberer Bayerischer Wald	93413 Cham
116		Ann-Katrin Stockinger	Naturpark Altmühltal (Südliche Frankenalb) e.V.	91161 Hilpoltstein
117		Anne Straub	Ökologin	88273 Fronreute
118		Melanie Takla	Nagola Re GmbH	03197 Jänschwalde
119		Cynthia Tobisch	Hochschule Weihenstephan-Triesdorf, Institut für Ökologie und Landschaft	85354 Freising

Nr	Titel	Name	Institution	Stadt
120		Gisela Twenhöven		25853 Bohmstedt
121	Dr.	Alina Twerski	Leuphana Universität Lüneburg, Institut für Ökologie	21335 Lüneburg
122		Linda Vogt		86647 Buttenwiesen
123		Katrin Voigt	Regierungspräsidium Tübingen, Referat für Naturschutz und Landschaftspflege	72072 Tübingen
124		Guido Warthemann		06842 Dessau-Roßlau
125		Johanna Webersberger	Landratsamt Deggendorf	94469 Deggendorf
126		Carmen Weicker-Zöller		63897 Miltenberg
127		Karin und Martin Weiß		73467 Kirchheim/Ries
128		Gabriele Weiß	ecostrat GmbH	04741 Roßwein
129	Dr.	Maria Weißbecker		65326 Aarbergen
130		Markus Wieden†	Verband deutscher Wildsamen- und Wildpflanzenproduzenten e.V.	35428 Langgöns
131		Alexander Wille	UmweltPlan GmbH Stralsund	17489 Greifswald
132		Inga Willecke	Stiftung NaturSchutzFonds Brandenburg	14473 Potsdam
133		Laura Wollschläger	Naturpark Oberer Bayerischer Wald	93413 Cham
134		Markus K. Zaplata	Nagola Re GmbH + Hochschule Anhalt, Fachbereich Landwirtschaft, Ökotrophologie und Landschaftsentwicklung	03197 Jänschwalde + 06406 Bernburg (Saale)
135	Dr.	Andreas Zehm	Bayerisches Staatsministerium für Umwelt und Verbraucherschutz (StMUV)	81925 München
136	Prof. Dr.	Christian Zidorn	Universität zu Kiel, Abteilung für Pharmazeutische Biologie	24118 Kiel
137		Lutz Zwiebel	Landwirtschaft Wildpflanzensaatgut	Markersdorf

Vita/Adressen: RegioDiv_Vita_V1.docx

Dr. Walter Durka

Department Biozönoseforschung (BZF)

Helmholtz-Zentrum für Umweltforschung – UFZ

Theodor-Lieser-Str. 4

06120 Halle (Saale), Deutschland

und

Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

Puschstrasse 4

04103 Leipzig, Deutschland

Der Autor studierte Biologie an der Universität Bayreuth und promovierte in den Themfeldern Vegetation und Biogeochemie. Leiter der Arbeitsgruppe "Molekulare Ökologie" am Helmholtz-Zentrum für Umweltforschung – UFZ in Halle mit den Arbeitsschwerpunkten Populationsgenomik von Pflanzen und populationsbiologisch relevante Merkmale der Flora Deutschlands.

Autoren in Reihenfolge:

Walter Durka^{1,2}, Stefan G. Michalski¹, Johannes Höfner¹, Filip Kolář³, Christina M. Müller⁴, Christoph Oberprieler⁵, Kristýna Šemberová⁶ und das RegioDiv Konsortium⁷

¹Department Biozönoseforschung (BZF), Helmholtz-Zentrum für Umweltforschung - UFZ, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Deutschland

²Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Deutschland

- ³ Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Praha 2, Czech Republic
- ⁴ AG Spezielle Botanik, Justus-Liebig-Universität, Stephanstraße 24, 35390 Gießen, Deutschland
- ⁵ AG Evolution und Systematik der Pflanzen, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Deutschland
- ⁶ Czech Academy of Sciences, Institute of Botany, Zámek 1, 252 43 Průhonice, Czech Republic

⁷Die Mitglieder des RegioDiv Konsortiums sind in Anhang 1 aufgelistet