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Abstract 14 

The transit time distribution (TTD) is a lumped method to characterize the diverse flow paths of a 15 

hydrological system, and the StorAge Selection function (SAS) is one of the time-variant forms, 16 

representing the link between storage and outflow. Although it provides age information about the 17 

water parcels and nutrient legacy, the spatial heterogeneity cannot be captured by this method. 18 

While the distributed physically-based hydrological models (PBHMs) can reflect the spatial 19 

heterogeneous in climate, land cover and management, its simplification of subsurface processes 20 

prevents it from representing the subsurface nutrient transport and sometimes fails to capture 21 

nutrient legacy dynamics of the landscape. We attempted to couple SAS functions into a PBHM 22 

(SWAT) for calculating the nitrate dynamics of aquifers. The results show that both SWAT-SAS 23 

and SWAT can reproduce the in-stream dynamics of streamflow and nitrate concentration for the 24 

Upper Selke catchment; the coupled model allows more flexibility of storage release schemes and 25 

provides water age information of the aquifers; even though both the models simulated comparable 26 
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in-stream nitrate concentrations, the nitrate store remained in aquifers varied, which will have 27 

varying implications for pollution goal assessment and nutrient management. 28 

Keywords: Hydrological model, SWAT, StorAge Selection function, Transit time distribution, 29 

Nutrient transport 30 

1 Introduction 31 

Despite years of action and reductions in nitrogen (N) emissions, N pollution levels have not 32 

achieved the expected results (Basu et al., 2022). The perplexing occurrences are widespread and 33 

pose significant challenges to resource conservation, watershed management and adaptation to 34 

climate change (Basu et al., 2022; Meter et al., 2018; Van Vliet et al., 2023). Recent studies have 35 

suggested that neglecting the N legacy store in the landscape is one of the key drivers of the failure 36 

cases (Basu et al., 2022; McDowell et al., 2021). It has also been estimated that a significant portion 37 

of N is retained in the catchment for years or even decades (Ehrhardt et al., 2021), and the lag time 38 

between management and riverine response would vary according to factors like slope and 39 

hydroclimate (McDowell et al., 2021). Many geochemical observations of conservative tracers 40 

have reported the “old water paradox,” emphasizing the contribution of previously stored water to 41 

the streamflow in response to rainfall inputs. Either the obstacle to improving water quality caused 42 

by the N legacy or the mismatch between inputs and outputs during the storm events is related to 43 

the transport pathways within the catchment. At present, linking the water flow and solute transport 44 

in a comprehensive framework remains a challenge due to the spatial and temporal heterogeneity 45 

of the hydrologic system, data scarcity, and model limitation, but is essential for understanding the 46 

biogeochemical processes, predicting the hydrologic response, environmental assessment, and 47 

resource management (Blöschl et al., 2019). The standard metrics (e.g., flow, water level, and 48 

solute concentration) are not sufficient to support hydrologists in unrevealing the “black box” of 49 
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subsurface processes, and the transit time concept is emerging as a common method to represent 50 

both flow and transport (Benettin et al., 2022).  51 

Transit time (TT) is the time it takes for a water parcel to travel through a catchment. By tagging 52 

the water parcels with “time stamps,” the complex three-dimensional flow path is simplified by a 53 

one-dimensional descriptor and the age of a water parcel suggests how long it takes for the water 54 

parcel to reach the outlet. The transit time distribution (TTD) is the probability density function of 55 

TT for ensemble water parcels, which is an integrated descriptor to characterize the statistical 56 

properties of diverse flow paths. TTDs connect to the process complexity of a catchment, 57 

indicating how the catchments retain and release water and solutes (Botter et al., 2011; McGuire 58 

et al., 2007; McGuire and McDonnell, 2006; Rinaldo et al., 2015).  59 

In early work, the TTDs of hydrologic systems were generally assumed to have a prior form (e.g., 60 

gamma distribution and exponential distribution) and the parameters are estimated through tracer 61 

experiments (Kirchner et al., 2000; Maloszewski and Zuber, 1993, 1982; McDonnell et al., 2010; 62 

McGuire and McDonnell, 2006; Niemi, 1977; Rinaldo and Marani, 1987). However, hydrologic 63 

systems are typically heterogeneous in space and time, including the internal changes in flow paths, 64 

soil moisture and hydraulic conductivities, as well as the external aspects of meteorological 65 

conditions and surface variability. For the former, the TTD theory needs to be developed to reflect 66 

the dynamics of internal processes. As demonstrated by many tracer experiments and simulations, 67 

the TTD should be time-variant to reflect arbitrary input forcings and related process dynamics 68 

(Botter et al., 2011, 2010; Harman, 2015; Heidbüchel et al., 2013; Hrachowitz et al., 2010; 69 

Rodriguez et al., 2019; Velde et al., 2012). The StorAge Selection (SAS) function is one of the 70 

new models and approaches introduced in recent years, which can be employed in a time-variant 71 

system (Botter et al., 2011; Rinaldo et al., 2015). Instead of formulating the TTD directly, the SAS 72 
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function links relationship between the storage and outflow, representing how the storage is 73 

selected and contributes to discharge (Harman, 2015). SAS function is mathematically 74 

parsimonious and flexible to describe different transport behaviors of the system with only a few 75 

parameters. It is becoming a hot spot for transit time modeling (Meira Neto et al., 2022; Nguyen 76 

et al., 2021, 2022b; Rinaldo et al., 2015) in various scales and areas including bench-scale 77 

experiments (Meira Neto et al., 2022), hillslope landscape (Kim et al., 2022), deep valley 78 

(Rodriguez et al., 2021), agricultural catchment (Dupas et al., 2020), lowland catchment (Velde et 79 

al., 2010), mesoscale catchment (Nguyen et al., 2021, 2022b) and some complex areas such as 80 

karst area (Z. Zhang et al., 2020; Zhang et al., 2021). However, time-variant TTDs such as SAS 81 

function are lump-parameter methods and still cannot capture the spatial heterogeneity. Although 82 

the variant rainfall data can be input into the models, the spatial distribution of geomorphology 83 

and land cover, which might significantly influence the hydrological processes and further the in-84 

stream hydrographs, are not well represented in this approach.  85 

The distributed Process-based hydrological model (PBHM) provides clear physical meaning and 86 

considers both spatial distribution complexity and process complexity, allowing it to represent the 87 

heterogeneity of climate and land cover, as well as the processes within landscapes and channels. 88 

Some attempts have been made to infer transit times from the fully distributed PBHM, and 89 

subsequently to improve the matter transport representation. For example, the MIPs (Multiple 90 

Interacting Pathways) framework (Davies et al., 2013), the WATET (Water Age and Tracer 91 

Efficient Tracking) based on TOPKAPI-ETH (Remondi et al., 2018), Eco-Silm (Maxwell et al., 92 

2019), ParFlow-SLIM methods (Danesh-Yazdi et al., 2018; Engdahl and Maxwell, 2015), the 93 

NIHM-based model (Weill et al., 2019) and mHM-OGS (Jing et al., 2021). However, these 94 

methods are data-intensive, and more data and greater computational resources are required for 95 
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large study areas. In addition, implementing fully distributed PBHMs in real-word scenarios faces 96 

challenges in terms of scale effect, parameterization difficulties, and limited applicability of 97 

watershed management.  98 

With the increasingly significant impact of anthropogenic activities and climate change on human 99 

society and ecosystems, simulating the hydrological and water quality effects under changing 100 

environments is of great necessity for water resources protection and watershed management. The 101 

semi-distributed PBHMs such as SWAT and HSPF have provided good considerations in spatial 102 

heterogeneity and discretization calculation, which have been successfully applied in various 103 

scales of catchments. However, the solute transport model of these models has been noted to have 104 

limitations in representing subsurface heterogeneity. Some research and models make a difference 105 

by introducing retention/passive storage, more detailed flow mechanisms or new parameters to 106 

improve the chemical response (Hrachowitz et al., 2013; Renée Brooks et al., 2010; X. Yang et al., 107 

2018). These methods also introduce much uncertainty, and the model might become bulky for 108 

more complicated areas. A unified theory is needed to generalize the transport processes beneath 109 

the surface (Hrachowitz et al., 2016; Kirchner, 2003; Lutz et al., 2022). Recently, there has been 110 

an increasing awareness of using transit time information for water quality models (Benettin et al., 111 

2022; Fu et al., 2019; Hrachowitz et al., 2016; Rinaldo et al., 2015). The TTD/SAS concepts have 112 

been successfully implemented in water quality models for hillslope scale (Kim et al., 2022), 113 

mesoscale catchments (Nguyen et al., 2022a, 2021), lakes (A. A. Smith et al., 2018) and 114 

catchments with strong seasonality (Yang et al., 2021), improving the process representation as 115 

well as giving physically interpretation of the results. 116 

Here, we propose to couple the SAS function into a semi-distributed PBHM, allowing the coupled 117 

model to consider the spatial heterogeneity of the land cover with improved subsurface solute 118 
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transport representation. The semi-distributed PBHM employed was the SWAT (Soil and Water 119 

Assessment Tool), which has developed for several decades and widely used in many areas. Daily 120 

discharge and nitrate concentrations simulated by the coupled model (hereafter called SWAT-SAS) 121 

were compared with the original SWAT model. Our objectives are: (1) modify SWAT for 122 

simulating the aquifer nitrogen transport with SAS functions, (2) compare the results of the 123 

modified model and the original model, and (3) highlight the additional information that SWAT-124 

SAS provided and its potential for supporting contamination treatment and watershed management. 125 

2 Methodology 126 

2.1 SWAT model description 127 

SWAT (Soil and Water Assessment Tool) is a continuous time, semi-distributed hydrological 128 

model at the watershed scale with a strong physical mechanism (Arnold et al., 2012, 1998). SWAT 129 

defines watershed boundaries according to topography and then delineates streams and subbasins. 130 

Considering the spatial heterogeneity of land use, soil, and slope, subbasins are further discretized 131 

into individual hydrological response units (HRUs). The HRU is the smallest computational unit 132 

of the model, simulating processes such as hydrology, sediment, nutrients, management, etc. The 133 

HRU results will be aggregated at subbasins scale and routed downstream.  134 

As shown in Figure 1a, for each HRU, there are several storage compartments, representing canopy, 135 

snowpack, soil profile (0-2 m), shallow aquifer (2-20 m), and deep aquifer (>20 m), respectively 136 

(Arnold et al., 2000; Narula and Gosain, 2013). Both the whole HRU and individual compartments 137 

are based on water balance equations. For HRU, it can be expressed by Δ𝑆𝑆 = 𝑃𝑃 − ∑𝑄𝑄 − ∑𝐸𝐸, 138 

where Δ𝑆𝑆  is the change of water storage volume within the whole HRU; 𝑃𝑃  represents the 139 

precipitation, including rainfall and snowfall; 𝑄𝑄 is the water yield from different water components, 140 
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including surface runoff, lateral runoff, and groundwater; 𝐸𝐸  are the evapotranspiration from 141 

different parts. Snowfall might be held in the snow cover, which might melt when reaching a 142 

certain temperature threshold and become surface runoff. A part of the rainfall is retained by 143 

vegetation which later evaporates, while the rest reaches the soil surface, contributing to surface 144 

runoff or infiltration along the soil profile. There are several different pathways for soil water. It 145 

may leave by evaporation or plant uptake, laterally flow into the stream, or percolate into aquifers. 146 

Water in the shallow aquifer will eventually flow into rivers or deep aquifers. Evapotranspiration 147 

occurs in snow cover, vegetation, soil, and shallow aquifer storage, corresponding to sublimation, 148 

transpiration, evaporation, and re-evaporation. 149 

For the soil profile, the water balance can be expressed as (Neitsch et al., 2011): 150 

Δ𝑆𝑆𝑆𝑆 = 𝑅𝑅 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙 − 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1) 151 

where 𝑅𝑅 is the precipitation reaching the soil surface; 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the evaporation from the soil surface; 152 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙 represent the generated surface runoff and lateral runoff, respectively; and 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 153 

is the water flux of percolation from the soil bottom.  154 

SWAT simulates the fate and transport of nitrogen in the soil profile and the shallow aquifer 155 

(Figure 1b). The inputs of nitrogen can be from the initial nitrogen level, fertilizer application, 156 

residues, and atmospheric deposition. There are five nitrogen (N) pools in the soil, i.e., inorganic 157 

nitrogen (NH4
+ and NO3

-), and organic nitrogen (fresh organic nitrogen, stable organic nitrogen, 158 

and active organic nitrogen). The transformation between different N pools occurs in the soil 159 

profile. Nitrate comes from the inputs,  transformation from mineralization of organic nitrogen and 160 

nitrification of ammonia nitrogen. Furthermore, nitrate sinks can be plant uptake, denitrification, 161 
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and seepage to the aquifer. Nitrate is transported between storages with water flow and released to 162 

the river based on the average concentration of the storage.  163 

For example, water and nitrate leaching from the soil bottom recharge to the aquifer according to 164 

Eq. 10 and 11, respectively. And the nitrate load released with the groundwater is calculated by 165 

Eq. 12. 166 

𝑄𝑄𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖 = �1 − exp �
−1
𝛿𝛿𝑟𝑟𝑔𝑔

�� ∙ 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 + exp �
−1
𝛿𝛿𝑟𝑟𝑔𝑔

� ∙ 𝑄𝑄𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖−1 (2) 167 

𝑁𝑁𝑁𝑁3𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖 = �1 − exp �
−1
𝛿𝛿𝑟𝑟𝑔𝑔

�� ∙ 𝑁𝑁𝑁𝑁3𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 + exp �
−1
𝛿𝛿𝑟𝑟𝑔𝑔

� ∙ 𝑁𝑁𝑁𝑁3𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖−1 (3) 168 

where 𝑄𝑄𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖 [L] and 𝑁𝑁𝑁𝑁3𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖 [ML-2] are the amount of water and nitrate recharging to the 169 

aquifers on day i, 𝑄𝑄𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖−1 [L] and 𝑁𝑁𝑁𝑁3𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖−1 [ML-2] are the amount of water and nitrate 170 

recharging to the aquifers on the previous day i-1, 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 [L] and 𝑁𝑁𝑁𝑁3𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 [ML-2] are the amount 171 

of water and nitrate leaching from the soil bottom, and 𝛿𝛿𝑟𝑟𝑔𝑔 [T] is the delay time. 172 

𝑁𝑁𝑁𝑁3𝑟𝑟𝑔𝑔 =
𝑁𝑁𝑁𝑁3𝑠𝑠ℎ,𝑖𝑖−1 + 𝑁𝑁𝑁𝑁3𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖

𝑎𝑎𝑞𝑞𝑠𝑠ℎ,𝑖𝑖 + 𝑄𝑄𝑟𝑟𝑔𝑔 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠 + 𝜔𝜔𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑑𝑑𝑠𝑠
⋅ 𝑄𝑄𝑟𝑟𝑔𝑔 (4) 173 

where 𝑁𝑁𝑁𝑁3𝑟𝑟𝑔𝑔 [ML-2] is the amount of nitrate load in groundwater flow, 𝑁𝑁𝑁𝑁3𝑠𝑠ℎ,𝑖𝑖−1 [ML-2] is the 174 

amount of nitrate in the shallow aquifer at the end of day i-1, 𝑎𝑎𝑞𝑞𝑠𝑠ℎ,𝑖𝑖 is the amount of water stored 175 

in the shallow aquifer at the end of day i, 𝑄𝑄𝑟𝑟𝑔𝑔 [L] is the groundwater flow into the stream on day 176 

i, 𝜔𝜔𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠  [L] and 𝜔𝜔𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑑𝑑𝑠𝑠  [L] are water deficiencies moving into the soil and deep aquifer, 177 

respectively.  178 

In Eq. 2 and 3, although the lag coefficient 𝛿𝛿𝑟𝑟𝑔𝑔 is used to represent the lag response between input 179 

and output, the same structure of the formulas suggests that the two variables vary simultaneously, 180 
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implying that both flow and nitrate are transmitted at the same rate, which is inconsistent with the 181 

“old water paradox” mentioned earlier. In addition, the constant 𝛿𝛿𝑟𝑟𝑔𝑔 indicates that there is only 182 

one recharge path from the soil bottom to the aquifers. It is clear from Eq. 4 that the nitrate release 183 

from the shallow aquifer is based on the well-mixed assumption. The fractional part represents the 184 

average nitrate concentration in the shallow aquifer, with the numerator (𝑁𝑁𝑁𝑁3𝑠𝑠ℎ,𝑖𝑖−1 +185 

𝑁𝑁𝑁𝑁3𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑖𝑖) and denominator (𝑎𝑎𝑞𝑞𝑠𝑠ℎ,𝑖𝑖 + 𝑄𝑄𝑟𝑟𝑔𝑔 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠 + 𝜔𝜔𝑠𝑠𝑟𝑟ℎ𝑠𝑠𝑟𝑟,𝑑𝑑𝑠𝑠) representing the total amount 186 

of nitrate and stored water in shallow aquifer on day i. The assumption suggests that the water 187 

parcels from each period contribute to the outflow in volume proportions and a change of input 188 

can quickly trigger the response of the outflow concentration. Hence, the original model only 189 

reflects pressure propagation but not mass transfer. However, previous studies have demonstrated 190 

that the system could have an affinity to remove water of certain ages for outflow, related to the 191 

activation of flow paths under different ecohydrological conditions (Benettin et al., 2017; Nguyen 192 

et al., 2021; Rodriguez and Klaus, 2019; Aaron A. Smith et al., 2018; J. Yang et al., 2018). It is 193 

the limitation of SWAT in representing the internal solute transport processes, as well as the fact 194 

of many traditional hydrological models (Hrachowitz et al., 2016). Evaluating the model based on 195 

model performance is not sufficient as the model could give “right results for the wrong reasons” 196 

(Kirchner, 2006). We propose a coupled model (SWAT-SAS) to replace the original two-layer 197 

aquifer with a transport model to better represent the subsurface nitrate transport process. In the 198 

following part, we will introduce the transport model we use (SAS) and its implication for 199 

representing the diverse transport scheme, and then describe the coupling of the model. 200 
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 201 

Figure 1. Schematics of SWAT model processes and SAS module. (a) Hydrological process of each HRU; (b) 202 

Nitrate transport in the aquifers of original SWAT model; (c) Replaced nitrate transport for aquifers, the SAS 203 

compartment. 204 

2.2 The TTD model, SAS 205 

The storage variation of the SAS compartment at any time step 𝑡𝑡 can be represented by Eq. 5: 206 

d𝑆𝑆
d𝑡𝑡

=  𝐽𝐽(𝑡𝑡)–  𝑄𝑄(𝑡𝑡) (5) 207 

where 𝐽𝐽(𝑡𝑡) [LT-1] represents the seepage through the soil bottom into the aquifer at time 𝑡𝑡, and 208 

𝑄𝑄(𝑡𝑡) [LT-1] represents the water outputs of the system at time 𝑡𝑡. Outflows and evaporation are the 209 

two major outputs for a hydrological system. In this paper, we neglect evaporation and only 210 
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consider groundwater as the outflow of the system. There is a detailed description for the complete 211 

equation including discharge and evaporation in Harman’s paper (2015).  212 

The TTD can be expressed by either forward or backward form. The forward TTD denotes the 213 

destination of injected water parcels, often used to fit the breakthrough curve of tracer input. The 214 

backward TTD describes the water age distribution at the outlet and implies the contribution of 215 

different past events to the discharge. It is more suitable to use the backward form when we 216 

generally have gauge observations and want to assess the water contribution of inputs over time 217 

(Benettin P. et al., 2015; P. Benettin et al., 2015; Rinaldo et al., 2015). For SAS function 218 

applications, the backward TTD is used to quantify how catchments store and release water and 219 

solutes (Rinaldo et al., 2015; Rodriguez et al., 2021). The time that a water parcel retains in the 220 

system is defined as residence time (RT), denoted by age T. And the age of the water parcel leaves 221 

the system is the transit time. Based on the conservation of mass and water age, Eq.5 can be 222 

expressed as follows, indicating the change of storage with age younger than T depends on inflow, 223 

outflow, and storage aging (Botter et al., 2011; Harman, 2015; Velde et al., 2012). 224 

𝜕𝜕𝑆𝑆(𝑇𝑇, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝐽𝐽(𝑇𝑇, 𝑡𝑡) − 𝑄𝑄(𝑇𝑇, 𝑡𝑡) −
𝜕𝜕𝑆𝑆(𝑇𝑇, 𝑡𝑡)
𝜕𝜕𝑇𝑇

(6) 225 

At any time, the storage of SAS compartment 𝑆𝑆(𝑡𝑡) is composed of water parcels with various ages. 226 

The fractions of the storage with different age T are characterized by a probability density 227 

distribution 𝑝𝑝𝑠𝑠(𝑇𝑇, 𝑡𝑡) [T-1]. And the corresponding cumulative density distribution is 𝑃𝑃𝑆𝑆(𝑇𝑇, 𝑡𝑡) =228 

∫ 𝑝𝑝𝑆𝑆(𝜏𝜏, 𝑡𝑡)𝑑𝑑𝜏𝜏𝑇𝑇
0  [-], meaning the fraction of storage with age younger than T. At any time, the storage 229 

comprised of the past influxes and the storage with age younger than T can be defined as 𝑆𝑆(𝑇𝑇, 𝑡𝑡) =230 

𝑆𝑆(𝑡𝑡)𝑃𝑃𝑆𝑆(𝑇𝑇, 𝑡𝑡) [L]. Similarly, the age distribution of outflux can be defined as a cumulative version, 231 

𝑃𝑃𝑆𝑆(𝑇𝑇, 𝑡𝑡), and the outflux consisting of water age younger than T is 𝑄𝑄(𝑇𝑇, 𝑡𝑡) = 𝑄𝑄(𝑡𝑡)𝑃𝑃𝑄𝑄(𝑇𝑇, 𝑡𝑡) [LT-1]. 232 
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The age of water is zero when entering the system, with initial condition 𝑆𝑆(𝑇𝑇, 𝑡𝑡 = 0) = 𝑆𝑆𝑇𝑇0 and 233 

boundary condition 𝑆𝑆(𝑇𝑇 = 0, 𝑡𝑡) = 0. Typically, the age distributions of outflow are unknown and 234 

insufficient to solve Eq. 6. The SAS function Ω𝑄𝑄 is introduced (Botter et al., 2011; Harman, 2015; 235 

Velde et al., 2012) and defined as the relationship between the age distribution of the storage and 236 

that of the outflux, i.e., 𝑃𝑃𝑄𝑄(𝑇𝑇, 𝑡𝑡) = Ω𝑄𝑄(𝑆𝑆(𝑇𝑇, 𝑡𝑡), 𝑡𝑡) [-]. Then Eq. 6 can be expressed as: 237 

𝜕𝜕𝑆𝑆(𝑇𝑇, 𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝐽𝐽(𝑡𝑡) − 𝑄𝑄(𝑡𝑡)Ω𝑄𝑄(𝑆𝑆(𝑇𝑇, 𝑡𝑡), 𝑡𝑡) −
𝜕𝜕𝑆𝑆(𝑇𝑇, 𝑡𝑡)
𝜕𝜕𝑇𝑇

(7) 238 

The cumulative and probability forms of the TTD can be converted to each other as follows: 239 

𝑝𝑝𝑄𝑄(𝑇𝑇, 𝑡𝑡) =
𝜕𝜕𝑃𝑃𝑄𝑄(𝑇𝑇, 𝑡𝑡)

𝜕𝜕𝑇𝑇
=
𝜕𝜕Ω𝑄𝑄(𝑆𝑆(𝑇𝑇, 𝑡𝑡), 𝑡𝑡)

𝜕𝜕𝑆𝑆(𝑇𝑇, 𝑡𝑡)
∙
𝜕𝜕𝑆𝑆(𝑇𝑇, 𝑡𝑡)
𝜕𝜕𝑇𝑇

= 𝜔𝜔𝑄𝑄 ∙
𝜕𝜕𝑆𝑆(𝑇𝑇, 𝑡𝑡)
𝜕𝜕𝑇𝑇

(8) 240 

The SAS provides a mathematical expression reflecting the release preference. The formalization 241 

can be parameterized by Beta distributions (Eq. 9).  242 

𝜔𝜔(𝑃𝑃𝑠𝑠, 𝑡𝑡) = 𝐵𝐵𝐵𝐵𝑡𝑡𝑎𝑎(𝑃𝑃𝑠𝑠,𝑎𝑎, 𝑏𝑏) (9) 243 

where 𝑎𝑎 [-] and 𝑏𝑏 [-] are parameters for Beta distribution. Compared to the well-mixed scheme, 244 

the SAS function is a more general framework, characterizing various preferences with different 245 

values. If 𝑎𝑎 = 𝑏𝑏 = 1, there is no preference for water age, which corresponds to well-mixed 246 

scheme; if 𝑎𝑎 > 𝑏𝑏, there is a preference for releasing old water; if 𝑎𝑎 < 𝑏𝑏, there is a preference for 247 

releasing young water. See reference (Harman, 2015) for more SAS function distributions and 248 

preferences schemes. 249 

Similarly, the solute concentration of outflow is calculated by Eq. 10 (Queloz et al., 2015): 250 

𝑐𝑐𝑄𝑄(𝑡𝑡) = � 𝑐𝑐𝐽𝐽(𝑡𝑡 − 𝑇𝑇, 𝑡𝑡) ∙ 𝑝𝑝𝑄𝑄(𝑇𝑇, 𝑡𝑡) ∙ exp(−𝑘𝑘𝑇𝑇)𝑑𝑑𝑇𝑇
∞

0
(10) 251 
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where 𝑐𝑐𝐽𝐽(𝑡𝑡 − 𝑇𝑇, 𝑡𝑡)  [ML-2] is the solute concentration of influx at time 𝑡𝑡 − 𝑇𝑇 , and 𝑘𝑘  [-] is the 252 

denitrification rate. 253 

The residence time (RT) is distinct from the TT and refers to the time that a water parcel retains in 254 

the storage. The residence time distribution (RTD) indicates the age distribution for the water 255 

parcels in the storage. It is obvious that the RT and TT reflect the water age in storage and outflow, 256 

respectively. Mean and median values of water ages of the storage and the outflow can be further 257 

derived to characterize their age structure, i.e., MTT, MRT, TT50 and RT50. The mean transit time 258 

of discharge, 𝑀𝑀𝑇𝑇𝑇𝑇(𝑡𝑡) [T], is calculated by given 𝑝𝑝𝑄𝑄(𝑇𝑇, 𝑡𝑡). 259 

𝑀𝑀𝑇𝑇𝑇𝑇(𝑡𝑡) = � 𝑇𝑇 ∙
∞

0
𝑝𝑝𝑄𝑄(𝑇𝑇, 𝑡𝑡)𝑑𝑑𝑇𝑇 (11) 260 

The calculation of mean residence time (MRT, [T]) is calculated as follows: 261 

𝑀𝑀𝑅𝑅𝑇𝑇(𝑡𝑡) = � 𝑇𝑇 ∙
∞

0
𝑝𝑝𝑆𝑆(𝑇𝑇, 𝑡𝑡)𝑑𝑑𝑇𝑇 (12) 262 

The median transit time (𝑇𝑇𝑇𝑇50, [T]) and median residence time (𝑅𝑅𝑇𝑇50, [T]) indicate the cumulative 263 

fraction of age-ranked water reaching 50% in discharge and storage, respectively. 264 

2.3 SWAT-SAS: couple SAS compartment with SWAT 265 

In SWAT-SAS, the original two-layer aquifer is conceptual as the SAS compartment (Fig. 1c) and 266 

the nitrate concentration of the groundwater is calculated by SAS algorithms. The SAS module 267 

aggregates the soil bottom seepage from different HRUs and then calculates the nitrate output at 268 

the subbasin scale, i.e., the nitrate contribution from aquifers to the stream. The time step for 269 

discretization computations and water age is days, corresponding to SWAT. Forward Euler scheme 270 

was implemented to solve the age master equation referring to trans-SAS (Benettin and Bertuzzo, 271 
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2018). Five parameters related to the SAS compartment were introduced. The initial conditions 272 

are initial groundwater storage (𝑆𝑆0, [L]) and the initial nitrate concentration (𝑐𝑐0, [ML-3]), which 273 

are used at the beginning of the calculations. There are two parameters for the Beta SAS function, 274 

i.e., 𝑘𝑘𝑙𝑙 [-] and 𝑏𝑏 [-], by which the shape of the Beta distribution can be adjusted. The parameter 275 

half_life [-] corresponds to the subsurface denitrification coefficient of Eq. 9. When lacking the 276 

initial information, the initial conditions can be seen as a single old pool. With the calculation, new 277 

water parcels are introduced and account for increasing proportions, hence reducing the effects of 278 

initial conditions (Benettin and Bertuzzo, 2018). Our simulation found that the initial nitrate 279 

concentration (𝑐𝑐0) had little effect on the results, so we calibrated the other four newly introduced 280 

parameters.  281 

The SWAT-SAS is modified based on SWAT 2012 version 681; the modified code is compiled 282 

by Visual Studio 2019. Detailed code and compiler configuration are available on the GitHub page 283 

(https://github.com/li3uhua/SWAT-rev681). 284 

3 Model setup 285 

3.1 Study area and data 286 

The study area is the Upper Selke, situated in northeast Harz Mountain, central Germany (Figure 287 

2a). A gauging station (Silberhutte) is located at  the outlet, covering a catchment area of 100.6 288 

km2 (Figure 2b). The catchment is an upland area with elevation ranges from 333 to 607 m and an 289 

average slope of 10.6 (Figure 2b and 2e). Forest and agricultural land are the dominant land uses, 290 

accounting for 60.2% and 19.6 % of the catchment area, respectively (Figure 2c). The soil types 291 

are quite uniform in the Upper Selke, mainly covered with Dystric Camisol (CMd) (Figure 2d). 292 
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 293 

Figure 2. Spatial distribution of Upper Selke. (a) location; (b) digital elevation model (DEM), the blue lines are the 294 

streams created by SWAT; (c) land cover distributions; (d) soil class distribution; (e) slope classification. 295 

Spatial data (including topography, land use and soil distribution), observed data (including 296 

climate, streamflow, and in-stream nitrate concentration) and survey data (such as agricultural 297 

management and wastewater treatment plants) are required for constructing a SWAT model.  298 

The spatial data are used for watershed discretization and model parameterization, collected 299 

through different sources. A digital elevation model (DEM) with a resolution of 30 m was obtained 300 

from the SRTM website. Corine Land Cover product of 2012 (CLC2012) with 100 m resolution 301 

was obtained from Copernicus Global Land service. Soil map and characteristics were from FAO 302 

Harmonized world soil database (HWSD) v1.2. Some soil characteristics need to be calculated 303 
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based on HWSD through pedo transfer functions (Abbaspour et al., 2019). The detailed calculation 304 

we used can be seen from Supplementary Material S1. 305 

Climatic inputs provide moisture and energy to drive all processes of the model. Daily precipitation, 306 

temperature, and humidity data for 2007-2019 were obtained from the German Weather Service 307 

(DWD). There is a significant lack of wind speed and solar radiation data. These values are 308 

simulated using CFSR global weather generator data from the SWAT official website. Daily 309 

streamflow and in-stream nitrate concentrations were obtained from the State Agency for Flood 310 

Protection and Water Management of Saxony-Anhalt (LHW) and Helmholtz Center for 311 

Environmental Research (UFZ), respectively. According to the historical observations (2012-312 

2019), the mean annual precipitation is 711 mm, and the mean annual streamflow is 0.715 m3/s 313 

(i.e., 224 mm). The wet season of the catchment is from January to March with the an average 314 

flow of 1.62 m3/s. July to September is the dry season with average flow of 0.30 m3/s. Agricultural 315 

management including fertilizer application and crop rotation, was taken from the work of Yang 316 

et al. (Yang et al., 2022). 317 

3.2 Model configuration 318 

QSWAT3 was used to set up models, which is a visual interface in QGIS 3.16 that allows users to 319 

sequentially execute procedures for geospatial data processing and analysis, as well as editing 320 

input data.  321 

To capture all the spatial heterogeneity, we set the thresholds for slope, soil, and land use to 0, 0, 322 

and 0, respectively, and finally get 24 HRUs. For hydrological calculation, the Hargreaves method 323 

was used to calculate potential evaporation (PET) and the SCS curve number method was used to 324 

calculate surface runoff. For nitrate simulation, we applied agricultural management and initial 325 



17 
 

residues according to the survey data from the work of Yang et al. (2022). Winter wheat and 326 

rapeseed are the major crops planted in the catchment. We split the arable land into two types 327 

according to the areal share and set different managements respectively (see Supplementary 328 

Material S2 for detailed management setup). There are two wastewater treatment plants (WWTP) 329 

located in the catchment. Daily output flow and nitrate concentration were input to simulate the 330 

point source pollution. 331 

3.3 Model calibration 332 

After constructing the model, models were run and calibrated by R-SWAT, an interactive web-333 

based application for parallel running, parameter sensitivity, calibration, and uncertainty analysis 334 

with SWAT (Nguyen et al., 2022a). We simulate daily runoff and nitrate concentration over the 335 

period 2007 to 2019, with five years (2007-2011) for warming up, four years (2012 to 2015) for 336 

calibration and four years (2016 to 2019) for validation. For the characteristics of transit time, the 337 

related values (MTT, TT50, etc.) will keep increasing in the at beginning of the simulation period, 338 

and a more extended warming-up period is needed to reflect transit time variation. After getting 339 

the behavioral parameter sets, we ran the model for 58 years to get the transit time outputs. 340 

SWAT is a comprehensive model with a large number of parameters, and each parameter may 341 

affect the interaction process it represents (Arnold et al., 2012). Sensitivity analysis and auto-342 

calibration helps modelers identify the crucial parameters, improve the model performance and get 343 

the behavioral ranges efficiently (Liu et al., 2016). The sequential uncertainty fitting algorithm 344 

(SUFI-2) was used for auto-calibration. SUFI-2 performs Latin hypercube sampling of selected 345 

parameters, runs simulations based on composed parameter sets, and performs uncertainty analysis 346 

(Abbaspour et al., 2004a). The description and ranges of calibrated parameters are shown in Table 347 

1, and the sensitivity ranking can be found in Supplementary Material S3. We first calibrated the 348 
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water quantity, fitting the streamflow data to obtain the behavioral ranges of hydrological 349 

parameters, and then further calibrated the water quality parameters related to nitrogen simulation. 350 

The performance of models was evaluated by traditional indices that are widely used for evaluating 351 

hydrological models, i.e., Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), percentage 352 

of bias (PBIAS) and correlation (R2). 353 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 −
∑�𝑄𝑄𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 − 𝑄𝑄𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠�

2

∑�𝑄𝑄𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠�������
2 (13) 354 

𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃𝑆𝑆 =
∑�𝑄𝑄𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 − 𝑄𝑄𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠�

∑𝑄𝑄𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠
× 100% (14) 355 

𝑅𝑅2 =
∑��𝑄𝑄𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠��������𝑄𝑄𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠��������

2

∑�𝑄𝑄𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠�������
2
�𝑄𝑄𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�������

2 (15) 356 

where 𝑄𝑄𝑖𝑖𝑜𝑜𝑜𝑜𝑠𝑠 (𝑖𝑖 = 1, 2, … ) is the series of observed daily streamflow, 𝑄𝑄𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 (𝑖𝑖 = 1, 2, . . . ) is the 357 

series of simulated daily streamflow, 𝑄𝑄𝑜𝑜𝑜𝑜𝑠𝑠������ is the mean value for the observed daily streamflow. 358 

For nitrate concentration, the performance metrics are calculated with the same formula. 359 

Kling‐Gupta efficiency (KGE) addresses several shortcomings of traditional indices like NSE, 360 

combining model errors (correlation, ratio of variances and bias) in a more balanced way (Gupta 361 

et al., 2009; Liu, 2020) . It has increasingly been used in to evaluate model performance more 362 

comprehensively (Knoben et al., 2019). The calculation of the KGE value is as follows: 363 

𝐾𝐾𝐾𝐾𝐸𝐸 = 1 −�(𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2 (16) 364 
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Where 𝑟𝑟 is the linear coefficient between the observed and simulated series; 𝛼𝛼 = 𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠
𝜎𝜎𝑜𝑜𝑜𝑜𝑠𝑠

 is a measure 365 

of the variability error, and 𝛽𝛽 = 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠
𝜇𝜇𝑜𝑜𝑜𝑜𝑠𝑠

, is a bias term. In our study, KGE is the objective function 366 

for calibration, and NSE, PBIAS, and R2 are also calculated to refer to the criteria recommended 367 

by Moriasi (Moriasi et al., 2015, 2007). 368 

The uncertainty of the model is measured by p-factor and r-factor. The p-factor is the percentage 369 

of observed data covered by the 95PPU band, ranging from 0 to 1. The model with p-factor = 1 370 

means that all uncertainties are considered in the model. The r-factor is the average width of the 371 

95PPU band, and the r-factor = 0 means the simulated series fits well with the observed data. The 372 

two factors are closely related to each other, which indicates a larger p-factor can be achieved at 373 

the expense of higher r-factor (Abbaspour et al., 2004b; Arnold et al., 2012). 374 

Table 1. Selected parameters and calibration range. 375 

Parameter Description Initial range Final range Optimal 
value 

snowmelt       
SMTMP.bsn Snowmelt base temperature (℃) [-2, 2] [-2, 0] -1.92 
SFTMP.bsn Snowfall base temperature (℃) [-2, 2] [0, 2] 0.38 
TIMP.bsn Snowpack temperature lag factor (-) [0, 1] [0, 0.6] 0.50 
evaporation       

ESCO.hru Soil water evaporation compensation 
factor (-) [0, 1] [0.7, 1] 0.86 

CANMX.hru Maximum canopy storage (mm H2O) [0, 20] [5, 16] 13.03 
water generation and regression       
CN2.mgt* Curve number II (-) [-0.3, 0.3] [-0.05, 0.1] 0.04 

SOL_K.sol* Saturated hydraulic conductivity of soil 
layer (mm/hr) [-0.2, 0.2] [-0.2, 0.2] 0.18 

SOL_AWC.sol* Available water capacity of soil layer (mm 
H2O/mm soil) [-0.2, 0.2] [-0.15, 0.15] 0.09 

GWQMN.gw 
The threshold depth of water in the 
shallow aquifer required for return flow to 
occur (mm) 

[0, 2000] [0, 1000] 494.03 

RCHRG_DP.gw Deep aquifer percolation fraction (-) [0, 0.3] [0, 0.3] 0.27 
SURLAG.hru Surface runoff lag time (day) [0.05, 5] [0.05, 0.2] 0.11 
LAT_TTIME.hru Lateral flow travel time (day) [0, 30] [0, 25] 18.10 
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Parameter Description Initial range Final range Optimal 
value 

GW_DELAY.gw Groundwater delay (day) [0, 300] [5, 20] 11.67 
ALPHA_BF.gw Base flow recession constant (1/day) [0, 1] [0.5, 1] 0.74 
channel routing         
CH_K2.rte Effective hydraulic conductivity (mm/hr) [0, 10] [2, 10] 2.61 

CH_N2.rte Manning's "n" value for the main channel 
(s m-033) [0, 0.1] [0.004, 0.08] 0.05 

nitrogen simulation     

SHALLST_N.gw 
The concentration of nitrate in 
groundwater contributes to streamflow 
from subbasin (mg N/L) 

[0, 100] [0, 100] 98.89 

RCN.bsn Concentration of nitrogen in rainfall (mg 
N/L) [0, 15] [0, 6] 2.34 

ERORGN.hru Organic N enrichment ratio (-) [0, 1] [0.5, 1] 0.58 
SOL_CBN.sol percent organic carbon in soil layer (%) [0, 10] [5, 10] 13.65 

CDN.bsn Denitrification exponential rate coefficient 
(-) [0, 1] [0, 0.1] 0.002 

NPERCO.bsn nitrate percolation coefficient (0-1)  [0, 1] [0, 0.2] 0.03 
N_UPDIS.bsn Nitrogen uptake distribution parameter [0, 100] [10, 80] 33.80 
RSDCO.bsn Residue decomposition coefficient (-) [0, 1] [0.2, 0.7] 0.80 
SDNCO.bsn Denitrification threshold water content (-) [0, 1] [0.5, 1] 0.99 

ANION_EXCL.sol Fraction of porosity (void space) from 
which anions are excluded (-) [0, 1] [0.5, 0.8] 0.79 

HLIFE_NGW.gw Half-life of nitrate in the shallow aquifer 
(days) [0, 300] [100, 260] 212.01 

SOL_NO3.chm Initial NO3 concentration in the soil layer 
(mg N/L) [0, 100] [50, 100] 76.87 

SAS parameters       
S0.sas_param.par Initial groundwater storage (mm) [0, 2000] [1000, 1800] 1792.82 
ka.sas_param.par parameter of the beta(ka,b) function (-) [0.05, 1] [0.6, 0.8] 0.73 
b.sas_param.par parameter of the beta(ka,b) function (-) [0.05, 10] [4, 5] 4.08 
half_life.sas_param
.par Subsurface denitrification (1/day) [0.01, 0.1] [0.01, 0.06] 0.03 

Note: Parameters are adjusted mainly by the replace method, except for the parameters marked with *, which are 376 

adjusted by the relative value method.  377 

4 Results and discussion 378 

4.1 Model performance 379 

The performance of the models is shown in Table 2. The evaluation indices indicate that 380 

streamflow hydrographs were well reproduced by SWAT. The overall performance of daily 381 
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streamflow is KGE = 0.78, NSE = 0.62, PBIAS = -7.2 % and R2 = 0.64. Considering the three 382 

traditional indices, NSE, PBIAS, and R2, the simulated results reach the criteria of “Satisfactory” 383 

according to the recommendations of Moriasi et al. (2015). In addition, a high KGE value also 384 

reflects good correspondence between the simulated and observed discharge.  385 

Generally, the calibration period has better model performance than the validation period. 386 

However, the indices for the validation period outperformed those for the calibration period in our 387 

runoff simulation. This is because in all cases, there is no ideal optimization routine to find the 388 

parameter set that gives the highest possible model performance, or ideal model concept/structure 389 

that works equally well for all the periods (calibration/validation) given the uncertainty and 390 

unbiased datasets among different time-periods (Arsenault et al., 2018; L. Chen et al., 2022). Only 391 

the behavioral model performance can be achieved for the calibration period, considering 392 

uncertainty in the observed data. That is, a model that fits the calibration data better may not always 393 

necessarily better, as there may be errors in the calibration data. There could be an uncertain 394 

process in the calibration period that has not been fully accounted for, making the model cannot 395 

calibration data better than the validation data. The unusual results in our study may be attributed 396 

to the catchment experiencing a severe and long drought in 2018-2019 (Rakovec et al., 2022), and 397 

the anomalous hydro-metrological conditions could result in either better or worse performance 398 

(Nangia et al., 2008; Nguyen et al., 2022b, 2020).  399 

Water quality simulation involves more complexity and uncertainty than water flow (Ejigu, 2021). 400 

In addition to the uncertainty of the input data and parameters, the performance of nitrate 401 

concentration is also related to the uncertainty of the simulated streamflow, and hence is relatively 402 

poor compared to the streamflow. The indices for the original SWAT daily nitrate simulation are 403 

KGE = 0.68, NSE = 0.38, PBIAS = -3 % and R2 = 0.46, while the indices for SWAT-SAS are 404 
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higher with KGE = 0.78, NSE = 0.55, PBIAS = 3.7 % and R2 = 0.62. The performance of SWAT-405 

SAS is generally better than SWAT, partly due to the additional SAS parameters providing more 406 

freedom and flexibility to the simulation, and partly due to the simplification of nutrient transport 407 

processes by SWAT. Comparing the p-factors and r-factors for the simulation period, the p-value 408 

for SWAT-SAS (p-factor = 0.63) is higher than SWAT (p-factor = 0.49). However, its r-factor (r-409 

factor = 0.97) increased relative to SWAT (r-factor = 0.78).  410 

Table 2. Performance of streamflow and nitrate concentration simulations 411 

Period 
Streamflow  Nitrate concentration 

(SWAT) 
 Nitrate concentration 

(SWAT-SAS) 
KGE NSE PBIAS R2  KGE NSE PBIAS R2  KGE NSE PBIAS R2 

Daily               

Calibration 0.71 0.57 -10.9 0.59  0.66 0.29 9.6 0.47  0.67 0.4 15.8 0.61 
Validation 0.84 0.69 -2.7 0.72  0.64 0.44 -15.5 0.5  0.79 0.66 -8.2 0.67 

Overall 0.78 0.62 -7.2 0.64  0.68 0.38 -3 0.46  0.78 0.55 3.7 0.62 
Weekly               

Calibration 0.76 0.64 -10.9 0.66  0.68 0.33 9.2 0.49  0.68 0.43 15.3 0.63 
Validation 0.86 0.74 -2.9 0.78  0.64 0.45 -15.7 0.51  0.79 0.67 -8.6 0.68 

Overall 0.83 0.69 -7.2 0.71  0.69 0.4 -3.5 0.48  0.79 0.57 3.1 0.63 
Monthly               

Calibration 0.82 0.69 -10.9 0.73  0.78 0.57 8.4 0.66  0.69 0.5 15 0.7 
Validation 0.9 0.87 -2.7 0.89  0.65 0.47 -16.3 0.53  0.79 0.68 -9 0.7 

Overall 0.87 0.79 -7.2 0.81  0.74 0.51 -4.5 0.56  0.81 0.61 2.4 0.67 
 412 

4.2 Simulated streamflow and nitrate concentration 413 

The series and the exceedance probability curves of the simulated results are shown in Figure 3, 414 

which visually illustrates the coincidence of the observed and simulated values.  415 
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 416 

 417 

Figure 3. Series and exceedance probability curves for observed and simulated data.  418 

As shown in Figure 3a, the hydrographs were well reproduced, and the simulated results intuitively 419 

fit well with the observed series. However, the models did not simulate low flows properly even 420 

after a comprehensive calibration, and the underestimations become more pronounced at lower 421 

flows, which can be seen from the exceedance probability curve (Figure 3d). There may be two 422 

reasons for the poor performance in the dry season. One is that the flow in the wet season 423 

contributes more to the objective functions (Zhang et al., 2015), and the other is the limitation of 424 

the groundwater module (Kim et al., 2008). Almost all observed flow peaks were captured, but 425 
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incorrect peaks were predicted around January. It might be related to the limitation of the snow 426 

module that restricts water infiltration and generates more surface runoff during snow events (Qi 427 

et al., 2016). These limitations are not the subjects of this study and cannot be overcome by our 428 

modified model. We point out these estimation errors to analyze the nitrate simulation results more 429 

comprehensively. In addition, the uncertainty in the rainfall data could also contribute to the biases 430 

of individual high discharge events, as noted by Nguyen et al. (2021). 431 

Both original SWAT and SWAT-SAS can capture the magnitude of nitrate concentrations and 432 

reflect the seasonal variations to some extent (Figure 3b-c), showing high nitrate concentration 433 

values in wet seasons and low nitrate concentration values in dry seasons. Intuitively, SWAT-SAS 434 

better reflected the rising and falling limbs of nitrate concentrations, while the original SWAT 435 

often showed an early peak, which are also found in other studies based on distributed models 436 

(Hesser et al., 2010). For example, there was an early peaks simulated by SWAT in late 2012, 437 

2014, and 2017. SWAT-SAS better matched to the observed values for the corresponding period, 438 

although still with an early peak.  439 

Both models overreacted to the nitrate concentration and the temporal dynamics were not properly 440 

captured. This can be explained by the uncertainty arising from model structural issues or input 441 

data. In addition to groundwater, surface runoff and lateral flow also transport nitrates that affect 442 

the in-stream nitrate concentrations. These two components have more rapid impacts on the water 443 

quality, resulting in overreactive dynamics. According to the modeling results, the annual water 444 

yield of the catchment is 208.4 mm, of which surface runoff is 67.7 mm (32.5%), lateral flow is 445 

15.6 mm (7.5%), groundwater from shallow aquifer is 91.2 mm (43.8%) and groundwater from 446 

deep aquifer is 33.8 mm (16.2%). And the nitrate loads discharged to the river with the transport 447 

of each component are 0.1 kg/ha, 0.46 kg/ha and 4.13 kg/ha, respectively. Previous findings have 448 
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also shown that the catchment is dominate by shallow sub-surface flow, and the other water 449 

components mainly occur in wet season (Sinha et al., 2016). Although the surface runoff 450 

concentration is relatively low, the high flow rate may dilute the output concentrations rapidly. 451 

Additionally, although the lateral flow accounts for a small proportion, it scours the soil and carries 452 

relatively high nitrate concentrations, which will increase the output concentrations. The scouring 453 

and dilution effects may prevail under varying moisture and rainfall conditions, exhibiting seasonal 454 

variability (X. Zhang et al., 2020). Whereas the improvements we made to the model were limited 455 

to the nitrate transport processes of the aquifers and could not improve the effects of other runoff 456 

components. Furthermore, water quality modeling is also susceptible to the simulated streamflow, 457 

and the weaker performance of the model at low flows can also introduce errors to water quality 458 

modeling.  459 

The nitrate exceedance probability provides an evaluation of the agreement between the simulated 460 

and observed values in statistical sense (Figure 4e-f). For high nitrate concentrations (exceedance 461 

probability < 25 %), the original SWAT generally underestimates while SWAT-SAS 462 

overestimates, such as the peaks in 2012 and 2013. For mid-level nitrate simulation (25 % < 463 

exceedance probability < 75 %), SWAT and SWAT-SAS showed good agreement with 464 

observations. For low-level nitrate simulation (exceedance probability > 75 %), SWAT deviations 465 

were significantly greater than those of SWAT-SAS. The original model may underestimate the 466 

low concentrations, resulting in incorrect assessment of water quality. 467 

Previous studies (J. Yang et al., 2018; X. Zhang et al., 2020) defined four periods of the catchment 468 

based on streamflow and subsurface storage conditions, i.e., wetting (November to December), 469 

wet (January to April), drying (May to June) and dry (July to October) periods. We adopted the 470 

definition to further analyze the relationship of streamflow and nitrate concentration (the C-Q 471 
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relationship). The C-Q relationship is plotted in log scale space, as shown in Figure 4. The positive 472 

C-Q slopes indicate the enhanced hydraulic processes are the principal mechanism driving the 473 

concentration variations (Godsey et al., 2009; Neira, 2019) and also indicates the additional 474 

activation of more shallow and younger or more distant nutrient source zones (Bowes et al., 2015; 475 

Musolff et al., 2015). In the wet season, the variation of nitrate concentration is closely related to 476 

the streamflow, and the data are uniformly distributed around the fitted line (Figure 4a). In other 477 

seasons, there are scatters far away from the fitted line. The scatters in the upper left of the fitted 478 

line indicates lower flows with higher nitrate concentration, commonly observed in the early wet 479 

season. Apart from the wet season, some scatters are distributed in the lower left of the fitted line, 480 

indicating low flows with low nitrate concentration. Other studies have noted that the low-481 

magnitude events with low nitrate loadings occurred mainly during summer and autumn (Winter 482 

et al., 2022). It can be explained by two aspects, namely the decreased hydrological connectivity 483 

due to lower antecedent soil moisture, and the lower nitrate availability due to higher 484 

biogeochemical removal and biological uptake in summer and autumn (Musolff et al., 2015; J. 485 

Yang et al., 2018). The two models show comparable C-Q relationships, but the fitted slope of 486 

SWAT-SAS is more in line with the observed data. In addition, neither model captured outliers 487 

during the drying and dry seasons. The bias may arise from two sources, one is the simulation bias 488 

of low flow periods, and the other one is the limitation of hydrological models in dry seasons 489 

(Fowler et al., 2021; Wen et al., 2021). Since the parameters for the SAS function are invariant 490 

over the simulation range (i.e. the aquifer maintains constant age preference), the SWAT-SAS 491 

results are also biased in dry seasons. 492 
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 493 

Figure 4. C-Q relationship in log scale. (a) observed data, (b) simulated by SWAT, (c) simulated by SWAT-SAS. 494 

4.3 Aquifer dynamics and model comparisons 495 

To compare the differences between SWAT and SWAT-SAS for nitrate transport within the 496 

aquifers, we conducted and analyzed two simulations. Both simulations used the same original 497 

hydrological and water quality parameters (the best parameter set for SWAT), and SWAT-SAS 498 

has five additional parameters for the SAS function. Thus, the two simulations have the same 499 

surface and soil processes and corresponding calculated results. For the aquifer system, the inputs 500 

are the same, but the output nitrate loads and concentrations are different due to the distinct nitrate 501 

transport schemes.  502 

A large proportion of nitrate leached from the soil bottom into the aquifers, with an annual average 503 

of 45.5 kg/ha. Arable land contributed about 50% of the total leaching, while about 28% of leached 504 

nitrate came from forest land, see Supplementary Material S4 for the distribution of leached nitrate. 505 

Both models consider the transport process and decay rate in the aquifers. In SWAT, the nitrate 506 
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transport is based on the well-mixed assumption at HRU scale. The model calculates the nitrate 507 

loads by using the average concentration of the shallow aquifer in each HRU, as shown in Eq.4. 508 

In SWAT-SAS, the processes of mixing and transport are aggregated into a functional form that 509 

indicates a selection scheme for different water age storage. The SAS function was parameterized 510 

with the values a = 0.73 and b = 4.08, which indicates a bias towards releasing young water (a/b < 511 

1). Additionally, nitrate within the aquifer will decay, represented by HLIFE_NGW and half_life 512 

in SWAT and SWAT-SAS, respectively. 513 

As shown in Figure 5a, the two simulations have comparable performance levels, with evaluation 514 

metrics for SWAT being KGE = 0.69 and for SWAT-SAS being KGE = 0.79. Notably, SWAT 515 

tends to overestimate at the start of the wet season (e.g., in late 2014, 2015, 2016 and 2017) and 516 

has a smoother change in simulated values than SWAT-SAS during the wet season. For the peak 517 

simulation of in-stream nitrate concentration (𝐶𝐶𝑖𝑖𝑖𝑖−𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠), it is typically observed that SWAT 518 

underestimates (e.g., January 2012 and January 2019). In contrast, SWAT-SAS tends to 519 

overestimate (e.g., January 2012, March 2013, and December 2017). 520 

Figure 5b and 5c reflect how the two aquifer release schemes contribute to output nitrate 521 

concentration (𝐶𝐶𝑜𝑜𝑠𝑠𝑙𝑙) and nitrate stores (Δ𝑁𝑁𝑠𝑠𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠). SWAT shows a fast peak in the early wet season 522 

and long tails (Figure 5b). It is because at the beginning of the wet season, the water storage of the 523 

aquifer is at a low level, higher inputs of nitrate concentration can significantly cause changes in 524 

the aquifer concentration. However, due to the increasing aquifer storage and decreasing nitrate 525 

input concentration, the impact of the nitrate input become smaller and is averaged out, resulting 526 

in more smooth changes in output concentrations during late stages. The red line in Figure 5b 527 

represents the aquifer output nitrate concentration simulated by SWAT-SAS. It shows more 528 

significant rapid concentration peaks and long tails. The peaks are sharper and sometimes are 529 
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overestimated. From the fitted SAS function, young water contributes more to the outflow, and 530 

the young water normally carries higher nitrate concentration, hence the output concentration can 531 

respond quickly to the input. In Figure 5c, Δ𝑁𝑁𝑠𝑠𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 is calculated by the cumulative sum of daily 532 

nitrate input store and output store, reflecting the balance within the aquifers during 2012-2019. 533 

At the beginning of 2012, the nitrate store was 0, and it gradually accumulated and released with 534 

the percolation and transport processes. At the end of the dry season, the nitrate store is at a 535 

relatively low level due to the long-term lack of nitrate input and continuous decay. With the 536 

coming of the wet season, nitrate leached from the soil bottom with flow and recharged the nitrate 537 

store of the aquifers gradually. In the early wet season, the nitrate concentration inputs are 538 

relatively high, resulting in a rapid increase in nitrate store. The subsequent nitrate concentration 539 

inputs are lower, causing a certain degree of fluctuations in nitrate store. Additionally, the Δ𝑁𝑁𝑠𝑠𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 540 

for SWAT-SAS usually drops to a low point within a few months, making the simulation for 541 

SWAT generally had higher  Δ𝑁𝑁𝑠𝑠𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 than SWAT-SAS (Figure 5c). Both simulations have low 542 

𝐶𝐶𝑖𝑖𝑖𝑖−𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 levels during the dry season (Figure 5a). The nitrate store simulated by SWAT-SAS is 543 

low in this period, hence making low output concentration. While for SWAT, although there is 544 

still some level of nitrate storage in the aquifer (Figure 5c), it is only stored in the shallow aquifer. 545 

While the outflow from the aquifers in dry conditions consists mainly of the deep groundwater, 546 

which does not carry nutrients or contribute to the in-stream concentration. For the wet season 547 

from late 2018 to April 2019 with arid preconditions, the SWAT-SAS was able to simulate the 548 

peak while SWAT appeared to underestimate it, indicating that the fitted SAS function can also 549 

represent the arid period to some extent. 550 

In our study, the SAS parameters were kept constant parameters with the implication of young 551 

water preference. This scheme makes the output concentrations highly influenced by young water 552 
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and is susceptible to overestimation when fertilizer and heavy rainfall coincide. For example, the 553 

high valuations in March 2013. In addition, it is less likely to apply fertilizer under conditions of 554 

intense rainfall in practical agricultural management, and therefore the errors for this period may 555 

also arise from input uncertainty. With the well-mixed assumption, this case can be averaged by 556 

the water storage and thus SWAT generates lower values. Additionally, constant SAS parameters 557 

will be questionable sometimes for some cases because the age preference might change as the 558 

conditions like storage, input force and moisture change (P. Benettin et al., 2015; Harman, 2015; 559 

Heidbüchel et al., 2019; J. Yang et al., 2018). The bench-scale hillslope experiment by Meira et al. 560 

(2022) indicated that the contribution of old water and young water varied with the wetting 561 

conditions. In 2013-2014, the catchment experienced a long-wet period. From October 2013 to 562 

March 2014, SWAT-SAS generally underestimated during the wet season while SWAT could well 563 

capture the pattern. Before the wet season, the catchment was relatively humid, with the previous 564 

wet season lasting until June. In addition, there was intense rainfall in May, with high monthly 565 

rainfall (Figure 3a). The SWAT-SAS produced high concentrations and less nitrate was stored in 566 

the aquifers. In contrast, the SWAT released nitrate slowly and until October, the Δ𝑁𝑁𝑠𝑠𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 567 

remained at a relatively high level (Figure 5c). Thus, in the following wet season, the initial 568 

Δ𝑁𝑁𝑠𝑠𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠 differed between the two simulations, making distinct output concentration levels.  569 

For watershed management, information such as nutrient legacy also needs to be assessed to 570 

prevent excessive nutrients accumulation in the catchment and deterioration of groundwater 571 

quality. As seen from the above comparisons, although SWAT and SWAT-SAS generate similar 572 

levels of nitrate concentration outputs, the results are based on different subsurface transport 573 

models. For example, in SWAT, the rapid concentration increase in the wet season is attributed to 574 

relatively low water storage, while in SWAT-SAS, it is attributed to young water preference. And 575 
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the diverse mechanisms also lead to distinct levels of nutrient legacy in the system. The scarcity 576 

of field data prevents us from determining which scheme better characterizes the nitrate legacy 577 

(Lutz et al., 2022). Despite accompanying uncertainties, SWAT-SAS enhances the flexibility to 578 

represent various schemes and helps to track different event inputs (by tagging the volumes with 579 

water age) and evaluate their long-term effect. In the next section, we will discuss the 580 

characteristics of the water age that transit time models offer, as well as the potential of water age 581 

for supporting catchment management.  582 

 583 

Figure 5. The performance of the two simulations and simulated aquifer. (a) simulated in-stream concentrations 584 

of the two simulations (blue line for SWAT, and red line for SWAT-SAS) compared with the observed data (grey 585 

points); (b) simulated input aquifer concentrations (grey columns) and output aquifer concentrations (blue line for 586 

SWAT, red line for SWAT-SAS); (c) nitrate store balanced within the aquifers (blue line for SWAT, red line for 587 

SWAT-SAS). 588 

4.4 Water age characteristics of aquifers 589 
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In addition to the hydrological and water quality series, SWAT-SAS provides water age 590 

information for the control volume outflow and storage. The mean (MTT and MRT) and median 591 

(TT50 and RT50) values of water age distribution are often used to describe the characteristics of 592 

the age structure. Figure 6 shows the variation of these indexes for the outflow and storage of the 593 

SAS compartment, with colored lines indicating the mean values of behavioral simulations, and 594 

the light color band indicating the range of these simulations.  595 

 596 

 597 

Figure 6. Characteristics of water age in discharge and storage. (a) median (TT50) and mean (MTT) values of 598 

transit time; (b) median (RT50) and mean (MRT) values of residence time. 599 

The water always keeps aging, with a linear increase in age, which is evident in the dry season. 600 

The mean and median values decrease when younger water leaches and refreshes the volumes, 601 

generally occurring in the wet season. It is apparent that TT50 shows the greatest seasonal variation. 602 

TT50 represents the youngest 50% in outflow and is most affected by young water.  In the wet 603 

season, sufficient young water (normally with higher nitrate concentration) constitutes a greater 604 

proportion of the outflow. The shorter transit time indicates faster transport and less time for 605 

mixing and denitrification (with less dilution and decay) during the period, explaining the rapid 606 
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response and peaks of in-stream nitrate concentration noted in the previous section. Due to the lack 607 

of young water during dry seasons, the system discharges older water, resulting in a larger TT50. 608 

There was a drought during 2018-2019, the TT50 experienced a brief decrease in a short-wet season 609 

and then increased continuously. 610 

The other three statistical values for water age distribution (i.e., RT50, MTT and MRT) are of greater 611 

values and show smaller seasonal variations. It is because they are greatly affected by the old water 612 

volume. We did not set a maximum water age to merge the old water volumes above the threshold, 613 

which allows reflecting the impact of very old water on the ages. For aquifers, the storage capacity 614 

is generally very large, and hence has long turnover time and updates slowly.  615 

Due to the system preferring to release young water, there are large skews of the water age 616 

distribution in outflow and storage. Their median and mean values differ considerably, by about 617 

one magnitude. During the output period (2012-2019), TT50 ranges from 0.5 to 2.3 years, while 618 

MTT ranges from 29.7 to 34.7 years (TT50 << MTT), indicating that there is a long tail on the right 619 

side of the median value and the age distribution is left-skewed; RT50 ranges from 38.9 to 45.4 620 

years, while MRT ranges from 4.2 to 5.6 years (RT50 >> MRT), indicating that there is a long tail 621 

on the left side of the median value and the age distribution is right-skewed. The statistical values 622 

also suggest that much of the water in storage is much older than the water in discharge. In storage, 623 

50% of the water is older than 40 decades, while in discharge, 50% consists of water younger than 624 

1.5 years.  625 

Our modified model did not consider the transit time of soil, which is also an important field of 626 

nutrient legacy (Kumar et al., 2020). In previous work, Nguyen et al. (2022b, 2021) developed 627 

mHM-SAS and conceptualized the subsurface process as an SAS compartment, including the soil 628 

profile and aquifer system. The characteristics of water age are influenced by groundwater as well 629 
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as interflow. The water age simulated by mHM-SAS was generally smaller than our results, 630 

especially in wet seasons. This is because the water age of interflow is normally younger than 631 

groundwater (Sprenger et al., 2019), and in wet seasons, contributes more to the discharge. In 632 

addition, different SAS parameters were set for the dry and wet seasons, which related to the 633 

activation and deactivation of fast shallow flow paths under variable wetness conditions. Whereas 634 

the SWAT-SAS in our study inherits the spatial variation of soil from the original model. The 635 

seasonal variations in storage selection and flow paths are not significant for the aquifers in Upper 636 

Selke, and thus the constant SAS function we used gives satisfactory results. However, for systems 637 

with more complicated aquifers, such as karst catchments, the seasonal variations of flow paths 638 

still need to be noted. 639 

Nitrate legacy has substantial implications for assessing related measurement and management 640 

decisions, as well as environmental policies (Ascott et al., 2017; Basu et al., 2022). Neglecting the 641 

legacy issue may lead to misestimation of the timeline for achieving pollution reduction plans 642 

(Basu et al., 2022; S. Chen et al., 2022), such as the cases in the Mississippi River Basin (Meter et 643 

al., 2018), Chesapeake Bay (Chang et al., 2021; Chesapeake Progress, n.d.), Yongan watershed 644 

(Chen et al., 2017) etc. By augmenting SWAT with SAS, we can better tackle legacy issues, 645 

including when the nitrate is in and out of the system, as well as how the system is storing and 646 

releasing the nitrate. The simulated water age structure helps us to quantitively estimate the long-647 

term effects of historical inputs on the system and more accurately simulate nitrate flux and 648 

concentrations in receiving water bodies (Basu et al., 2022; Lutz et al., 2022). For instance, if a 649 

system tends to release young water, we should be aware that the old water nitrate remains in the 650 

system and its effect on the output concentration. Despite stopping nitrate inputs, the nitrate legacy 651 

will still result in higher concentrations. A system with longer transit times can increase contact 652 
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between the water and the surrounding environment, potentially resulting in higher levels of 653 

pollutants and contaminants. There are already calls for modeling studies to include, report and 654 

critically analyze model-internal N fluxes and stores in addition to output concentrations (Lutz et 655 

al., 2022).  656 

5 Conclusions 657 

TTD/SAS theory has been rapidly developed recently. It is becoming a robust link between 658 

hydrological and water quality processes, which is considered to compensate for the 659 

oversimplification of subsurface processes by traditional PBHMs. In our study, we reconsidered 660 

the SWAT mixing and transport processes within the aquifers and replaced the original algorithm 661 

with SAS module, calculating the aquifer nitrate concentration by SAS function. We applied the 662 

original and modified models for Upper Selke (about 100 km2). Then, we compared the results of 663 

the models to analyze the differences between the water release schemes and discuss the potential 664 

of the modified model for supporting watershed management. The main results we come up with 665 

include: 666 

a. The time-variant TTD model, SAS function, was successfully coupled into SWAT. It 667 

enables the modified model to represent more flexible storage release schemes of aquifers.  668 

b. Both original (SWAT) and modified (SWAT-SAS) models can reproduce the dynamics of 669 

streamflow and in-stream nitrate concentration of the Upper Selke catchment with 670 

satisfactory performance. 671 

c. Although the two models simulate similar levels of in-stream concentration output, the 672 

storage and concentration output within the aquifers/SAS compartment differ significantly. 673 

The differences are related to the model structure and storage selection scheme. 674 
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d. SWAT-SAS provides more information such as the age structure of the aquifer and can be 675 

used to estimate nutrient legacy for watershed management. 676 

Although our work reconsidered the groundwater processes and provided tools for flexible 677 

representation, the determination of the transit time and nutrient legacy still requires the field data 678 

to ensure “getting the right answers for the right reasons” (Kirchner, 2006; Lutz et al., 2022; 679 

Rodriguez et al., 2021). Due to the heterogeneity of subsurface processes, the distributed 680 

application of transit time models would theoretically better represent the process variation. 681 

However, this could cause over-parameterization problems and there is still no research on how to 682 

parameterize SAS parameters at the HRU scale or the grid scale (Nguyen et al., 2021). Overcoming 683 

the over-parameterization will be a challenge for further hydrological models coupled with SAS 684 

applications. In addition, there are other methods for calculating transit time besides SAS, and 685 

comparisons between different methods are encouraged to provide a more complete analysis of 686 

the applicability and limitations of different schemes.  687 
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