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Abstract: 94 

Purpose of review 95 

International ambitions for massive afforestation and restoration are high. To make these 96 

investments sustainable and resilient under future climate change, science is calling for a shift from 97 

planting monocultures to mixed forests. But what is the scientific basis for promoting diverse 98 

plantations, and what is the feasibility of their establishment and management? As the largest global 99 

network of tree diversity experiments, TreeDivNet is uniquely positioned to answer these pressing 100 

questions. Building on 428 peer-reviewed TreeDivNet studies, combined with the results of a 101 

questionnaire completed by managers of 32 TreeDivNet sites, we aimed to answer the following 102 

questions: (i) How and where have TreeDivNet experiments enabled the relationship between tree 103 

diversity and tree performance (including productivity, survival, and pathogen damage) to be 104 

studied, and what has been learned? (ii) What are the remaining key knowledge gaps in our 105 

understanding of the relationship between tree diversity and tree performance? (iii) What practical 106 

insights can be gained from the TreeDivNet experiments for operational, real-world forest 107 

plantations? 108 

Recent findings 109 

We developed a conceptual framework that identifies the variety of pathways through which target 110 

tree performance is related to local neighbourhood diversity and mapped the research efforts for 111 

each of those pathways. Experimental research on forest mixtures has focused primarily on direct 112 

tree diversity effects on productivity, with generally positive effects of species and functional 113 

diversity on productivity. Fewer studies focused on indirect effects mediated via biotic growing 114 
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conditions (e.g. soil microbes and herbivores) and resource availability and uptake. Most studies 115 

examining light uptake found positive effects of species diversity. For pests and diseases, the 116 

evidence points mostly towards lower levels of infection for target trees when growing in mixed 117 

plantations. Tree diversity effects on the abiotic growing conditions (e.g. microclimate, soil 118 

properties) and resource-use efficiency have been less well studied to date. The majority of tree 119 

diversity experiments is situated in temperate forests, while (sub)tropical forests, and boreal forests 120 

in particular, remain underrepresented. 121 

Summary 122 

TreeDivNet provides evidence in favour of mixing tree species to increase tree productivity while 123 

identifying a variety of different processes that drive these diversity effects. The design, scale, age, 124 

and management of TreeDivNet experiments reflect their focus on fundamental research questions 125 

pertaining to tree diversity-ecosystem function relationships and this scientific focus complicates 126 

translation of findings into direct practical management guidelines. Future research could focus on 127 

(i) filling the knowledge gaps related to underlying processes of tree diversity effects to better design 128 

plantation schemes, (ii) identifying optimal species mixtures, and (iii) developing practical 129 

approaches to make experimental mixed plantings more management oriented. 130 

  131 
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Main text: 132 

Introduction 133 

Forest landscape restoration and afforestation are receiving wide international attention as they are 134 

considered key nature-based solutions to mitigate several global crises, including climate change, 135 

biodiversity loss, and rural poverty [1–5]. This importance has been reflected in highly ambitious 136 

global initiatives such as the 2011 Bonn Challenge [6], the 2014 New York Declaration on Forests, 137 

which pledged to restore 350 million ha of forest globally by 2030, the UN Decade on Restoration, 138 

China’s Grain-for-Green Program [7] and many more [e.g. 8–10]. Also in the Global South forest 139 

restoration interest is high with AFR100, for instance, a country-led effort to afforest 100 million 140 

hectares of land in Africa by 2030. Thirty-one African governments have signed up to AFR100, with 141 

each country pledging to afforest an explicit target area (https://afr100.org). 142 

Forest plantations provide an increasingly large share of global wood products, which can be used as 143 

substitutes for more greenhouse gas-intensive materials like concrete [11]. High-yielding plantations 144 

can also contribute to land sparing for biodiversity conservation by reducing land-use pressure on 145 

natural forests [12, 13], depending on policy and economic context [14]. However, climate change is 146 

putting forests under pressure through the increasing frequency and severity of stress and 147 

disturbances like droughts and biotic infestations such as insect outbreaks [15]. This compromises 148 

the ability of forests to act as carbon sinks and provide numerous key ecosystem services [16, 17]. 149 

Therefore, the ability of forests to provide ecosystem services in the long run will depend on how 150 

well trees perform and can maintain ecosystem functioning under predicted future global change. 151 

There is considerable evidence from experiments and observations that greater diversity leads to 152 

greater forest productivity and resiliency, in natural and plantation systems, and in many different 153 

biomes [18–20]; hence the question arises of whether we can deploy the underlying mechanisms in 154 

plantation forestry. A growing body of evidence suggests that mixed forest plantations, i.e. 155 

plantations where multiple tree species (or varieties) are growing together at the patch or individual 156 
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scale and interact, can be more efficient in biomass accumulation compared to monocultures [21–157 

26]. Moreover, mixed forests can also better cope with climate change-related stress and other 158 

disturbances, such as droughts, pests, diseases, fires and windstorms [27, 28]. 159 

Mixed plantations could thus represent a valuable tool to attain multifunctional, resilient, and 160 

productive forests for the future. Yet, monocultures still dominate forest plantations across the 161 

globe [29]. Forest owners and managers have identified multiple constraints that are still hindering a 162 

wide adoption of mixed plantations, including logistical (e.g. requirement of highly trained workers 163 

and specialized machinery), economic (e.g. costs of more complex management operations), and 164 

cultural and historical (e.g. professional and public perceptions, prejudices) challenges [30–32]. 165 

However, the most important constraint, which is likely at the root of landowner’s and stakeholder’s 166 

reluctance to adopt mixed plantations, is the lack of information and evidence regarding benefits of 167 

mixtures and how they can be successfully established and maintained [23]. Hence, scientific 168 

research should not only assess the benefits or disadvantages of diverse plantations in terms of 169 

ecosystem services and their sustained provision under global change [e.g. 33], but also the 170 

feasibility and costs to establish, manage, and harvest them [22, 32]. Moreover, the multifunctional 171 

benefits of biodiverse tree plantations as well as the underlying mechanisms at play may depend on 172 

the environmental context [34], in addition to the plantation layout in terms of density and species 173 

composition. 174 

TreeDivNet is a global network of tree diversity experiments with sites in various environmental 175 

contexts and testing a wide range of species compositions. It provides a unique platform to respond 176 

to the need for a science-based understanding of the benefits and drawbacks of mixed forest 177 

plantations [23]. Findings from the first 15 years of TreeDivNet on the consequences of diversity for 178 

tree growth, tree survival, and tree damage by pests and pathogens were reviewed by Grossman et 179 

al. (2018) [21]. Here, we reviewed all 428 studies originating from more than 20 years of research 180 

within TreeDivNet, aiming not only to reveal diversity effects on tree performance, but also to reveal 181 
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the different mechanistic pathways enabling these diversity effects, and which of these pathways 182 

remain understudied. Moreover, in addition to earlier TreeDivNet reviews [21–23], we aimed to 183 

uncover the main challenges related to bridging theoretical knowledge with practical 184 

implementation in real-world operational forest plantations. Our review will answer the following 185 

questions: 186 

(i) How and where have TreeDivNet experiments enabled the relationship between tree 187 

diversity and tree performance to be studied, and what has been learned? 188 

(ii) What are the remaining key knowledge gaps in our understanding of the relationship 189 

between tree diversity and tree performance? 190 

(iii) What practical insights can be gained from the TreeDivNet experiments for operational, 191 

real-world forest plantations? 192 

While we focus our review and research questions on individual tree performance, representing 193 

local scale effects, we consider that good individual tree performance is a prerequisite for healthy, 194 

resilient, and productive plantation stands at larger spatial scales. 195 

In our review, we first introduce the conceptual framework around which our synthesis is built. Next, 196 

we elaborate on TreeDivNet and data collection (literature review and questionnaire). Finally, we 197 

present and discuss our findings structured around our three research questions. 198 

 199 

Conceptual framework: how does tree diversity alter tree performance? 200 

Healthy and productive trees are the basis of well-functioning forests and thus the provisioning of 201 

ecosystem services. Therefore, we focus our review on the influence of tree species mixing on tree 202 

performance. In order to systematically synthesize the TreeDivNet studies, we developed a 203 

comprehensive framework identifying various pathways through which the performance of a target 204 

tree is related to the diversity or composition of the local tree neighbourhood (Fig. 1). We focus the 205 
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framework on effects occurring at the local scale, i.e. between a target tree and its directly 206 

neighbouring trees, assuming that for relatively young plantations, with limited mortality, diversity 207 

effects at the larger plot or stand level are the combined result of local scale tree level interactions 208 

[35]. This way, both studies at the community or plot level, which were initially the main focus of 209 

TreeDivNet, and studies on the individual scale, which have increased in recent years, could be 210 

mapped on our conceptual framework and included in this review to investigate tree diversity 211 

effects. However, we should recognize that while studying tree-level interactions can improve our 212 

understanding, it does not fully explain stand-level behaviour, and vice versa [see [36]].  TreeDivNet 213 

studies have typically evaluated tree performance as tree productivity, survival, and damage level 214 

due to herbivory or infestation by pests or diseases. The specific interpretation of tree performance 215 

within the framework depends on the context of each study, but, in general, the framework assumes 216 

that good tree performance is a prerequisite for healthy, resilient, and productive trees.  217 

The framework identifies three key components that regulate the effect of local neighbourhood 218 

diversity on tree performance: growing conditions, resources, and functional traits (Fig. 1). Both 219 

aboveground and belowground growing conditions will alter tree performance. We made a 220 

distinction between abiotic growing conditions, including soil pH, carbon content, soil texture or 221 

structure (belowground) and microclimate (aboveground), and biotic growing conditions, including 222 

the herbivore community (aboveground) and the soil and leaf microbial community (below- and 223 

aboveground). In addition to suitable growing conditions, a tree needs resources: water, nutrients, 224 

and light. Its performance will depend on three factors related to resources: (i) resource availability 225 

is the amount of a resource available to the target tree, (ii) resource uptake is the amount of a 226 

resource that the tree can take up, and (iii) resource-use efficiency defines how efficiently a tree can 227 

invest these resources into its growth [37]. The third and final linking component between tree 228 

diversity and tree performance are functional traits. Adapting the framework by Suding et al. [38], 229 

we distinguish functional effect traits from functional response traits. The neighbouring trees can 230 

mediate the growing conditions and resources for the target tree via their functional effect traits. 231 
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For instance, the height of neighbouring trees can influence the probability of the target tree being 232 

found by herbivores [39]. The shade-casting ability of trees in the local neighbourhood can affect 233 

light availability for the target tree, hence altering its growth [40]. The target tree can then, in turn, 234 

respond differently to growing conditions and resources, depending on its own functional response 235 

traits. For instance, plant metabolite and leaf elemental concentrations of the target tree may affect 236 

the level of infestation by herbivores and pathogens [41]. Fine-root traits such as root diameter and 237 

specific root length can alter the ability of the target tree to take up nutrients and water [42]. 238 

In TreeDivNet experiments, tree communities are manipulated in experimental plots with a gradient 239 

of tree diversity. We distinguished the following four facets of diversity: (i) species diversity or 240 

taxonomic diversity (e.g. species richness, Simpson index, Shannon-Wiener index and evenness); (ii) 241 

functional diversity, i.e. the diversity of functional effect traits; (iii) genetic diversity (including both 242 

phylogenetic diversity and genetic variation within tree species originating from different seed 243 

provenances); (iv) finally, identity effects are known to play a key role in the impact of the 244 

neighbourhood community on target tree performance. This is defined as the effect of the presence 245 

of a specific species within a species mixture, or the effect of the composition of a certain mixture. 246 

Within our framework, we define structural diversity as variation in height or crown structural 247 

complexity as an expression of a tree species’ functional traits, and therefore group this with 248 

functional diversity. We acknowledge that structural diversity can also emerge from staggered 249 

planting using different aged trees. However, given that this is not generally applied in the 250 

TreeDivNet experiments (with exception of the BEF-Agroforestry experiments [43]), structural 251 

diversity as an independent gradient is not included in our framework. Note that the experiments 252 

vary to some degree in planting densities, species mixing patterns, and developmental stages, but 253 

this variation is only found across experiments, while the focus of the conceptual framework is to 254 

capture tree performance responses to treatments within experiments, i.e. principally tree diversity 255 

gradients. Therefore, cross-experiment mediators such as planting density and development stage 256 
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are not included in the conceptual framework of this study, despite their potential to alter tree 257 

performance responses to mixing. Note that the recently established TWIG experiment (2017) 258 

applies a planting density gradient, which will allow to explore density effects also within 259 

experiments in the future.260 

 261 

Figure 1. Conceptual framework identifying three key components that regulate the effect of local 262 

neighbourhood diversity on tree performance: functional traits, growing conditions, and resources. 263 

Both aboveground and belowground growing conditions will alter tree performance. In addition, the 264 

availability, uptake and use-efficiency of resources will alter tree performance. Functional traits 265 

represent the third and final linking component between tree diversity and tree performance. 266 

Neighbouring trees can mediate the growing conditions and resources for the target tree via their 267 

functional effect traits. The target tree can respond differently to growing conditions and resources, 268 

depending on its own functional response traits. Four different groups of pathways through which 269 

local neighbourhood diversity can affect target tree performance can be distinguished in the 270 

framework. (i) Abiotic pathways, comprising arrow 1, and combinations of arrow 1 with subsequent 271 

arrows (arrow 1+5, arrow 1+6 and arrow 1+6+9); (ii) biotic pathways, comprising arrow 3, and 272 
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combinations of arrow 3 with subsequent arrows (arrow 3+8, arrow 3+7 and arrow 3+7+9); (iii) 273 

resource pathways, comprising arrow 2, and arrow 2+9; and (iv) the direct pathway (i.e. without 274 

considering the underlying biological processes behind any effects), arrow 4. Yellow triangles 275 

represent the underlying influence of effect and response traits. 276 

Data collection and extraction 277 

TreeDivNet 278 

TreeDivNet is the largest global network of tree diversity experiments (treedivnet.ugent.be) [22]. At 279 

present, it consists of 29 experiments, spread across 21 countries and 6 continents, in the boreal, 280 

temperate, and (sub)tropical ecoregions [44]. The oldest experiment was planted in 1999 281 

(Satakunta, Finland), and the most recent experiment was established in 2022 (BEF-Agroforestry, 282 

Bolivia). To allow testing the effects of diversity, the unifying characteristic of all experiments is that 283 

tree species are grown in both monoculture and mixture plots, and that tree diversity levels up to a 284 

minimum of three species are replicated in a randomized design at the community scale. In this way, 285 

TreeDivNet provides a unique platform to investigate the benefits and drawbacks of mixed species 286 

plantations. Notably, The International Diversity Experiment Network with Trees (IDENT) is a sub-287 

network consisting of nine diversity experiments in North America, Europe and Africa. The focus of 288 

IDENT is on early successional stages of stand development thus the trees are planted in high 289 

density, i.e., 40 to 60 cm apart, to accelerate species interactions [45]. 290 

Here, we tap into the TreeDivNet network using two different approaches. First, we reviewed all 291 

studies that were published in scientific journals and based on one or multiple TreeDivNet 292 

experiments, to obtain an overview of what can be learned from 23 years of tree diversity 293 

experiments, in terms of tree, plot, and stand level performance. Second, we asked the site 294 

managers from each experiment to complete an in-depth survey about their insights and 295 

experiences, in particular with regard to the practical challenges related to managing mixtures vs. 296 

https://treedivnet.ugent.be/
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monocultures. The main goal of this survey was to complement the literature review with insights 297 

from a management perspective that are often not considered in scientific publications. 298 

Scientific literature review 299 

We started the review with a pool of 428 studies originating from the TreeDivNet experiments 300 

actively archived on the network’s web page (https://treedivnet.ugent.be/), all published in peer-301 

reviewed international journals before October 2022. To check whether the TreeDivNet output 302 

covers a representative share of the experimental research on tree diversity, we did a literature 303 

search on Web of Science using the following search string: Tree AND diversity AND experiment AND 304 

(plantation OR “planted forest” OR afforestation). This did not yield any additional experiments 305 

meeting the criteria of TreeDivNet (see treedivnet.ugent.be/mission), suggesting that the 428 306 

TreeDivNet studies are highly representative of the scientific knowledge gained from tree diversity 307 

experiments. We only included studies that reported effects of one or more diversity metrics on 308 

either target tree performance directly, or on the growing conditions or resources for the target 309 

tree. Meta-analyses, review papers, perspectives, experimental design papers, and research papers 310 

that did not assess tree diversity effects were excluded. This resulted in a list of 215 relevant papers 311 

for our review. We then mapped each study onto the conceptual framework, extracting the 312 

investigated diversity metric(s), mechanistic pathway(s), and response variable(s). Response 313 

variables were grouped into logical categories, depending on the pathway. For instance, for the 314 

resource pathway, response variables were grouped into light, nutrients and water, and within each 315 

of these resources, into availability, uptake and use-efficiency, resulting in nine response categories 316 

for the resource pathway. These categories are explained in detail in the results section, and shown 317 

in Table 1. 318 

We considered each set of diversity metric, pathway, and response variable as an individual case. 319 

This means that one study can contain multiple cases, for instance when exploring multiple 320 

measures of diversity, multiple pathways or response variables, or when investigating more than 321 
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one TreeDivNet site and reporting separate results for each site. For each case, we extracted the sign 322 

of the effect that was found (i.e., positive or negative) or noted if no significant effects were found 323 

or if effects were multidirectional. A multidirectional effect occurred, for instance, when effects of 324 

tree diversity on tree performance were dependent on the identity (species) of the target tree, or 325 

when tree diversity effects in herbivore abundance differed among herbivore groups. We did not 326 

assign any direction to identity effects, but only reported whether identity effects were significant or 327 

not. Below, we report how many cases represent each pathway and assign a direction of the 328 

relationship between the response category and tree diversity based on the results of the 329 

considered studies. We provide readers with a systematic overview of where research efforts have 330 

been focused (what processes and mechanisms), where evidence of the presence of diversity effects 331 

has been found and under which conditions, and which pathways have received little attention. We 332 

want to stress that we did not perform a quantitative analysis (sensu meta-analysis), thus no 333 

statistical conclusions should be drawn from the results we present. 334 

Questionnaire 335 

Complementary to the literature review, we developed a questionnaire that was sent out to the 336 

managers of all TreeDivNet sites (N = 39; see Appendix S3 for an overview of experiments and sites), 337 

to uncover the main challenges related to bridging theoretical knowledge with practical 338 

implementation. The aim of this questionnaire was to learn from hands-on experience and gain 339 

insights into transfer of results to forest management. Managers of TreeDivNet experiments are 340 

mostly academics, who typically do not have the same constraints, barriers, and objectives of “real-341 

world” forest managers. Consequently, this questionnaire did not aim at drawing general guidelines 342 

regarding the management of mixed species plantations at a large scale, but rather to evaluate to 343 

what extent the TreeDivNet experiments reflect real-world plantations and can produce transferable 344 

knowledge. The questions referred to four development stages in tree plantations, as challenges can 345 

depend on the age of the plantation. First, the design stage entails all decisions and interventions 346 
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done before planting, such as species selection, and choice of planting design and tree density. 347 

Second, the establishment stage covers the time between planting and canopy closure. Third, when 348 

the closed-canopy stage starts, this is a period of intense height growth where aboveground tree 349 

interactions become more and more apparent. Fourth, the stem-exclusion stage has been reached 350 

when mortality increases due to intense inter-tree competition and self-thinning. This is typically the 351 

stage in which, from a silvicultural point of view, stands need to be thinned for the first time. A 352 

mature and final harvesting stage was not considered since the vast majority of TreeDivNet 353 

experiments are still too young. 354 

Our questionnaire was completed by the managers of 34of the 42 experimental sites. Two of these 355 

34 sites have been terminated, and 32 were still active at the time of this review. The mean age of 356 

the experiments was approximately ten years. Thirteen experiments have entered the stem-357 

exclusion stage (six excluding IDENT experiments which use very dense planting schemes close to 358 

those found following natural regeneration but far from typical tree spacings used in plantation 359 

management to mimic early interactions among seedlings following stand-replacing disturbance), 360 

and eleven experiments are currently fully in the closed-canopy stage (six excluding IDENT 361 

experiments) and will reach the stem-exclusion stage in the near future. 362 

In broad terms, the questionnaire can be divided into four major parts. For a list of actions and 363 

decisions in the design stage, we asked the managers if and how choices were influenced by 364 

planting mixtures instead of monocultures. For each of the next three development stages, we 365 

inquired about (i) challenges encountered, (ii) possible causes of the challenges, (iii) actions taken in 366 

response to the challenges, and (iv) the outcome of the response to the challenges. To achieve some 367 

level of standardization, challenges were categorised into major dieback events, reductions in tree 368 

health, reductions in tree quality, and other challenges. Next, we asked for future perspectives for 369 

the experimental site, including the long-term ambitions, expected future challenges and their 370 

possible causes, and planned management actions in order to reach the long-term ambitions and 371 
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tackle the expected challenges. Finally, we asked site managers whether they could identify best-372 

performing mixtures in their stands. The full questionnaire can be found in Appendix S4. 373 

Results and Discussion 374 

How and where have TreeDivNet experiments enabled the relationship between tree 375 

diversity and tree performance to be studied, and what has been learned? 376 

We synthesized a total of 215 studies, comprising 635 cases (for an overview see Appendix S2). We 377 

only present and discuss the pathways in Fig. 1 that start from tree diversity effects, as this effect 378 

was a prerequisite for including a study in this synthesis. Hence, arrows 5, 6, 7, 8 and 9 by 379 

themselves will not be discussed, unless they are part of a combined pathway, such as the much-380 

investigated pathway 3+8 (see further). 381 

Tree diversity effects on biotic growing conditions (pathway 3 in Fig. 1) were the most represented in 382 

the TreeDivNet literature with a total of 211 cases investigated, followed by the direct pathway of 383 

diversity to tree performance (pathway 4 in Fig. 1) with a total of 180 cases investigated. The 384 

diversity effect on resources (pathway 2 in Fig. 1) was investigated in 99 cases, and the diversity 385 

effect on tree performance via biotic conditions (pathway 3+8 combined in Fig. 1) in 91 cases. These 386 

four most investigated pathways (Fig. 2) are discussed later in detail. 387 

Only 12 studies (29 cases) investigated the effect of tree diversity on abiotic growing conditions 388 

(pathway 1 in Fig. 1). This mainly involved studies on diversity effects on soil conditions, such as bulk 389 

density, soil carbon, and soil pH [46–51], but also two studies on diversity effects on microclimate 390 

[52, 53], and a few studies on how soil erosion is affected by tree diversity [54–56]. While the effect 391 

of diversity on tree resources (pathway 2 in Fig. 1) was well-studied, only a few studies also looked at 392 

how this could alter tree performance (pathway 2+9). For example, Dillen et al. [57] investigated 393 

diversity effects on growth via differences in shade-casting ability of the neighbouring trees, and 394 

thus via light availability for the target tree. Schnabel et al. [58] assessed how functional diversity of 395 
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drought-tolerance traits impacts growth and growth stability. One study investigated diversity 396 

effects on resources via biotic conditions (pathway 3+7 in Fig. 1): Koczorski et al. [59] investigated P 397 

availability in the soil, via the effect of tree diversity on P-solubilizing fungi. 398 

The temperate biome was best represented within all cases (N=326 out of 635 cases). The number 399 

of cases per pathway for temperate forests followed the same trend as when looking at all biomes 400 

together, although the pathway on tree performance via biotic conditions (arrow 3+8) was slightly 401 

more represented in temperate forests than the resource pathway (arrow 2) (Fig. 2). The tropical 402 

biome was second best represented (N=149), but for tropical forests (unlike in temperate forests), 403 

there was a stronger focus on the direct diversity effects on tree performance (arrow 4) than on 404 

diversity effects on biotic conditions (arrow 3). The effect on tree performance via biotic conditions 405 

(arrow 3+8) was much less represented in tropical forests compared to temperate forests, where 406 

TreeDivNet research has focused very strongly on this aspect of tree diversity effects. In subtropical 407 

forests (N=97), dominated by cases from the BEF-China experiment, the focus was mainly on 408 

diversity effects on biotic growing conditions (arrow 3). Boreal (N=53) and Mediterranean (N=8) 409 

forests were strongly underrepresented within the TreeDivNet studies. 410 

 411 

 412 

 413 

 414 

 415 
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 416 

 417 

Figure 2. Number of investigated cases per pathway of the conceptual framework. (a) Pathways are 418 

ranked according to their number of cases within the TreeDivNet literature. Colours indicate how 419 

the pathways and cases are spread across different biomes. (b) Conceptual framework (see Fig. 1) 420 

with the width of the arrows indicating the number of cases within the TreeDivNet literature; dashed 421 

lines indicate no cases. 422 

 423 

(a) 

(b) 
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 424 

Table 1. Overview of the key results from the systematic literature review. Pathway numbers refer to Fig. 1. For pathways and response categories with 425 

more than 10 cases in the literature (N ≥ 10), we indicate (i) the main direction of the relationship that can be drawn on diversity effects on tree 426 
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performance from reviewing all the studies, and (ii) the frequency of studies that have reported the absence/presence of identity effects. In Appendix S1, 427 

we provide a larger table showing the frequencies of different effects found within the studies for all pathways and categories. Per pathway, responses 428 

were assigned to different categories. For pathway 2, i.e. the resources pathway, responses are categorized into light, nutrients and water, and three 429 

resource-related features, availability, uptake and use efficiency. To incorporate the wide variety of studies, often investigating these resources indirectly 430 

via proxies, strong assumptions were often required (see main text). Pathway 2+9 comprises studies that have looked at how diversity effects on resources 431 

have altered tree performance, and is categorized according to resources (light, water and/or nutrients). For pathway 3, i.e. the biotic pathway, results are 432 

divided into effects of tree diversity on four taxonomic groups (microbiota, invertebrates, plants and birds), decomposition of organic matter, and herbivore 433 

control through herbivore predation and defensive tree traits. For the taxonomic groups, responses can represent abundances, diversity measures or 434 

functioning (e.g. stability of trophobiotic networks). For herbivore control, responses could represent different types of indicators of herbivore predation 435 

(predation rates on fake caterpillars, number of spiderwebs, etc.) or defensive traits (e.g. concentration of phenols, volatile organic compounds or 436 

condensed tannins). For pathway 3+8, i.e. the pathway on diversity effect on tree performance via biotic conditions, results are shown for studies 437 

investigating tree damage by herbivores, and by pests and diseases. A positive (negative) effect on herbivory damage indicates more (less) damage to the 438 

target tree caused by herbivores with increasing levels of diversity. Similarly, a positive (negative) effect on pests and diseases indicates higher (lower) 439 

levels of infection for the target tree with increasing levels of diversity. For pathway 4, i.e. the direct performance pathway, results are divided into diversity 440 

effects on productivity and survival. N represents the number of investigated cases within TreeDivNet.  441 
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Tree diversity effects on biotic conditions (pathway 3) 442 

Over all biomes together, pathway 3 (Fig. 1) was the most represented with N=211 cases 443 

investigating diversity effects on biotic growing conditions (Table 1). Many studies investigated the 444 

effect of tree diversity on the species diversity, abundance, and/or functioning of other taxonomic 445 

groups, which we categorized into birds, plants, invertebrates, and microbiota. We included the 446 

effect of tree diversity on this “associated” diversity in our framework assuming that these 447 

organisms influence the growing conditions of target trees, irrespective if this influence is positive or 448 

negative as this is not researched in these studies. Bird abundance and diversity was investigated in 449 

only two studies [60, 61]. Diversity effects on plants (i.e. herbs and shrubs) were assessed in 12 cases 450 

[62–67]. Invertebrates were much more often investigated within TreeDivNet, with a total of 53 451 

cases investigating a wide variety of features related to invertebrate communities, such as the 452 

occurrence and stability of trophobiotic networks [e.g. 68, 69], abundance and diversity of 453 

arthropods [e.g. 70–73], earthworms [74], and insects such as leafhoppers [75], beetles [e.g. 76], 454 

wasps [e.g. 77] and ants [e.g. 78]. Effects of both species diversity and functional diversity on 455 

invertebrate features were multidirectional across studies (Table 1). With 99 cases, microbiota were 456 

by far the most investigated taxonomic group within TreeDivNet, including studies on fungal and 457 

bacterial communities both in the soil [e.g. 79, 80] and on the tree leaves [e.g. 81, 82], soil 458 

respiration [e.g. 83, 84], soil enzymatic activity [e.g. 47, 85], and mycorrhizal communities [e.g. 86–459 

88]. However, for microbiota, we found the relationship with both species diversity and genetic 460 

diversity to be unclear (Table 1). The majority of cases reported the presence of identity effects on 461 

different features of plants, invertebrates, and microbiota (Table 1), indicating the importance of 462 

tree species composition. 463 

In addition to the four taxonomic groups, two more categories of studies were included in biotic 464 

pathway 3. Decomposition of litter, wood, and roots was classified under the biotic pathway, as this 465 

will influence growing conditions for the target tree via its effect on nutrient and carbon cycling, as 466 
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well as on tree regeneration, and on the functioning and composition of other taxonomic groups. 467 

Twenty-seven cases investigated diversity effects on decomposition, based on biomass loss in e.g. 468 

branches [e.g. 89, 90], litter bags [e.g. 91, 92], and tea bags [93]. The majority of the studies found 469 

no evidence of species diversity effects on decomposition, but identity effects were again important 470 

(Table 1). Finally, the sixth category in pathway 3 was ‘herbivore control’, comprising studies on 471 

herbivore predation and on tree defensive traits. Only studies that specifically measured predation 472 

levels, and not just, for instance, bird abundance, were included here. Several studies used model 473 

caterpillars made from plasticine to measure predation rates of arthropods and/or birds [e.g. 94–474 

96], but also counts of spider webs [97], and assessment of mycophagy [98] were used to assess 475 

predation. In addition, survival of specific leaf herbivores was classified here [99, 100]. Also bottom-476 

up control of herbivory, through assessing diversity effects on defensive traits of the target tree 477 

[101–103] were investigated in a few studies (five cases). Effects of species diversity on herbivore 478 

control were multidirectional across studies, with similar amounts of positive and negative effects. 479 

The impact of other diversity facets on herbivore control was not sufficiently studied to draw any 480 

conclusions (Table 1).   481 

Diversity effect on tree performance via biotic conditions (pathway 3+8) 482 

Studies that investigated diversity effects on tree damage by pests and diseases were classified 483 

under a pathway combining arrow 3 and 8 in the framework (91 cases; Fig. 1). The types of herbivory 484 

investigated ranged from moose browsing [e.g. 96, 104] and vole damage [105], to insect herbivory 485 

[e.g. 96] and damage by leaf miners, chewers, suckers, skeletonizers, rollers, galls, and webbers [e.g. 486 

106–108]. Studies on infestation often examined foliar fungi [e.g. 98, 109, 110]. Some studies 487 

assessed damage in general, e.g. through defoliation and crown discoloration, or branch and shoot 488 

damage [e.g. 111].  489 

For herbivore damage, the effects of species diversity and genetic diversity (functional diversity was 490 

not tested in a sufficient number of studies) are multidirectional as both positive and negative 491 
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effects were regularly observed in studies (Table 1). Note that many studies on herbivory have 492 

investigated both herbivore abundance and damage, and that results for herbivore abundance is 493 

considered as a case within pathway 3, while results for herbivore damage is classified under 494 

pathway 3+8.  For pests and diseases, the majority of evidence points toward a negative relationship 495 

with species diversity, indicating lower levels of infection for the target trees with increasing levels of 496 

diversity (Table 1). Effects of functional and genetic diversity on pests and diseases were not 497 

sufficiently tested to draw any conclusions. For both herbivore damage and pests and diseases, the 498 

majority of studies investigating identity effects confirmed their presence (Table 1). 499 

Direct tree diversity effect on tree performance (pathway 4) 500 

Studies investigating diversity effects on tree performance directly (N=179), i.e. without considering 501 

the underlying biological processes behind any effects, were divided into studies on productivity and 502 

studies on survival (Table 1). Studies on productivity were much more represented within the 503 

TreeDivNet literature (161 out of 179 cases), and comprised studies on a wide variety of measures of 504 

productivity, such as leaf area index [e.g. 112, 113], basal area [e.g. 25, 114], height [e.g. 115, 116], 505 

stem biomass or volume [e.g. 117, 118], shoot biomass [e.g. 119], crown width or volume [e.g. 120], 506 

and merchantable volume [121]. Several studies also looked at the temporal aspect, assessing the 507 

increment of these dendrometric variables over one or more years [e.g. 122, 123]. Also studies on 508 

litter production [92, 124, 125] and fruit production [126] were included here. Of the total number 509 

of investigated effects on productivity, 12% specifically explored belowground productivity, for 510 

instance in the form of fine root biomass and root length or productivity [e.g. 48, 116, 127, 128]. Wu 511 

et al. [112] assessed vegetation cover based on remote sensing as a proxy for productivity. 512 

A small number of studies under pathway 4 examined diversity effects on tree survival (18 out of 513 

179 cases). For instance, Van de Peer et al. [129] investigated cumulative sapling survival in mixtures. 514 

Tree mortality rates 2 to 7 years after planting were investigated by Mayoral et al. [130]. Survival 515 

was also assessed based on foliage discoloration and defoliation [131]. 516 
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Both for functional diversity [e.g. 114, 122, 132] and species diversity [e.g. 25, 124] effects on 517 

productivity, more cases reported a positive effect than no effect, and only one case reported a 518 

negative effect of species diversity [101]. For genetic diversity, however, mostly no effect was 519 

reported [e.g. 75, 133, 134], one negative effect [135], and three positive effects have been shown 520 

[114, 136, 137]. Identity effects were also very important for productivity, with 42 cases finding a 521 

significant identity effect [e.g. 92, 117, 138], versus 6 cases reporting the absence of identity effects 522 

[e.g. 48, 133]. For survival, the few cases in the literature [e.g. 131, 139] are more evenly spread 523 

across the different possible outcomes (Table 1). 524 

Diversity effect on tree resources (pathway 2) 525 

Of the three main resources, diversity effects on nutrients were most often studied within 526 

TreeDivNet (45 cases), followed by effects on water (30 cases), and light (24 cases). We further 527 

distinguished between studies looking at resource availability (24 cases), uptake (60 cases), or use 528 

efficiency (15 cases) (Table 1). Most of these studies investigated these processes in an indirect way 529 

using proxies e.g. measuring δ13C to estimate the influence of tree diversity on local water 530 

availability. We opted to incorporate these studies into our framework, but it is essential to 531 

acknowledge that they in part obscure the scarcity of research directly measuring and examining 532 

diversity effects via these processes.  533 

Studies of diversity effects on nutrient availability included studies on soil N concentrations [e.g. 46, 534 

48], but also on aboveground nutrients, such as N and P concentrations in branches and leaves [e.g. 535 

140]. Studies on light availability investigated canopy cover [141] or light extinction profiles [142] in 536 

tree mixtures. Only one study investigated diversity effects on water availability: Jansen et al. [143] 537 

found increased water availability with increased species richness, and attributed this to either 538 

reduced competition and/or facilitation.  539 

With regards to resource uptake, we classified studies on leaf trait variation [e.g. 144, 145], crown 540 

complementarity and plasticity [e.g. 146, 147], light interception [e.g. 148, 149], and light absorption 541 
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[150] under light uptake. We assumed that higher crown complementarity/plasticity and higher light 542 

interception resulted in a higher level of light uptake at the plot level, thus assuming on average 543 

higher light interception per target tree. In addition, we assumed that higher leaf trait variation 544 

invokes higher complementarity in resource acquisition and thus increased light uptake on the plot 545 

level. We classified studies on root morphology and architecture [e.g. 128, 151], vertical root 546 

distribution [e.g. 42, 152], and root productivity [e.g. 48, 153] under both water and nutrient uptake, 547 

as they impact the uptake of both resources. Here, we assumed that higher root lengths, higher root 548 

surface areas, higher root biomass, etc. will result in higher nutrient and water uptake, given that 549 

the availability of these resources remains constant. Effects on water uptake were also investigated 550 

based on isotopes [154, 155] or soil water fluxes [51], while effects on nutrient uptake were also 551 

investigated using labelled N15 [156]. Kunert et al. [157] investigated carbon allocation related to 552 

tree diversity, and found that trees in mixtures allocate a higher amount of carbon to their roots and 553 

leaves. This could potentially support species complementarity, both above-and belowground, and 554 

therefore we assumed that this will result in higher uptake of light via leaves and nutrients and 555 

water via roots. 556 

Studies investigating nutrient use-efficiency include Zeugin et al. [158], who found identity effects on 557 

biomass per unit aboveground N or P, and Maxwell et al. [124], who found identity effects, no 558 

effects, or positive effects of diversity on nutrient-use efficiency, depending on the site (n=2), and 559 

expressed as the ratio between primary productivity and nutrient amounts in litterfall. Effects on 560 

light-use efficiency were only investigated by Pollastrini et al. [159] using chlorophyll fluorescence 561 

measurements. Effects on water-use efficiency were assessed using isotope analysis [154, 160, 161]. 562 

For the majority of the response categories related to resources, the number of cases were not 563 

sufficient to draw conclusions about the general effects of the different diversity metrics (Table 1). 564 

Many cases reported significant identity effects, especially in relation to resource uptake. Also for 565 

nutrient availability, several cases found identity effects, but a similar number of cases reported the 566 
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absence of identity effects. For nutrient availability and uptake, as well as for water uptake, the 567 

majority of cases found no effect of any diversity metrics other than identity. The very similar results 568 

for nutrient and water uptake can be related to the fact that cases investigating root characteristics 569 

were classified under both water and nutrient uptake. For light uptake, most studies found positive 570 

effects of tree diversity (Table 1), and this can be attributed to the fact that tree diversity typically 571 

enhances crown complementarity and vertical stratification [162, 163], enabling trees to capture 572 

more light, assuming that average tree light uptake will increase even when light capture of 573 

individual trees may well be reduced. 574 

What are the remaining key knowledge gaps in our understanding of the relationship 575 

between tree diversity and tree performance? 576 

Abiotic pathways are underrepresented 577 

Within the TreeDivNet research, diversity effects via abiotic conditions are strongly 578 

underrepresented (Fig. 2). As a result, we currently lack a proper understanding of how tree diversity 579 

and composition may alter, among others, soil and microclimatic conditions. Evidence on the 580 

importance of microclimate for forest functioning is gradually increasing (see [142] for a review), 581 

including evidence on how microclimate might impact tree performance [164, 165]. Similarly, it is 582 

expected that abiotic soil conditions, such as pH and carbon content are influenced by the tree 583 

community [166–168] and have, in turn, an impact on trees’ growth and performance [169]. For 584 

instance, an observational study found that soil bulk density, cation exchange capacity, and pH were 585 

all influenced by tree species identity, and that soil carbon stocks were negatively affected by tree 586 

species diversity [167]. In a broadleaved mixed forest in Central Germany, higher soil pH and higher 587 

soil Ca and Mg stocks were found in mixed stands than in stands dominated by beech, and 588 

differences were mainly attributed to differences in leaf litter composition [168]. In addition, we 589 

found that while the effect of diversity on tree resources was well-studied, few studies linked altered 590 

resources to tree performance. Hence, future research should further investigate how tree mixing 591 
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affects tree performance, both via altering the abiotic growing conditions and the available 592 

resources. 593 

Biased representation of certain components within pathways 594 

Within the well-investigated pathways, representation of different response categories was also 595 

strongly biased. For the resource pathway, diversity effects on nutrients were more frequently 596 

explored than those on water and light, and within each resource, the focus has mainly been on 597 

resource uptake, and much less on availability, except for nutrients (Table 1). Very few studies 598 

examined resource-use efficiency in relation to tree diversity, even though resource-use efficiency is 599 

commonly perceived as one of the main mechanisms linking biodiversity to ecosystem functioning 600 

[170]. For the studies on biotic conditions, it stands out that much attention has been given to 601 

microbiota and invertebrates (Table 1), the latter being related to the strong expertise of the 602 

research teams leading particular experiments (e.g. ORPHEE, UADY, BEF-China, Satakunta). The 603 

impact of tree diversity on bird and plant communities received very little attention. Yet, bird 604 

abundance and diversity can alter tree performance in insect herbivore control [171] and may also 605 

influence functioning through pollination and seed dispersal. Also, the forest understorey vegetation 606 

contributes to the ecological functioning of the forest, as herbs and shrubs compete with trees for 607 

light, nutrients and water, and affect tree regeneration, nutrient cycling and carbon cycling [172]. 608 

Hence, these taxonomic groups, but also others like small mammals, deserve more attention in 609 

future research. 610 

Lack of survival analyses 611 

Research in TreeDivNet experiments strongly focuses on different variables linked to productivity or 612 

damage to target trees, e.g. by herbivores, but how this translates to survival remains highly 613 

understudied (Table 1). TreeDivNet site managers reported major die-back events to be a problem in 614 

some experiments, but the causes or the mediating effect of mixing have been rarely researched 615 

[but see e.g. 129]. A global study by Blondeel et al. (submitted) using TreeDivNet data of saplings, 616 
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demonstrated the role of tree diversity as insurance for sapling survival under drought during the 617 

initial years after planting, and site-specific studies have also found evidence for an insurance effect 618 

on survival [173]. Recently, Urgoiti et al. found lower self-thinning rates in more functionally diverse 619 

communities, explained by both an increase in tree growth and a reduction in density-related 620 

mortality [174]. Conversely, based on a large permanent sample plot network in temperate and 621 

boreal forests, Searle et al. (2022) showed that mortality probabilities increased with tree species 622 

diversity due to increased stand density and tree-size variation [175]. Also, Pretzsch et al. (2023) 623 

found increased mortality due to self-thinning in mixtures of Scots pine and European beech 624 

compared to monospecific stands [176]. These contrasting findings with regard to tree survival in 625 

mixed stands suggest that the impact of mixing on survival is context-dependent: in more favourable 626 

environments, tree diversity may cause an increase in competitive intensities through an increase in 627 

productivity, leading to higher density-related tree mortality [175]. On the other hand, in the face of 628 

climate change disturbances and catastrophic events (e.g. droughts, pest outbreaks), the benefits of 629 

mixing to reduce the impact of these events may outweigh the drawbacks of increased competition. 630 

Given these contrasting findings and the importance of survival in forest plantations, further (long-631 

term) studies on survival in mixed forest plantations are recommended. 632 

Unbalanced research across biomes 633 

The distribution of studies across biomes is unbalanced (Fig. 2). This reflects the distribution of 634 

TreeDivNet sites across biomes, with 15 temperate sites (of which only 2 are Mediterranean), 7 635 

tropical sites, 2 subtropical sites, and only one boreal site. Of the global forest area, 45% is tropical, 636 

27% is boreal, 16% is temperate (including Mediterranean), and 11% is subtropical [177]. Hence, 637 

balancing geographic coverage and scientific coverage requires establishing more tree diversity 638 

experiments in (sub)tropical and boreal forest systems, as well as Mediterranean temperate forests. 639 

In general, experimental sites in countries of the Global South are underrepresented within 640 

TreeDivNet. In these countries, wood is often the main domestic fuel in rural households, and 641 
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consumption is growing at a rate close to that of population growth [178]. Meanwhile, political and 642 

financial commitments are rising to realize massive afforestation and reforestation in those areas of 643 

the world, both to meet the increasing demands and to enhance climate change resilience and 644 

mitigation. Interest in forest restoration is clearly high, also in countries of the Global South, and the 645 

momentum is there, but if we want to make these investments sustainable under future climate 646 

change, it is critical to shift from planting monocultures towards planting mixed forests [24]. Also 647 

from that perspective, we need to expand our knowledge base on mixed forest plantations in humid 648 

and semi-arid (sub)tropical forest biomes to study and demonstrate the benefits of planting 649 

(particular) mixtures in these regions. 650 

Context-dependency of tree diversity effects 651 

The importance of environmental context in biodiversity-ecosystem functioning relationships was 652 

demonstrated in mature forest plots across Europe, where researchers found stronger relationships 653 

in drier climates and in areas with longer growing seasons [34]. A meta-analysis combining the 654 

results of long-term experiments at 60 sites across five continents revealed that productivity gains in 655 

mixed-species stands increased with local precipitation [179]. The majority of TreeDivNet studies 656 

focuses on one experimental site, and therefore, offers little insight into such interplay between 657 

climatic or site conditions and tree diversity effects on ecosystem processes in young plantations.  658 

A few experimental sites have applied drought or irrigation treatments (e.g. IDENT sites in Macomer, 659 

Outaouais and Sault-Ste-Marie, ORPHEE, MataDIV), addition of N and/or P (e.g. Ridgefield, IDENT 660 

site in Freiburg), or shading treatments (IDENT site in Ethiopia) to simulate the effects of altered 661 

climate or site conditions, or have observed natural variability in these variables within a site, such 662 

as changes in inter-annual climatic conditions. For instance, evidence on the role of tree diversity for 663 

productivity under drought remains mixed, which is consistent with similar conclusions from a 664 

recent review [180]. Within TreeDivNet, Belluau et al. [152] found that the positive functional 665 

diversity effect on biomass production was stronger under high water availability, which is contrary 666 



30 
 

to the established stress-gradient hypothesis and the above results. On the contrary, Schnabel et al. 667 

[123] and Fichtner et al. [181] reported a strengthening of positive tree species richness effects on 668 

productivity under drought.  669 

The design and global scale of TreeDivNet experiments provide a unique opportunity to scale up our 670 

understanding of tree diversity effects on tree performance across a large gradient of climatic 671 

conditions, from boreal forests in Finland, to tropical forests in Brazil and Panama, and temperate 672 

forests in Central Europe and North-America. For example, Poeydebat et al. [182] used data from 12 673 

experimental sites to show that herbivory on birch decreased with tree species richness in colder 674 

environments, but this relationship faded when mean annual temperature increased. Cesarz et al. 675 

[83] used data from 11 TreeDivNet experiments to examine tree diversity effects on soil microbial 676 

biomass and respiration and found that context-dependent diversity effects were stronger in drier 677 

soils. Until now, however, the number of such large-scale studies using multiple TreeDivNet sites 678 

remains limited. Systematic analyses across multiple sites is a key next step to improve our 679 

understanding of the context-dependency of tree diversity effects on different forest functions and 680 

services. Such future meta-analyses across experimental sites will also allow to formally test the 681 

importance of other cross-experiment mediators that were not considered in our conceptual 682 

framework (Fig. 1), such as planting densities, species mixing patterns, and development stages. 683 

What practical insights can be gained from the TreeDivNet experiments for operational, 684 

real-world forest plantations? 685 

To complement our literature synthesis, we conducted a questionnaire to gather insights from the 686 

practical experiences of TreeDivNet experiment site managers. Below, we highlight the most 687 

significant findings, including practical insights as well as challenges encountered, that can help 688 

bridge the gap between theory, scientific understanding, and practical implementation. 689 

Development stages and (future) challenges 690 
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During the design stage of the experiments, choices on species selection, planting density, and 691 

spatial plantation design were the criteria most often (c. 85, 45, 48% of managers, respectively) 692 

noted to have made setting up the experimental plantations more difficult when mixing instead of 693 

planting monocultures. Responses indicate a stronger focus on scientific purposes rather than 694 

practical management considerations: (i) species selection was often based on multiple, often 695 

scientific research goals (functional trait dissimilarity, mycorrhizal type, native vs exotic tree species, 696 

different growing strategies, etc.) and not commercial, silvicultural species mixtures, (ii) high 697 

planting densities were applied to accelerate species interactions, as the focus was on the early 698 

successional stage of stand development (e.g. the design of IDENT experiments with spacing of 40-699 

60 cm) and (iii) planting patterns (e.g. planting in small mono-specific cells or patches) were often 700 

designed to avoid early de-mixing, i.e. an early, competition-driven loss of species. However, 701 

planting trees in patches is also a practical consideration in operational plantations, albeit at a 702 

somewhat larger scale, to reduce the efforts associated with tending [183]. 703 

Multiple challenges leading to die-back events, reduced health and quality of trees in the three 704 

stages after design (i.e., establishment, closed-canopy and stem exclusion stage) were identified. 705 

During all three stages, main reported causes were climate variability, especially drought, pathogens 706 

and herbivory. Major dieback occurred most often during the establishment stage (64% of managers 707 

indicated this was a challenge). A challenge most important to this initial stage is competition by 708 

surrounding vegetation. Managers responded to these different challenges by manual weeding or 709 

slashing of the competing vegetation, exclusion of herbivores, and replanting. During the closed-710 

canopy stage, similar but fewer, less impactful challenges were reported. During this stage, the 711 

spontaneous establishment of non-target tree species influenced growth of target trees. Removal of 712 

these non-desired trees was the sole response implemented during this stage and reported in five of 713 

the experiments. From the stem-exclusion stage, self-thinning arises, which results in the need for 714 

thinning treatments if plantations want to remain relevant for operational management. 715 
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None of the experiment managers reported that responding to these challenges was more difficult 716 

in mixtures than in monocultures. Looking at these stages, challenges and design, the fact that these 717 

experiments are set up from a scientific perspective becomes particularly evident. Furthermore, 718 

management interventions in the experiments such as weeding, replanting, fencing, irrigation after 719 

planting (as a singular measure, not a treatment as mentioned earlier) are carried out in an 720 

unsystematic way among experimental sites strongly driven by context and funding availability, and 721 

implications of such interventions are not tested in a formal way. Due to this science-oriented 722 

perspective, it remains difficult to translate practical insights from these experimental plantations to 723 

guidelines for real-world, operational plantations. 724 

Best performing mixtures 725 

It is clear from the multitude of identity and composition effects observed in the TreeDivNet studies 726 

that certain mixtures perform better or worse than others in a specific environmental context. When 727 

TreeDivNet site managers were asked to identify the best performing mixtures, based on their 728 

observations, most managers (60%) could nominate a certain mixture. Site managers indicated that 729 

mixtures composed of species with complementary or contrasting growth strategies seemed to 730 

perform best, i.e., combinations of coniferous and deciduous species, of fast-growing light-731 

demanding and slow-growing shade-tolerant species, but also the inclusion of drought tolerant 732 

species in a mixture. Other managers reported that at present it is hard to identify a best performing 733 

mixture (20%) or too early to make a clear choice (20%), and that this would depend on the desired 734 

outcome or goal, such as maximizing productivity, resilience to stress (especially drought), economic 735 

value or all these criteria together. Given the large number of species combinations (from species 736 

pools of 3 to 40 species per experiment), levels of mixing (from 2 to 24 species per mixture), and 737 

environmental contexts, it is currently not possible to deduce general guidelines on best performing 738 

mixtures. The identification of optimal species mixtures based on multiple criteria across the 739 

different contexts and species pools within the TreeDivNet experiments should therefore be a future 740 
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scientific goal. Future climate change projections, particularly expected changes in the intensity and 741 

frequency of drought events, should be taken into consideration when identifying such optimal 742 

mixtures. 743 

Take-home messages for experimental and real-world managers 744 

Our synthesis exercise and questionnaire have provided clear evidence of the extensive knowledge 745 

amassed by TreeDivNet research and allowed us to identify current knowledge gaps and key lessons 746 

for management, in spite of the focus on basic science research in many of the experiments. 747 

TreeDivNet research provides ample evidence in favour of mixing tree species. The majority of 748 

diversity effects found were positive for tree productivity, many were neutral, yet few negative 749 

effects were reported. Overall, these findings suggest that in most cases mixing improves 750 

productivity and that there should be no significant compromise on tree performance when 751 

adopting a strategy of mixing tree species. Moreover, we found clear evidence that mixing tree 752 

species decreases the level of infestation by pests or diseases within the stand. In light of future 753 

increases in pest or pathogen outbreaks due to climate change or unintended species introductions, 754 

this is of utmost importance [184, 185]. 755 

We showed that a variety of processes are at play that drive these diversity effects, both biotic and 756 

abiotic, the latter being understudied. We urge researchers to close these gaps. We also encourage 757 

setting up experiments in the (sub)tropical, Mediterranean, and boreal biomes (which are currently 758 

underrepresented) given the large pledges to reforest. Due to this mix of processes driving diversity 759 

effects and context specificity, choosing best-performing species mixtures remains challenging, also 760 

in large-scale studies in mature forest [186]. We therefore encourage operational managers to 761 

experiment with planting different species combinations using mixtures of tree species which are 762 

known to be complementary while including some drought resistant species and monitor these 763 

mixtures across spatial and temporal scales applied in operational tree plantations. At the same 764 
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time, research should further focus efforts on identifying optimal species mixtures, but also on 765 

revealing trade-offs and synergies between ecosystem functions/services in mixtures in general. 766 

Furthermore, through combining the literature review with our questionnaire, we highlighted that 767 

current foci of TreeDivNet have been predominantly centred on fundamental research questions 768 

pertaining to the mixing of tree species. Currently, translation of this fundamental knowledge to 769 

provide guidelines for the management of tree mixtures remains difficult, e.g. due to the design, 770 

scale, age, and operations of TreeDivNet experiments. Research of TreeDivNet has mainly focused 771 

on the early stages of tree plantations but now many experiments will transition into the critical 772 

stem-exclusion stage in the near future. Experimental managers will have to opt between focussing 773 

on scientific goals and maintaining the original experimental design as much as possible vs. shifting 774 

towards more management-oriented questions when applying thinning treatments, if required. 775 

Especially in case of the latter trajectory, timely decisions on thinning strategies will have to be made 776 

to make sure these experiments remain relevant for management. 777 

As researchers and experiment managers, we commit to carefully consider the future of these tree 778 

diversity experiments and determine if continuing to focus on fundamental questions is most 779 

important or if the time has come to make experimental mixed plantations more management 780 

oriented. 781 
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