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Abstract 18 

Anthropogenic heat (AH) emissions have rapidly increased in recent decades and are now 19 

critical for studying urban thermal environments; however, datasets of multi-source AH with 20 

fine and accurate spatiotemporal characteristics at large scales are lacking. This study advances 21 

the top-down inventory method in China with a more rational use of official energy 22 

consumption data. Furthermore, we considered features such as the national building height 23 

raster, weighted factory density, and weighted road density to better represent the spatial 24 

characteristics of multi-source AH. Based on the above, the machine-learning modeling process 25 

for AH emissions was optimized using a stacking framework. The results were quantitatively 26 

validated using urban climate simulations. This study obtained annual, monthly, and hourly AH 27 

of multiple heat sources in China for 2019 at 500 m resolution. The resulting data showed a 28 
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reasonable AH composition and the total amount and composition of AH varied notably from 29 

region to region. The spatial and temporal characteristics of the AH from different sources 30 

differed greatly and were more detailed and accurate than those reported in previous studies. 31 

Air temperature simulations utilizing this AH dataset were improved. Because of its large 32 

spatial extent and detailed spatiotemporal characteristics, the new dataset strongly supports 33 

urban climate research and sustainable development. 34 

Keywords: Anthropogenic heat, Machine learning, Model improvement, Spatiotemporal 35 

heterogeneity 36 

 37 

1. Introduction 38 

Rapid urbanization around the world over the last few decades has been accompanied by an 39 

increased population and economic activities (Han et al., 2022; Yang et al., 2022). Urban areas 40 

contain more than half of the global population and consume approximately 70% of the energy, 41 

which is accompanied by the massive release of anthropogenic heat (AH), which contributes to 42 

environmental and demographic problems (Firozjaei et al., 2020; Vargo et al., 2020; Wang et 43 

al., 2022a). Despite its negligible contribution to the global energy system, the impact of AH 44 

cannot be neglected in major urban built-up areas, where it is almost equal in magnitude to the 45 

average daily solar radiation (Hamilton et al., 2009; Iamarino et al., 2012; Sun et al., 2018). The 46 

intensity of AH, expressed as heat flux (heat emissions per unit time and area), rapidly increases 47 

with growing global energy consumption (Ferreira et al., 2011; Jin et al., 2020). Therefore, AH 48 

is a vital component of the urban surface energy balance, which significantly affects the local 49 
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urban climate and exacerbates the urban heat island effect (Hertel and Schlink, 2022; Qian et 50 

al., 2023; Wang et al., 2023). Recognizing the significance of AH emissions in climate 51 

simulations, heat-driving patterns, ecological assessments, and sustainable development studies 52 

and analyzing their spatial and temporal characteristics have theoretical and practical 53 

implications (Dong et al., 2017; Molnar et al., 2020; Wu et al., 2023a).  54 

However, AH at sufficient spatial and temporal resolutions is difficult to obtain via 55 

measurements, which hinders further understanding of the urban thermal environment (Qian et 56 

al., 2023). For this reason, many AH estimation methods have been proposed to address 57 

research requirements at multiple spatial and temporal scales. Current approaches for AH 58 

estimation are based on (a) energy consumption inventories, (b) surface energy balance residual 59 

methods, and (c) building energy simulations (Grimmond, 1992; Sailor, 2011). Building energy 60 

simulations obtain accurate building heat emissions based on building geographic information 61 

and typical architectural parameters but cannot be applied in large-scale studies (Alhazmi et al., 62 

2022; Chen et al., 2022b; Vahmani et al., 2022). The traditional surface energy balance method 63 

is based on micrometeorological observations, such as eddy flux towers, which attribute the 64 

residual term in the energy balance equation to the AH (Offerle et al., 2005; Pigeon et al., 2007). 65 

The development and application of remote sensing allow the size of the considered region to 66 

be extended (Kato and Yamaguchi, 2005) and new indices have been developed to characterize 67 

the effect of AH on urban heat islands (Firozjaei et al., 2020; Wu et al., 2023a); however, 68 

uncertainties exist because of unconsidered heat storage and shadows. Although remedies have 69 

been proposed (Meng et al., 2023; Yu et al., 2021b), such approaches remain inapplicable to 70 



4 

 

large-scale and multi-temporal AH estimations because of the limited availability of remote 71 

sensing data. 72 

The energy consumption inventory method is the most widely used method for AH 73 

estimation (Kotthaus and Grimmond, 2012). This method assumes that all AH from energy 74 

consumption is dissipated as sensible heat with no hysteresis and can be divided into top-down 75 

and bottom-up approaches, depending on the scale variation (Quah and Roth, 2012; Sailor and 76 

Lu, 2004). The bottom-up approach relies significantly on detailed geographic information data, 77 

statistical data, and parameters of heating and cooling loads (Iamarino et al., 2012; Xu et al., 78 

2021; Zhang et al., 2020). In contrast, the top-down approach is based on large-scale energy 79 

consumption data and is more applicable at the global scale or for regions with limited data 80 

availability and quality; however, the results are coarser (Allen et al., 2011; Flanner, 2009; Jin 81 

et al., 2019). In particular, top-down methods for China tend to use energy consumption data 82 

from local statistical yearbooks (Ming et al., 2022; Wang et al., 2019; Yu et al., 2021a); however, 83 

unreasonable understanding and use of this data will lead to erroneous estimates of AH 84 

(National Bureau of Statistics of China, 2020). In addition to the single methods, AH estimation 85 

using combined methods has been increasingly used to solve challenges in complex scenarios 86 

(Chow et al., 2014; Meng et al., 2023; Wang et al., 2022a; Zheng and Weng, 2018). However, 87 

further details on the associations and distinctions between the different methods are required 88 

to realize a more scientific multi-method integration. 89 

Owing to the frequent application of top-down inventory approaches in recent years, many 90 

new and improved methods have been proposed. The downscaling of AH based on its 91 
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association with nighttime light emissions and human activities has been widely implemented 92 

(He et al., 2020; Varquez et al., 2021; Wang et al., 2022c). While this method provides a 93 

convenient way to obtain large-scale AH, it is biased and unable to capture the complex spatial 94 

and temporal characteristics of multi-source AH. New data and methods provide new 95 

opportunities for AH modeling. Owing to the development of communication and network 96 

technologies, location semantics, spatial interaction, and real-time dynamic information have 97 

been applied; however, higher data requirements and tedious workflow limit them to small-98 

scale AH studies (Liu et al., 2021; Ming et al., 2022; Xu et al., 2021). Machine learning can 99 

greatly simplify the application of multi-source data and improve the efficiency and accuracy 100 

of AH estimation and has gradually become a hot topic in the field of urban thermal 101 

environments (Chen et al., 2020; Kim et al., 2022; Qian et al., 2023; Wang et al., 2022d). 102 

However, further improvements are required for the refinement of spatiotemporal 103 

characteristics, algorithm optimization, and modeling processes (Qian et al., 2022). In summary, 104 

bias was present in previous AH datasets because the information contained in the input data 105 

was inadequate, the AH was modeled without distinguishing between specific AH sources, or 106 

the machine learning models selected were not appropriate. 107 

The validation of these results is another issue in AH studies that is difficult to address. 108 

Except for a few studies (Chow et al., 2014; Pigeon et al., 2007) that conducted small-scale 109 

field validation based on flux observation towers, most extant studies were limited to qualitative 110 

validation by comparing with previous estimates owing to equipment limitations, which is not 111 

sufficiently rigorous (Meng et al., 2023). Given these issues, this study proposes an improved 112 
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AH estimation method, including the correction of the top-down energy inventory method for 113 

China, models based on improved training features, a stacking framework incorporating 114 

multiple machine learning algorithms, and validation based on regional climate simulations. 115 

This study aims to achieve 1) more accurate estimates of AH values across China in 2019, 2) 116 

more reasonable and detailed temporal and spatial variation characteristics of AH from multiple 117 

sources, and 3) more scientific and rigorous AH validation. 118 

 119 

2. Study area and dataset 120 

Since the late 1970s, China has experienced rapid economic development and urbanization 121 

(Yang et al., 2019), resulting in a significant increase in energy consumption and enhanced AH. 122 

Strong AH changes the energy fluxes of urban ecosystems and affects the regional climate and 123 

atmospheric environment of urban areas, causing frequent extreme heat events, deteriorating 124 

air quality, and seriously affecting the health of residents in Chinese cities (Cong et al., 2022; 125 

Peng et al., 2021). Therefore, there is an urgent need to clarify the spatial and temporal patterns 126 

of AH on a national scale (Fig. 1) to explore feasible mitigation measures. 127 

 The energy consumption and socioeconomic data for 2019 from the Statistical Yearbooks 128 

of Chinese Provinces and Cities (http://www.stats.gov.cn) were used in the energy consumption 129 

inventory method. The data involved in the machine learning sample features included Chinese 130 

point-of-interest (POI) data from Amap (https://lbs.amap.com), Chinese road and railroad data 131 

from open street map (https://www.openstreetmap.org), Chinese building height for 2020 (Wu 132 

et al., 2023b), NPP/VIIRS night lighting data (Wu et al., 2023b), MOD11A1 daytime and 133 
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nighttime land surface temperature (LST), MOD13A1 normalized difference vegetation index 134 

(NDVI), NASA global digital elevation model (DEM) data (NASA JPL, 2020), and FLDAS 135 

Noah land surface model (Amy et al., 2018) data for air temperature, wind speed, and humidity. 136 

In addition, population heat data based on the location information of cell phone users from the 137 

Baidu Huiyan big data platform (https://huiyan.baidu.com) were included to describe the 138 

dynamic changes in human activities within cities. Additional information on the data is 139 

presented in the Supplementary Material. 140 

 141 
Fig. 1. Study area map. Diagonal slashes indicate regions where statistical data are not available. The 142 

diagonal grid coverage indicates the 12 cities where the AH sample is detailed at the district (county) 143 

level. The different colors indicate the specific division of the regional calculations involved in this study. 144 
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Note: The administrative levels of China involved in this study, from highest to lowest, are provinces, 145 

cities, and districts (counties); the lower administrative levels are subordinate to and governed by high 146 

levels. 147 

 148 

3. Methods 149 

The AH estimation method consisted of sample label estimation, sample feature processing, 150 

model construction, and validation of the results (Fig. 2). The sample labels in this study 151 

represent the AH values to be estimated and the sample features are a set of variables that 152 

characterize the properties of the samples. The corrected top-down approach was used to 153 

estimate the AH values of the administrative areas as labels. The improved sample features of 154 

different AH sources were processed. The samples were then input into a stacking framework 155 

containing four machine-learning algorithms and the model was trained. The monthly gridded 156 

AH was outputted based on the stacking model and raw data and an hourly AH was derived. 157 

Finally, the accuracy of the meteorological simulation was utilized to validate the AH results. 158 
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 159 

Fig. 2. Technical flow. AH: anthropogenic heat flux; EC: electricity consumption; GDP: gross domestic 160 

product; POI: points of interest; OSM: open street map; SVM: support Vector Machine; RF: random 161 

forest; XGBoost: extreme Gradient Boosting; WRF-UCM: the Weather Research and Forecasting model 162 

coupled with the single-layer urban canopy model. More detailed district-level AH was estimated at the 163 

city level in only 12 cities (diagonal grid in Fig. 1). 164 

 165 

3.1 Corrected AH estimation as sample labels 166 

 The top-down energy consumption inventory method is most commonly used for large-167 

scale AH estimation. In this study, the AH was estimated and downscaled based on energy 168 

consumption and socioeconomic data to obtain sample labels of AH in administrative areas for 169 

model training. Previous studies tended to use living energy consumption from statistical 170 

yearbooks to estimate residential building heat emissions, while transportation heat emissions 171 

were additionally calculated based on the number of civilian vehicles (Ming et al., 2022; Wang 172 
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et al., 2019; Wang et al., 2022d). However, such estimates are not reasonable because the energy 173 

consumption of civilian vehicles is included in the living energy consumption according to the 174 

statistical standards of the National Bureau of Statistics of China (National Bureau of Statistics 175 

of China, 2020). In addition, the energy consumption of public transportation facilities should 176 

be considered when estimating transportation heat. Therefore, the top-down method used in 177 

China must be corrected to obtain more accurate multi-source AH values and compositional 178 

ratios. The annual average AH components at the city level including building heat (QB), 179 

transportation heat (QT), industrial heat (QI), and metabolic heat (QM) with unit 𝑊 ∙ m−2 were 180 

calculated as follows: 181 

𝑄𝐵 =
𝜀 × (𝐶𝐿 × (1 − 𝛾𝑣) × 𝛼𝑝 + 𝐶𝐶 × 𝛼𝑐)

𝐴 × 𝑇
(1) 182 

𝑄𝑇 =
𝜀 × (𝐶𝐿 × 𝛾𝑣 × 𝛼𝑣 + 𝐶𝑇 × 𝛼𝑝)

𝐴 × 𝑇
(2) 183 

𝑄𝐼 =
𝜀 × 𝐶𝐼 × 𝛼𝑖

𝐴 × 𝑇
(3) 184 

𝑄𝑀 =
(𝐻𝐴 × 𝑇𝐴 + 𝐻𝑆 × 𝑇𝑆) × 𝑃

𝐴 × (𝑇𝐴 + 𝑇𝑆)
(4) 185 

where 𝐶𝐿 , 𝐶C , 𝐶I , and 𝐶T  are provincial energy consumptions (ton of standard coal 186 

equivalent, tce) for living, commerce (wholesale, retail, accommodation, and catering), industry, 187 

and transportation facilities, respectively; 𝜀 is the calorific value of standard coal = 29.3 MJ ⋅188 

kg−1; 𝛾𝑣 is the proportion (%) of fuel oil consumption to the total living energy consumption 189 

of households in four representative regions of China from the statistics of the Chinese General 190 

Social Survey 2015; 𝛼𝑝 is the proportion of the city's population to the province; 𝛼𝑐 is the 191 

proportion of the electricity consumption or GDP in the tertiary sector of the city to the province; 192 
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𝛼𝑖 is the proportion of the electricity consumption or GDP in the industrial sector; 𝐴 is the 193 

administrative area of the city (m2); and 𝑇 is for one year (s). For 𝑄𝑀, 𝐻𝐴 and 𝐻𝑆 are the 194 

metabolic heat intensities (W) at active and sleepiness times, respectively; 𝑇𝐴  and 𝑇𝑆  are 195 

active and sleep times; 𝑃 is the total population of the city (Jin et al., 2020). 196 

Owing to the demands of large-scale studies, the calculation of monthly AH weights must 197 

be representative while allowing for sufficient data availability. Thus, the monthly AH was 198 

calculated using the following equation:  199 

𝑄𝑚𝑜𝑛𝑡ℎ = 𝑄𝑦𝑒𝑎𝑟 × 𝛽𝑚 (5) 200 

𝛽𝑚 =
𝛿𝑚

(∑ 𝛿𝑚)/1212
𝑚=1

(6) 201 

where 𝑄𝑚𝑜𝑛𝑡ℎ is the monthly multi-source AH, 𝑄𝑦𝑒𝑎𝑟 is the annual multi-source AH, and 202 

𝛽𝑚 is the monthly weight, which was calculated using alternative data 𝛿𝑚 for different heat 203 

sources. For 𝑄𝐵, 𝛿𝑚 can be estimated from the variation pattern of the energy consumption 204 

with temperature, as proposed in previous studies (Allen et al., 2011; Liu et al., 2021). For 𝑄𝑇, 205 

𝛿𝑚 represents the monthly freight volume or transportation electricity consumption and for 𝑄𝐼, 206 

𝛿𝑚 represents monthly industrial electricity consumption or GDP (Qian et al., 2022). All data 207 

and calculations involving monthly weights were conducted on a provincial scale. Owing to the 208 

small value of metabolic heat, it was considered to have no monthly variation. The specific data 209 

used were determined based on the availability of local statistical data. 210 

 In addition, previous large-scale AH samples for China often take the city administrative 211 

extent as the unit of calculation (Chen et al., 2020; Wang et al., 2022d); however, due to the 212 

large area of the administrative city, the AH label values were low and samples with high label 213 
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values were absent in the training of the models. In contrast, it is difficult to refine all AH labels 214 

to the district level (subordinate to cities) because of data limitations (Qian et al., 2022). 215 

Therefore, this study implemented a more efficient scheme by calculating district-level AH 216 

sample labels based on a process similar to that described in Eqs. (1)–(6) for China's 12 most 217 

developed and representative cities (Fig. 1), which, together with the national city level AH, 218 

formed 5892 labels, which is a much larger sample size and larger numerical range than in 219 

previous studies. 220 

 221 

3.2 Improved sample feature processing 222 

It was necessary to select appropriate input variables (sample features) for different AH 223 

sources. All features in this study were computed as the average of the city or district 224 

administrative boundaries corresponding to the sample labels. Remote sensing data provide 225 

large-scale spatiotemporal and attribute information. Common data, such as nighttime lights, 226 

daytime and nighttime LST, NDVI, and DEM, were selected based on previous studies (Chen 227 

et al., 2020; Qian et al., 2022). Meteorological data, including air temperature, humidity, and 228 

wind speed, are important for determining outdoor thermal comfort and the ability of cities to 229 

dissipate heat. Therefore, remote sensing and meteorological data were used as common 230 

variables for all AH sources. All the gridded data were processed to a resolution of 500 m. 231 

For QB modeling, nightlight data can reflect socioeconomic dynamics, population, and 232 

energy consumption to some extent (Chen et al., 2015; Varquez et al., 2021). However, the 233 

limitations of the remote-sensing observation plane cause bias because height information 234 

cannot be reflected. Considering the important association between building height and QB 235 
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(Liu et al., 2021), we included the 10-meter resolution building height data of China proposed 236 

by Wu et al. (2023b). The building raster tiles were resampled to 500 m by grid averaging to 237 

match the spatial scale of most of the remote sensing data and were mosaicked over the entire 238 

country.  239 

For QT, rail and road densities (vector data) can reflect transportation activities; however, 240 

the differences between various road levels should be emphasized (Qian et al., 2022). In contrast 241 

to separately calculating road densities for different road levels for model training and 242 

prediction as done in previous studies (Chen et al., 2020), this study established a weighted road 243 

density based on the China Technical Standards of Highway Engineering, which was more 244 

convenient and accurate.  245 

For QI, it is important to determine the location of factories or industrial zones, which can 246 

be located in large-scale studies using POI or night-fire data (Chen et al., 2020; Varquez et al., 247 

2021); however, differences in energy consumption between various factories need to be 248 

considered. This study classified all factory POI into light and heavy industries based on the 249 

keywords of factory name, and the light industries were further divided into other factories and 250 

printing, clothing, and furniture factories, which are more common in city centers. Finally, the 251 

weight of each factory type was calculated based on the energy consumption of each industrial 252 

sector in China in 2019 and the weighted factory density was calculated. Calculations of the 253 

above weights and density raster are provided in the Supplementary Material. 254 

 255 

3.3 Model based on Stacking framework 256 
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After preparing the samples, a machine-learning model was built to represent the 257 

relationship between the features and the AH. Previous studies have revealed differences in the 258 

performances of various algorithms for estimating different AH sources (Qian et al., 2022). 259 

Therefore, integrating multiple algorithms might improve the estimation of multi-source AH 260 

by reducing errors owing to algorithm applicability. The stacking used in this study is a 261 

hierarchical ensemble framework (Wolpert, 1992) that effectively improves the accuracy of the 262 

machine learning models. Specifically, the commonly used extreme gradient boosting 263 

(XGBoost), random forest (RF), support vector machine (SVM), and cubist models in the field 264 

of urban thermal environments were selected to form the base model for the stacking framework 265 

(Chen et al., 2020; Chen et al., 2022a; Gao et al., 2022; Mathew et al., 2019). New training 266 

features were constructed based on a five-fold cross-validation. Multivariable linear regression, 267 

a simple algorithm, was used to train the second-layer model to integrate the results of the base 268 

models (Qian et al., 2023). 269 

 The monthly gridded AH can be obtained from the stacking model using raw data input 270 

and further downscaled in time to the hourly AH: 271 

𝐴𝐻ℎ = 𝑓𝑃
ℎ ∙ 𝑄𝐵

𝑚 + 𝑓𝑃
ℎ ∙ 𝑄𝑇

𝑚 + 𝑓𝐼
ℎ ∙ 𝑄𝐼

𝑚 + 𝑄𝑀
ℎ (7) 272 

𝑓𝑃 
ℎ(𝐶𝑖𝑡𝑦) =

𝑃ℎℎ

∑ 𝑃ℎℎ
23
ℎ=0 /24

(8) 273 

𝑓𝑃 
ℎ(𝑅𝑒𝑔𝑖𝑜𝑛) = 𝑚𝑒𝑎𝑛(𝑓𝑃 

ℎ(𝐶𝑖𝑡𝑦) ≠ 1) (9) 274 

Where 𝑄𝐵
𝑚, 𝑄𝑇

𝑚, and 𝑄𝐼
𝑚 are the monthly building, transportation, and industrial heat flux 275 

outputs from the stacking model, respectively; and 𝑓𝑃
ℎ is the hourly weight calculated based 276 

on the population heat value 𝑃ℎℎ, with h representing a specific hour. Population heat data are 277 
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based on the geographical location data of mobile phone users and can characterize the 278 

distribution of people across a city in real time. Therefore, population heat data were used to 279 

represent the diurnal variation in building and transportation heat. For the seven representative 280 

cities for which population heat data were available (Qian et al., 2023), 𝑓𝑃 
ℎ(𝐶𝑖𝑡𝑦) represents 281 

gridded data with spatial heterogeneity. For regions where population heat data were 282 

unavailable across the country, 𝑓𝑃 
ℎ(𝑅𝑒𝑔𝑖𝑜𝑛) was a single value of the specific region shown 283 

in different colors (Fig. 1), indicating that the mean of the pixels with the 𝑓𝑃 
ℎ(𝐶𝑖𝑡𝑦) was not 284 

equal to 1 within the representative city corresponding to the region and was only applied to 285 

image pixels with annual AH greater than 1. 𝑓𝐼
ℎ
 is the hourly weight of industrial heat proposed 286 

in previous studies (Liu et al., 2021; Zheng and Weng, 2018). 287 

 288 

3.4 Validation based on regional climate simulations 289 

 By considering the important influence of AH on the regional climate, simulations of 290 

meteorological factors can be used to assess the accuracy of AH inputs. The Weather Research 291 

and Forecasting (WRF) model is a state-of-the-art mesoscale numerical weather prediction 292 

system designed for both atmospheric research and operational forecasting applications. WRF 293 

version 4.4 was used in this study. The exchange of energy and momentum between the urban 294 

surface and atmosphere was implemented in the WRF model coupled with the single-layer 295 

urban canopy model (Kusaka and Kimura, 2004), which considers AH released in the form of 296 

sensible heat. In addition to the results of this study, the default AH values of the WRF and AH 297 

datasets from previous studies (Chen et al., 2020; Varquez et al., 2021; Wang et al., 2022c) were 298 
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used for sensitivity analysis. In addition, the Noah land surface model (Tewari et al., 2004), 299 

WRF Single-Moment six-class microphysics scheme (Hong and Lim, 2006), Rapid Radiative 300 

Transfer Model for General Circulation Models longwave and shortwave radiation scheme 301 

(Iacono et al., 2008), Revised MM5 Monin–Obukhov surface layer scheme (Jiménez et al., 302 

2012), and Yonsei University planetary boundary layer scheme (Tewari et al., 2004) composed 303 

the model physics. We set up three two-way nested domains with grid spacings of 25, 5, and 1 304 

km, with the innermost domain covering the main urban area of Beijing. The simulation periods 305 

were 00:00 UTC January 18, 2019, to 00:00 UTC January 25, 2019, with the first 6 h of 306 

simulations considered as model spin-up. The 3-hourly 0.25° × 0.25° ERA5 surface and 307 

pressure layer reanalysis provided the WRF initial and boundary conditions. The root mean 308 

square error (RMSE) was used as an assessment metric. 309 

 310 

4. Results 311 

4.1 AH composition and model assessment 312 

AH emissions varied considerably between provinces (Fig. 3) and provinces with larger 313 

economies generally had larger heat emissions; however, this relationship was not uniform. 314 

Among the selected provinces, Shandong had the highest total heat emissions, whereas Beijing 315 

had the lowest. In particular, Hebei and Liaoning had lower economic volume but their energy 316 

consumption and heat emissions were very high owing to the large proportion of heavy industry. 317 

Considerable differences were observed in AH composition between the provinces. In general, 318 

industrial heat accounted for the largest proportion (> 50 %) of AH in most provinces, followed 319 

by building and transportation heat, whereas metabolic heat accounted for a very small 320 
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proportion. However, in Beijing and Shanghai, the proportion of industrial heat was relatively 321 

low, particularly in Beijing, where both building and transportation heat accounted for more 322 

than 30%. 323 

 324 

Fig. 3. Total annual multi-source AH emission (a) amount (J) and (b) proportion (%). 325 

All models except for SVM had low errors and the performance of the models varied for 326 

different AH sources and error criteria (Table 1). Although the SVM model had a large 327 

estimation error owing to its relatively simple algorithmic structure, its low correlation with 328 

other algorithms increased stacking effectiveness which requires heterogeneity between 329 

algorithms. XGboost had a smaller RMSE but larger mean absolute error (MAE) in the building 330 

and industrial heat estimates compared to other algorithms, Cubist had a smaller RMSE and 331 

MAE in the transportation estimate, and RF performed better in MAE. In contrast to the single 332 

models, for which it was difficult to judge the performance simply, the stacking model 333 

performed better in general, with the RMSE and MAE being better than or close to the best 334 

single model in each AH source estimation. 335 

 336 
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Table 1. Root mean squared errors (RMSE) and mean absolute errors (MAE) for different model training 337 

 RMSE/MAE 

Model  Building heat  Industrial heat Transportation heat 

XGboost 0.48/0.19 1.68/0.72  0.83/0.27 

RF 0.52/0.16 1.76/0.58 0.90/0.23 

Cubist 0.53/0.18 1.82/0.61  0.75/0.21 

SVM 1.41/0.60 6.26/2.12  3.04/1.00 

Stacking 0.40/0.15 1.48/0.56  0.70/0.21 

 338 

Different features played different roles in the estimation (Fig. 4). Specifically, the building 339 

height, improved weighted factory density, and weighted road network density considered in 340 

this study played the largest roles in the estimation of building heat, industrial heat, and 341 

transportation heat, respectively, whereas nighttime lights were the second most important 342 

feature for all AH sources. Furthermore, temperature, humidity, and wind speed, which are 343 

variables that express meteorological conditions, play more significant roles in building heat 344 

estimation. Although the factor features used to distinguish between different months were of 345 

little help in the estimation, the role of regional factor features cannot be overlooked. 346 

 347 

Fig. 4. Importance of the features for (a) building heat, (b) industrial heat, and (c) transportation heat. 348 

Factory_Den: weighted factory density; Factory_Dist: distance from the factories; Road_Den: weighted 349 
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road density; LST_n: nighttime LST; RegionCode: factor features to represent different regions of Fig. 350 

1 in color; MonthCode: factor features to represent 12 months. 351 

 352 

4.2 Spatial characteristics of AH 353 

AH in China was most strongly concentrated in the Yangtze River Delta, Pearl River Delta, 354 

and Beijing-Tianjin-Hebei regions, followed by the surrounding areas of megacities such as 355 

Chengdu, Chongqing, and Wuhan. Eastern China had a remarkable dominance of AH, whereas 356 

AH was very weak in large areas of Western China and different AH sources showed notably 357 

diverse spatial distribution characteristics (Fig. 5 and Fig. 6). The value of building heat was 358 

small, although widely distributed; the high values were concentrated in the built-up area of the 359 

urban centers and gradually diminished outward. Its spatial distribution characteristics were 360 

similar to those of metabolic heat but the value of metabolic heat was much smaller. 361 

Transportation heat was distributed linearly along roads and rails, with high intensity near major 362 

routes in urban centers. However, its spatial distribution was less extensive and almost absent 363 

in areas away from major transportation routes. Industrial heat had the highest intensity overall, 364 

with irregular distribution in the form of scattered dots, which largely depended on the location 365 

of factories or industrial zones. In contrast to the strong concentrations of building and 366 

transportation heat in city centers, industrial heat was widely distributed in the suburbs and rural 367 

areas with high intensity. 368 

 369 
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 370 

Fig. 5. (a) Building heat flux, (b) industrial heat flux, (c) transportation heat flux, (d) metabolic heat, 371 

and (d) total heat flux in China. The slash lines indicate partial missing data for Taiwan. 372 

 373 

4.3 Temporal variations of AH 374 

 This study achieved detailed temporal characteristics of AH at a large spatial scale. 375 

Building heat varied notably across months and latitudinal regions (Fig. 6). The intensity of 376 
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building heat was the highest during the cold winter (January) due to the centralized heating 377 

requirements of Beijing, followed by the summer (July), and was weak during the spring and 378 

autumn months when temperatures were relatively comfortable. In the hot summer months, 379 

building heat peaked in Shanghai and Guangzhou. In contrast, during winter, building heat was 380 

high in Shanghai but was at the lowest level of the year in Guangzhou, which has a mild winter 381 

climate. In contrast to building heat, monthly variations in transportation and industrial heat 382 

were not evident and the characteristics of the variations did not differ significantly among 383 

cities. The hourly variation patterns of AH in Shanghai and Beijing were similar (Fig. 7), with 384 

the lowest values from 3:00 to 4:00 midnight, followed by a gradual recovery and peak at 385 

approximately 9:00 a.m. High AH values remained until 9:00, when a notable decreasing trend 386 

began. 387 

 388 

Fig. 6. Monthly (a) building heat, (b) transportation heat, and (c) industrial heat in case cities. 389 
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 390 

 391 

Fig. 7. Local time hourly AH in (a) Beijing and (b) Shanghai in April. 392 

 393 

4.4 Comparison and validation 394 

Comparing with previous results remains the most important validation approach for current 395 

AH studies. Large-scale studies lacking fine temporal characteristics or representing study 396 
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periods from many years ago were excluded from the comparison. Thus, only a few recent 397 

studies on annual AH were compared (Fig. 8). The spatial characteristics of building heat, 398 

transportation heat, and industrial heat estimated by Chen et al. (2020) were similar to those 399 

determined in this study in that they gradually diminished from the city center outward. 400 

However, the results of the present study have finer spatial details and contrasting 401 

characteristics for different AH sources. Our determined characteristics of building heat were 402 

similar to those of previous studies but the linear distribution of transportation heat was more 403 

obvious. In particular, the industrial heat in this study was not characterized by a distribution 404 

clustered in the urban center, as in previous studies, but was irregularly and widely distributed 405 

within the city administrative areas and even weakly distributed in the urban center. The total 406 

AH in this study was similar to the results of Wang et al. (2022c) which were based on a linear 407 

relationship with nighttime lighting. However, in airports (e.g., the northeast corner of Beijing 408 

and the easternmost part of Shanghai), the results of Wang et al. (2022c) had anomalously high 409 

values, which were absent in this study. 410 
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 411 

Fig. 8. Comparison with the results of previous studies: (a)-(d) are previous estimates of building heat, 412 

transportation heat, industrial heat (Chen et al., 2020) and the total annual average AH (Wang et al., 413 

2022c); (e)-(f) are the results of this study. 414 

 415 

The accuracy of the AH spatial and temporal characteristics was further determined through 416 

climate simulations of the WRF and comparison with station observations (Fig. 9). Air 417 

temperature simulations in Beijing during winter showed the optimization effect of AH inputs 418 

on the numerical climate model. Compared with the default AH parameters of the WRF and the 419 

results of previous studies, the spatiotemporal heterogeneous AH inputs from this study 420 

improved the simulation accuracy the most, followed by the results of Chen et al. (2020), who 421 

obtained a similar simulation accuracy. In contrast, the results of Wang et al. (2022b) were close 422 

to the default AH of the WRF. Although the simulation accuracy of Varquez et al. (2021) was 423 

lower than that of the default AH input, it was still better than that of the scenario without AH.  424 
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 425 

Fig. 9. AH sensitivity analysis based on the average diurnal temperature in Beijing winter. The RMSE 426 

represents the mean error between observed and simulated temperatures at the station locations.. 427 

 428 

5. Discussion 429 

5.1 Implications for improvements 430 

5.1.1 More accurate and detailed characteristics 431 

This study made improvements to the energy consumption inventory method, machine-432 

learning sample features, and model training. Unlike previous top-down approaches conducted 433 

in China (Ming et al., 2022; Wang et al., 2019; Yu et al., 2021a), this study distinguished 434 

residential building and civilian vehicle energy consumption in the living energy consumption 435 

based on the statistical standards of the National Bureau of Statistics of China and considered 436 

the energy consumption of public transportation facilities so that transportation heat was not 437 

additionally calculated based on the number of vehicles. This improvement is theoretically valid 438 

because of the more critical and adequate understanding of energy consumption data based on 439 

the information we got from the Bureau of Statistics. Unlike Wang et al. (2019), this study 440 
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adjusted the proportion of transportation heat in the total AH, which made the proportion of 441 

multi-source AH more reasonable and corrected the overestimation of total AH (Fig. 3). This is 442 

an update of the basic AH estimation method from a deep dive into the official energy 443 

consumption data of China, which establishes a more convenient and exact standardized 444 

process of energy consumption inventory method estimation to adapt to the increasing 445 

complexity of the AH quantification requirements (Meng et al., 2023).  446 

This study improved the sample feature selection and processing for the spatial 447 

characteristics of different AH sources. For building heat estimation, nighttime lighting is the 448 

most commonly used spatial proxy (Dong et al., 2017; He et al., 2020; Wang et al., 2022c). 449 

Although nighttime lighting is still very important in the modeling process, its inability to 450 

express the information of building heights and densities is a limitation. Our results 451 

demonstrated the importance of building height data (Fig. 4). The spatial and attribute 452 

information contained in building height data also made the gridded building heat in this study 453 

more refined than that of Chen et al. (2020). In addition, the involvement of building 454 

information overcomes the abnormally high AH in areas such as airports and harbors owing to 455 

high lighting at night (Wang et al., 2019; Wang et al., 2022c), making the estimations in these 456 

areas agree more closely with the AH should be expected from their building heights and 457 

densities (Fig. 8). Measuring the actual traffic volumes on different roads is extremely difficult, 458 

especially in large-scale studies (Qian et al., 2023). However, this study utilized road design 459 

criteria to assign weights for different levels of roads so that the weighted road densities could 460 

be used to reflect the general transportation activity intensity on different roads, which greatly 461 
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simplified data processing and model complexity and obtained satisfactory results. The results 462 

finely characterized the transportation heat distribution within the city, with high consistency 463 

with relevant small-scale studies (Ming et al., 2022; Sun et al., 2018). The importance of 464 

weighted road density also confirmed its usefulness. In our analysis, industrial heat was the 465 

most different component compared to previous studies (Fig. 8). And the improvement in the 466 

accuracy of POI data from Amap for the spatial characteristics of industrial heat has been 467 

illustrated in previous studies (Qian et al., 2022). The weighted factory density had the greatest 468 

importance in industrial heat estimation and was calculated based on the energy consumption 469 

of different types of factories. The special locational requirements of factories and industrial 470 

zones implied that the spatial distribution characteristics of industrial heat were distinctly 471 

different from those of building and transportation heat. The industrial heat should be low in 472 

urban centers where population and commercial activities are concentrated, which was clearly 473 

expressed by the present results (Fig. 8). But previous studies (Chen et al., 2020; Varquez et al., 474 

2021) did not avoid the overestimation of industrial heat in urban centers. 475 

Another novelty of the present investigation is the detailed temporal characterization 476 

obtained simultaneously with a large spatial extent study (Fig. 6 and Fig. 7). Compared to the 477 

results of Varquez et al. (2021), who also obtained hourly AH, the present study achieved a 478 

higher spatial resolution and more accurate spatial characteristics, used more recent data, and 479 

performed better in climate simulations (Fig. 9). The AH spatiotemporal variability 480 

characterized in this study achieved a similar degree of detail to refined studies at small spatial 481 

scales (Liu et al., 2021; Sun et al., 2018; Xu et al., 2021), which is rare in other current large-482 
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scale AH datasets. In summary, the improvements in this study were effective and realized an 483 

accurate multi-source AH estimation that considered both large extent and fine spatiotemporal 484 

characteristics. The resulting dataset is one of the latest and most accurate AH datasets available 485 

for China. 486 

 487 

5.1.2 Implications for climate simulations 488 

 The remarkable effects of AH on climate and air quality in urban areas have been widely 489 

demonstrated (Yang et al., 2019; Zhan and Xie, 2022) and more accurate spatially 490 

heterogeneous AH data can optimize the precision of simulations of meteorological elements 491 

and pollutants (Molnar et al., 2020; Wang et al., 2023; Xie et al., 2016). Therefore, the 492 

quantitative validation of AH models based on climate simulations is theoretically justified and 493 

the results of this study show that the input of sophisticated spatiotemporal AH is beneficial 494 

(Fig. 9). Although the AH4GUC dataset of Varquez et al. (2021) possesses sufficient 495 

spatiotemporal resolution, their data for 2010 are out-of-date, resulting in a simulation 496 

performance lower than that of the default fixed AH in WRF. The AH data for 2016 from Wang 497 

et al. (2022b) have a 500 m resolution, which is consistent with the data in the present study; 498 

however, its simulation precision is only moderate because of the lack of time features and 499 

multi-source AH differences. The multi-source AH dataset of Chen et al. (2020), also built 500 

based on machine learning, had the second lowest simulation error when coupled with the WRF 501 

default hourly AH profile (Fig. 9); however, its original dataset lacks temporal variability and 502 

thus requires a combination of external information for practical applications. In contrast to the 503 
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above datasets, the AH results in the present study achieved a temporal resolution as fine as 504 

hours on the grids, with unique characteristics of temporal variations in each grid, and more 505 

detailed and accurate spatial characteristics for the different AH sources. This resulted in 506 

temperature simulations with the highest accuracy. Overall, improved AH inputs are important 507 

for optimizing the accuracy of climate simulations. In addition to more accurate spatial and 508 

temporal characteristics, attention should be paid to the timely use of AH data, especially in 509 

regions with fast economic development. Based on more accurate AH datasets and 510 

meteorological numerical models, the impact of human activities can be further clarified to 511 

optimize urban planning and settlement environments. However, the requirements of high 512 

computing power and long runtime for numerical simulations are key issues that must be 513 

considered. 514 

 515 

5.2 Limitations and prospects 516 

This study provides effective improvements in many aspects of AH modeling; however, 517 

many problems remain to be overcome by subsequent research. Although the hourly AH was 518 

estimated, further consideration of the intraday variation differences between weekdays and 519 

weekends should be given. If supported by sufficient data, quantification of AH for multiple 520 

scenarios can be achieved with different change characteristics for weekdays, holidays, and 521 

weekends. Another important issue is that changes in AH from centralized heating in winter in 522 

northern areas are difficult to reflect using indicators of population activity intensity, which is 523 

a problem that the current field has not overcome, especially in large-scale studies. In the future, 524 
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if detailed heating energy consumption data can be obtained to establish the corresponding 525 

typical building heat emission change criteria, these can be applied to large-scale studies. 526 

Finally, there is room for improvement in the ability of machine learning models for AH to 527 

recognize features in particular regions. For example, the large heavy industrial energy 528 

consumption in Shandong was not well reflected in this study and required more accurate 529 

geographic information data of factories. In addition, how to apply these fine data in large 530 

spatial scale studies is also a key consideration for future studies. 531 

 532 

6. Conclusion 533 

This study estimated annual, monthly, and hourly AH of multiple heat sources with fine 534 

spatial and temporal characteristics in China for 2019. Specifically, this study corrected the 535 

irrational application of the top-down energy consumption inventory method for China, 536 

optimized the AH modeling process of machine learning, improved the selection and processing 537 

of sample features for different AH sources, and refined the results of large-scale AH estimation 538 

to finer time scales. The results showed that industrial heat accounted for the highest proportion 539 

of AH but the composition of AH in different regions varied notably. The sample features added 540 

or improved in this study, including building height, weighted road network density, and 541 

weighted factory density, all played the strongest roles in the modeling of the different AH 542 

sources. The stacking model effectively solved the optimal algorithm selection problem and 543 

improved the modeling accuracy. High values of AH in China were concentrated in the Yangtze 544 

River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei regions but the spatial characteristics 545 
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of the different AH sources were markedly distinct. Building heat showed a distinct monthly 546 

variation and was related to climate and latitude, whereas industrial heat and transportation heat 547 

showed almost no variation throughout the year. The hourly changes in AH were consistent 548 

with the general patterns of human work and rest. The spatial and temporal characteristics of 549 

the multi-source AH obtained in this study were more accurate and finer than those in previous 550 

studies and better accuracy was achieved in regional climate simulations, which is rare for large-551 

scale multi-temporal multi-source AH datasets. 552 

This study established a complete and standardized framework from basic AH estimation 553 

methods to related model training, which can effectively integrate the currently abundant data 554 

for application in large-scale AH studies. This study provided a reliable foundation for further 555 

refinement of the AH dataset and more accurate data inputs for regional climate simulations, 556 

thus promoting a deeper understanding of the urban thermal environment and supporting 557 

sustainable urban development and rational utilization of energy consumption. 558 
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Supplementary Material 1 

Table S1. Details of the data used in the study. 2 

Data Source (link) 
Original 

resolution 
Time range 

Energy consumption 

data; Socioeconomic 

data (GDP, vehicles, 

population, 

administrative area, 

electricity consumption, 

freight volume) 

Statistical yearbooks published by China's 

provincial and city statistical bureaus 

(http://www.stats.gov.cn/) 

Table data 
2019 and 

monthly 

Nighttime lighting 

Earth Observation Group, Payne Institute for 

Public Policy, Colorado School of Mines 

(https://eogdata.mines.edu/products/vnl/) 

463.83 m 
Monthly in 

2019 

MOD11A1-LST/ LST-

night 

NASA LP DAAC at the USGS EROS Center 

(https://lpdaac.usgs.gov/products/mod11a1v0

06/) 

1000 m Daily in 2019 

Temperature, 

Wind speed, 

humidity 

Famine Early Warning Systems Network 

(FEWS NET) Land Data Assimilation System 

(https://disc.gsfc.nasa.gov/datasets/FLDAS_N

OAH01_C_GL_M_001/summary) 

11132 m 
Monthly in 

2019 

MOD13Q1-NDVI 

NASA LP DAAC at the USGS EROS Center 

(https://lpdaac.usgs.gov/products/mod13q1v00

6/) 

250 m 
16-Day data 

in 2019 

NASA NASADEM 

Digital Elevation 

NASADEM Merged DEM Global 1 arc second 

((https://lpdaac.usgs.gov/products/nasadem_hgt

v001/)) 

30m 2000 

Road and rail data 
OpenStreetMap 

(https://www.openstreetmap.org) 

Vector 

data 
2019 

Points of Interest 
AutoNavi map  

(Amap, https://lbs.amap.com) 

Vector 

data 

2019 and 

2020 

Population heat data in 

representative cities 

Baidu Huiyan big data platform 

(https://huiyan.baidu.com) 

Vector 

data 

Hourly for a 

day in 2019 

and 2022 

 3 

 4 

Calculation of the weighted road density: 5 

Online Supplementary Files

https://www.openstreetmap.org/
https://lbs.amap.com/
file:///E:/Desktop/(https:/huiya
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𝑤𝑙 = 𝑉𝑙/∑ 𝑉𝑙
𝑚

𝑙
 6 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠 =
∑ 𝑤𝑙

𝑟𝑛
𝑟 × 𝐿𝑟
𝐴𝑠

 7 

where 𝑤𝑙 is the weight of the road level l, 𝑉𝑙 is the road design traffic volume for level l roads, 8 

m is the number of road levels; 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠 is the weighted road density within the search radius, 9 

𝐿𝑟 is the length of the road r within the search radius, 𝐴𝑠 is the area within the search radius, 10 

n is the number of roads in the search radius. 11 

 12 

Calculation of the weighted factory density: 13 

𝑤𝑐 = 𝐸𝑐/∑ 𝑉𝑐
𝑚

𝑐
 14 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠 =
∑ 𝑤𝑐

𝑖𝑛
𝑖

𝐴𝑠
 15 

where 𝑤𝑐 is the weight of the factory type c, 𝐸𝑐 is the energy consumption of industry type 16 

c, m is the number of industry types; 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠  is the weighted factory density within the 17 

search radius, 𝐴𝑠 is the area within the search radius, n is the number of factories in the search 18 

radius. 19 
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