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Abstract

Anthropogenic heat (AH) emissions have rapidly increased in recent decades and are now
critical for studying urban thermal environments; however, datasets of multi-source AH with
fine and accurate spatiotemporal characteristics at large scales are lacking. This study advances
the top-down inventory method in China with a more rational use of official energy
consumption data. Furthermore, we considered features such as the national building height
raster, weighted factory density, and weighted road density to better represent the spatial
characteristics of multi-source AH. Based on the above, the machine-learning modeling process
for AH emissions was optimized using a stacking framework. The results were quantitatively
validated using urban climate simulations. This study obtained annual, monthly, and hourly AH

of multiple heat sources in China for 2019 at 500 m resolution. The resulting data showed a
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reasonable AH composition and the total amount and composition of AH varied notably from
region to region. The spatial and temporal characteristics of the AH from different sources
differed greatly and were more detailed and accurate than those reported in previous studies.
Air temperature simulations utilizing this AH dataset were improved. Because of its large
spatial extent and detailed spatiotemporal characteristics, the new dataset strongly supports
urban climate research and sustainable development.

Keywords: Anthropogenic heat, Machine learning, Model improvement, Spatiotemporal

heterogeneity

1. Introduction

Rapid urbanization around the world over the last few decades has been accompanied by an
increased population and economic activities (Han et al., 2022; Yang et al., 2022). Urban areas
contain more than half of the global population and consume approximately 70% of the energy,
which is accompanied by the massive release of anthropogenic heat (AH), which contributes to
environmental and demographic problems (Firozjaei et al., 2020; Vargo et al., 2020; Wang et
al., 2022a). Despite its negligible contribution to the global energy system, the impact of AH
cannot be neglected in major urban built-up areas, where it is almost equal in magnitude to the
average daily solar radiation (Hamilton et al., 2009; lamarino et al., 2012; Sun et al., 2018). The
intensity of AH, expressed as heat flux (heat emissions per unit time and area), rapidly increases
with growing global energy consumption (Ferreira et al., 2011; Jin et al., 2020). Therefore, AH

is a vital component of the urban surface energy balance, which significantly affects the local
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urban climate and exacerbates the urban heat island effect (Hertel and Schlink, 2022; Qian et
al., 2023; Wang et al., 2023). Recognizing the significance of AH emissions in climate
simulations, heat-driving patterns, ecological assessments, and sustainable development studies
and analyzing their spatial and temporal characteristics have theoretical and practical
implications (Dong et al., 2017; Molnar et al., 2020; Wu et al., 2023a).

However, AH at sufficient spatial and temporal resolutions is difficult to obtain via
measurements, which hinders further understanding of the urban thermal environment (Qian et
al., 2023). For this reason, many AH estimation methods have been proposed to address
research requirements at multiple spatial and temporal scales. Current approaches for AH
estimation are based on (a) energy consumption inventories, (b) surface energy balance residual
methods, and (c) building energy simulations (Grimmond, 1992; Sailor, 2011). Building energy
simulations obtain accurate building heat emissions based on building geographic information
and typical architectural parameters but cannot be applied in large-scale studies (Alhazmi et al.,
2022; Chen et al., 2022b; Vahmani et al., 2022). The traditional surface energy balance method
is based on micrometeorological observations, such as eddy flux towers, which attribute the
residual term in the energy balance equation to the AH (Offerle et al., 2005; Pigeon et al., 2007).
The development and application of remote sensing allow the size of the considered region to
be extended (Kato and Yamaguchi, 2005) and new indices have been developed to characterize
the effect of AH on urban heat islands (Firozjaei et al., 2020; Wu et al., 2023a); however,
uncertainties exist because of unconsidered heat storage and shadows. Although remedies have

been proposed (Meng et al., 2023; Yu et al., 2021b), such approaches remain inapplicable to
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large-scale and multi-temporal AH estimations because of the limited availability of remote
sensing data.

The energy consumption inventory method is the most widely used method for AH
estimation (Kotthaus and Grimmond, 2012). This method assumes that all AH from energy
consumption is dissipated as sensible heat with no hysteresis and can be divided into top-down
and bottom-up approaches, depending on the scale variation (Quah and Roth, 2012; Sailor and
Lu, 2004). The bottom-up approach relies significantly on detailed geographic information data,
statistical data, and parameters of heating and cooling loads (lamarino et al., 2012; Xu et al.,
2021; Zhang et al., 2020). In contrast, the top-down approach is based on large-scale energy
consumption data and is more applicable at the global scale or for regions with limited data
availability and quality; however, the results are coarser (Allen et al., 2011; Flanner, 2009; Jin
et al., 2019). In particular, top-down methods for China tend to use energy consumption data
from local statistical yearbooks (Ming et al., 2022; Wang et al., 2019; Yu et al., 2021a); however,
unreasonable understanding and use of this data will lead to erroneous estimates of AH
(National Bureau of Statistics of China, 2020). In addition to the single methods, AH estimation
using combined methods has been increasingly used to solve challenges in complex scenarios
(Chow et al., 2014; Meng et al., 2023; Wang et al., 2022a; Zheng and Weng, 2018). However,
further details on the associations and distinctions between the different methods are required
to realize a more scientific multi-method integration.

Owing to the frequent application of top-down inventory approaches in recent years, many

new and improved methods have been proposed. The downscaling of AH based on its
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association with nighttime light emissions and human activities has been widely implemented
(He et al., 2020; Varquez et al., 2021; Wang et al., 2022c). While this method provides a
convenient way to obtain large-scale AH, it is biased and unable to capture the complex spatial
and temporal characteristics of multi-source AH. New data and methods provide new
opportunities for AH modeling. Owing to the development of communication and network
technologies, location semantics, spatial interaction, and real-time dynamic information have
been applied; however, higher data requirements and tedious workflow limit them to small-
scale AH studies (Liu et al., 2021; Ming et al., 2022; Xu et al., 2021). Machine learning can
greatly simplify the application of multi-source data and improve the efficiency and accuracy
of AH estimation and has gradually become a hot topic in the field of urban thermal
environments (Chen et al., 2020; Kim et al., 2022; Qian et al., 2023; Wang et al., 2022d).
However, further improvements are required for the refinement of spatiotemporal
characteristics, algorithm optimization, and modeling processes (Qian et al., 2022). In summary,
bias was present in previous AH datasets because the information contained in the input data
was inadequate, the AH was modeled without distinguishing between specific AH sources, or
the machine learning models selected were not appropriate.

The validation of these results is another issue in AH studies that is difficult to address.
Except for a few studies (Chow et al., 2014; Pigeon et al., 2007) that conducted small-scale
field validation based on flux observation towers, most extant studies were limited to qualitative
validation by comparing with previous estimates owing to equipment limitations, which is not

sufficiently rigorous (Meng et al., 2023). Given these issues, this study proposes an improved
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AH estimation method, including the correction of the top-down energy inventory method for
China, models based on improved training features, a stacking framework incorporating
multiple machine learning algorithms, and validation based on regional climate simulations.
This study aims to achieve 1) more accurate estimates of AH values across China in 2019, 2)
more reasonable and detailed temporal and spatial variation characteristics of AH from multiple

sources, and 3) more scientific and rigorous AH validation.

2. Study area and dataset

Since the late 1970s, China has experienced rapid economic development and urbanization
(YYang et al., 2019), resulting in a significant increase in energy consumption and enhanced AH.
Strong AH changes the energy fluxes of urban ecosystems and affects the regional climate and
atmospheric environment of urban areas, causing frequent extreme heat events, deteriorating
air quality, and seriously affecting the health of residents in Chinese cities (Cong et al., 2022;
Peng et al., 2021). Therefore, there is an urgent need to clarify the spatial and temporal patterns
of AH on a national scale (Fig. 1) to explore feasible mitigation measures.

The energy consumption and socioeconomic data for 2019 from the Statistical Yearbooks
of Chinese Provinces and Cities (http://www.stats.gov.cn) were used in the energy consumption
inventory method. The data involved in the machine learning sample features included Chinese
point-of-interest (POI) data from Amap (https://Ibs.amap.com), Chinese road and railroad data
from open street map (https://www.openstreetmap.org), Chinese building height for 2020 (Wu

et al., 2023b), NPP/VIIRS night lighting data (Wu et al., 2023b), MOD11A1 daytime and
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nighttime land surface temperature (LST), MOD13A1 normalized difference vegetation index
(NDVI), NASA global digital elevation model (DEM) data (NASA JPL, 2020), and FLDAS
Noah land surface model (Amy et al., 2018) data for air temperature, wind speed, and humidity.
In addition, population heat data based on the location information of cell phone users from the
Baidu Huiyan big data platform (https://huiyan.baidu.com) were included to describe the
dynamic changes in human activities within cities. Additional information on the data is

presented in the Supplementary Material.
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Fig. 1. Study area map. Diagonal slashes indicate regions where statistical data are not available. The
diagonal grid coverage indicates the 12 cities where the AH sample is detailed at the district (county)

level. The different colors indicate the specific division of the regional calculations involved in this study.
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Note: The administrative levels of China involved in this study, from highest to lowest, are provinces,
cities, and districts (counties); the lower administrative levels are subordinate to and governed by high
levels.

3. Methods

The AH estimation method consisted of sample label estimation, sample feature processing,
model construction, and validation of the results (Fig. 2). The sample labels in this study
represent the AH values to be estimated and the sample features are a set of variables that
characterize the properties of the samples. The corrected top-down approach was used to
estimate the AH values of the administrative areas as labels. The improved sample features of
different AH sources were processed. The samples were then input into a stacking framework
containing four machine-learning algorithms and the model was trained. The monthly gridded
AH was outputted based on the stacking model and raw data and an hourly AH was derived.

Finally, the accuracy of the meteorological simulation was utilized to validate the AH results.
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Fig. 2. Technical flow. AH: anthropogenic heat flux; EC: electricity consumption; GDP: gross domestic
product; POI: points of interest; OSM: open street map; SVM: support Vector Machine; RF: random
forest; XGBoost: extreme Gradient Boosting; WRF-UCM: the Weather Research and Forecasting model
coupled with the single-layer urban canopy model. More detailed district-level AH was estimated at the
city level in only 12 cities (diagonal grid in Fig. 1).

3.1 Corrected AH estimation as sample labels

The top-down energy consumption inventory method is most commonly used for large-
scale AH estimation. In this study, the AH was estimated and downscaled based on energy
consumption and socioeconomic data to obtain sample labels of AH in administrative areas for
model training. Previous studies tended to use living energy consumption from statistical
yearbooks to estimate residential building heat emissions, while transportation heat emissions

were additionally calculated based on the number of civilian vehicles (Ming et al., 2022; Wang
9



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

etal., 2019; Wang et al., 2022d). However, such estimates are not reasonable because the energy
consumption of civilian vehicles is included in the living energy consumption according to the
statistical standards of the National Bureau of Statistics of China (National Bureau of Statistics
of China, 2020). In addition, the energy consumption of public transportation facilities should
be considered when estimating transportation heat. Therefore, the top-down method used in
China must be corrected to obtain more accurate multi-source AH values and compositional
ratios. The annual average AH components at the city level including building heat (Qg),
transportation heat (Qr), industrial heat (Q;), and metabolic heat (Q,) with unit W - m~2 were
calculated as follows:

e xX(x(1-p)X a+ X ae)

= 1
B AXT (1)
€ X (CpXyyXa,+Cr Xay) 5
T AXT @
e X Xaq 3)

™ AxT

(HyXTy+ Hg XTg) X P

= (4)

M AX (Ty+Ts)

where C,, Cc, C;, and Cr are provincial energy consumptions (ton of standard coal
equivalent, tce) for living, commerce (wholesale, retail, accommodation, and catering), industry,
and transportation facilities, respectively; ¢ is the calorific value of standard coal = 29.3 M] -
kg~1; v, is the proportion (%) of fuel oil consumption to the total living energy consumption
of households in four representative regions of China from the statistics of the Chinese General
Social Survey 2015; a,, is the proportion of the city's population to the province; a. is the

proportion of the electricity consumption or GDP in the tertiary sector of the city to the province;

10
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a; is the proportion of the electricity consumption or GDP in the industrial sector; A is the
administrative area of the city (m?); and T is for one year (s). For Q,, H, and Hg are the
metabolic heat intensities (W) at active and sleepiness times, respectively; T, and Tg are
active and sleep times; P is the total population of the city (Jin et al., 2020).

Owing to the demands of large-scale studies, the calculation of monthly AH weights must
be representative while allowing for sufficient data availability. Thus, the monthly AH was

calculated using the following equation:

Qmonth = dear X Bm (%)

Om
(Xm=16m)/12

where Qmonen 1S the monthly multi-source AH, Q.4 is the annual multi-source AH, and

Bm = (6)
Bm 1s the monthly weight, which was calculated using alternative data §,, for different heat
sources. For Qp, 6, can be estimated from the variation pattern of the energy consumption
with temperature, as proposed in previous studies (Allen et al., 2011; Liu et al., 2021). For Qr,
&, represents the monthly freight volume or transportation electricity consumption and for Q,,
6, represents monthly industrial electricity consumption or GDP (Qian et al., 2022). All data
and calculations involving monthly weights were conducted on a provincial scale. Owing to the
small value of metabolic heat, it was considered to have no monthly variation. The specific data
used were determined based on the availability of local statistical data.

In addition, previous large-scale AH samples for China often take the city administrative
extent as the unit of calculation (Chen et al., 2020; Wang et al., 2022d); however, due to the

large area of the administrative city, the AH label values were low and samples with high label

11
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values were absent in the training of the models. In contrast, it is difficult to refine all AH labels
to the district level (subordinate to cities) because of data limitations (Qian et al., 2022).
Therefore, this study implemented a more efficient scheme by calculating district-level AH
sample labels based on a process similar to that described in Egs. (1)—(6) for China's 12 most
developed and representative cities (Fig. 1), which, together with the national city level AH,
formed 5892 labels, which is a much larger sample size and larger numerical range than in

previous studies.

3.2 Improved sample feature processing

It was necessary to select appropriate input variables (sample features) for different AH
sources. All features in this study were computed as the average of the city or district
administrative boundaries corresponding to the sample labels. Remote sensing data provide
large-scale spatiotemporal and attribute information. Common data, such as nighttime lights,
daytime and nighttime LST, NDVI, and DEM, were selected based on previous studies (Chen
et al., 2020; Qian et al., 2022). Meteorological data, including air temperature, humidity, and
wind speed, are important for determining outdoor thermal comfort and the ability of cities to
dissipate heat. Therefore, remote sensing and meteorological data were used as common
variables for all AH sources. All the gridded data were processed to a resolution of 500 m.

For Qg modeling, nightlight data can reflect socioeconomic dynamics, population, and
energy consumption to some extent (Chen et al., 2015; Varquez et al., 2021). However, the
limitations of the remote-sensing observation plane cause bias because height information

cannot be reflected. Considering the important association between building height and Qg

12
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(Liu et al., 2021), we included the 10-meter resolution building height data of China proposed
by Wu et al. (2023b). The building raster tiles were resampled to 500 m by grid averaging to
match the spatial scale of most of the remote sensing data and were mosaicked over the entire
country.

For Qr, rail and road densities (vector data) can reflect transportation activities; however,
the differences between various road levels should be emphasized (Qian et al., 2022). In contrast
to separately calculating road densities for different road levels for model training and
prediction as done in previous studies (Chen et al., 2020), this study established a weighted road
density based on the China Technical Standards of Highway Engineering, which was more
convenient and accurate.

For Q, itis important to determine the location of factories or industrial zones, which can
be located in large-scale studies using POI or night-fire data (Chen et al., 2020; Varquez et al.,
2021); however, differences in energy consumption between various factories need to be
considered. This study classified all factory POI into light and heavy industries based on the
keywords of factory name, and the light industries were further divided into other factories and
printing, clothing, and furniture factories, which are more common in city centers. Finally, the
weight of each factory type was calculated based on the energy consumption of each industrial
sector in China in 2019 and the weighted factory density was calculated. Calculations of the

above weights and density raster are provided in the Supplementary Material.

3.3 Model based on Stacking framework
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After preparing the samples, a machine-learning model was built to represent the
relationship between the features and the AH. Previous studies have revealed differences in the
performances of various algorithms for estimating different AH sources (Qian et al., 2022).
Therefore, integrating multiple algorithms might improve the estimation of multi-source AH
by reducing errors owing to algorithm applicability. The stacking used in this study is a
hierarchical ensemble framework (Wolpert, 1992) that effectively improves the accuracy of the
machine learning models. Specifically, the commonly used extreme gradient boosting
(XGBoost), random forest (RF), support vector machine (SVM), and cubist models in the field
of urban thermal environments were selected to form the base model for the stacking framework
(Chen et al., 2020; Chen et al., 2022a; Gao et al., 2022; Mathew et al., 2019). New training
features were constructed based on a five-fold cross-validation. Multivariable linear regression,
a simple algorithm, was used to train the second-layer model to integrate the results of the base
models (Qian et al., 2023).

The monthly gridded AH can be obtained from the stacking model using raw data input

and further downscaled in time to the hourly AH:

AH" = fg' - Q' + f7 - QF + fi" - Q" + Qi 7
e Phy,

fP (Clty) - %l:io Phh /24 (8)

fl(Region) = mean(f(City) # 1) 9)

Where Q7', QF, and Q" are the monthly building, transportation, and industrial heat flux
outputs from the stacking model, respectively; and £ is the hourly weight calculated based

on the population heat value Ph;,, with h representing a specific hour. Population heat data are
14
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based on the geographical location data of mobile phone users and can characterize the
distribution of people across a city in real time. Therefore, population heat data were used to
represent the diurnal variation in building and transportation heat. For the seven representative
cities for which population heat data were available (Qian et al., 2023), f(City) represents
gridded data with spatial heterogeneity. For regions where population heat data were
unavailable across the country, f*(Region) was a single value of the specific region shown
in different colors (Fig. 1), indicating that the mean of the pixels with the f*(City) was not
equal to 1 within the representative city corresponding to the region and was only applied to
image pixels with annual AH greater than 1. ff is the hourly weight of industrial heat proposed

in previous studies (Liu et al., 2021; Zheng and Weng, 2018).

3.4 Validation based on regional climate simulations

By considering the important influence of AH on the regional climate, simulations of
meteorological factors can be used to assess the accuracy of AH inputs. The Weather Research
and Forecasting (WRF) model is a state-of-the-art mesoscale numerical weather prediction
system designed for both atmospheric research and operational forecasting applications. WRF
version 4.4 was used in this study. The exchange of energy and momentum between the urban
surface and atmosphere was implemented in the WRF model coupled with the single-layer
urban canopy model (Kusaka and Kimura, 2004), which considers AH released in the form of
sensible heat. In addition to the results of this study, the default AH values of the WRF and AH

datasets from previous studies (Chen et al., 2020; Varquez et al., 2021; Wang et al., 2022c) were

15
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used for sensitivity analysis. In addition, the Noah land surface model (Tewari et al., 2004),
WREF Single-Moment six-class microphysics scheme (Hong and Lim, 2006), Rapid Radiative
Transfer Model for General Circulation Models longwave and shortwave radiation scheme
(lacono et al., 2008), Revised MM5 Monin—Obukhov surface layer scheme (Jiménez et al.,
2012), and Yonsei University planetary boundary layer scheme (Tewari et al., 2004) composed
the model physics. We set up three two-way nested domains with grid spacings of 25, 5, and 1
km, with the innermost domain covering the main urban area of Beijing. The simulation periods
were 00:00 UTC January 18, 2019, to 00:00 UTC January 25, 2019, with the first 6 h of
simulations considered as model spin-up. The 3-hourly 0.25° x 0.25° ERADS5 surface and
pressure layer reanalysis provided the WRF initial and boundary conditions. The root mean

square error (RMSE) was used as an assessment metric.

4. Results
4.1 AH composition and model assessment

AH emissions varied considerably between provinces (Fig. 3) and provinces with larger
economies generally had larger heat emissions; however, this relationship was not uniform.
Among the selected provinces, Shandong had the highest total heat emissions, whereas Beijing
had the lowest. In particular, Hebei and Liaoning had lower economic volume but their energy
consumption and heat emissions were very high owing to the large proportion of heavy industry.
Considerable differences were observed in AH composition between the provinces. In general,
industrial heat accounted for the largest proportion (> 50 %) of AH in most provinces, followed

by building and transportation heat, whereas metabolic heat accounted for a very small
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proportion. However, in Beijing and Shanghai, the proportion of industrial heat was relatively

low, particularly in Beijing, where both building and transportation heat accounted for more

than 30%.
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Fig. 3. Total annual multi-source AH emission (a) amount (J) and (b) proportion (%).

All models except for SVM had low errors and the performance of the models varied for
different AH sources and error criteria (Table 1). Although the SVM model had a large
estimation error owing to its relatively simple algorithmic structure, its low correlation with
other algorithms increased stacking effectiveness which requires heterogeneity between
algorithms. XGboost had a smaller RMSE but larger mean absolute error (MAE) in the building
and industrial heat estimates compared to other algorithms, Cubist had a smaller RMSE and
MAE in the transportation estimate, and RF performed better in MAE. In contrast to the single
models, for which it was difficult to judge the performance simply, the stacking model
performed better in general, with the RMSE and MAE being better than or close to the best

single model in each AH source estimation.
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Table 1. Root mean squared errors (RMSE) and mean absolute errors (MAE) for different model training

RMSE/MAE
Model Building heat Industrial heat Transportation heat
XGhoost 0.48/0.19 1.68/0.72 0.83/0.27
RF 0.52/0.16 1.76/0.58 0.90/0.23
Cubist 0.53/0.18 1.82/0.61 0.75/0.21
SVM 1.41/0.60 6.26/2.12 3.04/1.00
Stacking 0.40/0.15 1.48/0.56 0.70/0.21

Different features played different roles in the estimation (Fig. 4). Specifically, the building
height, improved weighted factory density, and weighted road network density considered in
this study played the largest roles in the estimation of building heat, industrial heat, and
transportation heat, respectively, whereas nighttime lights were the second most important
feature for all AH sources. Furthermore, temperature, humidity, and wind speed, which are
variables that express meteorological conditions, play more significant roles in building heat
estimation. Although the factor features used to distinguish between different months were of

little help in the estimation, the role of regional factor features cannot be overlooked.

RegionCode - RegionCode -
| LST n- - LST n- .
= RegionCode- -
‘2 LST - AirTemp- .
o
AirTemp - - LSTA .
Humidity | - NDVI - NDVI 1 .
WindSpeed - . WindSpeed . Humidity - .
NDVI+ . Humidity . WindSpeed - I
MonthCode MonthCode - MonthCode -
0 25 50 75 100 b 0 25 50 75 100 0 25 50 75 100
(a) Importance ( ) Importance (C) Importance

Fig. 4. Importance of the features for (a) building heat, (b) industrial heat, and (c) transportation heat.
Factory_Den: weighted factory density; Factory_Dist: distance from the factories; Road_Den: weighted
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road density; LST_n: nighttime LST; RegionCode: factor features to represent different regions of Fig.
1 in color; MonthCode: factor features to represent 12 months.

4.2 Spatial characteristics of AH

AH in China was most strongly concentrated in the Yangtze River Delta, Pearl River Delta,
and Beijing-Tianjin-Hebei regions, followed by the surrounding areas of megacities such as
Chengdu, Chongging, and Wuhan. Eastern China had a remarkable dominance of AH, whereas
AH was very weak in large areas of Western China and different AH sources showed notably
diverse spatial distribution characteristics (Fig. 5 and Fig. 6). The value of building heat was
small, although widely distributed; the high values were concentrated in the built-up area of the
urban centers and gradually diminished outward. Its spatial distribution characteristics were
similar to those of metabolic heat but the value of metabolic heat was much smaller.
Transportation heat was distributed linearly along roads and rails, with high intensity near major
routes in urban centers. However, its spatial distribution was less extensive and almost absent
in areas away from major transportation routes. Industrial heat had the highest intensity overall,
with irregular distribution in the form of scattered dots, which largely depended on the location
of factories or industrial zones. In contrast to the strong concentrations of building and
transportation heat in city centers, industrial heat was widely distributed in the suburbs and rural

areas with high intensity.
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Fig. 5. (a) Building heat flux, (b) industrial heat flux, (c) transportation heat flux, (d) metabolic heat,
and (d) total heat flux in China. The slash lines indicate partial missing data for Taiwan.

4.3 Temporal variations of AH

This study achieved detailed temporal characteristics of AH at a large spatial scale.

Building heat varied notably across months and latitudinal regions (Fig. 6). The intensity of
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building heat was the highest during the cold winter (January) due to the centralized heating
requirements of Beijing, followed by the summer (July), and was weak during the spring and
autumn months when temperatures were relatively comfortable. In the hot summer months,
building heat peaked in Shanghai and Guangzhou. In contrast, during winter, building heat was
high in Shanghai but was at the lowest level of the year in Guangzhou, which has a mild winter
climate. In contrast to building heat, monthly variations in transportation and industrial heat
were not evident and the characteristics of the variations did not differ significantly among
cities. The hourly variation patterns of AH in Shanghai and Beijing were similar (Fig. 7), with
the lowest values from 3:00 to 4:00 midnight, followed by a gradual recovery and peak at
approximately 9:00 a.m. High AH values remained until 9:00, when a notable decreasing trend

began.

B Shanghai Guangzhou

Building heat (W/m?) Transportation heat (W/m?) Industrial heat (W/m?)

(a) [T == (b) ) . BE=
0 05 2 5 8 12 16 21 >21 0 2 5 10 16 24 36 52 >52 0 5 10 15 20 25 30 35 >35

Fig. 6. Monthly (a) building heat, (b) transportation heat, and (c) industrial heat in case cities.
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Fig. 7. Local time hourly AH in (a) Beijing and (b) Shanghai in April.

4.4 Comparison and validation

Comparing with previous results remains the most important validation approach for current

AH studies. Large-scale studies lacking fine temporal characteristics or representing study
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periods from many years ago were excluded from the comparison. Thus, only a few recent
studies on annual AH were compared (Fig. 8). The spatial characteristics of building heat,
transportation heat, and industrial heat estimated by Chen et al. (2020) were similar to those
determined in this study in that they gradually diminished from the city center outward.
However, the results of the present study have finer spatial details and contrasting
characteristics for different AH sources. Our determined characteristics of building heat were
similar to those of previous studies but the linear distribution of transportation heat was more
obvious. In particular, the industrial heat in this study was not characterized by a distribution
clustered in the urban center, as in previous studies, but was irregularly and widely distributed
within the city administrative areas and even weakly distributed in the urban center. The total
AH in this study was similar to the results of Wang et al. (2022c) which were based on a linear
relationship with nighttime lighting. However, in airports (e.g., the northeast corner of Beijing
and the easternmost part of Shanghai), the results of Wang et al. (2022c) had anomalously high

values, which were absent in this study.
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Fig. 8. Comparison with the results of previous studies: (a)-(d) are previous estimates of building heat,
transportation heat, industrial heat (Chen et al., 2020) and the total annual average AH (Wang et al.,
2022c¢); (e)-(f) are the results of this study.

The accuracy of the AH spatial and temporal characteristics was further determined through
climate simulations of the WRF and comparison with station observations (Fig. 9). Air
temperature simulations in Beijing during winter showed the optimization effect of AH inputs
on the numerical climate model. Compared with the default AH parameters of the WRF and the
results of previous studies, the spatiotemporal heterogeneous AH inputs from this study
improved the simulation accuracy the most, followed by the results of Chen et al. (2020), who
obtained a similar simulation accuracy. In contrast, the results of Wang et al. (2022b) were close
to the default AH of the WRF. Although the simulation accuracy of Varquez et al. (2021) was

lower than that of the default AH input, it was still better than that of the scenario without AH.
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Fig. 9. AH sensitivity analysis based on the average diurnal temperature in Beijing winter. The RMSE
represents the mean error between observed and simulated temperatures at the station locations..

5. Discussion
5.1 Implications for improvements
5.1.1 More accurate and detailed characteristics

This study made improvements to the energy consumption inventory method, machine-
learning sample features, and model training. Unlike previous top-down approaches conducted
in China (Ming et al., 2022; Wang et al., 2019; Yu et al., 2021a), this study distinguished
residential building and civilian vehicle energy consumption in the living energy consumption
based on the statistical standards of the National Bureau of Statistics of China and considered
the energy consumption of public transportation facilities so that transportation heat was not
additionally calculated based on the number of vehicles. This improvement is theoretically valid
because of the more critical and adequate understanding of energy consumption data based on

the information we got from the Bureau of Statistics. Unlike Wang et al. (2019), this study
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adjusted the proportion of transportation heat in the total AH, which made the proportion of
multi-source AH more reasonable and corrected the overestimation of total AH (Fig. 3). This is
an update of the basic AH estimation method from a deep dive into the official energy
consumption data of China, which establishes a more convenient and exact standardized
process of energy consumption inventory method estimation to adapt to the increasing
complexity of the AH quantification requirements (Meng et al., 2023).

This study improved the sample feature selection and processing for the spatial
characteristics of different AH sources. For building heat estimation, nighttime lighting is the
most commonly used spatial proxy (Dong et al., 2017; He et al., 2020; Wang et al., 2022c).
Although nighttime lighting is still very important in the modeling process, its inability to
express the information of building heights and densities is a limitation. Our results
demonstrated the importance of building height data (Fig. 4). The spatial and attribute
information contained in building height data also made the gridded building heat in this study
more refined than that of Chen et al. (2020). In addition, the involvement of building
information overcomes the abnormally high AH in areas such as airports and harbors owing to
high lighting at night (Wang et al., 2019; Wang et al., 2022c), making the estimations in these
areas agree more closely with the AH should be expected from their building heights and
densities (Fig. 8). Measuring the actual traffic volumes on different roads is extremely difficult,
especially in large-scale studies (Qian et al., 2023). However, this study utilized road design
criteria to assign weights for different levels of roads so that the weighted road densities could

be used to reflect the general transportation activity intensity on different roads, which greatly
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simplified data processing and model complexity and obtained satisfactory results. The results
finely characterized the transportation heat distribution within the city, with high consistency
with relevant small-scale studies (Ming et al., 2022; Sun et al., 2018). The importance of
weighted road density also confirmed its usefulness. In our analysis, industrial heat was the
most different component compared to previous studies (Fig. 8). And the improvement in the
accuracy of POI data from Amap for the spatial characteristics of industrial heat has been
illustrated in previous studies (Qian et al., 2022). The weighted factory density had the greatest
importance in industrial heat estimation and was calculated based on the energy consumption
of different types of factories. The special locational requirements of factories and industrial
zones implied that the spatial distribution characteristics of industrial heat were distinctly
different from those of building and transportation heat. The industrial heat should be low in
urban centers where population and commercial activities are concentrated, which was clearly
expressed by the present results (Fig. 8). But previous studies (Chen et al., 2020; Varquez et al.,
2021) did not avoid the overestimation of industrial heat in urban centers.

Another novelty of the present investigation is the detailed temporal characterization
obtained simultaneously with a large spatial extent study (Fig. 6 and Fig. 7). Compared to the
results of Varquez et al. (2021), who also obtained hourly AH, the present study achieved a
higher spatial resolution and more accurate spatial characteristics, used more recent data, and
performed better in climate simulations (Fig. 9). The AH spatiotemporal variability
characterized in this study achieved a similar degree of detail to refined studies at small spatial

scales (Liu et al., 2021; Sun et al., 2018; Xu et al., 2021), which is rare in other current large-
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scale AH datasets. In summary, the improvements in this study were effective and realized an
accurate multi-source AH estimation that considered both large extent and fine spatiotemporal
characteristics. The resulting dataset is one of the latest and most accurate AH datasets available

for China.

5.1.2 Implications for climate simulations

The remarkable effects of AH on climate and air quality in urban areas have been widely
demonstrated (Yang et al., 2019; Zhan and Xie, 2022) and more accurate spatially
heterogeneous AH data can optimize the precision of simulations of meteorological elements
and pollutants (Molnar et al., 2020; Wang et al., 2023; Xie et al., 2016). Therefore, the
quantitative validation of AH models based on climate simulations is theoretically justified and
the results of this study show that the input of sophisticated spatiotemporal AH is beneficial
(Fig. 9). Although the AH4GUC dataset of Varquez et al. (2021) possesses sufficient
spatiotemporal resolution, their data for 2010 are out-of-date, resulting in a simulation
performance lower than that of the default fixed AH in WRF. The AH data for 2016 from Wang
et al. (2022b) have a 500 m resolution, which is consistent with the data in the present study;
however, its simulation precision is only moderate because of the lack of time features and
multi-source AH differences. The multi-source AH dataset of Chen et al. (2020), also built
based on machine learning, had the second lowest simulation error when coupled with the WRF
default hourly AH profile (Fig. 9); however, its original dataset lacks temporal variability and

thus requires a combination of external information for practical applications. In contrast to the
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above datasets, the AH results in the present study achieved a temporal resolution as fine as
hours on the grids, with unique characteristics of temporal variations in each grid, and more
detailed and accurate spatial characteristics for the different AH sources. This resulted in
temperature simulations with the highest accuracy. Overall, improved AH inputs are important
for optimizing the accuracy of climate simulations. In addition to more accurate spatial and
temporal characteristics, attention should be paid to the timely use of AH data, especially in
regions with fast economic development. Based on more accurate AH datasets and
meteorological numerical models, the impact of human activities can be further clarified to
optimize urban planning and settlement environments. However, the requirements of high
computing power and long runtime for numerical simulations are key issues that must be

considered.

5.2 Limitations and prospects

This study provides effective improvements in many aspects of AH modeling; however,
many problems remain to be overcome by subsequent research. Although the hourly AH was
estimated, further consideration of the intraday variation differences between weekdays and
weekends should be given. If supported by sufficient data, quantification of AH for multiple
scenarios can be achieved with different change characteristics for weekdays, holidays, and
weekends. Another important issue is that changes in AH from centralized heating in winter in
northern areas are difficult to reflect using indicators of population activity intensity, which is

a problem that the current field has not overcome, especially in large-scale studies. In the future,
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if detailed heating energy consumption data can be obtained to establish the corresponding
typical building heat emission change criteria, these can be applied to large-scale studies.
Finally, there is room for improvement in the ability of machine learning models for AH to
recognize features in particular regions. For example, the large heavy industrial energy
consumption in Shandong was not well reflected in this study and required more accurate
geographic information data of factories. In addition, how to apply these fine data in large

spatial scale studies is also a key consideration for future studies.

6. Conclusion

This study estimated annual, monthly, and hourly AH of multiple heat sources with fine
spatial and temporal characteristics in China for 2019. Specifically, this study corrected the
irrational application of the top-down energy consumption inventory method for China,
optimized the AH modeling process of machine learning, improved the selection and processing
of sample features for different AH sources, and refined the results of large-scale AH estimation
to finer time scales. The results showed that industrial heat accounted for the highest proportion
of AH but the composition of AH in different regions varied notably. The sample features added
or improved in this study, including building height, weighted road network density, and
weighted factory density, all played the strongest roles in the modeling of the different AH
sources. The stacking model effectively solved the optimal algorithm selection problem and
improved the modeling accuracy. High values of AH in China were concentrated in the Yangtze

River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei regions but the spatial characteristics

30



546

o547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

of the different AH sources were markedly distinct. Building heat showed a distinct monthly
variation and was related to climate and latitude, whereas industrial heat and transportation heat
showed almost no variation throughout the year. The hourly changes in AH were consistent
with the general patterns of human work and rest. The spatial and temporal characteristics of
the multi-source AH obtained in this study were more accurate and finer than those in previous
studies and better accuracy was achieved in regional climate simulations, which is rare for large-
scale multi-temporal multi-source AH datasets.

This study established a complete and standardized framework from basic AH estimation
methods to related model training, which can effectively integrate the currently abundant data
for application in large-scale AH studies. This study provided a reliable foundation for further
refinement of the AH dataset and more accurate data inputs for regional climate simulations,
thus promoting a deeper understanding of the urban thermal environment and supporting

sustainable urban development and rational utilization of energy consumption.
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2  Table S1. Details of the data used in the study.

. Original )
Data Source (link) ) Time range
resolution
Energy consumption
data; Socioeconomic
data (GDP, vehicles, Statistical yearbooks published by China’s 2019 and
population, provincial and city statistical bureaus Table data monthl
administrative area, (http://www.stats.gov.cn/) 4
electricity consumption,
freight volume)
Earth Observation Group, Payne Institute for Monthly in
Nighttime lighting Public Policy, Colorado School of Mines 463.83 m 2013/
(https://eogdata.mines.edu/products/vnl/)
NASA LP DAAC at the USGS EROS Center
MOD11A1-LST/ LST- -
niaht (https://lpdaac.usgs.gov/products/modllalv0 1000 m Daily in 2019
J 06/)
Famine Early Warning Systems Network
Temperature, . .
. (FEWS NET) Land Data Assimilation System Monthly in
Wind speed, . 11132 m
humidit (https://disc.gsfc.nasa.gov/datasets/FLDAS_N 2019
y OAH01_C_GL_M_001/summary)
NASA LP DAAC at the USGS EROS Center 16-Dav data
MOD13Q1-NDVI (https://Ipdaac.usgs.gov/products/mod13g1v00 250 m in 23)/19
6/)
NASADEM Merged DEM Global 1 arc second
NASA NASADEM
. . ((https://Ipdaac.usgs.gov/products/nasadem_hgt 30m 2000
Digital Elevation
v001/))
OpenStreetMa| Vector
Road and rail data P P 2019
(https://www.openstreetmap.org) data
i AutoNavi map Vector 2019 and
Points of Interest
(Amap, https://Ibs.amap.com) data 2020
. . . . . Hourly for a
Population heat data in Baidu Huiyan big data platform Vector dav in 2019
representative cities (https://huiyan.baidu.com) data y
and 2022

5 Calculation of the weighted road density:
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m
wyp = Vz/zl v,

Xrwi XL,

Density, = )
S

where w; isthe weight of the road level I, V; is the road design traffic volume for level | roads,
m is the number of road levels; Density, isthe weighted road density within the search radius,
L, is the length of the road r within the search radius, Ay is the area within the search radius,

n is the number of roads in the search radius.

Calculation of the weighted factory density:
m
We = c/z Ve
C

Density, =

where w, is the weight of the factory type c, E. is the energy consumption of industry type
¢, m is the number of industry types; Density, is the weighted factory density within the
search radius, A is the area within the search radius, n is the number of factories in the search

radius.



