

This is the accepted manuscript version of the contribution published as:

Ludwig, A., Doktor, D., Feilhauer, H. (2024):

Is spectral pixel-to-pixel variation a reliable indicator of grassland biodiversity? A systematic assessment of the spectral variation hypothesis using spatial simulation experiments
Remote Sens. Environ. **302**, art. 113988

The publisher's version is available at:

<https://doi.org/10.1016/j.rse.2023.113988>

1 Is spectral pixel-to-pixel variation a reliable indicator of grassland
2 biodiversity? A systematic assessment of the spectral variation
3 hypothesis using spatial simulation experiments

4 Antonia Ludwig^{1,2,3,*}, Daniel Doktor^{1,2,4}, and Hannes Feilhauer^{1,2,3,4}

5 ¹Helmholtz Centre for Environmental Research - UFZ Leipzig, Permoserstraße 15, 04318
6 Leipzig

7 ²Remote Sensing Centre for Earth System Research - RSC4Earth

8 ³Leipzig University, Institute for Earth System Science and Remote Sensing, Talstraße
9 35, 04103 Leipzig

10 ⁴German Centre for Integrative Biodiversity Research - iDiv Halle-Jena-Leipzig,
11 Puschstraße 4, 04103 Leipzig

12 ^{*}Corresponding author: antonia.ludwig@ufz.de

13 **Abstract**

14 Covering 30 - 40% of the terrestrial surface, grasslands are important hosts of biodiversity, crucial for
15 nutrient cycles and carbon sequestration. However, these ecosystems face a pressing threat in the form
16 of biodiversity loss, which can disrupt their functioning and resilience. Addressing this challenge requires
17 effective monitoring of biodiversity changes on large scales. Remote sensing emerges as a valuable tool
18 in this endeavour, enabling the assessment of grassland biodiversity through the analysis of vegetation
19 patterns, species composition, and ecosystem health over extensive areas.

20 According to the spectral variation hypothesis (SVH), the link between pixel-to-pixel spectral variation
21 and species diversity in remote sensing images can be used to retrieve plant diversity based on spectral
22 data. Nevertheless, the transferability of the proposed relation across ecosystem types, seasons and spatial
23 resolutions remains unclear. The absence of comprehensive data has hindered systematic assessments of
24 the SVH so far, which would ideally incorporate coherent sets of diversity estimates from remote sensing
25 data and in-situ plant diversity measurements.

26 With this study, we present a combined approach that brings together trait data from field mea-
27 surements, simulations of spatial species distributions and radiative transfer models for a systematic and

28 in-depth analysis of the SVH in temperate grasslands. Based on simulated grassland communities with
29 different diversity levels, we assessed the spectral-to-species diversity relationship across (1) three tem-
30 perate grassland types, (2) three seasons and, (3) five spatial resolutions (from 10 m to 0.2 m pixel size).
31 We used the mean Euclidean distance (mED) and Rao's Q as measures for spectral diversity and different
32 indices to describe the species and trait diversity of the simulated grassland communities.

33 Based on 45000 simulated grassland communities in five different spatial resolutions, we found that the
34 spectral-to-species diversity relationship is not stable across grassland types and seasons, despite the used
35 spectral diversity metric. Correlations with spectral diversity were inconsistent for the different applied
36 diversity indices and no single index outperformed the others. Spectral diversity was mainly driven by
37 the spatial resolution (i.e. pixel size) of the image and not by species richness (SR) or functional trait
38 diversity (FD) per se. Our results further underline that the link between SR and FD is not always
39 prominent in plant communities and the basic assumption of the SVH is fulfilled only under certain
40 conditions. Consequently, we argue that FD, which is an important driver of the spectral signature of a
41 plant community, is not inevitably linked to the number of present species in an image. We conclude that
42 the interplay of SR and FD is crucial for the expression of the spectral-to-species diversity relationship.
43 This study clearly underlines the context-dependency of the SVH and we point out that, although of
44 promising value for distinct ecosystems, it is not universally applicable.

45 **Keywords**— spectral heterogeneity, vegetation remote sensing, species richness, functional diversity,
46 radiative transfer models, spatial resolution

47 1 Introduction

48 Biodiversity is declining globally at incomparable rates and across all types of ecosystems (Díaz et al.
49 2019). This loss is associated with dramatic effects on ecosystem functions and services that provide the
50 basis for global cycles and human well-being (Cardinale et al. 2012). Plant diversity plays a crucial role
51 in the maintenance of ecosystem stability, productivity and health and is therefore of special interest for
52 the monitoring of ecosystems under climate change (de Bello et al. 2021; Hautier et al. 2015). Covering
53 around 30 - 40% of the terrestrial surface, grasslands are the most intensively used land-cover type (Gibson
54 2009). By hosting a large variety of plant species and providing habitats to other organisms, they are
55 of utmost importance for the maintenance of global biodiversity. Further, they provide essential carbon
56 sinks and therefore contribute substantially to mitigating global warming caused by carbon emissions
57 (Petermann et al. 2021).

58 Earth observation data play an important role in the development of tools to quantify plant diversity
59 continuously across large spatial scales. In-situ measurements of plant diversity are time and labour
60 intensive, restricted to a limited spatial extent and the trade-off between time and observation area

61 needs to be considered carefully. They are further biased by the seasonal occurrence of the plants,
62 the accessibility of the field site and the experience of the observer (Burg et al. 2015). Considering the
63 limitations of traditional vegetation surveys, the additional application of remote sensing (RS) techniques
64 can provide a helpful expansion. According to a review of Wang et al. (2019), the assessment of plant
65 diversity from RS data can be differentiated into four groups: (1) indirectly through habitat mapping, (2)
66 directly through the mapping of individual plant distributions, (3) the mapping of functional diversity
67 (based on plant traits, which are more closely related to ecosystem functioning than the species per se),
68 and, (4) based on spectral variability. Recognising the value of all mentioned methods, we focus on the
69 retrieval of grassland diversity based on spectral variability in this study.

70 Introduced by Palmer et al. (2000), the Spectral Variability Hypothesis (SVH) in its original version
71 states that the spectral variability of an RS image is linked to the species richness (SR) of the captured
72 area. Spectral variability (or spectral diversity) describes the quantitative differences in the reflectance
73 spectra between the spatial units (pixels) in a RS image. The basic SVH assumption is that increased
74 spectral variability reflects an increased variety of habitats in the surveyed area and a higher number of
75 habitats can harbour more species. Accordingly, spectral variability, which indirectly reflects the diversity
76 of habitats, can be used as an indicator for SR (*ibid.*). Over the years, the SVH passed through a scientific
77 development in which both its name (towards Spectral Variation Hypothesis) and both the response and
78 explanatory variables evolved continuously. The assumed spectral-to-species diversity relationship has
79 been applied to RS data in order to assess not only SR (Hall et al. 2012; John et al. 2008; Lucas et al.
80 2010; Rocchini, Duccio 2007) but also other related diversity measures, such as species diversity (SD,
81 Hauser et al. 2021; Heumann et al. 2015; Oldeland et al. 2010; Wang et al. 2018b) or functional diversity
82 (FD, Pacheco-Labrador et al. 2022; Schneider et al. 2017; Schweiger et al. 2018). These are three among
83 an ample variety of measures that provide different perspectives on biodiversity. The metrics are often
84 used jointly to gain a comprehensive understanding of ecosystem health and stability. In summary, SR
85 quantifies the total number of species, SD considers both species richness and their relative abundance,
86 and FD evaluates the variety and variability of functional traits and roles exhibited by species. Recent
87 studies have shown that the use of different biodiversity measures can lead to different outcomes regarding
88 the strength of the spectral-to-species diversity relationship (Hauser et al. 2021; Pacheco-Labrador et
89 al. 2022). The choice of the most appropriate measure of spectral diversity is an object of ongoing
90 discussion. Among the most commonly applied indices are the mean Euclidean distance (mED), Rao's
91 quadratic entropy (Rao's Q, Rocchini, Duccio and Marcantonio, Matteo and Ricotta, Carlo 2017), the
92 coefficient of variation (CoV), and the standard deviation. All four indices are quantitative measures
93 that provide insights into the distribution of spectral data. Higher values of each index generally indicate
94 greater spectral diversity, while lower values suggest lower diversity. Rao's Q considers both richness
95 and evenness, while the other indices focus primarily on dissimilarity or variation. mED calculates
96 pairwise dissimilarities, while standard deviation measures absolute variability and CoV assesses relative
97 variability by normalising it with respect to the mean. mED and Rao's Q are multivariate metrics that

98 are more suitable for hyperspectral data, whereas CoV and standard deviation are univariate metrics
99 that account for single bands only. Consequently, they require substantial dimensionality reduction and
100 are not suitable to reflect the variability of hyperspectral data in the multidimensional space.

101 **Drivers of spectral variation**

102 The reflectance patterns of plant communities are governed by a combination of physiological, anatomical,
103 and biochemical characteristics of the plants. These factors interact with incident light across different
104 wavelengths of the electromagnetic spectrum, leading to distinctive reflectance patterns that can be
105 captured by remote sensing technologies. Plant canopy reflectance is driven by the set of plant traits that
106 cover the above-ground parts of plants which can be referred to as *optical plant traits* (G. P. Asner 1998;
107 Cavender-Bares et al. 2017). Depending on the spatial resolution of the sensor, the received signal is
108 composed by more or less mixed reflectances of several plant individuals and the background reflectance.
109 We can assume that this signal is mainly determined by the dominant species in the plant community.
110 According to the SVH, we expect a higher spectral variability for areas with higher SR and consequently
111 a more diverse set of optical traits. Recent studies pointed out that species and their optical traits are
112 not the only important drivers for spectral variation in RS images. Other important factors are (1)
113 vegetation cover (Hauser et al. 2021), (2) habitat type (Perrone et al. 2023; Rossi et al. 2022), (3) the
114 spatial distribution patterns and abundances of the species (Fassnacht et al. 2022; Wang et al. 2018a),
115 (4) the seasonal development of the vegetation (Thornley et al. 2022; Wang et al. 2016), (5) and the
116 spatial resolution of the RS data (Rocchini, Duccio 2007; Wang et al. 2018b). Of particular importance
117 is the vegetation cover, since background soil reflectance can have major effects on the optical signal
118 and can lead to an increase of spectral diversity which might cause an overestimation of SR (Gholizadeh
119 et al. 2018; Hauser et al. 2021; Wang et al. 2019). Further, the spatial distribution patterns of different
120 species in the prevailing plant community influence the spectral variation in remote sensing images. Some
121 species, such as *Tanacetum vulgare*, grow in patches while others, such as *Lolium perenne*, are distributed
122 homogeneously. This causes local variations in the vegetation composition across an area, with 'hotspots'
123 of species and trait density in some patches. Spatially heterogeneous trait distribution patterns are locally
124 expressed in the reflectance patterns and increase the spectral variability. These patterns are enhanced
125 by the variety of life forms in grassland ecosystems. Different species of a grassland community can
126 exhibit a large variation in size and growth types (such as grasses, herbaceous species, small shrubs,
127 Petermann et al. 2021). Woody species, such as *Calluna vulgaris*, introduce an additional effect of bark
128 (non-greenish plant material that is not part of dead vegetation) to the spectral reflectance pattern and
129 thereby increase spectral diversity.

130 Beyond different spatial distribution patterns, the species of a plant community occur in different
131 proportions (i.e. 'species abundances'). Recent studies have shown that spectral diversity is influenced
132 not only by species SR but rather by the interplay of SR and the single species abundances (i.e. 'evenness'
133 of a community) (Rocchini et al. 2014; Wang et al. 2018b). Abundance-weighted diversity indices,

such as Simpson's (Simpson 1949) or Shannon's index (Magurran et al. 2010), express stronger links to spectral diversity than SR (Wang et al. 2018a). This can be explained by the fact that the sensor receives a mixed spectral signal that contains the spectral signatures of all plant species in a pixel. This mixed signal is mainly driven by the most dominant plant species, which is more appropriately reflected using abundance-weighted diversity indices. Additionally, seasonal effects influence the spectral-to-species diversity relationship. Throughout the seasons, temperate grassland communities exhibit changes in their species composition, vegetation structure and trait phenological conditions. Recent studies have reported that the timing of sampling has a strong effect on the spectral-to-species diversity relationship (Thornley et al. 2022) and should therefore be considered in diversity assessments based on RS data. Further, different management practices must be considered when assessing grassland diversity from RS data as these change the phenological condition and structure of an area independently from the seasonal cycle (Rossi et al. 2022). Finally, the spatial resolution of the RS image (i.e. pixel size) plays a major role in the spectral-to-species diversity relationship (e.g. Rocchini, Duccio 2007; Rossi et al. 2022; Wang et al. 2018b). The ratio between the size of a pixel and the observed objects determines the degree to which the received spectral signal is a mixture of different reflectance spectra (Cavender-Bares et al. 2017). This is especially apparent in grasslands where the pixel size and the individual plant size can differ considerably (Rocchini et al. 2022). Depending on the applied sensor and observed life form, small pixels can already contain a mixture of several plant individuals. Wang et al. (2018b) therefore recommend a spatial resolution from 1 mm to 10 cm for the assessment of herbaceous plant diversity. However, such fine resolutions are only achieved by drones, which do not meet the requirements for large-scale coverage for diversity monitoring. All these parameters are fundamental drivers of spectral variation in RS images. Unfortunately, they rarely occur exclusively and their single effects on spectral variability are hard to disentangle. Although presenting a promising and straightforward approach in times of urgently needed grassland diversity monitoring, we should acknowledge that the SVH exhibits various weaknesses (see also Fassnacht et al. 2022; Schmidlein et al. 2017). A detailed analysis of the effects of different drivers on the spectral-to-species diversity relationship in grasslands on large scales is a challenging venture. This is mainly caused by strong practical limitations in the experimental design. On the one hand, exhaustive datasets to test the coherence of diversity estimates from remote sensing signals with in-situ measurements of plant diversity are scarce. On the other hand, to analyse the influence of sensor-induced scaling effects, tremendous data processing efforts are required. These are usually avoided due to limitations in human and financial resources.

165 **Simulation studies to bridge the data gap**

166 A promising approach to fill this gap is the targeted design of simulation experiments that allow to
167 produce a large number of artificial plant communities. Coupled with spectral data or radiative transfer
168 models (RTMs) to generate the spectral data, plant community simulations are a powerful tool to increase
169 the size of the test data and bridge the gap between field observations and RS data. However, recent

studies have shown that the use of pure spectra from leaf measurements (i.e. via leaf clip, Zhao et al. 2021) does not lead to reliable results as the soil reflectance and effects of volumetric scattering cannot be taken into account, although background soil reflectance has been shown to have a strong impact on the spectral variability (Gholizadeh et al. 2018). Additionally, the precise combinations of traits, species diversity, and vegetation cover responsible for the observed spectral variations from air- or space-borne measurements remain unclear, unless these data can be aligned with in-situ measurements (Badourdine et al. 2022). Due to restrictions in the experimental design, none of the studies considered the effects of spatial species distributions in combination with in-situ measurements of plant traits. The spatial plant species distribution across a habitat can lead to different spectral reflectance patterns. Let us compare a uniform plant distribution with stable cover percentages with an area where species are clustered and occur in varying proportions. Depending on the spatial resolution we consider, the first area will exhibit a uniform spectral signal, while the latter will inherently display greater spectral diversity. Consequently, including the spatial plant distribution and corresponding traits in the study design might improve the SVH assessment.

In this study, we present a combined approach that brings together trait data from field measurements, simulations of spatial species distributions and RTMs for a systematic and in-depth analysis of the SVH in temperate grasslands. For this purpose, we collected species data and performed in-situ trait measurements of biophysical properties from three different grassland types in Germany: a nutrient-poor, a nutrient-rich and a dry grassland area. The biophysical properties of these grasslands were measured in spring, summer and autumn 2021 to capture the site- and season-specific aspects of the prevailing plant community in the respective areas. Based on the species data (full vegetation survey including species abundances), we simulated two-dimensional spatial plant distribution patterns that represent artificial grassland communities on a fixed area of 30 m x 30 m. In combination with our trait database, we parameterised a leaf- and canopy-RTM (PROSAIL, Feret et al. 2023; Jacquemoud, Stéphane and Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada, Pablo J and Asner, Gregory P and François, Christophe and Ustin, Susan L 2009) to generate season- and site-specific canopy reflectances according to the grassland simulations. Using this large set of simulations as model landscape patches, we systematically assessed the spectral-to-species diversity relationship across (1) three different temperate grassland types, (2) three seasons and, (3) five different spatial resolutions (from 10 m to 0.2 m pixel size, in line with real-world space- and airborne sensors). We used the mean Euclidean distance (mED) and Rao's Q as measure for spectral diversity and different indices to describe species and trait diversity of the simulated grassland communities.

2 Materials and Methods

We used simulated spatial distributions of plant communities based on field observations to test the spectral-to-species diversity relationship in temperate grasslands for different spatial resolutions. Traits

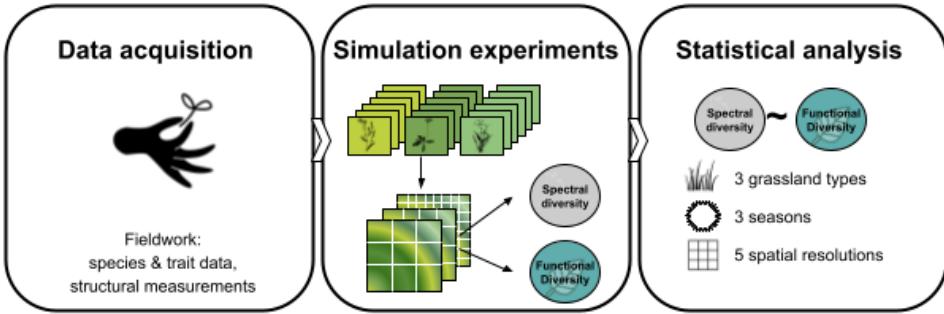


Figure 1: General workflow from species and trait sampling, over grassland simulations and spectra generation to statistical analysis. Species and trait data were collected for three sites and in three seasons, respectively. The simulations were performed for five different diversity levels (5 to 25 species) and with 1000 different species composition variations per diversity level. Spectra were generated by passing the pixel-wise mean trait values to PROSAIL, for the same grassland simulation represented in five spatial resolutions (10 m to 0.2 m pixel size). Based on the pixel-wise reflectance values, spectral diversity was calculated (mean Euclidean distance and spectral Rao's Q). Measures for taxonomic and functional diversity were calculated for every single grassland simulation based on the incorporated species information and trait values. Finally, we calculated the correlation coefficients between the different spectral diversity metrics for Species Richness (SR), Shannon-Index, Simpson-Index and Rao's Q to test the bivariate relationships between multiple variables at different pixel sizes.

205 from in-situ measurements were used to parameterise radiative transfer models (RTMs) with coherent site-
 206 and season-specific trait data. Using pixel-wise optical trait means, we applied PROSAIL to simulate the
 207 spectral reflectance of the simulated grasslands (Fig. 1). The species and trait information together with
 208 the spectral reflectance patterns were finally used to test the spectral-to-species diversity relationship.
 209 All simulations, further calculations and statistical analyses were performed in R version 4.1 (R Core
 210 Team 2020).

211 Field Work

212 Field sites

213 Samples were collected in three structurally different grassland sites in the surroundings of the cities of
 214 Leipzig (Saxony, Germany) and Halle (Saxony-Anhalt, Germany): (1) The Luppeaue (LA, 51°31'7.8"N,
 215 11°53'19.9"E, nutrient-poor grassland), (2) Bad Lauchstädt (BL, 51°23'26.4"N, 11°52'35.9"E, nutrient-
 216 rich), and (3) the Lunzberge site (LU, 51°31'45.2"N, 11°53'25.9"E, dry grassland). A more detailed
 217 description of the sites can be found in Ludwig et al. (2022).

218 Soil reflectance, vegetation surveys & trait sampling

219 Measurements on each field site were carried out at the end of April, July and September 2021. To
 220 minimise the observer bias, the surveys were always performed by the first author. In order to represent
 221 the site-specific soil reflectance differences in our simulation experiments, soil samples were collected from
 222 all field sites and respective reflectance spectra measured using the contact probe of a field spectrometer
 223 (ASD FieldSpec 4®, Malvern Panalytical, UK) in the lab (Fig. A.10). To maximise the effect of
 224 background soil reflectance, we included dry soil spectra in the RTMs.

225 Further, species and trait data were collected from the three field sites to create a database for the
226 grassland simulation experiments. The vegetation surveys and trait sampling were designed in order to
227 assess the typical dominance aspects of the prevailing vegetation of each site. Plant traits were chosen
228 in accordance with the PROSAIL input parameters that was later used to simulate community-specific
229 canopy-level reflectances (Fig. 1). To conduct the vegetation surveys, we recorded all species present
230 within a 2 m \times 2 m survey frame. This frame was placed randomly 20 times across the study sites. Plots
231 were at least 5 m apart from each other. Edge zones of the sites were avoided to allow for a continuous
232 species composition and to exclude new species from neighbouring habitats. In each plot, we recorded the
233 cover fraction of all species present within the frame and the overall cover fractions of green vegetation,
234 and bare soil. Coverage was estimated as total cover fraction on a scale from 0 – 100 %. For each species
235 in a plot, the vegetative status was recorded (brown or photosynthetic active) as well as their affiliation
236 to mono- or dicotyledons.

237 Leaf- and plant-based measurements

238 We collected ten plants per species at each field site and during three seasons. To account for intra-specific
239 trait variability (ITV), we processed each plant sample individually. We measured the Equivalent Water
240 Thickness (EWT, in cm) and Leaf Mass per Area (LMA, in g/cm²) for each plant following Perez-
241 Harguindeguy et al. 2016, excluding petioles and thick nerves. The trait values were later transformed
242 to fit the unit-specific requirements of PROSAIL (Tab. 1).

243 We determined leaf pigments using two sample sets in order to enhance the accuracy. First, we
244 collected a calibration set of \pm 160 leaf samples. For each sample, we used a handheld SPAD-Chlorophyll
245 meter (SPAD-502, KONICA Minolta) to measure SPAD-values as proxy of leaf greenness. The same leaf
246 sample was instantly stored at - 74 °C in the field and later chemically analysed to determine chlorophyll
247 a, b (Cab) and carotenoid contents (Car) through photospectrometry in the lab. This calibration set was
248 necessary, because the precise chemical determination of pigments requires different processing compared
249 to the measurements of leaf traits using fresh leaf material. Additionally, we measured the leaf SPAD-
250 value of each species in the plot. Leaf nerves, senescent or necrotic parts were carefully avoided. We used
251 the average of five measurements per leaf while still being attached to the plant as a species-specific SPAD-
252 value and did this for three leaves per plant. We transformed SPAD-values into total leaf chlorophyll
253 content using typical calibration equations that are based on chemical determination (Markwell et al.
254 1995). Further, we assessed the deviation of the SPAD-values to the chemically determined Cab based
255 on the calibration sample set and included this deviation in our SPAD-value transformation in order
256 to enhance the accuracy of the SPAD transformation (for more details see Ludwig et al. 2022). Car
257 contents cannot be directly derived from SPAD-values. Instead, we used the calibration set to calculate
258 the Cab:Car ratio and then derived Car contents from the SPAD-based Cab values.

259 **Canopy-based measurements**

260 In order to obtain structural parameters for the RTM, we measured the Leaf Area Index (LAI) and the
 261 Mean Tilt Angle (MTA) using an LAI-2200C (Plant Canopy Analyzer®, LiCor® Biosciences Inc., USA)
 262 in each plot. The LAI is a unitless index that corresponds to the accumulated one-sided leaf area per
 263 area on the ground and can be treated as indicator of vegetation density. The denser the vegetation
 264 cover, the higher the LAI. The MTA is the mean leaf angle distribution of the vegetation within a plot.
 265 Both values were assessed as the mean of five evenly distributed measurements across a 2 m \times 2 m plot
 266 (4 quadrants & 1 centre).

Table 1: List of input parameters for the radiative transfer model PROSAIL. We incorporated traits from (1) in-situ trait measurements and leaf sampling in the plots, (2) from structural measurements of canopy characteristics, and (3) from other sources. Site-specific ranges can be found in Tab. A.6. spr - spring, sum - summer, aut - autumn.

Parameter	Description	Ranges	Source or equation
(1) Leaf- and plant-based parameters			
Cab ($\mu\text{g}/\text{cm}^2$)	Chlorophyll a & b content	spr 29 - 157 sum 26 - 167 aut 26 - 146	SPAD conversion based on Markwell et al. (1995) + Standard Deviation derived from spectrophotometry (Ludwig et al. 2022), Cab = 0.0893 * $10^{\text{SPAD}^{0.256}} + \text{SD}$
Car ($\mu\text{g}/\text{cm}^2$)	Carotenoid content	spr 15 - 39 sum 10 - 41 aut 14 - 37	Via linear regression from Cab content
Cbrown	Brown pigment content	0 - 1	Field observation: species-wise for brown (1) or green (0) individuals
Cw (cm)	Equivalent water thickness	spr 0.003 - 0.9 sum 0.001 - 0.5 aut 0.003 - 0.07	$EWT[\frac{\text{g}}{\text{m}}] = \frac{LWC * LMA}{1 - LWC}$ $EWT[\text{cm}] = \frac{1}{\frac{1000}{EWT[\frac{\text{g}}{\text{cm}}]}}$
Cm (g/cm^2)	Leaf mass per area	spr 0.01 - 0.3 sum 0.001 - 0.15 aut 0.002 - 0.25	Field sampling
(2) Canopy-based parameters			
LAI	Leaf area index	spr 0.3 - 5.0 sum 0.3 - 4.0 aut 0.5 - 5.0	LiCor2200C
lidfa (°)	Mean Tilt Angle	spr 41 - 72 sum 30 - 71 aut 23 - 80	LiCor2200C
(3) Parameters from other sources			
N	Structure parameter	Monocots & Dicots spr 1.0-1.5 & 1.9-2.5 sum 1.4-1.7 & 1.6- 2.9 aut 1.5-1.7 & 1.6-2.9	Boren et al. 2019
rsoil	Background soil reflectance	reflectances from 0-1	Spectrometry of site-specific soil samples (Fig. 10)
tts (°)	Solar zenith angle (°)	34 - 58	Calculated per site and season
tto (°)	observer zenith angle	10	Fixed
psi (°)	relative azimuth	0	Fixed
hspot	hotspot parameter	0.01	Fixed

267 **Simulation experiment**

268 **Simulated grassland communities**

269 We used site- and species-specific field data from the vegetation surveys in order to generate spatially
270 explicit two dimensional point pattern distributions that represent artificial grassland communities of
271 different diversity levels (hereafter ‘grassland simulations’). All grassland simulations were created within
272 an observation window of 30 m \times 30 m. This base size allowed us to represent the same grassland
273 simulation in different spatial resolutions that resemble the most commonly used sensor types for grassland
274 diversity monitoring (Tab. 2).

275 We applied two different point distribution functions from the *spatstat*-package in order to create
276 the points patterns (i.e. grassland simulations). In the simulations, each plant individual is represented
277 by a single point and all points are distributed independently from each other. Different species are
278 included as different point types and specific parameters allow to include species-specific point densities
279 in the distribution functions. In order to control the effect of the background soil reflectance, population
280 densities were fixed to the same point numbers in all simulations (4000 (BL and LA sites) and 1000 (LU
281 site) individuals per m²). We calculated this density based on the composition of a common agricultural
282 seed-mixture for pastures with an herb content of 10% (BL and LA sites) and nutrient-poor grassland
283 (LU site, Tab. A.4). This number is comparable to other studies (Weiner et al. 2001), however, literature
284 on grassland community simulations as detailed as ours is sparse. In the following, we describe the four
steps of the simulation procedure exemplary for a single site and season (Fig. 2).

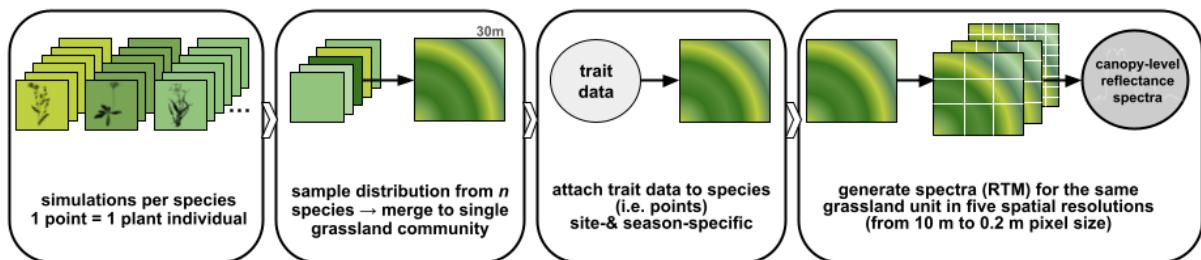


Figure 2: General workflow for point pattern distributions as basis for the grassland simulations. First, we use two point distribution functions to create 50 different point patterns per species. In this process, species-specific distribution patterns and cover fractions from field observations were considered. Second, point patterns are combined at different diversity levels to create the grassland simulations. Each diversity level is represented by 1000 grassland simulations with different species combinations. Third, trait values from field sampling are attached to the species individuals in the simulations. Forth, each simulated grassland is represented in five different spatial resolutions. Finally, pixel-wise canopy-level reflectance spectra are generated for the single grassland simulations in five spatial resolutions (from 10 m to 0.2 m pixel size).

285

286 First, we created point pattern distributions within the observation window for each single species that
287 was recorded in the vegetation surveys. The observation window was set to 30 \times 30 area units. We further
288 included the recorded species-specific cover fractions from all plots to include the observed variations in
289 the simulations. An adjustment of the observation window allowed us to scale the number and density of
290 points from the plot level up to the desired grassland simulation size of 30 m \times 30 m. Two types of point

291 pattern functions were applied: (1) a homogeneous Poisson point process (Kingman 1992) for species
292 such as *Bromus* *specs.*, *Arrhenatherum* *spec.* or *Poa* *specs.* with a homogeneous distribution pattern
293 across the study sites, and (2) a Matérn cluster process (Matérn 1960) for species such as *Nardus stricta*
294 or bigger clusters (e.g. *Tanacetum vulgare*).

295 The Poisson point process is realised by the *rmpoispp*-function in *spatstat* (Baddeley et al. 2005).
296 Here, point patterns are created based on the intensity function $\lambda(x, y, m)$. λ is "the average number of
297 points of type m per unit area near the location (x, y) " (*ibid.*). We parameterised λ by incorporating
298 a vector including the different cover fractions of each species as recorded in the 20 plots at the respec-
299 tive observation time. The Matérn cluster process (Matérn 1960) is realised by the *rMatClust*-function
300 (Baddeley et al. 2005). This process includes the intensity factor κ that describes the expected number
301 of cluster centres per unit area. We parameterised κ using the respective species' abundance probability
302 across the whole field site that was recorded during the vegetation survey. The *scale* argument defines the
303 radius of the cluster, we parameterised it by using the plot-wise cover fractions for the respective species.
304 The argument μ allows defining the mean number of points per cluster and is set to a random number
305 between 10 and 100 as the exact number of individuals per cluster is hard to define in the field. Every
306 point is attributed with x/y coordinates within the observation window. We created a total number of
307 50 independent point pattern distributions per species. Since the points are distributed randomly in each
308 iteration, a reasonable variation between the point patterns is included in the simulations.

309 Second, we created 1000 grassland simulations for five different diversity levels ($n = 5, 10, 15, 20, 25$
310 species, respectively) by random sampling of n single distribution patterns from the before created point
311 patterns to one combined grassland simulation containing n species. 1000 ensure ample variations but are
312 still computationally feasible. The random sampling included a probability vector based on the relative
313 cover fractions to maintain the species ratios as recorded in the field. The sampling for one grassland
314 simulation was repeated until the area was filled with the respective point numbers (BL & LA sites: 4000
315 points/ 1 area unit, LU site: 1000 points/ 1 area unit). Consequently, all grassland simulations for one
316 site contain the same point numbers (i.e. plants) regardless of species numbers they contain. Third, we
317 incorporated the collected in-situ trait data in the simulated grassland simulations. A coherent set of
318 species-, site- and season-specific trait values was assigned to each point (i.e. plant individual) in the
319 grassland simulations. The complete parameter list can be found in Tab. 1.

320 Forth, a set of five regular, quadratic grids was used to divide each simulated grassland simulation into
321 virtual pixels. The grid width varied according to the spatial resolution of commonly used optical sensors
322 in Earth observation (Tab. 2). The points were assigned to the pixels of a unit based on their x/y -
323 coordinates. By that, we obtained pixel-wise species- and trait information. Mean trait values were
324 calculated per pixel and passed to the RTM in order to generate canopy-level reflectance spectra of the
325 simulated grasslands in the respective spatial resolution. This enabled us to directly test and compare
326 the effects of sensor induced scaling effects based on the exact same grassland community.
327 The same procedure was followed for all three field sites and for three seasons each (including the site-

328 and season-specific species inventories and trait data).

Table 2: Spatial resolutions chosen in accordance to commonly used sensor types. Each simulated grassland simulation is represented in these five spatial resolutions. The pixel counts refer to the basic unit of a 30 m \times 30 m tile in our simulations.

spatial resolution (m \times m)	10 \times 10	6 \times 6	3 \times 3	1 \times 1	0.2 \times 0.2
pixel counts	3 \times 3	5 \times 5	10 \times 10	30 \times 30	150 \times 150
sensor type	Sentinel-2	RapidEye	Planet, SPOT	IKONOS	Digital Orthophoto

329 Radiative Transfer Model PROSAIL and model parameterisation

330 RTMs are physical models that can be used to simulate and describe the interactions of sunlight with
331 plant canopies and the underlying soil. They can be applied to study the effects of reflectance, absorption
332 and scattering on the leaf-level (e.g. PROSPECT, Verhoef 1985; Verhoef, W 1984) and canopy-level (e.g.
333 4Sail, Verhoef et al. 2007) and help in understanding the light-plant interactions. PROSAIL is a two-
334 dimensional RTM that combines the leaf- and canopy-level interactions (Jacquemoud, Stéphane and
335 Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada, Pablo J and Asner, Gregory P
336 and François, Christophe and Ustin, Susan L 2009). We applied the hemispherical stream of PROSAIL
337 implemented in the *hsdar*-package (Lehnert et al. 2019) which uses a combination of Prospect-5B (Feret,
338 JB and François, C and Asner, G and Gitelson, A and Martin, R and Bidel, L and Ustin, S and Le
339 Maire, G and Jacquemoud, S 2008) and 4Sail to generate pixel-based reflectance spectra for the simulated
340 grassland simulations on the canopy-level. To reduce the dimensionality of the data, we first performed
341 a spectral resampling to 10 nm width using the *spectralResample*-function and removed the water bands
342 (1340 - 1420 nm and 1800 - 1940 nm). The remaining hyperspectral data (188 bands) were kept across
343 all spatial resolutions.

344 Diversity metrics: spectral, taxonomic and functional diversity

345 Based on the species abundances and trait data, we calculated different indices for taxonomic diversity
346 for every single grassland simulation using the *FD*-package (Laliberté et al. 2014). Previous studies led
347 to ambiguous results regarding the strength of the relationship between spectral diversity and different
348 taxonomic diversity indices (Badourdine et al. 2022; Fauvel et al. 2020; Oldeland et al. 2010; Wang et al.
349 2018b). Consequently, we tested the four most commonly used indices (Tab. 3): (1) species richness (SR),
350 (2) Shannon's diversity index (H'), (3) Simpson's diversity index (D), and (4) Rao's quadratic entropy
351 (Rao's Q). Shannon's and Simpson's diversity index both include the evenness and species richness of a
352 plant community, whereas Shannon's Index is more sensitive to rare species. Due to the differences in
353 units and trait value ranges, the data were scaled and centred before the calculation of Rao's Q.
354 Based on the 188 bands of the pixel-wise reflectance spectra, we calculated two spectral diversity indices
355 for every grassland simulation in five different spatial resolutions, respectively: (1) the mean Euclidean

Table 3: Taxonomic and functional diversity indices used in this study, their description and source.

Index	Short	Description	Source
Species Richness	SR	The species count in a given grassland simulation	—
Shannon's diversity index	H'	A measure of entropy that considers the species' proportions besides species numbers in the quantification of diversity	Magurran et al. 2010
Simpson's diversity index	D	Describes the probability of selecting two different species from random sampling with replacement; sensitive to imbalanced species proportions	Simpson 1949
Rao's quadratic entropy	Rao's Q	Includes the species abundances as well as the dissimilarities among the species in the multi-dimensional trait space	Botta-Dukát 2005

356 distance (mED, Rocchini, Duccio and Chiarucci, Alessandro and Loiselle, Steven A. 2004) as the mean
 357 values of pairwise mED between the pixels of one grassland simulation, and (2) Rao's Q which is the
 358 abundance-weighted sum of squared pairwise distances between wavelength reflectances (hereafter 'spec-
 359 tral Rao's Q', Rocchini, Duccio and Marcantonio, Matteo and Ricotta, Carlo 2017). We used the *FD*-
 360 package to calculate spectral Rao's Q from the first nine components after performing a PCA on the
 361 spectral data to reduce its dimensionality (Dahlin 2016). The reflectance data were scaled and centred
 362 beforehand. Finally, the correlations between the different taxonomic, functional and spectral diversity
 363 indices were tested using Person's correlation coefficient from linear correlation analyses (R, -1 to +1).

364 3 Results

365 The number of recorded species varied between field sites and seasons and ranged from 14 (LA site,
 366 nutrient poor) to 34 (LU, dry grassland, Tab. 5). Additionally, a multi-seasonal set of leaf samples was
 367 collected to provide species-, site- and season-specific traits for the grassland simulations that were passed
 368 to PROSAIL. An overview on the number of collected samples can be found in Tab. 5.

369 Spectra across diversity levels and seasons

370
 371 The grassland simulations were based on in-situ trait measurements and coupled with RTMs to generate
 372 community specific reflectance patterns. The resulting spectra show typical spectral vegetation features
 373 and are comparable to spectral field measurements. In the region of the visible light (vis, 400 - 700 nm),
 374 the chlorophyll-peak is clearly expressed and shows slight changes across the seasons indicating minimal
 375 changes in chlorophyll concentrations (Fig. 3 & Fig. A.13). The red edge (750 nm) and NIR-plateau
 376 (700 - 1300 nm) are fully expressed in all sites and seasons. Changes in the NIR-plateau are apparent in
 377 the spectra from the BL and LU sites from spring to summer (Fig. 3 & Fig. A.13) indicating stressful

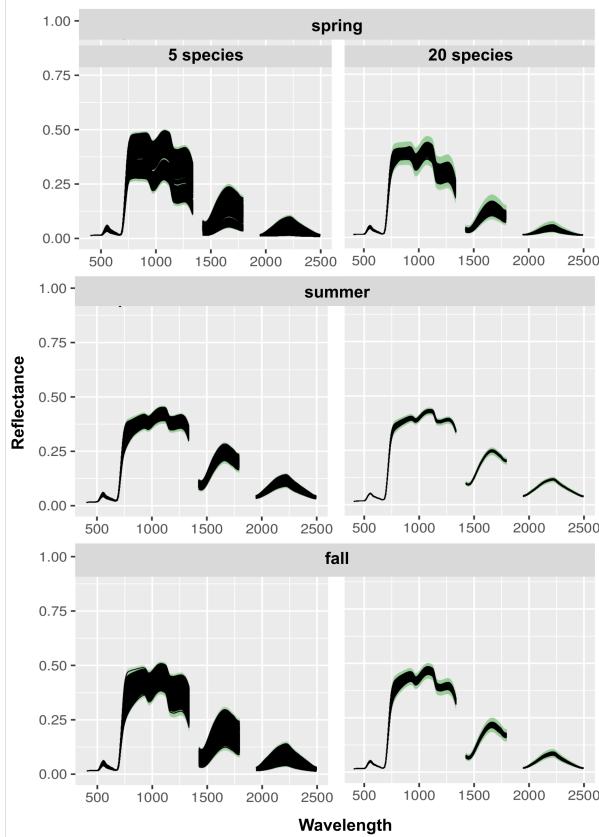


Figure 3: Median reflectance spectra of the 1000 simulated grassland communities for the lowest and highest species numbers in each season in the BL site. Black lines depict the median spectrum of a single grassland simulation in the finest spatial resolution, i.e. the median spectrum of the reflectance spectra of 22500 pixels in one simulated grassland simulation. Green areas show the upper and lower quartiles (75% and 25%) of the pixel-wise spectra from the single simulations. Exemplary for BL - Bad Lauchstädt (nutrient rich). The reader is referred to the supplementary for the remaining sites.

378 conditions around the time of sampling that can be related to heat or drought. Further, the spectra
379 from the LU site (nutrient poor) show a less prominent red edge and NIR-plateau. The absence of a
380 well-defined red edge and a less distinct NIR-plateau can be indicative of sparse vegetation or canopy gaps
381 which is typical for dry grassland areas. In areas with lower vegetation density or gaps in the canopy,
382 the reflectance signal may be influenced by a mixture of both vegetation and background reflectance
383 (Fig. A.13). In the spectra from the LU site, the influence of the background soil reflectance caused by
384 the lower population density in the simulations is clearly visible. The SWIR-region (1300 - 2500 nm)
385 is affected by leaf water content and structure. Regarding spectra of the five species simulations, the
386 variability in this region is particularly high if the influence of the soil reflectance is stronger (LU site,
387 Fig. A.13).

388

389 **Links between taxonomic and functional diversity**

390 We simulated grassland communities in different spatial resolutions and generated their spectral re-
391 flectances on the canopy level using RTMs in order to examine the spectral-to-species diversity relation-
392 ship. According to the SVH, a strong link is expected. We used mED and Rao's Q to calculate spectral
393 diversity. Although both metrics only show a weak correlation (Fig. 17), the overall patterns between
394 the different indices for taxonomic, functional and spectral diversity are the same. In the following, we
395 describe the results referring to mED as spectral diversity metric (see Fig. 18 for spectral Rao's Q).
396 The overall patterns resulting from the correlation analysis were inconsistent across the study sites and
397 seasons. Only few variables showed the expected stable positive relationship, such as Shannon- and
398 Simpson-Index since they are mathematically related to each other. Further, both species diversity
399 indices were significantly correlated with species numbers ($p < 0.05$ for all sites and seasons, specific
400 R^2 -values are indicated in Fig. 5, Fig. A.14). Shannon's and Simpson's Index increased with increasing
401 species number across all sites and seasons (Fig. 5 & A.14). In contrast, raw species numbers showed no
402 or only in some cases weak to moderate correlations to functional trait diversity (FD, Fig. 4, Fig. 18).
403 This is especially apparent for LU where mean Rao's Q values are almost stable across the five diversity
404 levels and seasons (Fig. 5). Results from the linear regression indicate a significant relationship between
405 FD and SR ($p < 0.05$ for all seasons) but also that a major part of the total variation in the data cannot
406 be explained by the model ($R^2 < 0.05$ for all seasons).

407 **Links between spectral diversity, taxonomic and functional diversity**

408 Results from our simulation experiments did not show a consistent correlation between raw species
409 numbers and spectral diversity. This was the case for both mED and spectral Rao's Q (Fig. 18). The
410 assumption of the SVH that higher species numbers result in higher spectral diversity was only met in
411 one site and season (BL_{spring}, Fig. 4). In the BL site, the strength of the correlation increased towards

412 finer spatial resolutions (from $R_{10m} = 0.37$ to $R_{0.2m} = 0.68$, Fig. 4). In summer, R-values for the BL
413 sites differed strongly between the five spatial resolutions and indicate a negative correlation towards
414 the finest spatial resolution (from $R_{10m} = 0.01$ to $R_{0.2m} = -0.5$, Fig. 4). The opposite was the case for
415 the same site in autumn (Fig. 6). Also regarding the other sites and seasons, correlations between raw
416 species numbers and spectral diversity for different spatial resolutions were not stable. On the LA site,
417 both strength and direction of the correlation changed across the seasons (Fig. 4). On the dry grassland
418 site (LU site), results from the simulations indicate an inverse correlation between raw species numbers
419 and spectral diversity on different spatial scales (Fig. 4). Moving from raw species numbers to abundance
420 weighted diversity indices, the correlation analysis did not reveal a stable pattern. In some cases, the
421 correlation between spectral diversity and Shannon's or Simpson's index was strongly pronounced and
422 increased towards finer spatial resolutions (e.g. $BL_{spring}, R_{Shannon, 0.2m} = 0.72$ and $LA_{summer, autumn}$, Fig.
423 4). However, this trend was highly variable across sites and seasons. For the LU site, R-values generally
424 ranged around $R = 0$, indicating no correlation between Shannon- or Simpson index and spectral diversity
425 across all spatial resolutions.

426 **Links across sites, seasons and spatial resolution**

427

428 Summarised for seasons and spatial resolutions, the relationship between species numbers and spectral
429 diversity was weak and varied between sites as well as seasons (Fig. 7A). For the dry grassland site (LU
430 site), R-values indicate a negative relation between species numbers and spectral diversity and show low
431 variation across seasons and spatial resolutions. The opposite was the case for the BL site, where R-values
432 vary substantially across the seasons and spatial resolutions and range from positive to negative R-values.
433 However, the median $R_{BL} \approx 0$ indicates no correlation between the two variables in general. Correlations
434 between the abundance-weighted Shannon-Index and spectral diversity were weak for all sites (median
435 $R_{BL} = 0$ to median $R_{LA} = 0.25$, Fig. 7A). R-values from the three sites ranged between $R = -0.25 - 0.75$
436 across seasons and spatial resolutions and did not show a clear trend (Fig. 7A). With regard to functional
437 diversity (Rao's Q), median R-values were positive and similar for all sites (median $R_{BL, LA, LU} = 0.2$, Fig.
438 7A), however, indicating a weak positive correlation with spectral diversity. Additionally, the variation
439 of R-values across the seasons and spatial resolutions differed between the sites.
440 Considering single seasons, the strength and direction of the correlation between the different indices and
441 spectral diversity was both index- and season-specific. Median R-values across all sites indicate a negative
442 correlation between species numbers and spectral diversity for all seasons (Fig. 7B). Median R-values
443 for correlations between Shannon-index and spectral diversity were low, indicating a weak relationship
444 between the two variable (Fig. 7B). The same was true for Rao's Q, although the range of R-values
445 across sites and spatial resolutions within one season were larger. In general, the ranges differed between
446 the seasons and indices and did not show a clear pattern. For the number of species, results indicate a

447 large variation in R-values in spring which decreased towards autumn, i.e. correlations between species
448 numbers and spectral diversity became more similar between sites and spatial resolution in autumn.
449 Regarding functional diversity (Rao's Q), a contrary trend was observed.
450 With regard to the spatial resolution, the strength and direction of the correlation depended both on the
451 considered metric and the spatial resolution itself. Median R-values for the correlation between species
452 numbers and spectral diversity are stable around $R = -0.25$ (Fig. 7C). The variation in R-values for all
453 sites and seasons increased towards the finest resolution. Median R-values indicate no correlation between
454 Shannon-Index and spectral diversity at coarse resolutions (median $R_{10m-1m} \approx 0$, Fig. 7C) and a slight
455 positive trend towards the finest resolution. For Rao's Q, results indicate an increase in the strength of
456 the correlation with spectral diversity towards the finest resolution. Additionally, the variation of the
457 R-values across sites and seasons is lowest for this index (Fig. 7C).
458 Regarding the relation between spectral diversity and spatial resolution in detail, results from the grass-
459 land simulations show a strong influence of the spatial resolution on the simulated spectral diversity.
460 Across all sites and seasons, spectral diversity increases towards the finest spatial resolutions (Fig. 8).

461

462 4 Discussion

463 Using a simulation setup to generate large numbers of artificial grassland communities provides a scalable
464 framework to robustly assess the theoretical background of the spectral-to-species diversity relationship.
465 Based on multi-seasonal and site-specific field sampling, the simulated communities exhibit through the
466 course of seasonal changes regarding both species composition and trait expression. This provides the
467 unique opportunity to contextualise our findings with a direct link to the observed habitat itself. Our
468 results underline the strong context dependency of the proposed relationship as both spatial scale and
469 habitat type strongly influence the correlation between spectral and species diversity. The relationship
470 between SR and FD mediates the species-to-spectral diversity relationship, however, this basic assumption
471 of the SVH is not fulfilled in all plant communities. Further, seasonal effects are likely to be masked by
472 the impact of site-specific management on local plant traits.

473 Based on our simulations, we cannot support the transferability of the SVH across habitat types. Our
474 results rather reflect the context-dependency of the proposed relationship between different aspects of
475 biodiversity and spectral diversity, showing positive correlations for single cases only. Recent literature
476 has shown ambiguous results regarding the application of the SVH for plant diversity detection. Several
477 studies based on single habitat types provide robust evidence for a positive correlation between spectral
478 and species diversity (Badourdine et al. 2022; Rocchini et al. 2014; Rocchini, Duccio and Chiarucci,
479 Alessandro and Loiselle, Steven A. 2004). However, other studies regarding a broader spatial extent cov-
480 ering different habitats reported unstable or negative relationships (Fassnacht et al. 2022; Schmidlein et
481 al. 2017), supporting the paradigm of habitat-dependency (Perrone et al. 2023). Considering the variety

and uniqueness of single habitat types, the observed inconsistencies among results do not come as a surprise. We included intraspecific trait variability (ITV) across sites and seasons to account for this variety, generating RTM based canopy reflectance spectra. This separates our experimental design from studies using random samples out of predefined trait ranges. Using trait ranges might be appropriate for agricultural study sites with more or less controlled conditions where community structure and environmental settings are homogeneous. Here, one can assume lower intraspecific trait variability (ITV) (Herrick et al. 2021). This assumption does not account for semi-natural grasslands: a global meta-analysis by Siefert et al. (2015) has shown that ITV accounts for up to 25% of the total within-community trait variance. Consequently, using individual-based trait values allowed us to account for ITV to some degree and mimic spectral responses more close to reality. Within a plant community, species vary in abundance and cover fractions. This introduces another dimension of heterogeneity into the habitat. Our simulations were set up in a way that maintained the proportions of the single species as they were recorded in the field to ensure reasonable cover fractions in the grassland communities. As a consequence, dominant species from the respective field sites remain dominant in the simulations along the diversity gradient and are weighted more heavily in the calculation of FD. This is reflected in the low correlations between FD and SR (Tab. A.7). The inconsistent relationship between SR and FD leads us away from the notion of spectral diversity as measure for SR. The identity of single species in a plant community is not the most relevant parameter with regard to its canopy reflectance. Similar as in the concept of plant functional types (PFT), we can assume that the optical contribution of species is more important than their identity. The concept of PFTs can help to group plant species according to their responses to the environment and their effects on ecosystem functioning (Díaz, Sandra and Cabido, Marcelo 2001). In our study, we focused on trait measurements from individual species to calculate FD. However, the species converge in only a few PFTs which is further increased through the skewed abundances of single species. Our results show that variations in FD within the same diversity level were larger than the variation of FD between the different diversity levels. This indicates the occurrence of a limited set of dominant species with characteristic optical traits across the simulations of different diversity levels. It is likely that the same dominant species (or PFTs) are the main contributors to FD for the individual sites, regardless of the simulated SR. Variations in vegetation cover have been reported to be a dominant driver of spectral diversity in grasslands (Hauser et al. 2021). In our simulations, we minimised the influence of soil, environment and textures to particularly shed light on the effects of optical traits and canopy structure across sites and seasons. Earlier versions of the grassland simulations with low population densities resulted in large proportions of bare soil pixels in fine spatial resolutions (3 m and smaller, results not shown) and did not allow drawing conclusions on the importance of optical plant traits on spectral diversity. Therefore, population densities were estimated based on seed mixtures (4000 individuals / m² for the BL and LA sites). Only for the dry grassland site (LU site) we chose a lower population density to represent the natural conditions of this specific habitat type appropriately (1000 individuals / m²). In this case, the simulations reflect the strong impact of background soil reflectance which can be typical

519 for dry grasslands and hampers diversity estimations based on RS data for these habitats. Less dense
520 vegetation inevitably leads to a stronger impact of the background soil reflectance (Fig. A.13), textures
521 and environmental heterogeneity on the spectral signal. Setting this high content of spectral information
522 in relation to sparse vegetation can lead to an inverse spectral-to-species diversity relationship as reported
523 here and in recent studies (Fassnacht et al. 2022; Hauser et al. 2021; Rossi et al. 2022). Comparing our
524 results (inconsistent relationship between SR and spectral diversity) to previous studies, we can assume
525 that not trait and canopy features, but excluded factors, such as texture and environmental features,
526 dominate spectral diversity. The role of background soil reflectance allows various interpretations, as
527 results from dry grassland sites have shown. However, our results underline the context-dependency of
528 the proposed relationship (see also Perrone et al. 2023; Schmidlein et al. 2017). Finally, we need to
529 consider that, compared to the global spectrum of grassland types, the grasslands chosen as reference in
530 our study are rather homogeneous in structure and vegetation composition (all temperate grassland from
531 the same latitude). However, differences in the spectral-to-species diversity responses in our simulations
532 are already heavily pronounced between study sites. Different species communities and dynamics lead
533 to complex patterns of spectral diversity in both space and time (Rossi et al. 2021). Interestingly, our
534 results do not suggest substantial differences in the spectral-to-species diversity relationship between sea-
535 sons. This can be explained by the site-specific dynamics and management which influence the vegetation
536 structure and species compositions and are therefore captured by our trait sampling. We collected data
537 from study sites with different management regimes: The LA site (nutrient-poor) was mowed in early
538 summer, consequently the plant community and its related traits from the summer sampling rather re-
539 semble a typical spring community. The LU site (dry grassland) was occasionally grazed by sheep which
540 partially disturbed the growth of distinct herbaceous species and led to a homogeneous canopy height.
541 Only the BL site (nutrient-rich) remained undisturbed throughout the whole vegetation season. How-
542 ever, the zero-impact management regime caused an accumulation of dead biomass, i.e. increasing the
543 percentage of photosynthetically inactive vegetation in the plots. These different dynamics represent a
544 part of the complex variety of confounding factors in spectral-to-species diversity relationships that occur
545 in “real-world” scenarios and influence this relationship over time. Although the time point of data ac-
546 quisition is crucial for a more reliable diversity detection from RS data (Thornley et al. 2022), our results
547 clearly show that results can still be misleading if management is not taken into account and support a
548 major flaw of the SVH for SR detection (Fassnacht et al. 2022). In the context of utilising the spectral
549 variation approach, it may be prudent to reconsider the exclusive pursuit of SR as an ecological target.
550 Instead, a more comprehensive understanding of ecosystem dynamics may be attained by concurrently
551 considering both the spatial and temporal dimensions of spectral diversity. In this regard, Rossi et al.
552 (2021) have presented promising findings that exemplify this integrated approach. The mediating role
553 of spatial resolution on the strength of the spectral-to-species diversity relationship has been repeatedly
554 reported in recent studies (e.g. Fassnacht et al. 2022; Rossi et al. 2022; Thornley et al. 2023). Based
555 on findings from an experimental grassland site, Wang et al. (2018b) showed that the spectral-to-species

556 relationship breaks down from pixel sizes of 10 cm x 10 cm and larger. The same pattern is reflected
557 in our results which show an increasing strength of the correlation between FD and spectral diversity
558 towards the finer spatial resolutions (1 m, 0.2 m, Fig. 7). However, our results cannot confirm that
559 spectral diversity at finer spatial resolutions is directly related to higher FD as the correlation across
560 sites and seasons is weak (Tab. A.7). On the contrary, spectral diversity increases with finer spatial
561 resolutions more significantly than with increasing FD (Fig. 8). The spectral signal obtained from a
562 pixel is composed by all optical traits of the species present within this pixel and the larger the difference
563 between the pixel size and the size of the plant individual, the more mixed is the spectral signal. The
564 mismatch of this ratio is heavily pronounced in grasslands and leads to a strong spectral mixture. In
565 general, a relationship between spectral diversity and SR is not to be expected at spatial resolutions
566 that exceed the size of a plant individual (Fassnacht et al. 2022; Thornley et al. 2022). To overcome the
567 limitations of SR, the use of abundance-weighted diversity metrics has been recommended by different
568 authors (Heumann et al. 2015; Oldeland et al. 2010; Wang et al. 2018a). Based on our simulations, the
569 application of the Simpson or Shannon index did not lead to stronger correlations or more consistent
570 results across sites, seasons or spatial resolutions. It can be assumed that the spatial arrangement of a
571 plant community has a strong impact on the detected spectral signal. Different growth types (patchy
572 vs. homogeneous) and heterogeneous plant cover fractions across an area can increase spectral diversity
573 independently from the SR within the area. Rare species or species with low cover fractions are likely to
574 be underrepresented in the spectral signature. Considering the complex three dimensional structure of
575 the stands, this effect would be even more heavily pronounced as their optical traits do not contribute to
576 the spectral signal, which is a function of exposure towards the sensor. This fundamental weakness of the
577 SVH has already been pointed out by Fassnacht et al. (2022) and our results indicate that this may hold
578 true: even if regarded for an ‘ideal’ scenario including only canopy-reflectance, spectral diversity cannot
579 reflect SR or FD as long as species are not equally distributed (spatially and abundance-wise) within the
580 regarded area. Unfortunately, species are usually not distributed homogeneously in natural ecosystems
581 and our simulations clearly show this flaw that hinders a reliable universal application of the SVH across
582 ecosystem types. The same fundamental limitations occur in the context of the so-called spectral species
583 concept (Féret, JB and Asner, G 2014). This concept likewise assumes that species feature unique sets of
584 optical traits that lead to distinct spectral differences. However, the actual size of the species in relation
585 to the pixel size as well as their spectral and trait-based uniqueness determine whether this assumption
586 actually holds true (Rocchini et al. 2022). These complex dependencies can also explain the variable
587 relationships observed in our study. Interestingly, the choice of spectral diversity index did not change
588 the outcome of the correlation analysis and the variability of the spectral-to-species diversity relationship
589 is equally represented by mED and spectral Rao’s Q (Fig. 4, Fig. 18). In comparison to mED, the
590 calculation of spectral Rao’s Q requires much higher computational efforts while potentially delivering
591 similar informative value (see also Perrone et al. 2023). Although of high interest, it is beyond the scope
592 of this study to analyse the performance of different spectral diversity indices. However, the introduced

593 simulation framework provides the basis for further research on this topic.

594 Challenges and limitations

595 Only a few studies tried to tackle the spectral-to-species diversity relationship based on plant community
596 simulations. Badourdine et al. (2022) applied a restricted modelling process by creating rain forest tree
597 populations based on a stratified random sampling of spectral data acquired from imaging spectroscopy.
598 Although presenting promising results for forest diversity monitoring, the authors state that their study
599 design leaves open questions with regard to the actual drivers behind the positive relationship. Using
600 spectral data that cannot be related to in-situ measurements does not provide the needed information on
601 trait combinations, canopy structure and community assembly underlying the observed spectral diversity.
602 Pacheco-Labrador et al. (2022) approached the SVH by creating artificial plant communities based on
603 species-specific trait data from trait databases fed into RTMs to generate spectral data. This design
604 allowed them to generate a large number of species-specific spectra that could be used for the sampling
605 of plant communities. Again, this study presented a positive spectral-to-species diversity relationship,
606 however, spatial effects and the context-dependency of ecosystem types cannot be considered under this
607 setup. Following up on these promising studies, we addressed the research gap by creating spatially
608 explicit grassland community simulations. In our simulations, the spectral signal is highly influenced by
609 the species/ trait distribution, species cover fractions and canopy structural parameters that are based
610 on site- and season-specific in-situ measurements. It should be noted that our simulations represent an
611 ‘ideal’ state of canopy-reflectance: they do not include parameters such as dead biomass and assume ideal
612 illumination conditions. The simulations were designed in order to unravel the spectral-to-species diversity
613 relationship caused by optical leaf traits only, i.e. to test the theoretical background of the SVH which is
614 mainly the interactions between spectral, species, and functional trait diversity. Determining the number
615 of plant individuals per unit area posed a challenge in configuring the simulation. Population densities
616 vary across habitats and regions, and precise figures are limited in the relevant literature. While not the
617 optimal approach, we derived population densities from agricultural seed mixtures. This method enabled
618 us to establish an upper limit for plants in the simulated observation area, ensuring sufficiently high
619 cover fractions to minimize strong background reflectance. Simultaneously, it maintained the population
620 density at a level conducive to the realistic coexistence of plants under plausible conditions. For some
621 delicate species (e.g. *N. stricta*, *A. serpyllifolium*), SPAD measurements are impossible or potentially
622 not robust. This might introduce bias in the generated canopy-level reflectances as the retrieval of
623 chlorophyll content for the RTMs is not ideal. The use of the SPAD instrument is not ideal for semi-natural
624 grasslands (Ludwig et al. 2022). However, including the variation of SPAD vs. chemical measurements
625 in the chlorophyll calculations is, for now, an appropriate measure to tackle the insensitivity of SPAD
626 measurements for community means of chlorophyll contents. Considering the simulated spectra, our
627 models delivered spectral reflectance patterns for grasslands of different habitats and diversity levels that

628 are comparable to spectral field measurements. Interestingly, the variance between the median spectra of
629 the single grassland simulations is highest for the lowest diversity levels (Fig. 1). This is very likely caused
630 by the limited species pool that we used as the basis for the grassland simulations. As an example: Based
631 on a species pool of 20 species that we randomly drew from (without replacement), grasslands consisting
632 of 15 species will be more similar to each other than grasslands with only five species drawn from the same
633 species pool. This similarity in species composition within the same diversity level and, consequently,
634 optical traits, is reflected in the spectral signal of the grassland simulations. Two parameters associated
635 with changes in spectral diversity have not been included in our simulations: flowers and differences in
636 life forms. The presence of flowers is timely limited and coupled with a decrease of chlorophyll levels,
637 thereby altering the reflectance spectrum of a plant community on short time scales (Shen et al. 2009).
638 Colour pigments of non-greenish flowers are associated with changes in the VIS and NIR regions of the
639 electromagnetic spectrum of light. They increase reflection in the VIS region and cause lower reflectance
640 in the NIR and MIR regions (Landmann et al. 2019). By that, flowers add up on spectral information
641 while SR is not increasing which might lead to an overestimation of SR by additionally increasing spectral
642 diversity. They further argue that flowers drive spectral diversity by the spatial aggregation of flowers
643 within an area (patchiness) and asynchronous flowering patterns (Almeida-Neto et al. 2004). Both cases
644 would result in an overestimation of SR based on spectral diversity. In contrast to this assumption
645 are recent results which indicate that the retrieval of plant traits from spectral data is hindered in the
646 presence of increasing flower proportions (Schiefer et al. 2021). A decreased predictive power of traits
647 from RS data inevitably leads to inaccurate estimates of FD which weakens the application potential
648 of the SVH. Additionally, grassland communities are shaped by compositions of different life forms that
649 show distinct adaptations to the environmental conditions of their habitat (Raunkiaer et al. 1934). We
650 did not include this concept in our simulations, however, it can be assumed that the presence of species
651 with an increased proportion of non-green material (bark, dead biomass) additionally influences spectral
652 diversity. *Cbrown* has a strong impact on spectral diversity (Torresani et al. 2021). Although they relate
653 this effect mainly to changes in leaf pigments, the same accounts for the bark of woody species (e.g.
654 dwarf shrubs such as *C. vulgaris*). Further research will be necessary to investigate the role of flowers
655 and different life forms in the spectral-to-species diversity relationship. With the presented simulation
656 setup, we created a suitable tool to address these research gaps in future work.

657 **Conclusions & Outlook**

658 According to the SVH, a positive relationship between spectral and species diversity in RS images is
659 assumed. We present a detailed assessment of the SVH based on grassland simulations that were built
660 on site- and season-specific vegetation surveys and in-situ trait measurements. Coupled with RTMs,
661 our approach allowed an in-depth analysis of the theoretical background of the proposed relationships
662 regarding different habitats, seasons and spatial resolutions. Our simulation design enabled us to bring
663 an ecological context into our findings. In general, the universal applicability of the SVH for biodiversity

664 monitoring across seasons, sensors and ecosystems is lacking proof. Based on 45000 grassland simulations
665 in five different spatial resolutions each, we could show that the spectral-to-species diversity is not stable
666 across seasons and habitat types. Further, spectral diversity is mainly driven by the spatial resolution
667 (i.e. pixel size) of the image and not by SR or FD per se. Moreover, we can assume that FD, which is
668 an important driver of the spectral signature of a plant community, is not directly linked to the number
669 of present species in an image. Our results clearly underline the context-dependency of the SVH and we
670 argue that, although of promising value for distinct ecosystems, it is not universally applicable (Fig. 9).

671 The presented framework provides ample opportunities to further assess the spectral-to-species rela-
672 tionship regarding various aspects. By maintaining the hyperspectral resolution across all investigated
673 spatial resolutions, our simulations provide the basis to assess the potential of future sensors that will
674 possibly provide remote sensing data of finer spectral resolution than current missions. To analyse the
675 effect of flower coverage across different spatial scales would be easily possible by including different
676 flower spectra in the simulations. The same is true for different PFTs. Taking high computational re-
677 sources into account, the simulations can be adjusted to finer spatial resolutions. Although of interest,
678 it is beyond the scope of this study to test the impact of different measures for spectral diversity on the
679 spectral-to-species relationship. However, this issue is definitely an aim of further research. We recognise
680 that our study again brings focus to temperate grasslands only, as has been negatively pointed out as
681 a shortfall in grassland monitoring studies (Thornley et al. 2023). However, the presented framework
682 allows us to incorporate data from other suitable study sites which we warmly encourage. To conclude,
683 the relevant question about what facet of diversity is the target objective of a study must be carefully con-
684 sidered when interpreting results from spectral diversity assessments. The importance of understanding
685 ecological concepts behind SR, species diversity and FD is a crucial prerequisite for reliable biodiversity
686 assessments. Further, driving factors behind spectral diversity in RS images can be of many origins and
687 are hard to disentangle without detailed in-situ measurements and a clear understanding of the surveyed
688 habitat. Therefore, the further development of urgently needed tools for grassland diversity monitoring
689 will involve the collaboration of RS experts and ecologists.

690 5 Acknowledgements

691 This study was financed by the Helmholtz-Centre for Environmental Research (UFZ) as part of the
692 *MoDEV-PhD* college - "Towards novel Model-Data fusion for understanding Environmental Variability in
693 space and time from high-resolution remote sensing" (<https://www.ufz.de/index.php?en=48638>). The
694 scientific results have (in part) been computed at the High-Performance Computing (HPC) Cluster EVE,
695 a joint effort of both the Helmholtz Centre for Environmental Research - UFZ (<http://www.ufz.de/>)
696 and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig ([http://www.](http://www.idiv-biodiversity.de/)
697 [idiv-biodiversity.de/](http://www.idiv-biodiversity.de/)). A.L. thanks Michael Seidel for the introduction to spectral soil measurements,
698 Reimund Goss and Severin Sasso for supporting the spectrophotometric measurements, Khalil Teber and

699 Sebastian Preidl for occasional coding support, and all reviewers for their constructive feedback on earlier
700 versions of the manuscript.

701 6 Author Contributions

702 **A.L.**: Investigation, Methodology, Software, Formal Analysis, Data Curation, Writing - Original Draft,
703 Visualisation, Project administration; **D.D.**: Methodology, Software, Writing - Review & Editing, Su-
704 pervision, Funding acquisition, Project administration; **H.F.**: Conceptualisation, Methodology, Writing
705 - Review & Editing, Supervision, Funding acquisition, Project administration

706 7 Appendix

707 Calculation of population density and point patterns

708 Under consideration of the sowing quantity per area and the species-specific weight of 1000 seeds, we
709 derived an appropriate estimation of plant individual numbers. An exemplary calculation is presented in
710 table A.4. Details on the two different used point pattern distribution types can be found in figure A.12.

Table 4: Proportion of species (in %) in a seed mix (40 kg/ ha) for a universal pasture grassland with 10% herb content. Including the weight of 1000 seeds per species ("Tausendkorngewicht", tkg) and the final number of seeds per m². The description of the seed mix was taken from *Camena-Samen* (see <https://camena-samen.com/gruenlandmischungen/> for further details).

species	%	tkg (g)	seeds per gramm	in mix (in g)	seeds in mix per ha	seeds per m ²
<i>Lolium perenne</i>	34.90	1.30	769.23	14000.00	10769230.77	1076.92
<i>Bromus spec.</i>	8.00	4.00	250.00	3200.00	800000.00	80.00
<i>Festuca spec.</i>	29.90	2.00	500.00	12000.00	6000000.00	600.00
<i>Anthriscus sylvestris</i>	0.60	3.50	285.71	240.00	68571.43	6.86
<i>Bellis perennis</i>	0.20	0.10	10000.00	80.00	800000.00	80.00
<i>Cirsium arvense</i>	0.20	1.10	909.09	80.00	72727.27	7.27
<i>Plantago lanceolata</i>	2.20	2.00	500.00	880.00	440000.00	44.00
<i>Stellaria media</i>	0.60	0.40	2500.00	240.00	600000.00	60.00
<i>Centaurea jacea</i>	0.50	1.20	833.33	200.00	166666.67	16.67
<i>Trifolium repens</i>	8.00	0.65	1538.46	3200.00	4923076.92	492.31
<i>Phleum pratense</i>	15.00	0.40	2500.00	6000.00	15000000.00	1500.00
Total	-	-	-	-	-	3964

711 Details on PROSAIL parameterisation

712 We used pixel-based trait means as input variables for each grassland unit (Table 1). Based on these
713 parameters, we generated pixel-wise reflectance spectra for every grassland unit in its finest resolution
714 (150 x 150 pixels). We then aggregated the reflectance spectra step wise towards the coarser resolutions by
715 calculating the mean reflectance values from all spectra in the aggregated pixels. Consequently, we gained

Table 5: Number of recorded species (SR) and collected trait samples (nb Samp) from field campaigns per site and season.

Site	Season	SR	nb Samp
BL	spring	21	257
	summer	28	177
	autumn	23	187
LA	spring	15	137
	summer	17	121
	autumn	14	125
LU	spring	31	155
	summer	31	139
	autumn	34	176

716 a set of five spectral libraries for each grassland unit containing the respective number of spectra according
 717 to the number of pixels in the respective spatial resolution: From 22.500 spectra in the finest resolution
 718 (150 x 150 pixels) to nine spectra in the coarsest resolution (3 x 3 pixels). The same procedure was followed
 719 for all simulated grassland units from all diversity levels, sites and seasons. Some input parameters were,
 720 however, not easily measurable on the plants. They refer to specific plant characteristics which can
 721 often only be obtained with complex laboratory analysis. The structure parameter N , for example,
 722 is an unit less value that refers to the mesophyll structure of leaves based on a simple plate model
 723 (Jacquemoud, Stéphane and Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada,
 724 Pablo J and Asner, Gregory P and François, Christophe and Ustin, Susan L 2009). As monocotyledon and
 725 dicotyledon plants show different structural developments of their leaves, the N -value is often different
 726 for both of these classes. Monocotyledons are associated with a less complex mesophyll structure and,
 727 thus, fewer layers and receive smaller N -values than dicotyledons. Also the seasonal development and age
 728 of the leaves has a strong impact on their structure. Therefore, we chose to seasonally adjust N -values
 729 accordingly to both monocotyledons and dicotyledons. We chose N -values from the literature that are
 730 based on leaf-level inversions of the RTM PROSPECT for four different plant species (1 dicotyledon, 3
 731 monocotyledon) at three different time points of the growing period (Boren et al. 2019). They provide
 732 so far the most reliable record of N -values. According to the season and class affiliation, a random value
 733 within the range of the given N -value was assigned to each species in the simulated community (Table 1).
 734 We further included background soil reflectance from site-specific spectral soil reflectance measurements
 735 as input variable for $rsoil$. If pixels remained free of points (i.e. plant individuals) they were filled with
 736 the site-specific bare soil reflectance spectrum. This was mainly the case for very high spatial resolutions
 737 (1 m x 1 m and 0.2 m x 0.2 m).

738

739

740

741

Table 6: Ranges of leaf traits, pigments and structural canopy parameters from field measurements per site and season. Cab: chlorophyll a & b content, Car: carotenoid content, Cw: Equivalent water thickness, Cm: leaf mass per area, LAI: Leaf Area Index, MTA: Mean Tilt Angle.

Site	Season	Cab (mg/cm ²)	Car (µg/cm ²)	Cw (cm)	Cm (g/cm ²)	LAI	MTA (°)
BL	spring	33-157	15-39	0.009-0.9	0.001-0.33	1.2-5	41-72
	summer	26-167	10-41	0.007-0.5	0.003-0.04	1-3	38-71
	autumn	27-146	14-37	0.003-0.07	0.001-0.04	1.4-4.7	23-63
LA	spring	29-85	15-25	0.003-0.07	0.001-0.04	3-5.8	40-62
	summer	27-81	14-24	0.007-0.09	0.002-0.03	1.2-4.1	39-67
	autumn	35-77	16-24	0.007-0.06	0.002-0.04	1.5-5	42-60
LU	spring	31-95	15-27	0.003-0.04	0.002-0.01	1.3-2.8	43-66
	summer	30-92	14-26	0.001-0.4	0.001-0.15	1.3-2.7	30-60
	autumn	26-102	14-29	0.008-0.25	0.003-0.2	1.4-3.1	35-80

Table 7: Results for different coefficients (from the linear regression models between different variables per site and season. All variables were calculated based on the grassland simulations. SR - species richness. Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland). Significance levels (p-value, significance of correlation): 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘.’, 1.

Site	Coeff	Spring	Summer	Autumn
(1) lm(Shannon ~ SR)				
BL	p	< 0.05	< 0.05	< 0.05
	R ²	0.07	0.09	0.05
LA	p	< 0.05	< 0.05	< 0.05
	R ²	0.03	0.07	0.75
LU	p	< 0.05	< 0.05	< 0.05
	R ²	0.03	0.14	0.06
(2) lm(Simpson ~ SR)				
BL	p	< 0.05	< 0.05	< 0.05
	R ²	0.64	0.39	0.71
LA	p	< 0.05	< 0.05	< 0.05
	R ²	0.19	0.13	0.21
LU	p	< 0.05	< 0.05	< 0.05
	R ²	0.38	0.50	0.09
(3) lm(Rao's Q ~ SR)				
BL	p	< 0.05	< 0.05	< 0.05
	R ²	0.02	0.01	0.06
LA	p	< 0.05	< 0.05	< 0.05
	R ²	0.09	0.08	0.02
LU	p	< 0.05	< 0.05	< 0.05
	R ²	0.04	< 0.01	0.02
(4) lm($mED_{0.2m}$ ~ SR)				
BL	p	< 0.05	< 0.05	< 0.05
	R ²	0.47	0.26	0.01
LA	p	< 0.05	< 0.05	< 0.05
	R ²	0.13	< 0.01	< 0.01
LU	p	< 0.05	< 0.05	< 0.05
	R ²	0.14	0.13	0.12
(5) lm($mED_{0.2m}$ ~ Rao's Q)				
BL	p	< 0.05	< 0.05	< 0.05
	R ²	0.07	0.09	0.05
LA	p	< 0.05	< 0.05	< 0.05
	R ²	0.03	0.07	0.75
LU	p	< 0.05	< 0.05	< 0.05
	R ²	0.03	0.14	0.06

References

Almeida-Neto, Mário and Thomas M Lewinsohn (2004). “Small-scale spatial autocorrelation and the interpretation of relationships between phenological parameters”. In: *Journal of Vegetation Science* 15.4, pp. 561–568.

Asner, Gregory P. (1998). “Biophysical and Biochemical Sources of Variability in Canopy Reflectance”. In: *Remote Sensing of Environment* 64.3, pp. 234–253. ISSN: 0034-4257. DOI: [https://doi.org/10.1016/S0034-4257\(97\)90003-7](https://doi.org/10.1016/S0034-4257(97)90003-7).

1016/S0034-4257(98)00014-5. URL: <https://www.sciencedirect.com/science/article/pii/S0034425798000145>.

Baddeley, Adrian and Rolf Turner (2005). "spatstat: An R Package for Analyzing Spatial Point Patterns". In: *Journal of Statistical Software* 12, pp. 1–42. URL: <https://www.jstatsoft.org/v12/i06/>.

Badourdine, Colette, Jean-Baptiste Féret, Raphaël Pélissier, and Grégoire Vincent (2022). "Exploring the link between spectral variance and upper canopy taxonomic diversity in a tropical forest: influence of spectral processing and feature selection". In: *Remote Sensing in Ecology and Conservation*.

Boren, Erik J, Luigi Boschetti, and Dan M Johnson (2019). "Characterizing the variability of the structure parameter in the PROSPECT leaf optical properties model". In: *Remote Sensing* 11.10, p. 1236.

Botta-Dukát, Zoltán (2005). "Rao's quadratic entropy as a measure of functional diversity based on multiple traits". In: *Journal of vegetation science* 16.5, pp. 533–540.

Burg, Sarah, Christian Rixen, Veronika Stöckli, and Sonja Wipf (2015). "Observation bias and its causes in botanical surveys on high-alpine summits". In: *Journal of Vegetation Science* 26.1, pp. 191–200. DOI: <https://doi.org/10.1111/jvs.12211>. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/jvs.12211>. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1111/jvs.12211>.

Cardinale, Bradley J et al. (2012). "Biodiversity loss and its impact on humanity". In: *Nature* 486.7401, pp. 59–67.

Cavender-Bares, Jeannine, John A Gamon, Sarah E Hobbie, Michael D Madritch, José Eduardo Meireles, Anna K Schweiger, and Philip A Townsend (2017). "Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales". In: *American Journal of Botany* 104.7, pp. 966–969.

Dahlin, Kyla Marie (2016). "Spectral diversity area relationships for assessing biodiversity in a wildland–agriculture matrix". In: *Ecological applications* 26.8, pp. 2758–2768.

de Bello, Francesco et al. (2021). "Functional trait effects on ecosystem stability: assembling the jigsaw puzzle". In: *Trends in Ecology & Evolution* 36.9, pp. 822–836.

Díaz, S. et al. (2019). "The global assessment report on biodiversity and ecosystem services: Summary for policymakers of the global assessment report on biodiversity and ecosystem services". In: *Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services*.

Díaz, Sandra and Cabido, Marcelo (2001). "Vive la différence: plant functional diversity matters to ecosystem processes". In: *Trends in ecology & evolution* 16.11, pp. 646–655.

Fassnacht, Fabian Ewald, Jana Müllerová, Luisa Conti, Marco Malavasi, and Sebastian Schmidlein (2022). "About the link between biodiversity and spectral variation". In: *Applied Vegetation Science* 25.1, e12643.

Fauvel, Mathieu, Mailys Lopes, Titouan Dubo, Justine Rivers-Moore, Pierre-Louis Frison, Nicolas Gross, and Annie Ouin (2020). "Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series". In: *Remote Sensing of Environment* 237, p. 111536. ISSN: 0034-4257. DOI: <https://doi.org/10.1016/j.rse.2020.111536>.

//doi.org/10.1016/j.rse.2019.111536. URL: <https://www.sciencedirect.com/science/article/pii/S0034425719305553>.

Feret, JB and F de Boissieu (2023). *prosail: PROSAIL leaf and canopy radiative transfer model and inversion routines*. R package version 1.2.3. URL: <https://gitlab.com/jbferet/prosail>.

Féret, JB and Asner, G (2014). “Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy”. In: *Ecological Applications* 24.6, pp. 1289–1296. DOI: doi.org/10.1890/13-1824.1. eprint: <https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/13-1824.1>. URL: <https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/13-1824.1>.

Feret, JB and François, C and Asner, G and Gitelson, A and Martin, R and Bidel, L and Ustin, S and Le Maire, G and Jacquemoud, S (2008). “PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments”. In: *Remote sensing of environment* 112.6, pp. 3030–3043.

Gholizadeh, Hamed, John A Gamon, Arthur I Zygielbaum, Ran Wang, Anna K Schweiger, and Jeannine Cavender-Bares (2018). “Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α -diversity (species richness) in prairie ecosystems”. In: *Remote Sensing of Environment* 206, pp. 240–253.

Gibson, DJ (2009). *Grasses and grassland ecology*. Oxford University Press.

Hall, Karin, Triin Reitalu, Martin T Sykes, and Honor C Prentice (2012). “Spectral heterogeneity of QuickBird satellite data is related to fine-scale plant species spatial turnover in semi-natural grasslands”. In: *Applied Vegetation Science* 15.1, pp. 145–157.

Hauser, Leon T, Joris Timmermans, Niels van der Windt, Ângelo F Sil, Nuno César de Sá, Nadejda A Soudzilovskaia, and Peter M van Bodegom (2021). “Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation”. In: *Remote Sensing of Environment* 265, p. 112684.

Hautier, Yann, David Tilman, Forest Isbell, Eric W. Seabloom, Elizabeth T. Borer, and Peter B. Reich (2015). “Anthropogenic environmental changes affect ecosystem stability via biodiversity”. In: *Science* 348.6232, pp. 336–340. DOI: [10.1126/science.aaa1788](https://doi.org/10.1126/science.aaa1788). eprint: <https://www.science.org/doi/pdf/10.1126/science.aaa1788>. URL: <https://www.science.org/doi/abs/10.1126/science.aaa1788>.

Herrick, Etienne and Jennifer Blesh (2021). “Intraspecific trait variation improves understanding and management of cover crop outcomes”. In: *Ecosphere* 12.11, e03817. DOI: <https://doi.org/10.1002/ecs2.3817>. eprint: <https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.3817>. URL: <https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecs2.3817>.

Heumann, Benjamin W, Rachel A Hackett, and Anna K Monfils (2015). “Testing the spectral diversity hypothesis using spectroscopy data in a simulated wetland community”. In: *Ecological Informatics* 25, pp. 29–34.

Jacquemoud, Stéphane and Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada, Pablo J and Asner, Gregory P and François, Christophe and Ustin, Susan L (2009). “PROSPECT+”

SAIL models: A review of use for vegetation characterization”. In: *Remote sensing of environment* 113, S56–S66.

John, Ranjeet, Jiquan Chen, Nan Lu, Ke Guo, Cunzhu Liang, Yafen Wei, Asko Noormets, Keping Ma, and Xingguo Han (2008). “Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia”. In: *Remote Sensing of Environment* 112.5, pp. 2018–2032.

Kingman, John Frank Charles (1992). *Poisson processes*. Vol. 3. Clarendon Press.

Laliberté, E., P. Legendre, and B. Shipley (2014). *FD: measuring functional diversity from multiple traits, and other tools for functional ecology*. R package version 1.0-12.1.

Landmann, Tobias, Hannes Feilhauer, Miaogen Shen, Jin Chen, and Suresh Raina (2019). “Hyperspectral Remote Sensing of Vegetation. Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation”. In: ed. by Prasad Thenkabail, John Lyon, and Alfredo Huete. 2nd ed. Vol. IV. Taylor and Francis. Chap. Mapping the Distribution and Abundance of Flowering Plants Using Hyperspectral Sensing.

Lehnert, Lukas W., Hanna Meyer, Wolfgang A. Obermeier, Brenner Silva, Bianca Regeling, Boris Thies, and Jörg Bendix (2019). “Hyperspectral Data Analysis in R: The *hsdar* Package”. In: *Journal of Statistical Software* 89.12, pp. 1–23. doi: [10.18637/jss.v089.i12](https://doi.org/10.18637/jss.v089.i12).

Lucas, Kelly L., George T. Raber, and Gregory A. Carter (2010). “Estimating vascular plant species richness on Horn Island, Mississippi using small-footprint airborne LIDAR”. In: *Journal of Applied Remote Sensing* 4.1, p. 043545. doi: [10.1117/1.3501119](https://doi.org/10.1117/1.3501119). URL: <https://doi.org/10.1117/1.3501119>.

Ludwig, Antonia D., Daniel Doktor, Reimund Goss, Severin Sasso, and Hannes Feilhauer (2022). “The leaf is always greener on the other side of the lab: Optical in-situ indicators for leaf chlorophyll content need improvement for semi-natural grassland areas”. In: *Ecological Indicators* 143, p. 109424. ISSN: 1470-160X. doi: <https://doi.org/10.1016/j.ecolind.2022.109424>. URL: <https://www.sciencedirect.com/science/article/pii/S1470160X22008974>.

Magurran, Anne E and Brian J McGill (2010). *Biological diversity: frontiers in measurement and assessment*. OUP Oxford.

Markwell, J., J. Osterman, and J. Mitchell (1995). “Calibration of the Minolta SPAD-502 leaf chlorophyll meter”. In: *Photosynthesis Research* 46, pp. 467–472.

Matérn, B (1960). “Spatial variation: Meddelanden från statens skogsforskningsinstitut”. In: *Lecture Notes in Statistics* 36, p. 21.

Oldeland, Jens, Dirk Wesels, Duccio Rocchini, Michael Schmidt, and Norbert Jürgens (2010). “Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity?” In: *Ecological Indicators* 10.2, pp. 390–396.

Pacheco-Labrador, Javier et al. (2022). “Challenging the link between functional and spectral diversity with radiative transfer modeling and data”. In: *Remote Sensing of Environment* 280, p. 113170.

Palmer, M.W., T. Wohlgemuth, P. Earls, J.R. Arévalo, and S.D. Thompson (2000). "Opportunities for long-term ecological research at the Tallgrass Prairie Preserve, Oklahoma". In: *Proceedings of the ILTER Regional Workshop: Cooperation in Long Term Ecological Research in Central and Eastern Europe, Budapest, Hungary*. Vol. 22.

Perez-Harguindeguy, Natalia et al. (2016). "Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide". In: *Australian Journal of botany* 64.8, pp. 715–716.

Perrone, Michela et al. (2023). "The relationship between spectral and plant diversity: Disentangling the influence of metrics and habitat types at the landscape scale". In: *Remote Sensing of Environment* 293, p. 113591.

Petermann, Jana S and Oksana Y Buzhdyan (2021). "Grassland biodiversity". In: *Current Biology* 31.19, R1195–R1201.

R Core Team (2020). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria. URL: <https://www.R-project.org/>.

Raunkiaer, Christen et al. (1934). "The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiær." In: *The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer*.

Rocchini, D, L Dadalt, L Delucchi, M Neteler, and MW Palmer (2014). "Disentangling the role of remotely sensed spectral heterogeneity as a proxy for North American plant species richness". In: *Community Ecology* 15.1, pp. 37–43.

Rocchini, D et al. (2022). "The spectral species concept in living color". In: *Journal of geophysical research: Biogeosciences* 127.9, e2022JG007026.

Rocchini, Duccio (2007). "Effects of spatial and spectral resolution in estimating ecosystem α -diversity by satellite imagery". In: *Remote sensing of Environment* 111.4, pp. 423–434.

Rocchini, Duccio and Chiarucci, Alessandro and Loiselle, Steven A. (2004). "Testing the spectral variation hypothesis by using satellite multispectral images". In: *Acta Oecologica* 26.2, pp. 117–120. ISSN: 1146-609X. DOI: <https://doi.org/10.1016/j.actao.2004.03.008>. URL: <https://www.sciencedirect.com/science/article/pii/S1146609X04000311>.

Rocchini, Duccio and Marcantonio, Matteo and Ricotta, Carlo (2017). "Measuring Rao's Q diversity index from remote sensing: An open source solution". In: *Ecological Indicators* 72, pp. 234–238. ISSN: 1470-160X. DOI: <https://doi.org/10.1016/j.ecolind.2016.07.039>. URL: <https://www.sciencedirect.com/science/article/pii/S1470160X16304319>.

Rossi, Christian, Mathias Kneubühler, Martin Schütz, Michael E Schaepman, Rudolf M Haller, and Anita C Risch (2021). "Remote sensing of spectral diversity: A new methodological approach to account for spatio-temporal dissimilarities between plant communities". In: *Ecological Indicators* 130, p. 108106.

— (2022). "Spatial resolution, spectral metrics and biomass are key aspects in estimating plant species richness from spectral diversity in species-rich grasslands". In: *Remote Sensing in Ecology and Conservation* 8.3, pp. 297–314. DOI: <https://doi.org/10.1002/rse2.244>. eprint: <https://doi.org/10.1002/rse2.244>.

zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1002/rse2.244. URL: <https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1002/rse2.244>.

Schiefer, Felix, Sebastian Schmidlein, and Teja Kattenborn (2021). “The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology”. In: *Ecological Indicators* 121. ISSN: 1470-160X. DOI: doi.org/10.1016/j.ecolind.2020.107062. URL: <https://www.sciencedirect.com/science/article/pii/S1470160X20310013>.

Schmidlein, Sebastian and Fabian Ewald Fassnacht (2017). “The spectral variability hypothesis does not hold across landscapes”. In: *Remote sensing of environment* 192, pp. 114–125.

Schneider, Fabian D, Felix Morsdorf, Bernhard Schmid, Owen L Petchey, Andreas Hueni, David S Schimel, and Michael E Schaepman (2017). “Mapping functional diversity from remotely sensed morphological and physiological forest traits”. In: *Nature communications* 8.1, p. 1441.

Schweiger, Anna K, Jeannine Cavender-Bares, Philip A Townsend, Sarah E Hobbie, Michael D Madritch, Ran Wang, David Tilman, and John A Gamon (2018). “Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function”. In: *Nature Ecology & Evolution* 2.6, pp. 976–982.

Shen, Miaogen, Jin Chen, Xiaolin Zhu, and Yanhong Tang (2009). “Yellow flowers can decrease NDVI and EVI values: Evidence from a field experiment in an alpine meadow”. In: *Canadian journal of remote sensing* 35.2, pp. 99–106.

Siefert, Andrew et al. (2015). “A global meta-analysis of the relative extent of intraspecific trait variation in plant communities”. In: *Ecology Letters* 18.12, pp. 1406–1419. DOI: [10.1111/ele.12508](https://doi.org/10.1111/ele.12508). eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.12508>. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12508>.

Simpson, Edward H (1949). “Measurement of diversity”. In: *nature* 163.4148, pp. 688–688.

Thornley, Rachael, France Gerard, Kevin White, and Anne Verhoef (2023). “Prediction of Grassland Biodiversity Using Measures of Spectral Variance: A Meta-Analytical Review”. In: *Remote Sensing* 15.3. ISSN: 2072-4292. DOI: [10.3390/rs15030668](https://doi.org/10.3390/rs15030668). URL: <https://www.mdpi.com/2072-4292/15/3/668>.

Thornley, Rachael, France F Gerard, Kevin White, and Anne Verhoef (2022). “Intra-annual taxonomic and phenological drivers of spectral variance in grasslands”. In: *Remote Sensing of Environment* 271, p. 112908.

Torresani, Michele, Hannes Feilhauer, Duccio Rocchini, Jean-Baptiste Féret, Marc Zebisch, and Giustino Tonon (2021). “Which optical traits enable an estimation of tree species diversity based on the Spectral Variation Hypothesis?” In: *Applied Vegetation Science* 24.2, e12586. DOI: [10.1111/avsc.12586](https://doi.org/10.1111/avsc.12586). eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/avsc.12586>. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1111/avsc.12586>.

Verhoef, W (1985). “Earth observation modeling based on layer scattering matrices”. In: *Remote sensing of environment* 17.2, pp. 165–178.

Verhoef, W, L Jia, Q Xiao, and Z Su (2007). “Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies”. In: *IEEE Transactions on Geoscience and Remote Sensing* 45.6, pp. 1808–1822. DOI: [10.1109/TGRS.2007.895844](https://doi.org/10.1109/TGRS.2007.895844).

Verhoef, W (1984). “Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model”. In: *Remote sensing of environment* 16.2, pp. 125–141.

Wang, Ran and John Gamon (2019). “Remote sensing of terrestrial plant biodiversity”. In: *Remote Sensing of Environment* 231, p. 111218. ISSN: 0034-4257. DOI: [10.1016/j.rse.2019.111218](https://doi.org/10.1016/j.rse.2019.111218).

Wang, Ran, John A. Gamon, Rebecca A. Montgomery, Philip A. Townsend, Arthur I. Zygierbaum, Keren Bitan, David Tilman, and Jeannine Cavender-Bares (2016). “Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (Cedar Creek)”. In: *Remote Sensing* 8.2, p. 128.

Wang, Ran, John A. Gamon, Anna K. Schweiger, Jeannine Cavender-Bares, Philip A. Townsend, Arthur I. Zygierbaum, and Shan Kothari (2018a). “Influence of species richness, evenness, and composition on optical diversity: A simulation study”. In: *Remote Sensing of Environment* 211, pp. 218–228. ISSN: 0034-4257. DOI: [10.1016/j.rse.2018.04.010](https://doi.org/10.1016/j.rse.2018.04.010). URL: <https://www.sciencedirect.com/science/article/pii/S003442571830155X>.

Wang, Ran, A John, J Cavender-Bares, PA Townsend, and AI Zygierbaum (2018b). “The spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie grassland”. In: *Ecological Applications* 28.2, pp. 541–556.

Weiner, Jacob, Peter Stoll, H Muller-Landau, and A Jasentuliyana (2001). “The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations”. In: *The American Naturalist* 158.4, pp. 438–450.

Zhao, Yujin, Yihan Sun, Wenhe Chen, Yanping Zhao, Xiaoliang Liu, and Yongfei Bai (2021). “The potential of mapping grassland plant diversity with the links among spectral diversity, functional trait diversity, and species diversity”. In: *Remote Sensing* 13.15, p. 3034.

List of Figures

1	General workflow from species and trait sampling, over grassland simulations and spectra generation to statistical analysis. Species and trait data were collected for three sites and in three seasons, respectively. The simulations were performed for five different diversity levels (5 to 25 species) and with 1000 different species composition variations per diversity level. Spectra were generated by passing the pixel-wise mean trait values to PROSAIL, for the same grassland simulation represented in five spatial resolutions (10 m to 0.2 m pixel size). Based on the pixel-wise reflectance values, spectral diversity was calculated (mean Euclidean distance and spectral Rao's Q). Measures for taxonomic and functional diversity were calculated for every single grassland simulation based on the incorporated species information and trait values. Finally, we calculated the correlation coefficients between the different spectral diversity metrics for Species Richness (SR), Shannon-Index, Simpson-Index and Rao's Q to test the bivariate relationships between multiple variables at different pixel sizes.	7
2	General workflow for point pattern distributions as basis for the grassland simulations. First, we use two point distribution functions to create 50 different point patterns per species. In this process, species-specific distribution patterns and cover fractions from field observations were considered. Second, point patterns are combined at different diversity levels to create the grassland simulations. Each diversity level is represented by 1000 grassland simulations with different species combinations. Third, trait values from field sampling are attached to the species individuals in the simulations. Forth, each simulated grassland is represented in five different spatial resolutions. Finally, pixel-wise canopy-level reflectance spectra are generated for the single grassland simulations in five spatial resolutions (from 10 m to 0.2 m pixel size).	10
3	Median reflectance spectra of the 1000 simulated grassland communities for the lowest and highest species numbers in each season in the BL site. Black lines depict the median spectrum of a single grassland simulation in the finest spatial resolution, i.e. the median spectrum of the reflectance spectra of 22500 pixels in one simulated grassland simulation. Green areas show the upper and lower quartiles (75% and 25%) of the pixel-wise spectra from the single simulations. Exemplary for BL - Bad Lauchstädt (nutrient rich). The reader is referred to the supplementary for the remaining sites.	14

9 Schematic overview on the influence of different scenarios of trait expressions on the relationship between spectral diversity and SR. The figure was inspired by results from Díaz, Sandra and Cabido, Marcelo (2001) that presented a detailed analysis on the mismatch between SD and FD considering different settings. We expanded their concept to the spectral domain. Case (a) represents high intraspecific trait variability at low levels of SR, e.g. caused by strong environmental heterogeneity in an area. High spectral diversity leads to an overestimation of SR in this case. Case (b) shows high interspecific trait variability, increasing with increasing SR. In this case, the link between spectral diversity and SR is given. Case (c) represents high trait convergence, i.e. different species develop similar sets of traits in the same area. FD is low and leads to low spectral diversity that does not represent high SR. Note that environmental heterogeneity or other factors driving spectral diversity are not included in this graph. These can further lead to an overestimation of spectral diversity and bias the spectral-to-species diversity relationship.

10 Soil reflectance spectra from all field sites. Samples were collected from the uppermost layer and dried at 40 °C for at least 48 h. Afterwards, the samples were sieved to a grain size of 1 mm. Soil reflectance was measured using the contact probe of a field spectrometer (ASD FieldSpec 4®, Malvern Panalytical, UK) fixed to a stand. Measuring height was adjusted to the diameter of the measured area (diameter = 5 cm, height = 10 cm) as well as the incidence angle of the halogen lamp (< = 30°). A correction curve was recorded using a white reference panel with 95% reflectance prior to the soil reflectance measurements. The single samples were measured three times and turned approx 120° after each measurement. Each run consists of three full spectral records (from 350 - 2500 nm wavelength), while the outcome of reflectance values at individual wavelengths is calculated as the mean of 25 measurements at the exact same position of the spectrum. Samples were first measured dry (dotted line) and then re-wetted (solid line) to 10% mass content H_2O . Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor) , LU - Lunzberge (dry grassland).

11 From SPAD-values in the field to total leaf chlorophyll (Cab) and carotenoid (Car) contents using two sets of samples: A larger set of samples (n=) that were measured with the SPAD-chlorophyllmeter and a second set (n = 160) for calibration. Total leaf Cab was calculated from SPAD-values under consideration of (1) the deviations between measured Cab based on spectrophotometry and transformed SPAD-values based on Markwell et al. (1995) ('SD from Markwell'). Further, taking into account (2) the ratio between Cab and Car ('Cab:Car') from the calibration set to derive final car for the first sample set.

12	Realisation of two types of point pattern distributions for approximately 1200 points in both cases (for better illustration). a) Poisson point pattern process for homogeneously distributed species (e.g. <i>Lolium perenne</i>). The intensity function was parameterised with the cover fractions of the individual species that were estimated during field work. b) A Matern cluster process for species that grow clustered (e.g. <i>T. vulgare</i>). The table shows the field data that have been used to parameterise the respective density functions.	43
13	Median reflectance spectra of the 1000 simulated grassland communities for the lowest and highest species numbers in each season. Black lines depict the median spectrum of a single grassland simulation in the finest spatial resolution, i.e. the median spectrum of 22500 pixels. Green areas show the upper and lower quartiles (75 % and 25 %) of the pixel-wise spectra from the single simulations. Panels in the two columns on the left side show the spectra of LA, the two columns on the right side show the spectra of LU. LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry-grassland).	43
14	Taxonomic and functional diversity indices per site and season. Indices were calculated for each of the 1000 grassland simulations per diversity level. In order to calculate them for every single grassland simulation, we attached species-specific trait data to the individual points in the two dimensional grassland communities. The species and trait data is based on in-situ measurements from the study sites. Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor).	44
15	The relationship between Rao's Q (Functional diversity) and Shannon index (Species diversity) per site. Data was summarised for all seasons in one plot. Overall, the linear regression model suggests that there is a significant relationship between Rao's Q and Shannon index, although in BL and LA the model explains only a small proportion of the variance in Rao's Q. Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland).	44
16	Spectral diversity (mED in log+1) per diversity level for the sites LA and LU across all seasons. Each box contains the mED for all 1000 grassland simulations per diversity level (5 species to 25 species) in the finest resolution (0.2 m pixel size). The relationship between mED and diversity level is not stable across the sites and seasons.	45
17	Correlation between the two metrics for spectral diversity. Spectral Rao's Q and mED have been scaled before the linear regression model was applied. Correlations were all non significant and R ² -values were low (p > 0.05 in all cases, see plot panels for site-specific R ² -values.)	45

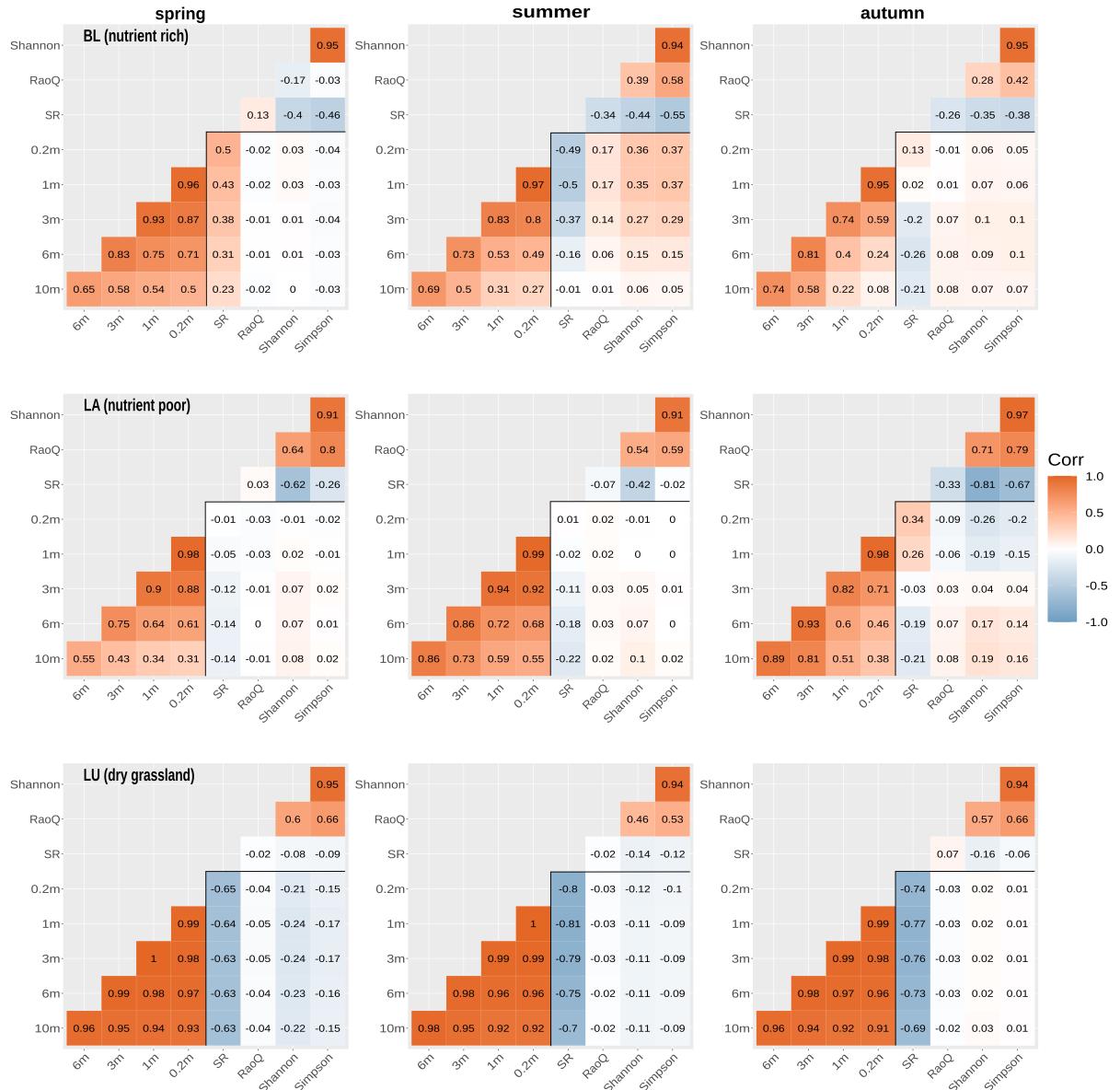


Figure 4: Correlograms representing the bivariate relationships (R-values) between spectral diversity (mED) and different taxonomic diversity indices calculated for each of the grassland simulations based on in-situ species and trait data. Black numbers show Pearson's correlation coefficient. The lower triangle shows the correlations between the mED of the different spatial resolutions, the upper triangle shows the correlations between the different diversity indices (taxonomic and functional). R-values within the grey box show the correlations between different taxonomic and functional indices and spectral diversity for different spatial resolutions. Labels: 'Simpson' - Simpson-Index, 'Shannon' - Shannon Index, 'RaoQ' - Rao's quadratic entropy, 'SR' - Species Richness. Sites: BL - Bad Lauchstädt, LA - Luppeaue, LU - Lunzberge. See Figure 18 for spectral Rao's Q.

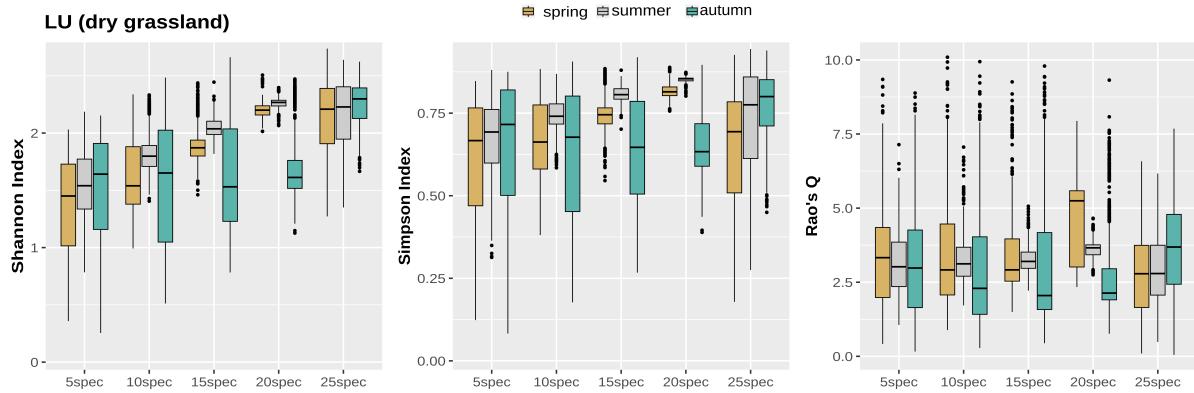


Figure 5: Taxonomic and functional diversity indices per diversity level for the LU site as an example. Indices were calculated for each of the 1000 grassland simulations per diversity level and for each season (in different colours). The species and trait data is based on in-situ measurements from the study sites. Season-specific results from the linear regression model between the respective index and species numbers are written in each panel. LU - Lunzberge.

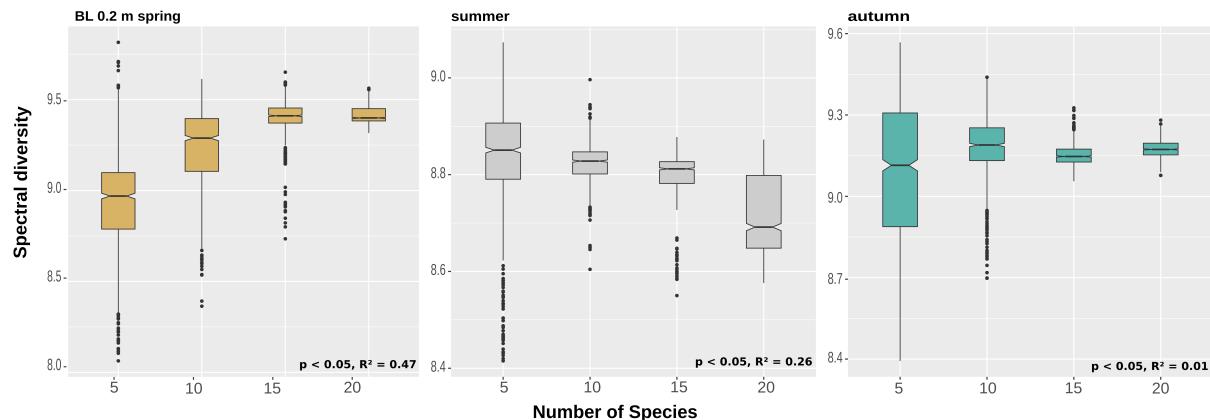


Figure 6: Spectral diversity (mED in log+1) per diversity level. Depicted is the Bad Lauchstädt (BL site) site in spring, summer and autumn as an example. Each box contains the mED for all 1000 grassland simulations per diversity level (5 species to 20 species) in the finest resolution (0.2 m pixel size). Results from the linear regression model between mED and species numbers are written in each panel. The reader is referred to the remaining plots of the other study sites in the supplement (Fig. A.16).

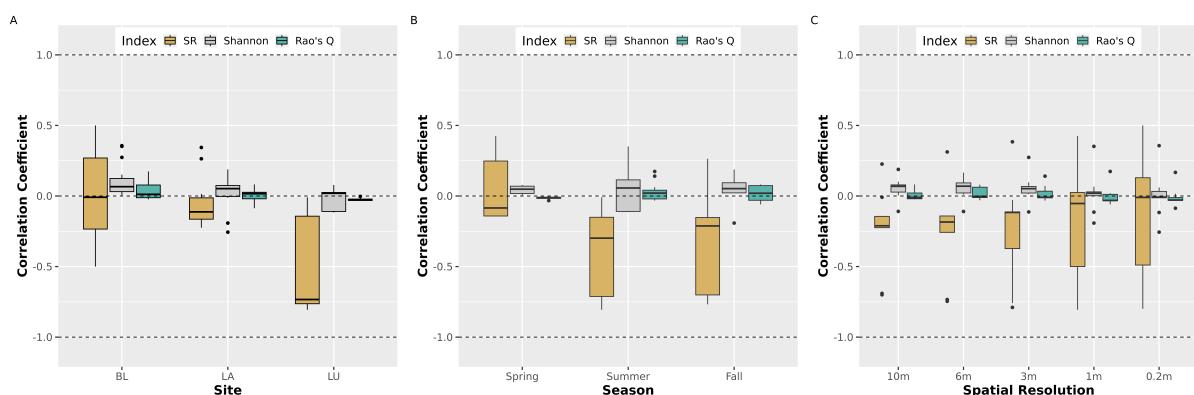


Figure 7: Correlation coefficients for taxonomic (Number of Species, Shannon-Index) and functional diversity (Rao's Q) indices with spectral diversity (mED) from different perspectives. Boxes show the R-values for the respective index and spectral diversity for (A) the single sites, including all seasons and spatial resolutions, (B) single seasons, including all sites and spatial resolutions, and (C) single spatial resolutions, including all sites and seasons. BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland).

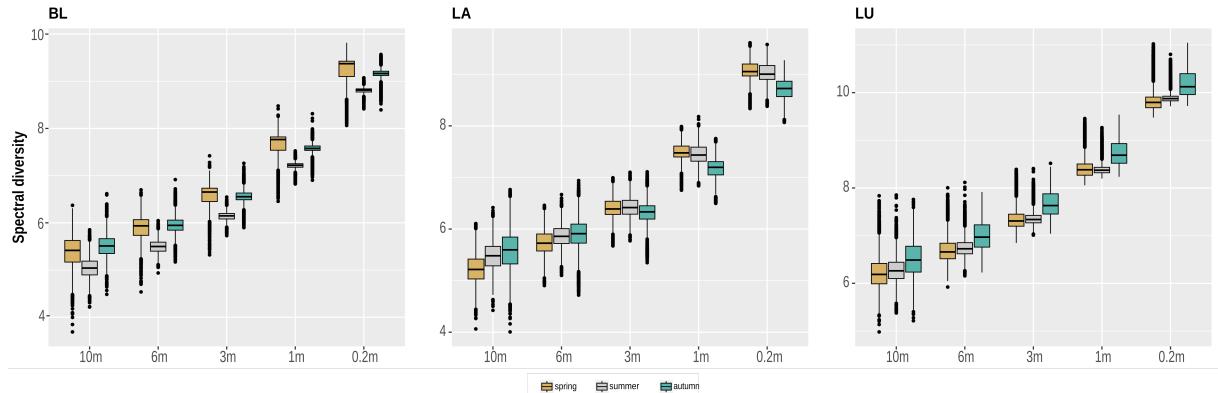


Figure 8: Spectral diversity per spatial resolution for each site and season. Each box contains the spectral diversity of all grassland simulations in the respective spatial resolution (i.e. all diversity levels combined per spatial resolution). The spectral resolution remained unchanged across the different spatial resolutions (hyperspectral, 188 bands). BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland).

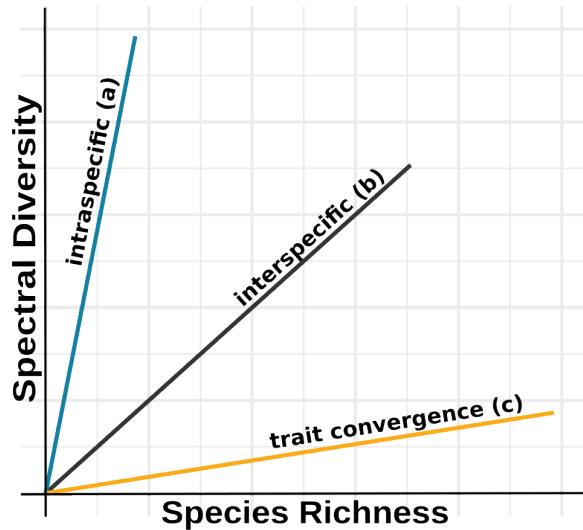


Figure 9: Schematic overview on the influence of different scenarios of trait expressions on the relationship between spectral diversity and SR. The figure was inspired by results from Díaz, Sandra and Cabido, Marcelo (2001) that presented a detailed analysis on the mismatch between SD and FD considering different settings. We expanded their concept to the spectral domain. Case (a) represents high intraspecific trait variability at low levels of SR, e.g. caused by strong environmental heterogeneity in an area. High spectral diversity leads to an overestimation of SR in this case. Case (b) shows high interspecific trait variability, increasing with increasing SR. In this case, the link between spectral diversity and SR is given. Case (c) represents high trait convergence, i.e. different species develop similar sets of traits in the same area. FD is low and leads to low spectral diversity that does not represent high SR. Note that environmental heterogeneity or other factors driving spectral diversity are not included in this graph. These can further lead to an overestimation of spectral diversity and bias the spectral-to-species diversity relationship.

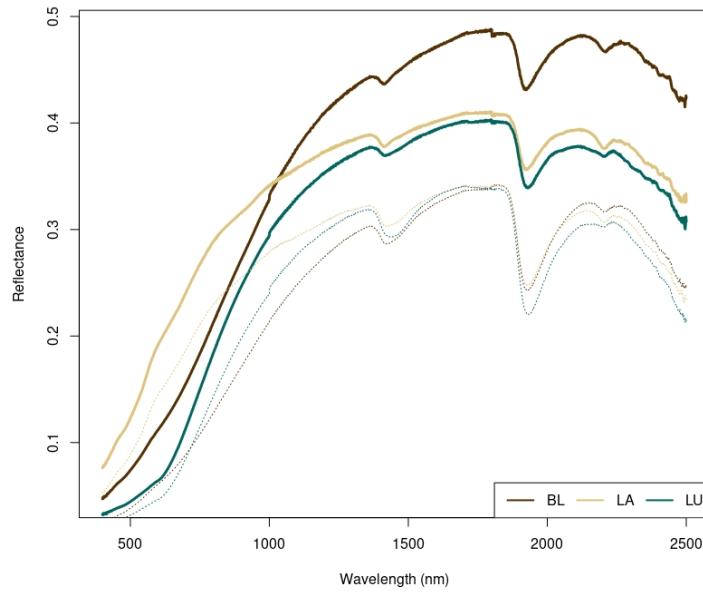


Figure 10: Soil reflectance spectra from all field sites. Samples were collected from the uppermost layer and dried at 40 °C for at least 48 h. Afterwards, the samples were sieved to a grain size of 1 mm. Soil reflectance was measured using the contact probe of a field spectrometer (ASD FieldSpec 4®, Malvern Panalytical, UK) fixed to a stand. Measuring height was adjusted to the diameter of the measured area (diameter = 5 cm, height = 10 cm) as well as the incidence angle of the halogen lamp ($\leq 30^\circ$). A correction curve was recorded using a white reference panel with 95% reflectance prior to the soil reflectance measurements. The single samples were measured three times and turned approx 120° after each measurement. Each run consists of three full spectral records (from 350 - 2500 nm wavelength), while the outcome of reflectance values at individual wavelengths is calculated as the mean of 25 measurements at the exact same position of the spectrum. Samples were first measured dry (dotted line) and then re-wetted (solid line) to 10% mass content H_2O . Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland).

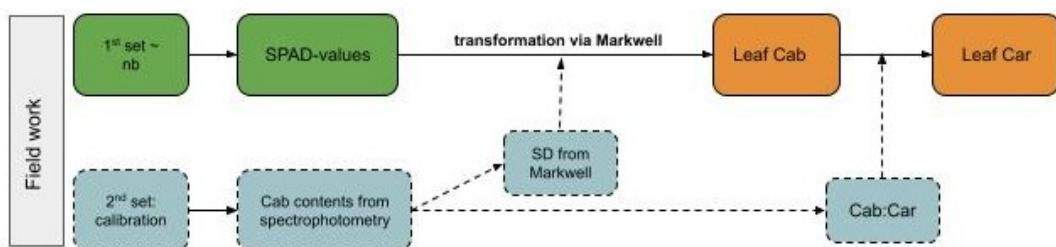


Figure 11: From SPAD-values in the field to total leaf chlorophyll (Cab) and carotenoid (Car) contents using two sets of samples: A larger set of samples ($n = \dots$) that were measured with the SPAD-chlorophyllmeter and a second set ($n = 160$) for calibration. Total leaf Cab was calculated from SPAD-values under consideration of (1) the deviations between measured Cab based on spectrophotometry and transformed SPAD-values based on Markwell et al. (1995) ('SD from Markwell'). Further, taking into account (2) the ratio between Cab and Car ('Cab:Car') from the calibration set to derive final car for the first sample set.

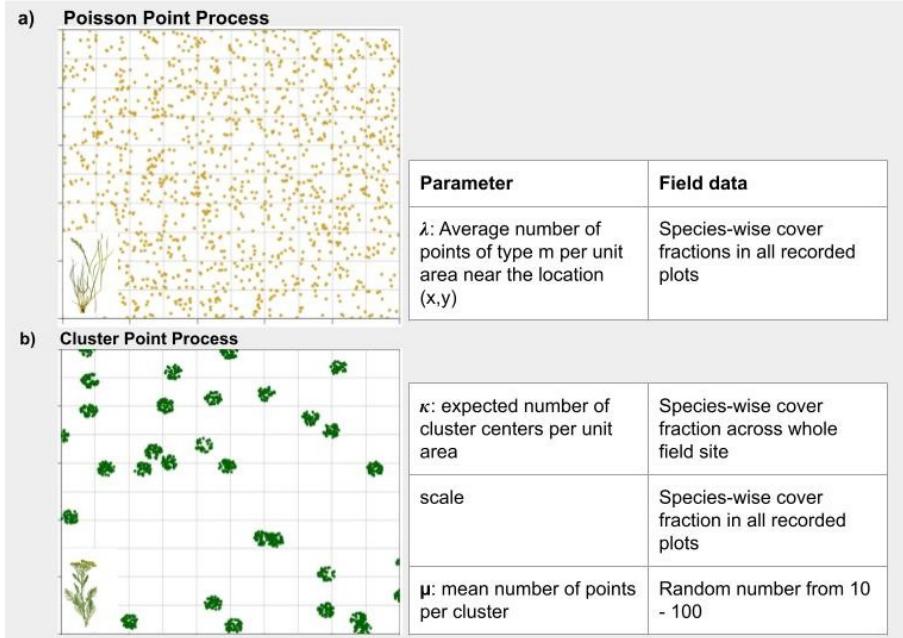


Figure 12: Realisation of two types of point pattern distributions for approximately 1200 points in both cases (for better illustration). a) Poisson point pattern process for homogeneously distributed species (e.g. *Lolium perenne*). The intensity function was parameterised with the cover fractions of the individual species that were estimated during field work. b) A Matern cluster process for species that grow clustered (e.g. *T. vulgare*). The table shows the field data that have been used to parameterise the respective density functions.

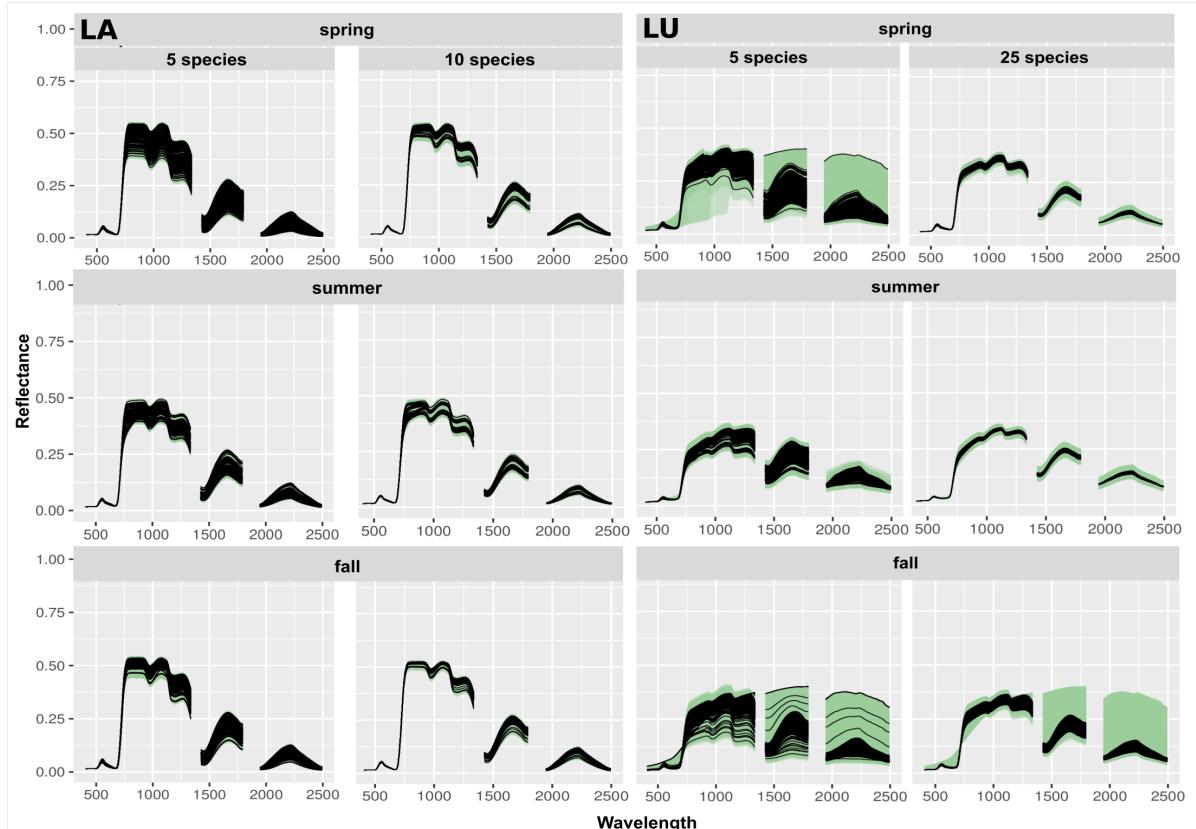


Figure 13: Median reflectance spectra of the 1000 simulated grassland communities for the lowest and highest species numbers in each season. Black lines depict the median spectrum of a single grassland simulation in the finest spatial resolution, i.e. the median spectrum of 22500 pixels. Green areas show the upper and lower quartiles (75 % and 25 %) of the pixel-wise spectra from the single simulations. Panels in the two columns on the left side show the spectra of LA, the two columns on the right side show the spectra of LU. LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry-grassland).

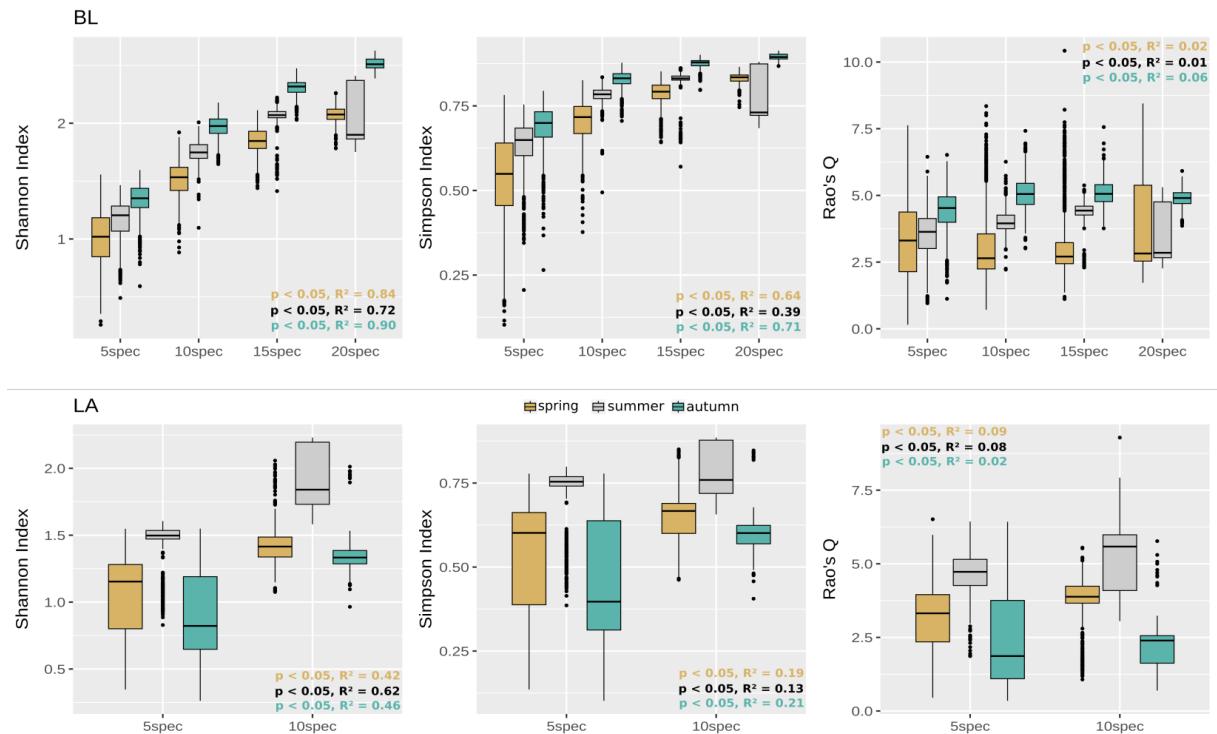


Figure 14: Taxonomic and functional diversity indices per site and season. Indices were calculated for each of the 1000 grassland simulations per diversity level. In order to calculate them for every single grassland simulation, we attached species-specific trait data to the individual points in the two dimensional grassland communities. The species and trait data is based on in-situ measurements from the study sites. Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor).

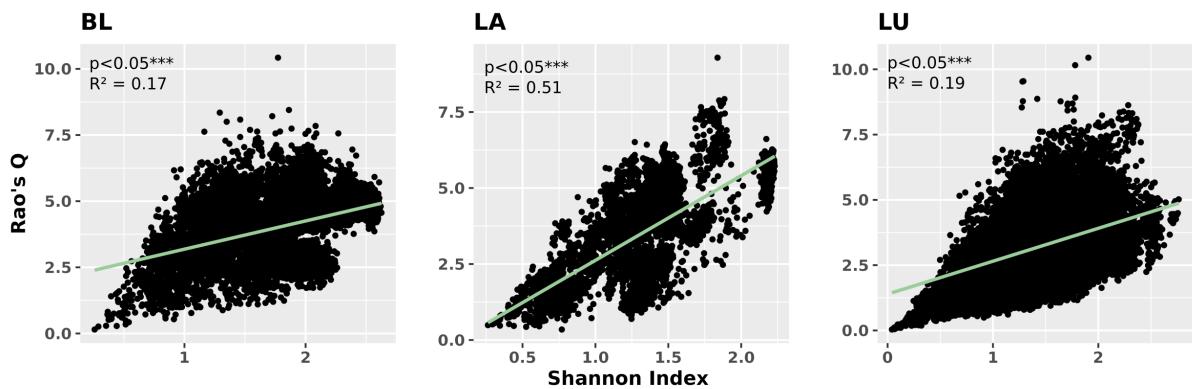


Figure 15: The relationship between Rao's Q (Functional diversity) and Shannon index (Species diversity) per site. Data was summarised for all seasons in one plot. Overall, the linear regression model suggests that there is a significant relationship between Rao's Q and Shannon index, although in BL and LA the model explains only a small proportion of the variance in Rao's Q. Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland).

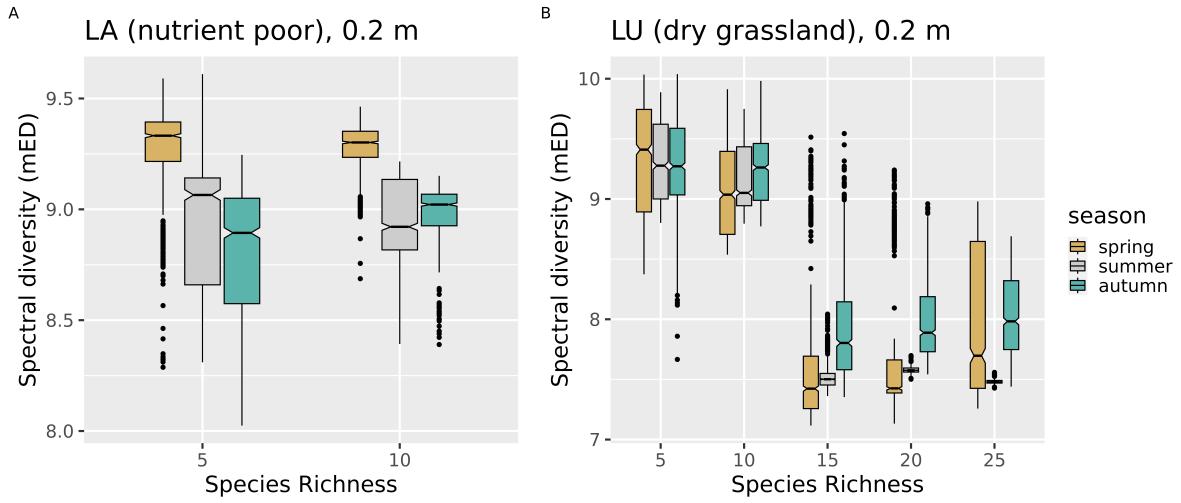


Figure 16: Spectral diversity (mED in log+1) per diversity level for the sites LA and LU across all seasons. Each box contains the mED for all 1000 grassland simulations per diversity level (5 species to 25 species) in the finest resolution (0.2 m pixel size). The relationship between mED and diversity level is not stable across the sites and seasons.

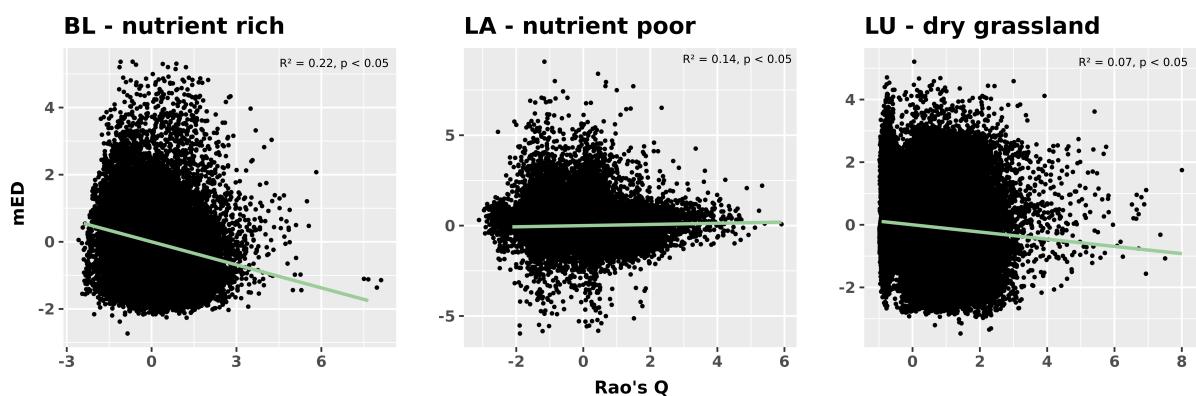


Figure 17: Correlation between the two metrics for spectral diversity. Spectral Rao's Q and mED have been scaled before the linear regression model was applied. Correlations were all non significant and R^2 -values were low ($p > 0.05$ in all cases, see plot panels for site-specific R^2 -values.)

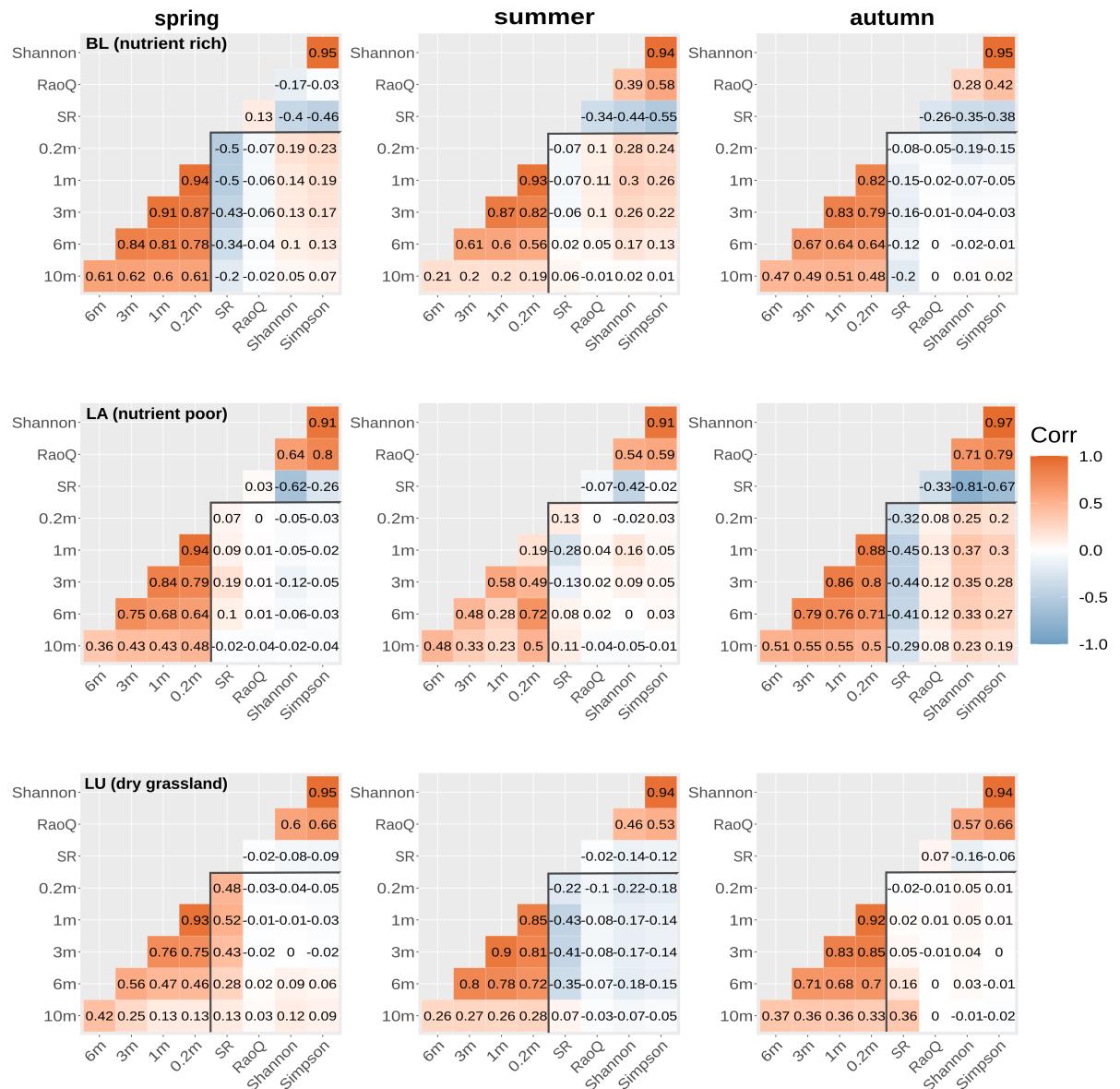


Figure 18: Correlograms representing the bivariate relationships (R-values) between spectral diversity (Rao's Q) and different taxonomic diversity indices calculated for each of the grassland simulations based on in-situ species and trait data. Black numbers show Pearson's correlation coefficient. The lower triangle shows the correlations between spectral Rao's Q of the different spatial resolutions, the upper triangle shows the correlations between the different diversity indices (taxonomic and functional). R-values within the grey box show the correlations between different taxonomic and functional indices and spectral diversity for different spatial resolutions. Labels: 'Simpson' - Simpson-Index, 'Shannon' - Shannon Index, 'RaoQ' - Rao's quadratic entropy, 'SR' - Species Richness. Sites: BL - Bad Lauchstädt, LA - Luppeaue, LU - Lunzberge.