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Abstract13

Covering 30 - 40% of the terrestrial surface, grasslands are important hosts of biodiversity, crucial for14

nutrient cycles and carbon sequestration. However, these ecosystems face a pressing threat in the form15

of biodiversity loss, which can disrupt their functioning and resilience. Addressing this challenge requires16

effective monitoring of biodiversity changes on large scales. Remote sensing emerges as a valuable tool17

in this endeavour, enabling the assessment of grassland biodiversity through the analysis of vegetation18

patterns, species composition, and ecosystem health over extensive areas.19

According to the spectral variation hypothesis (SVH), the link between pixel-to-pixel spectral variation20

and species diversity in remote sensing images can be used to retrieve plant diversity based on spectral21

data. Nevertheless, the transferability of the proposed relation across ecosystem types, seasons and spatial22

resolutions remains unclear. The absence of comprehensive data has hindered systematic assessments of23

the SVH so far, which would ideally incorporate coherent sets of diversity estimates from remote sensing24

data and in-situ plant diversity measurements.25

With this study, we present a combined approach that brings together trait data from field mea-26

surements, simulations of spatial species distributions and radiative transfer models for a systematic and27
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in-depth analysis of the SVH in temperate grasslands. Based on simulated grassland communities with28

different diversity levels, we assessed the spectral-to-species diversity relationship across (1) three tem-29

perate grassland types, (2) three seasons and, (3) five spatial resolutions (from 10 m to 0.2 m pixel size).30

We used the mean Euclidean distance (mED) and Rao’s Q as measures for spectral diversity and different31

indices to describe the species and trait diversity of the simulated grassland communities.32

Based on 45000 simulated grassland communities in five different spatial resolutions, we found that the33

spectral-to-species diversity relationship is not stable across grassland types and seasons, despite the used34

spectral diversity metric. Correlations with spectral diversity were inconsistent for the different applied35

diversity indices and no single index outperformed the others. Spectral diversity was mainly driven by36

the spatial resolution (i.e. pixel size) of the image and not by species richness (SR) or functional trait37

diversity (FD) per se. Our results further underline that the link between SR and FD is not always38

prominent in plant communities and the basic assumption of the SVH is fulfilled only under certain39

conditions. Consequently, we argue that FD, which is an important driver of the spectral signature of a40

plant community, is not inevitably linked to the number of present species in an image. We conclude that41

the interplay of SR and FD is crucial for the expression of the spectral-to-species diversity relationship.42

This study clearly underlines the context-dependency of the SVH and we point out that, although of43

promising value for distinct ecosystems, it is not universally applicable.44

Keywords— spectral heterogeneity, vegetation remote sensing, species richness, functional diversity,45

radiative transfer models, spatial resolution46

1 Introduction47

Biodiversity is declining globally at incomparable rates and across all types of ecosystems (Dı́az et al.48

2019). This loss is associated with dramatic effects on ecosystem functions and services that provide the49

basis for global cycles and human well-being (Cardinale et al. 2012). Plant diversity plays a crucial role50

in the maintenance of ecosystem stability, productivity and health and is therefore of special interest for51

the monitoring of ecosystems under climate change (de Bello et al. 2021; Hautier et al. 2015). Covering52

around 30 - 40% of the terrestrial surface, grasslands are the most intensively used land-cover type (Gibson53

2009). By hosting a large variety of plant species and providing habitats to other organisms, they are54

of utmost importance for the maintenance of global biodiversity. Further, they provide essential carbon55

sinks and therefore contribute substantially to mitigating global warming caused by carbon emissions56

(Petermann et al. 2021).57

Earth observation data play an important role in the development of tools to quantify plant diversity58

continuously across large spatial scales. In-situ measurements of plant diversity are time and labour59

intensive, restricted to a limited spatial extent and the trade-off between time and observation area60
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needs to be considered carefully. They are further biased by the seasonal occurrence of the plants,61

the accessibility of the field site and the experience of the observer (Burg et al. 2015). Considering the62

limitations of traditional vegetation surveys, the additional application of remote sensing (RS) techniques63

can provide a helpful expansion. According to a review of Wang et al. (2019), the assessment of plant64

diversity from RS data can be differentiated into four groups: (1) indirectly through habitat mapping, (2)65

directly through the mapping of individual plant distributions, (3) the mapping of functional diversity66

(based on plant traits, which are more closely related to ecosystem functioning than the species per se),67

and, (4) based on spectral variability. Recognising the value of all mentioned methods, we focus on the68

retrieval of grassland diversity based on spectral variability in this study.69

Introduced by Palmer et al. (2000), the Spectral Variability Hypothesis (SVH) in its original version70

states that the spectral variability of an RS image is linked to the species richness (SR) of the captured71

area. Spectral variability (or spectral diversity) describes the quantitative differences in the reflectance72

spectra between the spatial units (pixels) in a RS image. The basic SVH assumption is that increased73

spectral variability reflects an increased variety of habitats in the surveyed area and a higher number of74

habitats can harbour more species. Accordingly, spectral variability, which indirectly reflects the diversity75

of habitats, can be used as an indicator for SR (ibid.). Over the years, the SVH passed through a scientific76

development in which both its name (towards Spectral Variation Hypothesis) and both the response and77

explanatory variables evolved continuously. The assumed spectral-to-species diversity relationship has78

been applied to RS data in order to assess not only SR (Hall et al. 2012; John et al. 2008; Lucas et al.79

2010; Rocchini, Duccio 2007) but also other related diversity measures, such as species diversity (SD,80

Hauser et al. 2021; Heumann et al. 2015; Oldeland et al. 2010; Wang et al. 2018b) or functional diversity81

(FD, Pacheco-Labrador et al. 2022; Schneider et al. 2017; Schweiger et al. 2018). These are three among82

an ample variety of measures that provide different perspectives on biodiversity. The metrics are often83

used jointly to gain a comprehensive understanding of ecosystem health and stability. In summary, SR84

quantifies the total number of species, SD considers both species richness and their relative abundance,85

and FD evaluates the variety and variability of functional traits and roles exhibited by species. Recent86

studies have shown that the use of different biodiversity measures can lead to different outcomes regarding87

the strength of the spectral-to-species diversity relationship (Hauser et al. 2021; Pacheco-Labrador et88

al. 2022). The choice of the most appropriate measure of spectral diversity is an object of ongoing89

discussion. Among the most commonly applied indices are the mean Euclidean distance (mED), Rao’s90

quadratic entropy (Rao’s Q, Rocchini, Duccio and Marcantonio, Matteo and Ricotta, Carlo 2017), the91

coefficient of variation (CoV), and the standard deviation. All four indices are quantitative measures92

that provide insights into the distribution of spectral data. Higher values of each index generally indicate93

greater spectral diversity, while lower values suggest lower diversity. Rao’s Q considers both richness94

and evenness, while the other indices focus primarily on dissimilarity or variation. mED calculates95

pairwise dissimilarities, while standard deviation measures absolute variability and CoV assesses relative96

variability by normalising it with respect to the mean. mED and Rao’s Q are multivariate metrics that97

3



are more suitable for hyperspectral data, whereas CoV and standard deviation are univariate metrics98

that account for single bands only. Consequently, they require substantial dimensionality reduction and99

are not suitable to reflect the variability of hyperspectral data in the mulitdimensional space.100

Drivers of spectral variation101

The reflectance patterns of plant communities are governed by a combination of physiological, anatomical,102

and biochemical characteristics of the plants. These factors interact with incident light across different103

wavelengths of the electromagnetic spectrum, leading to distinctive reflectance patterns that can be104

captured by remote sensing technologies. Plant canopy reflectance is driven by the set of plant traits that105

cover the above-ground parts of plants which can be referred to as optical plant traits (G. P. Asner 1998;106

Cavender-Bares et al. 2017). Depending on the spatial resolution of the sensor, the received signal is107

composed by more or less mixed reflectances of several plant individuals and the background reflectance.108

We can assume that this signal is mainly determined by the dominant species in the plant community.109

According to the SVH, we expect a higher spectral variability for areas with higher SR and consequently110

a more diverse set of optical traits. Recent studies pointed out that species and their optical traits are111

not the only important drivers for spectral variation in RS images. Other important factors are (1)112

vegetation cover (Hauser et al. 2021), (2) habitat type (Perrone et al. 2023; Rossi et al. 2022), (3) the113

spatial distribution patterns and abundances of the species (Fassnacht et al. 2022; Wang et al. 2018a),114

(4) the seasonal development of the vegetation (Thornley et al. 2022; Wang et al. 2016), (5) and the115

spatial resolution of the RS data (Rocchini, Duccio 2007; Wang et al. 2018b). Of particular importance116

is the vegetation cover, since background soil reflectance can have major effects on the optical signal117

and can lead to an increase of spectral diversity which might cause an overestimation of SR (Gholizadeh118

et al. 2018; Hauser et al. 2021; Wang et al. 2019). Further, the spatial distribution patterns of different119

species in the prevailing plant community influence the spectral variation in remote sensing images. Some120

species, such as Tanacetum vulgare, grow in patches while others, such as Lolium perenne, are distributed121

homogeneously. This causes local variations in the vegetation composition across an area, with ’hotspots’122

of species and trait density in some patches. Spatially heterogeneous trait distribution patterns are locally123

expressed in the reflectance patterns and increase the spectral variability. These patterns are enhanced124

by the variety of life forms in grassland ecosystems. Different species of a grassland community can125

exhibit a large variation in size and growth types (such as grasses, herbaceous species, small shrubs,126

Petermann et al. 2021). Woody species, such as Calluna vulgaris, introduce an additional effect of bark127

(non-greenish plant material that is not part of dead vegetation) to the spectral reflectance pattern and128

thereby increase spectral diversity.129

Beyond different spatial distribution patterns, the species of a plant community occur in different130

proportions (i.e. ’species abundances’). Recent studies have shown that spectral diversity is influenced131

not only by species SR but rather by the interplay of SR and the single species abundances (i.e. ’evenness’132

of a community) (Rocchini et al. 2014; Wang et al. 2018b). Abundance-weighted diversity indices,133
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such as Simpson’s (Simpson 1949) or Shannon’s index (Magurran et al. 2010), express stronger links134

to spectral diversity than SR (Wang et al. 2018a). This can be explained by the fact that the sensor135

receives a mixed spectral signal that contains the spectral signatures of all plant species in a pixel. This136

mixed signal is mainly driven by the most dominant plant species, which is more appropriately reflected137

using abundance-weighted diversity indices. Additionally, seasonal effects influence the spectral-to-species138

diversity relationship. Throughout the seasons, temperate grassland communities exhibit changes in their139

species composition, vegetation structure and trait phenological conditions. Recent studies have reported140

that the timing of sampling has a strong effect on the spectral-to-species diversity relationship (Thornley141

et al. 2022) and should therefore be considered in diversity assessments based on RS data. Further,142

different management practices must be considered when assessing grassland diversity from RS data as143

these change the phenological condition and structure of an area independently from the seasonal cycle144

(Rossi et al. 2022). Finally, the spatial resolution of the RS image (i.e. pixel size) plays a major role in145

the spectral-to-species diversity relationship (e.g. Rocchini, Duccio 2007; Rossi et al. 2022; Wang et al.146

2018b). The ratio between the size of a pixel and the observed objects determines the degree to which147

the received spectral signal is a mixture of different reflectance spectra (Cavender-Bares et al. 2017).148

This is especially apparent in grasslands where the pixel size and the individual plant size can differ149

considerably (Rocchini et al. 2022). Depending on the applied sensor and observed life form, small pixels150

can already contain a mixture of several plant individuals. Wang et al. (2018b) therefore recommend a151

spatial resolution from 1 mm to 10 cm for the assessment of herbaceous plant diversity. However, such152

fine resolutions are only achieved by drones, which do not meet the requirements for large-scale coverage153

for diversity monitoring. All these parameters are fundamental drivers of spectral variation in RS images.154

Unfortunately, they rarely occur exclusively and their single effects on spectral variability are hard to155

disentangle. Although presenting a promising and straightforward approach in times of urgently needed156

grassland diversity monitoring, we should acknowledge that the SVH exhibits various weaknesses (see157

also Fassnacht et al. 2022; Schmidtlein et al. 2017). A detailed analysis of the effects of different drivers158

on the spectral-to-species diversity relationship in grasslands on large scales is a challenging venture. This159

is mainly caused by strong practical limitations in the experimental design. On the one hand, exhaustive160

datasets to test the coherence of diversity estimates from remote sensing signals with in-situ measurements161

of plant diversity are scarce. On the other hand, to analyse the influence of sensor-induced scaling effects,162

tremendous data processing efforts are required. These are usually avoided due to limitations in human163

and financial resources.164

Simulation studies to bridge the data gap165

A promising approach to fill this gap is the targeted design of simulation experiments that allow to166

produce a large number of artificial plant communities. Coupled with spectral data or radiative transfer167

models (RTMs) to generate the spectral data, plant community simulations are a powerful tool to increase168

the size of the test data and bridge the gap between field observations and RS data. However, recent169
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studies have shown that the use of pure spectra from leaf measurements (i.e. via leaf clip, Zhao et al.170

2021) does not lead to reliable results as the soil reflectance and effects of volumetric scattering cannot171

be taken into account, although background soil reflectance has been shown to have a strong impact on172

the spectral variability (Gholizadeh et al. 2018). Additionally, the precise combinations of traits, species173

diversity, and vegetation cover responsible for the observed spectral variations from air- or space-borne174

measurements remain unclear, unless these data can be aligned with in-situ measurements (Badourdine175

et al. 2022). Due to restrictions in the experimental design, none of the studies considered the effects of176

spatial species distributions in combination with in-situ measurements of plant traits. The spatial plant177

species distribution across a habitat can lead to different spectral reflectance patterns. Let us compare178

a uniform plant distribution with stable cover percentages with an area where species are clustered and179

occur in varying proportions. Depending on the spatial resolution we consider, the first area will exhibit180

a uniform spectral signal, while the latter will inherently display greater spectral diversity. Consequently,181

including the spatial plant distribution and corresponding traits in the study design might improve the182

SVH assessment.183

In this study, we present a combined approach that brings together trait data from field measurements,184

simulations of spatial species distributions and RTMs for a systematic and in-depth analysis of the185

SVH in temperate grasslands. For this purpose, we collected species data and performed in-situ trait186

measurements of biophysical properties from three different grassland types in Germany: a nutrient-187

poor, a nutrient-rich and a dry grassland area. The biophysical properties of these grasslands were188

measured in spring, summer and autumn 2021 to capture the site- and season-specific aspects of the189

prevailing plant community in the respective areas. Based on the species data (full vegetation survey190

including species abundances), we simulated two-dimensional spatial plant distribution patterns that191

represent artificial grassland communities on a fixed area of 30 m x 30 m. In combination with our192

trait database, we parameterised a leaf- and canopy-RTM (PROSAIL, Feret et al. 2023; Jacquemoud,193

Stéphane and Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada, Pablo J and194

Asner, Gregory P and François, Christophe and Ustin, Susan L 2009) to generate season- and site-195

specific canopy reflectances according to the grassland simulations. Using this large set of simulations as196

model landscape patches, we systematically assessed the spectral-to-species diversity relationship across197

(1) three different temperate grassland types, (2) three seasons and, (3) five different spatial resolutions198

(from 10 m to 0.2 m pixel size, in line with real-world space- and airborne sensors). We used the mean199

Euclidean distance (mED) and Rao’s Q as measure for spectral diversity and different indices to describe200

species and trait diversity of the simulated grassland communities.201

2 Materials and Methods202

We used simulated spatial distributions of plant communities based on field observations to test the203

spectral-to-species diversity relationship in temperate grasslands for different spatial resolutions. Traits204
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Figure 1: General workflow from species and trait sampling, over grassland simulations and spectra
generation to statistical analysis. Species and trait data were collected for three sites and in three
seasons, respectively. The simulations were performed for five different diversity levels (5 to 25 species)
and with 1000 different species composition variations per diversity level. Spectra were generated by
passing the pixel-wise mean trait values to PROSAIL, for the same grassland simulation represented in
five spatial resolutions (10 m to 0.2 m pixel size). Based on the pixel-wise reflectance values, spectral
diversity was calculated (mean Euclidean distance and spectral Rao’s Q). Measures for taxonomic and
functional diversity were calculated for every single grassland simulation based on the incorporated species
information and trait values. Finally, we calculated the correlation coefficients between the different
spectral diversity metrics for Species Richness (SR), Shannon-Index, Simpson-Index and Rao’s Q to test
the bivariate relationships between multiple variables at different pixel sizes.

from in-situ measurements were used to parameterise radiative transfer models (RTMs) with coherent site-205

and season-specific trait data. Using pixel-wise optical trait means, we applied PROSAIL to simulate the206

spectral reflectance of the simulated grasslands (Fig. 1). The species and trait information together with207

the spectral reflectance patterns were finally used to test the spectral-to-species diversity relationship.208

All simulations, further calculations and statistical analyses were performed in R version 4.1 (R Core209

Team 2020).210

Field Work211

Field sites212

Samples were collected in three structurally different grassland sites in the surroundings of the cities of213

Leipzig (Saxony, Germany) and Halle (Saxony-Anhalt, Germany): (1) The Luppeaue (LA, 51°31’7.8”N,214

11°53’19.9”E, nutrient-poor grassland), (2) Bad Lauchstädt (BL, 51°23’26.4”N, 11°52’35.9”E, nutrient-215

rich), and (3) the Lunzberge site (LU, 51°31’45.2”N, 11°53’25.9”E, dry grassland). A more detailed216

description of the sites can be found in Ludwig et al. (2022).217

Soil reflectance, vegetation surveys & trait sampling218

Measurements on each field site were carried out at the end of April, July and September 2021. To219

minimise the observer bias, the surveys were always performed by the first author. In order to represent220

the site-specific soil reflectance differences in our simulation experiments, soil samples were collected from221

all field sites and respective reflectance spectra measured using the contact probe of a field spectrometer222

(ASD FieldSpec 4®, Malvern Panalytical, UK) in the lab (Fig. A.10). To maximise the effect of223

background soil reflectance, we included dry soil spectra in the RTMs.224
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Further, species and trait data were collected from the three field sites to create a database for the225

grassland simulation experiments. The vegetation surveys and trait sampling were designed in order to226

assess the typical dominance aspects of the prevailing vegetation of each site. Plant traits were chosen227

in accordance with the PROSAIL input parameters that was later used to simulate community-specific228

canopy-level reflectances (Fig. 1). To conduct the vegetation surveys, we recorded all species present229

within a 2 m x 2 m survey frame. This frame was placed randomly 20 times across the study sites. Plots230

were at least 5 m apart from each other. Edge zones of the sites were avoided to allow for a continuous231

species composition and to exclude new species from neighbouring habitats. In each plot, we recorded the232

cover fraction of all species present within the frame and the overall cover fractions of green vegetation,233

and bare soil. Coverage was estimated as total cover fraction on a scale from 0 – 100 %. For each species234

in a plot, the vegetative status was recorded (brown or photosynthetic active) as well as their affiliation235

to mono- or dicotyledons.236

Leaf- and plant-based measurements237

We collected ten plants per species at each field site and during three seasons. To account for intra-specific238

trait variability (ITV), we processed each plant sample individually. We measured the Equivalent Water239

Thickness (EWT, in cm) and Leaf Mass per Area (LMA, in g/cm²) for each plant following Perez-240

Harguindeguy et al. 2016, excluding petioles and thick nerves. The trait values were later transformed241

to fit the unit-specific requirements of PROSAIL (Tab. 1).242

We determined leaf pigments using two sample sets in order to enhance the accuracy. First, we243

collected a calibration set of ± 160 leaf samples. For each sample, we used a handheld SPAD-Chlorophyll244

meter (SPAD-502, KONICA Minolta) to measure SPAD-values as proxy of leaf greenness. The same leaf245

sample was instantly stored at - 74 °C in the field and later chemically analysed to determine chlorophyll246

a, b (Cab) and carotenoid contents (Car) through photospectrometry in the lab. This calibration set was247

necessary, because the precise chemical determination of pigments requires different processing compared248

to the measurements of leaf traits using fresh leaf material. Additionally, we measured the leaf SPAD-249

value of each species in the plot. Leaf nerves, senescent or necrotic parts were carefully avoided. We used250

the average of five measurements per leaf while still being attached to the plant as a species-specific SPAD-251

value and did this for three leaves per plant. We transformed SPAD-values into total leaf chlorophyll252

content using typical calibration equations that are based on chemical determination (Markwell et al.253

1995). Further, we assessed the deviation of the SPAD-values to the chemically determined Cab based254

on the calibration sample set and included this deviation in our SPAD-value transformation in order255

to enhance the accuracy of the SPAD transformation (for more details see Ludwig et al. 2022). Car256

contents cannot be directly derived from SPAD-values. Instead, we used the calibration set to calculate257

the Cab:Car ratio and then derived Car contents from the SPAD-based Cab values.258
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Canopy-based measurements259

In order to obtain structural parameters for the RTM, we measured the Leaf Area Index (LAI) and the260

Mean Tilt Angle (MTA) using an LAI-2200C (Plant Canopy Analyzer®, LiCor® Biosciences Inc., USA)261

in each plot. The LAI is a unitless index that corresponds to the accumulated one-sided leaf area per262

area on the ground and can be treated as indicator of vegetation density. The denser the vegetation263

cover, the higher the LAI. The MTA is the mean leaf angle distribution of the vegetation within a plot.264

Both values were assessed as the mean of five evenly distributed measurements across a 2 m x 2 m plot265

(4 quadrants & 1 centre).266

Table 1: List of input parameters for the radiative transfer model PROSAIL. We incorporated traits
from (1) in-situ trait measurements and leaf sampling in the plots, (2) from structural measurements of
canopy characteristics, and (3) from other sources. Site-specific ranges can be found in Tab. A.6. spr -
spring, sum - summer, aut - autumn.

Parameter Description Ranges Source or equation

(1) Leaf- and plant-based parameters

Cab
(µg/cm2)

Chlorophyll a &
b content

spr 29 - 157
sum 26 - 167
aut 26 - 146

SPAD conversion based on Markwell
et al. (1995) + Standard Deviation
derived from spectrophotometry (Lud-
wig et al. 2022), Cab = 0.0893 ∗
10SPAD0.256

+ SD

Car
(µg/cm2)

Carotenoid content
spr 15 - 39
sum 10 - 41
aut 14 - 37

Via linear regression from Cab content

Cbrown
Brown pigment
content

0 - 1 Field observation: species-wise for
brown (1) or green (0) individuals

Cw (cm)
Equivalent water
thickness

spr 0.003 - 0.9
sum 0.001 - 0.5
aut 0.003 - 0.07

EWT [ g
m
] = LWC∗LMA

1−LWC

EWT [cm] = 1
1000

EWT [
g

cm
]

Cm
(g/cm²)

Leaf mass
per area

spr 0.01 - 0.3
sum 0.001 - 0.15
aut 0.002 - 0.25

Field sampling

(2) Canopy-based parameters

LAI Leaf area index
spr 0.3 - 5.0
sum 0.3 - 4.0
aut 0.5 - 5.0

LiCor2200C

lidfa (°) Mean Tilt Angle
spr 41 - 72
sum 30 - 71
aut 23 - 80

LiCor2200C

(3) Parameters from other sources

N Structure parameter

Monocots & Dicots
spr 1.0-1.5 & 1.9-2.5
sum 1.4-1.7 & 1.6- 2.9
aut 1.5-1.7 & 1.6-2.9

Boren et al. 2019

rsoil Background soil reflectance reflectances from 0-1 Spectrometry of site-specific soil sam-
ples (Fig. 10)

tts (°) Solar zenith angle (°) 34 - 58 Calculated per site and season

tto (°) observer zenith angle 10 Fixed

psi (°) relative azimuth 0 Fixed

hspot hotspot parameter 0.01 Fixed
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Simulation experiment267

Simulated grassland communities268

We used site- and species-specific field data from the vegetation surveys in order to generate spatially269

explicit two dimensional point pattern distributions that represent artificial grassland communities of270

different diversity levels (hereafter ‘grassland simulations’). All grassland simulations were created within271

an observation window of 30 m x 30 m. This base size allowed us to represent the same grassland272

simulation in different spatial resolutions that resemble the most commonly used sensor types for grassland273

diversity monitoring (Tab. 2).274

We applied two different point distribution functions from the spatstat-package in order to create275

the points patterns (i.e. grassland simulations). In the simulations, each plant individual is represented276

by a single point and all points are distributed independently from each other. Different species are277

included as different point types and specific parameters allow to include species-specific point densities278

in the distribution functions. In order to control the effect of the background soil reflectance, population279

densities were fixed to the same point numbers in all simulations (4000 (BL and LA sites) and 1000 (LU280

site) individuals per m²). We calculated this density based on the composition of a common agricultural281

seed-mixture for pastures with an herb content of 10% (BL and LA sites) and nutrient-poor grassland282

(LU site, Tab. A.4). This number is comparable to other studies (Weiner et al. 2001), however, literature283

on grassland community simulations as detailed as ours is sparse. In the following, we describe the four284

steps of the simulation procedure exemplary for a single site and season (Fig. 2).

Figure 2: General workflow for point pattern distributions as basis for the grassland simulations. First,
we use two point distribution functions to create 50 different point patterns per species. In this process,
species-specific distribution patterns and cover fractions from field observations were considered. Second,
point patterns are combined at different diversity levels to create the grassland simulations. Each diversity
level is represented by 1000 grassland simulations with different species combinations. Third, trait values
from field sampling are attached to the species individuals in the simulations. Forth, each simulated
grassland is represented in five different spatial resolutions. Finally, pixel-wise canopy-level reflectance
spectra are generated for the single grassland simulations in five spatial resolutions (from 10 m to 0.2 m
pixel size).

285

First, we created point pattern distributions within the observation window for each single species that286

was recorded in the vegetation surveys. The observation window was set to 30 x 30 area units. We further287

included the recorded species-specific cover fractions from all plots to include the observed variations in288

the simulations. An adjustment of the observation window allowed us to scale the number and density of289

points from the plot level up to the desired grassland simulation size of 30 m x 30 m. Two types of point290
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pattern functions were applied: (1) a homogeneous Poisson point process (Kingman 1992) for species291

such as Bromus specs., Arrhenatherum spec. or Poa specs. with a homogeneous distribution pattern292

across the study sites, and (2) a Matérn cluster process (Matérn 1960) for species such as Nardus stricta293

or bigger clusters (e.g. Tanacetum vulgare).294

The Poisson point process is realised by the rmpoispp-function in spatstat (Baddeley et al. 2005).295

Here, point patterns are created based on the intensity function λ(x, y, m). λ is ”the average number of296

points of type m per unit area near the location (x, y)” (ibid.). We parameterised λ by incorporating297

a vector including the different cover fractions of each species as recorded in the 20 plots at the respec-298

tive observation time. The Matérn cluster process (Matérn 1960) is realised by the rMatClust-function299

(Baddeley et al. 2005). This process includes the intensity factor κ that describes the expected number300

of cluster centres per unit area. We parameterised κ using the respective species’ abundance probability301

across the whole field site that was recorded during the vegetation survey. The scale argument defines the302

radius of the cluster, we parameterised it by using the plot-wise cover fractions for the respective species.303

The argument µ allows defining the mean number of points per cluster and is set to a random number304

between 10 and 100 as the exact number of individuals per cluster is hard to define in the field. Every305

point is attributed with x/y coordinates within the observation window. We created a total number of306

50 independent point pattern distributions per species. Since the points are distributed randomly in each307

iteration, a reasonable variation between the point patterns is included in the simulations.308

Second, we created 1000 grassland simulations for five different diversity levels (n = 5, 10, 15, 20, 25309

species, respectively) by random sampling of n single distribution patterns from the before created point310

patterns to one combined grassland simulation containing n species. 1000 ensure ample variations but are311

still computationally feasible. The random sampling included a probability vector based on the relative312

cover fractions to maintain the species ratios as recorded in the field. The sampling for one grassland313

simulation was repeated until the area was filled with the respective point numbers (BL & LA sites: 4000314

points/ 1 area unit, LU site: 1000 points/ 1 area unit). Consequently, all grassland simulations for one315

site contain the same point numbers (i.e. plants) regardless of species numbers they contain. Third, we316

incorporated the collected in-situ trait data in the simulated grassland simulations. A coherent set of317

species-, site- and season-specific trait values was assigned to each point (i.e. plant individual) in the318

grassland simulations. The complete parameter list can be found in Tab. 1.319

Forth, a set of five regular, quadratic grids was used to divide each simulated grassland simulation into320

virtual pixels. The grid width varied according to the spatial resolution of commonly used optical sensors321

in Earth observation (Tab. 2). The points were assigned to the pixels of a unit based on their x-/y-322

coordinates. By that, we obtained pixel-wise species- and trait information. Mean trait values were323

calculated per pixel and passed to the RTM in order to generate canopy-level reflectance spectra of the324

simulated grasslands in the respective spatial resolution. This enabled us to directly test and compare325

the effects of sensor induced scaling effects based on the exact same grassland community.326

The same procedure was followed for all three field sites and for three seasons each (including the site-327
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and season-specific species inventories and trait data).328

Table 2: Spatial resolutions chosen in accordance to commonly used sensor types. Each simulated
grassland simulation is represented in these five spatial resolutions. The pixel counts refer to the basic
unit of a 30 m x 30 m tile in our simulations.

spatial resolution
(m x m)

10 x 10 6 x 6 3 x 3 1 x 1 0.2 x 0.2

pixel counts 3 x 3 5 x 5 10 x 10 30 x 30 150 x 150

sensor type Sentinel-2 RapidEye Planet, SPOT IKONOS Digital Orthophoto

Radiative Transfer Model PROSAIL and model parameterisation329

RTMs are physical models that can be used to simulate and describe the interactions of sunlight with330

plant canopies and the underlying soil. They can be applied to study the effects of reflectance, absorption331

and scattering on the leaf-level (e.g. PROSPECT, Verhoef 1985; Verhoef, W 1984) and canopy-level (e.g.332

4Sail, Verhoef et al. 2007) and help in understanding the light-plant interactions. PROSAIL is a two-333

dimensional RTM that combines the leaf- and canopy-level interactions (Jacquemoud, Stéphane and334

Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada, Pablo J and Asner, Gregory P335

and François, Christophe and Ustin, Susan L 2009). We applied the hemispherical stream of PROSAIL336

implemented in the hsdar -package (Lehnert et al. 2019) which uses a combination of Prospect-5B (Feret,337

JB and François, C and Asner, G and Gitelson, A and Martin, R and Bidel, L and Ustin, S and Le338

Maire, G and Jacquemoud, S 2008) and 4Sail to generate pixel-based reflectance spectra for the simulated339

grassland simulations on the canopy-level. To reduce the dimensionality of the data, we first performed340

a spectral resampling to 10 nm width using the spectralResample-function and removed the water bands341

(1340 - 1420 nm and 1800 - 1940 nm). The remaining hyperspectral data (188 bands) were kept across342

all spatial resolutions.343

Diversity metrics: spectral, taxonomic and functional diversity344

Based on the species abundances and trait data, we calculated different indices for taxonomic diversity345

for every single grassland simulation using the FD-package (Laliberté et al. 2014). Previous studies led346

to ambiguous results regarding the strength of the relationship between spectral diversity and different347

taxonomic diversity indices (Badourdine et al. 2022; Fauvel et al. 2020; Oldeland et al. 2010; Wang et al.348

2018b). Consequently, we tested the four most commonly used indices (Tab. 3): (1) species richness (SR),349

(2) Shannon’s diversity index (H’), (3) Simpson’s diversity index (D), and (4) Rao’s quadratic entropy350

(Rao’s Q). Shannon’s and Simpson’s diversity index both include the evenness and species richness of a351

plant community, whereas Shannon’s Index is more sensitive to rare species. Due to the differences in352

units and trait value ranges, the data were scaled and centred before the calculation of Rao’s Q.353

Based on the 188 bands of the pixel-wise reflectance spectra, we calculated two spectral diversity indices354

for every grassland simulation in five different spatial resolutions, respectively: (1) the mean Euclidean355
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Table 3: Taxonomic and functional diversity indices used in this study, their description and source.

Index Short Description Source

Species Richness SR
The species count in a
given grassland simulation

–

Shannon’s diversity index H’
A measure of entropy that considers the
species’ proportions besides species
numbers in the quantification of diversity

Magurran et al. 2010

Simpson’s diversity index D

Describes the probability of
selecting two different species from
random sampling with replacement;
sensitive to imbalanced species proportions

Simpson 1949

Rao’s quadratic entropy Rao’s Q

Includes the species abundances
as well as the dissimilarities among
the species in the multi-
dimensional trait space

Botta-Dukát 2005

distance (mED, Rocchini, Duccio and Chiarucci, Alessandro and Loiselle, Steven A. 2004) as the mean356

values of pairwise mED between the pixels of one grassland simulation, and (2) Rao’s Q which is the357

abundance-weighted sum of squared pairwise distances between wavelength reflectances (hereafter ’spec-358

tral Rao’s Q’, Rocchini, Duccio and Marcantonio, Matteo and Ricotta, Carlo 2017). We used the FD-359

package to calculate spectral Rao’s Q from the first nine components after performing a PCA on the360

spectral data to reduce its dimensionality (Dahlin 2016). The reflectance data were scaled and centred361

beforehand. Finally, the correlations between the different taxonomic, functional and spectral diversity362

indices were tested using Person’s correlation coefficient from linear correlation analyses (R, -1 to +1).363

3 Results364

The number of recorded species varied between field sites and seasons and ranged from 14 (LA site,365

nutrient poor) to 34 (LU, dry grassland, Tab. 5). Additionally, a multi-seasonal set of leaf samples was366

collected to provide species-, site- and season-specific traits for the grassland simulations that were passed367

to PROSAIL. An overview on the number of collected samples can be found in Tab. 5.368

Spectra across diversity levels and seasons369

370

The grassland simulations were based on in-situ trait measurements and coupled with RTMs to generate371

community specific reflectance patterns. The resulting spectra show typical spectral vegetation features372

and are comparable to spectral field measurements. In the region of the visible light (vis, 400 - 700 nm),373

the chlorophyll-peak is clearly expressed and shows slight changes across the seasons indicating minimal374

changes in chlorophyll concentrations (Fig. 3 & Fig. A.13). The red edge (750 nm) and NIR-plateau375

(700 - 1300 nm) are fully expressed in all sites and seasons. Changes in the NIR-plateau are apparent in376

the spectra from the BL and LU sites from spring to summer (Fig. 3 & Fig. A.13) indicating stressful377
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Figure 3: Median reflectance spectra of the 1000 simulated grassland communities for the lowest and
highest species numbers in each season in the BL site. Black lines depict the median spectrum of a single
grassland simulation in the finest spatial resolution, i.e. the median spectrum of the reflectance spectra
of 22500 pixels in one simulated grassland simulation. Green areas show the upper and lower quartiles
(75% and 25%) of the pixel-wise spectra from the single simulations. Exemplary for BL - Bad Lauchstädt
(nutrient rich). The reader is referred to the supplementary for the remaining sites.
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conditions around the time of sampling that can be related to heat or drought. Further, the spectra378

from the LU site (nutrient poor) show a less prominent red edge and NIR-plateau. The absence of a379

well-defined red edge and a less distinct NIR-plateau can be indicative of sparse vegetation or canopy gaps380

which is typical for dry grassland areas. In areas with lower vegetation density or gaps in the canopy,381

the reflectance signal may be influenced by a mixture of both vegetation and background reflectance382

(Fig. A.13). In the spectra from the LU site, the influence of the background soil reflectance caused by383

the lower population density in the simulations is clearly visible. The SWIR-region (1300 - 2500 nm)384

is affected by leaf water content and structure. Regarding spectra of the five species simulations, the385

variability in this region is particularly high if the influence of the soil reflectance is stronger (LU site,386

Fig. A.13).387

388

Links between taxonomic and functional diversity389

We simulated grassland communities in different spatial resolutions and generated their spectral re-390

flectances on the canopy level using RTMs in order to examine the spectral-to-species diversity relation-391

ship. According to the SVH, a strong link is expected. We used mED and Rao’s Q to calculate spectral392

diversity. Although both metrics only show a weak correlation (Fig. 17), the overall patterns between393

the different indices for taxonomic, functional and spectral diversity are the same. In the following, we394

describe the results referring to mED as spectral diversity metric (see Fig. 18 for spectral Rao’s Q).395

The overall patterns resulting from the correlation analysis were inconsistent across the study sites and396

seasons. Only few variables showed the expected stable positive relationship, such as Shannon- and397

Simpson-Index since they are mathematically related to each other. Further, both species diversity398

indices were significantly correlated with species numbers (p < 0.05 for all sites and seasons, specific399

R²-values are indicated in Fig. 5, Fig. A.14). Shannon’s and Simpson’s Index increased with increasing400

species number across all sites and seasons (Fig. 5 & A.14). In contrast, raw species numbers showed no401

or only in some cases weak to moderate correlations to functional trait diversity (FD, Fig. 4, Fig. 18).402

This is especially apparent for LU where mean Rao’s Q values are almost stable across the five diversity403

levels and seasons (Fig. 5). Results from the linear regression indicate a significant relationship between404

FD and SR (p < 0.05 for all seasons) but also that a major part of the total variation in the data cannot405

be explained by the model (R² < 0.05 for all seasons).406

Links between spectral diversity, taxonomic and functional diversity407

Results from our simulation experiments did not show a consistent correlation between raw species408

numbers and spectral diversity. This was the case for both mED and spectral Rao’s Q (Fig. 18). The409

assumption of the SVH that higher species numbers result in higher spectral diversity was only met in410

one site and season (BLspring, Fig. 4). In the BL site, the strength of the correlation increased towards411
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finer spatial resolutions (from R10m = 0.37 to R0.2m = 0.68, Fig. 4). In summer, R-values for the BL412

sites differed strongly between the five spatial resolutions and indicate a negative correlation towards413

the finest spatial resolution (from R10m = 0.01 to R0.2m = -0.5, Fig. 4). The opposite was the case for414

the same site in autumn (Fig. 6). Also regarding the other sites and seasons, correlations between raw415

species numbers and spectral diversity for different spatial resolutions were not stable. On the LA site,416

both strength and direction of the correlation changed across the seasons (Fig. 4). On the dry grassland417

site (LU site), results from the simulations indicate an inverse correlation between raw species numbers418

and spectral diversity on different spatial scales (Fig. 4). Moving from raw species numbers to abundance419

weighted diversity indices, the correlation analysis did not reveal a stable pattern. In some cases, the420

correlation between spectral diversity and Shannon’s or Simpson’s index was strongly pronounced and421

increased towards finer spatial resolutions (e.g. BLspring, RShannon, 0.2m = 0.72 and LAsummer,autumn, Fig.422

4). However, this trend was highly variable across sites and seasons. For the LU site, R-values generally423

ranged around R = 0, indicating no correlation between Shannon- or Simpson index and spectral diversity424

across all spatial resolutions.425

Links across sites, seasons and spatial resolution426

427

Summarised for seasons and spatial resolutions, the relationship between species numbers and spectral428

diversity was weak and varied between sites as well as seasons (Fig. 7A). For the dry grassland site (LU429

site), R-values indicate a negative relation between species numbers and spectral diversity and show low430

variation across seasons and spatial resolutions. The opposite was the case for the BL site, where R-values431

vary substantially across the seasons and spatial resolutions and range from positive to negative R-values.432

However, the median RBL ≈ 0 indicates no correlation between the two variables in general. Correlations433

between the abundance-weighted Shannon-Index and spectral diversity were weak for all sites (median434

RBL = 0 to median RLA = 0.25, Fig. 7A). R-values from the three sites ranged between R = −0.25−0.75435

across seasons and spatial resolutions and did not show a clear trend (Fig. 7A). With regard to functional436

diversity (Rao’s Q), median R-values were positive and similar for all sites (median RBL,LA,LU = 0.2, Fig.437

7A), however, indicating a weak positive correlation with spectral diversity. Additionally, the variation438

of R-values across the seasons and spatial resolutions differed between the sites.439

Considering single seasons, the strength and direction of the correlation between the different indices and440

spectral diversity was both index- and season-specific. Median R-values across all sites indicate a negative441

correlation between species numbers and spectral diversity for all seasons (Fig. 7B). Median R-values442

for correlations between Shannon-index and spectral diversity were low, indicating a weak relationship443

between the two variable (Fig. 7B). The same was true for Rao’s Q, although the range of R-values444

across sites and spatial resolutions within one season were larger. In general, the ranges differed between445

the seasons and indices and did not show a clear pattern. For the number of species, results indicate a446
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large variation in R-values in spring which decreased towards autumn, i.e. correlations between species447

numbers and spectral diversity became more similar between sites and spatial resolution in autumn.448

Regarding functional diversity (Rao’s Q), a contrary trend was observed.449

With regard to the spatial resolution, the strength and direction of the correlation depended both on the450

considered metric and the spatial resolution itself. Median R-values for the correlation between species451

numbers and spectral diversity are stable around R = -0.25 (Fig. 7C). The variation in R-values for all452

sites and seasons increased towards the finest resolution. Median R-values indicate no correlation between453

Shannon-Index and spectral diversity at coarse resolutions (median R10m−1m ≈ 0, Fig. 7C) and a slight454

positive trend towards the finest resolution. For Rao’s Q, results indicate an increase in the strength of455

the correlation with spectral diversity towards the finest resolution. Additionally, the variation of the456

R-values across sites and seasons is lowest for this index (Fig. 7C).457

Regarding the relation between spectral diversity and spatial resolution in detail, results from the grass-458

land simulations show a strong influence of the spatial resolution on the simulated spectral diversity.459

Across all sites and seasons, spectral diversity increases towards the finest spatial resolutions (Fig. 8).460

461

4 Discussion462

Using a simulation setup to generate large numbers of artificial grassland communities provides a scalable463

framework to robustly assess the theoretical background of the spectral-to-species diversity relationship.464

Based on multi-seasonal and site-specific field sampling, the simulated communities exhibit through the465

course of seasonal changes regarding both species composition and trait expression. This provides the466

unique opportunity to contextualise our findings with a direct link to the observed habitat itself. Our467

results underline the strong context dependency of the proposed relationship as both spatial scale and468

habitat type strongly influence the correlation between spectral and species diversity. The relationship469

between SR and FD mediates the species-to-spectral diversity relationship, however, this basic assumption470

of the SVH is not fulfilled in all plant communities. Further, seasonal effects are likely to be masked by471

the impact of site-specific management on local plant traits.472

Based on our simulations, we cannot support the transferability of the SVH across habitat types. Our473

results rather reflect the context-dependency of the proposed relationship between different aspects of474

biodiversity and spectral diversity, showing positive correlations for single cases only. Recent literature475

has shown ambiguous results regarding the application of the SVH for plant diversity detection. Several476

studies based on single habitat types provide robust evidence for a positive correlation between spectral477

and species diversity (Badourdine et al. 2022; Rocchini et al. 2014; Rocchini, Duccio and Chiarucci,478

Alessandro and Loiselle, Steven A. 2004). However, other studies regarding a broader spatial extent cov-479

ering different habitats reported unstable or negative relationships (Fassnacht et al. 2022; Schmidtlein et480

al. 2017), supporting the paradigm of habitat-dependency (Perrone et al. 2023). Considering the variety481
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and uniqueness of single habitat types, the observed inconsistencies among results do not come as a sur-482

prise. We included intraspecific trait variability (ITV) across sites and seasons to account for this variety,483

generating RTM based canopy reflectance spectra. This separates our experimental design from studies484

using random samples out of predefined trait ranges. Using trait ranges might be appropriate for agricul-485

tural study sites with more or less controlled conditions where community structure and environmental486

settings are homogeneous. Here, one can assume lower intraspecific trait variability (ITV) (Herrick et al.487

2021). This assumption does not account for semi-natural grasslands: a global meta-analysis by Siefert488

et al. (2015) has shown that ITV accounts for up to 25% of the total within-community trait variance.489

Consequently, using individual-based trait values allowed us to account for ITV to some degree and mimic490

spectral responses more close to reality. Within a plant community, species vary in abundance and cover491

fractions. This introduces another dimension of heterogeneity into the habitat. Our simulations were492

set up in a way that maintained the proportions of the single species as they were recorded in the field493

to ensure reasonable cover fractions in the grassland communities. As a consequence, dominant species494

from the respective field sites remain dominant in the simulations along the diversity gradient and are495

weighted more heavily in the calculation of FD. This is reflected in the low correlations between FD and496

SR (Tab. A.7). The inconsistent relationship between SR and FD leads us away from the notion of497

spectral diversity as measure for SR. The identity of single species in a plant community is not the most498

relevant parameter with regard to its canopy reflectance. Similar as in the concept of plant functional499

types (PFT), we can assume that the optical contribution of species is more important than their identity.500

The concept of PFTs can help to group plant species according to their responses to the environment501

and their effects on ecosystem functioning (Dı́az, Sandra and Cabido, Marcelo 2001). In our study, we502

focused on trait measurements from individual species to calculate FD. However, the species converge503

in only a few PFTs which is further increased through the skewed abundances of single species. Our504

results show that variations in FD within the same diversity level were larger than the variation of FD505

between the different diversity levels. This indicates the occurrence of a limited set of dominant species506

with characteristic optical traits across the simulations of different diversity levels. It is likely that the507

same dominant species (or PFTs) are the main contributors to FD for the individual sites, regardless of508

the simulated SR. Variations in vegetation cover have been reported to be a dominant driver of spectral509

diversity in grasslands (Hauser et al. 2021). In our simulations, we minimised the influence of soil, envi-510

ronment and textures to particularly shed light on the effects of optical traits and canopy structure across511

sites and seasons. Earlier versions of the grassland simulations with low population densities resulted512

in large proportions of bare soil pixels in fine spatial resolutions (3 m and smaller, results not shown)513

and did not allow drawing conclusions on the importance of optical plant traits on spectral diversity.514

Therefore, population densities were estimated based on seed mixtures (4000 individuals / m² for the515

BL and LA sites). Only for the dry grassland site (LU site) we chose a lower population density to516

represent the natural conditions of this specific habitat type appropriately (1000 individuals / m²). In517

this case, the simulations reflect the strong impact of background soil reflectance which can be typical518
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for dry grasslands and hampers diversity estimations based on RS data for these habitats. Less dense519

vegetation inevitably leads to a stronger impact of the background soil reflectance (Fig. A.13), textures520

and environmental heterogeneity on the spectral signal. Setting this high content of spectral information521

in relation to sparse vegetation can lead to an inverse spectral-to-species diversity relationship as reported522

here and in recent studies (Fassnacht et al. 2022; Hauser et al. 2021; Rossi et al. 2022). Comparing our523

results (inconsistent relationship between SR and spectral diversity) to previous studies, we can assume524

that not trait and canopy features, but excluded factors, such as texture and environmental features,525

dominate spectral diversity. The role of background soil reflectance allows various interpretations, as526

results from dry grassland sites have shown. However, our results underline the context-dependency of527

the proposed relationship (see also Perrone et al. 2023; Schmidtlein et al. 2017). Finally, we need to528

consider that, compared to the global spectrum of grassland types, the grasslands chosen as reference in529

our study are rather homogeneous in structure and vegetation composition (all temperate grassland from530

the same latitude). However, differences in the spectral-to-species diversity responses in our simulations531

are already heavily pronounced between study sites. Different species communities and dynamics lead532

to complex patterns of spectral diversity in both space and time (Rossi et al. 2021). Interestingly, our533

results do not suggest substantial differences in the spectral-to-species diversity relationship between sea-534

sons. This can be explained by the site-specific dynamics and management which influence the vegetation535

structure and species compositions and are therefore captured by our trait sampling. We collected data536

from study sites with different management regimes: The LA site (nutrient-poor) was mowed in early537

summer, consequently the plant community and its related traits from the summer sampling rather re-538

semble a typical spring community. The LU site (dry grassland) was occasionally grazed by sheep which539

partially disturbed the growth of distinct herbaceous species and led to a homogeneous canopy height.540

Only the BL site (nutrient-rich) remained undisturbed throughout the whole vegetation season. How-541

ever, the zero-impact management regime caused an accumulation of dead biomass, i.e. increasing the542

percentage of photosynthetically inactive vegetation in the plots. These different dynamics represent a543

part of the complex variety of confounding factors in spectral-to-species diversity relationships that occur544

in “real-world” scenarios and influence this relationship over time. Although the time point of data ac-545

quisition is crucial for a more reliable diversity detection from RS data (Thornley et al. 2022), our results546

clearly show that results can still be misleading if management is not taken into account and support a547

major flaw of the SVH for SR detection (Fassnacht et al. 2022). In the context of utilising the spectral548

variation approach, it may be prudent to reconsider the exclusive pursuit of SR as an ecological target.549

Instead, a more comprehensive understanding of ecosystem dynamics may be attained by concurrently550

considering both the spatial and temporal dimensions of spectral diversity. In this regard, Rossi et al.551

(2021) have presented promising findings that exemplify this integrated approach. The mediating role552

of spatial resolution on the strength of the spectral-to-species diversity relationship has been repeatedly553

reported in recent studies (e.g. Fassnacht et al. 2022; Rossi et al. 2022; Thornley et al. 2023). Based554

on findings from an experimental grassland site, Wang et al. (2018b) showed that the spectral-to-species555
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relationship breaks down from pixel sizes of 10 cm x 10 cm and larger. The same pattern is reflected556

in our results which show an increasing strength of the correlation between FD and spectral diversity557

towards the finer spatial resolutions (1 m, 0.2 m, Fig. 7). However, our results cannot confirm that558

spectral diversity at finer spatial resolutions is directly related to higher FD as the correlation across559

sites and seasons is weak (Tab. A.7). On the contrary, spectral diversity increases with finer spatial560

resolutions more significantly than with increasing FD (Fig. 8). The spectral signal obtained from a561

pixel is composed by all optical traits of the species present within this pixel and the larger the difference562

between the pixel size and the size of the plant individual, the more mixed is the spectral signal. The563

mismatch of this ratio is heavily pronounced in grasslands and leads to a strong spectral mixture. In564

general, a relationship between spectral diversity and SR is not to be expected at spatial resolutions565

that exceed the size of a plant individual (Fassnacht et al. 2022; Thornley et al. 2022). To overcome the566

limitations of SR, the use of abundance-weighted diversity metrics has been recommended by different567

authors (Heumann et al. 2015; Oldeland et al. 2010; Wang et al. 2018a). Based on our simulations, the568

application of the Simpson or Shannon index did not lead to stronger correlations or more consistent569

results across sites, seasons or spatial resolutions. It can be assumed that the spatial arrangement of a570

plant community has a strong impact on the detected spectral signal. Different growth types (patchy571

vs. homogeneous) and heterogeneous plant cover fractions across an area can increase spectral diversity572

independently from the SR within the area. Rare species or species with low cover fractions are likely to573

be underrepresented in the spectral signature. Considering the complex three dimensional structure of574

the stands, this effect would be even more heavily pronounced as their optical traits do not contribute to575

the spectral signal, which is a function of exposure towards the sensor. This fundamental weakness of the576

SVH has already been pointed out by Fassnacht et al. (2022) and our results indicate that this may hold577

true: even if regarded for an ‘ideal’ scenario including only canopy-reflectance, spectral diversity cannot578

reflect SR or FD as long as species are not equally distributed (spatially and abundance-wise) within the579

regarded area. Unfortunately, species are usually not distributed homogeneously in natural ecosystems580

and our simulations clearly show this flaw that hinders a reliable universal application of the SVH across581

ecosystem types. The same fundamental limitations occur in the context of the so-called spectral species582

concept (Féret, JB and Asner, G 2014). This concept likewise assumes that species feature unique sets of583

optical traits that lead to distinct spectral differences. However, the actual size of the species in relation584

to the pixel size as well as their spectral and trait-based uniqueness determine whether this assumption585

actually holds true (Rocchini et al. 2022). These complex dependencies can also explain the variable586

relationships observed in our study. Interestingly, the choice of spectral diversity index did not change587

the outcome of the correlation analysis and the variability of the spectral-to-species diversity relationship588

is equally represented by mED and spectral Rao’s Q (Fig. 4, Fig. 18). In comparison to mED, the589

calculation of spectral Rao’s Q requires much higher computational efforts while potentially delivering590

similar informative value (see also Perrone et al. 2023). Although of high interest, it is beyond the scope591

of this study to analyse the performance of different spectral diversity indices. However, the introduced592
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simulation framework provides the basis for further research on this topic.593

Challenges and limitations594

Only a few studies tried to tackle the spectral-to-species diversity relationship based on plant community595

simulations. Badourdine et al. (2022) applied a restricted modelling process by creating rain forest tree596

populations based on a stratified random sampling of spectral data acquired from imaging spectroscopy.597

Although presenting promising results for forest diversity monitoring, the authors state that their study598

design leaves open questions with regard to the actual drivers behind the positive relationship. Using599

spectral data that cannot be related to in-situ measurements does not provide the needed information on600

trait combinations, canopy structure and community assembly underlying the observed spectral diversity.601

Pacheco-Labrador et al. (2022) approached the SVH by creating artificial plant communities based on602

species-specific trait data from trait databases fed into RTMs to generate spectral data. This design603

allowed them to generate a large number of species-specific spectra that could be used for the sampling604

of plant communities. Again, this study presented a positive spectral-to-species diversity relationship,605

however, spatial effects and the context-dependency of ecosystem types cannot be considered under this606

setup. Following up on these promising studies, we addressed the research gap by creating spatially607

explicit grassland community simulations. In our simulations, the spectral signal is highly influenced by608

the species/ trait distribution, species cover fractions and canopy structural parameters that are based609

on site- and season-specific in-situ measurements. It should be noted that our simulations represent an610

‘ideal’ state of canopy-reflectance: they do not include parameters such as dead biomass and assume ideal611

illumination conditions. The simulations were designed in order to unravel the spectral-to-species diversity612

relationship caused by optical leaf traits only, i.e. to test the theoretical background of the SVH which is613

mainly the interactions between spectral, species, and functional trait diversity. Determining the number614

of plant individuals per unit area posed a challenge in configuring the simulation. Population densities615

vary across habitats and regions, and precise figures are limited in the relevant literature. While not the616

optimal approach, we derived population densities from agricultural seed mixtures. This method enabled617

us to establish an upper limit for plants in the simulated observation area, ensuring sufficiently high618

cover fractions to minimize strong background reflectance. Simultaneously, it maintained the population619

density at a level conducive to the realistic coexistence of plants under plausible conditions. For some620

delicate species (e.g. N. stricta, A. serpyllifolium), SPAD measurements are impossible or potentially621

not robust. This might introduce bias in the generated canopy-level reflectances as the retrieval of622

chlorophyll content for the RTMs is not ideal. The use of the SPAD instrument is not ideal for semi-natural623

grasslands (Ludwig et al. 2022). However, including the variation of SPAD vs. chemical measurements624

in the chlorophyll calculations is, for now, an appropriate measure to tackle the insensitivity of SPAD625

measurements for community means of chlorophyll contents. Considering the simulated spectra, our626

models delivered spectral reflectance patterns for grasslands of different habitats and diversity levels that627
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are comparable to spectral field measurements. Interestingly, the variance between the median spectra of628

the single grassland simulations is highest for the lowest diversity levels (Fig. 1). This is very likely caused629

by the limited species pool that we used as the basis for the grassland simulations. As an example: Based630

on a species pool of 20 species that we randomly drew from (without replacement), grasslands consisting631

of 15 species will be more similar to each other than grasslands with only five species drawn from the same632

species pool. This similarity in species composition within the same diversity level and, consequently,633

optical traits, is reflected in the spectral signal of the grassland simulations. Two parameters associated634

with changes in spectral diversity have not been included in our simulations: flowers and differences in635

life forms. The presence of flowers is timely limited and coupled with a decrease of chlorophyll levels,636

thereby altering the reflectance spectrum of a plant community on short time scales (Shen et al. 2009).637

Colour pigments of non-greenish flowers are associated with changes in the VIS and NIR regions of the638

electromagnetic spectrum of light. They increase reflection in the VIS region and cause lower reflectance639

in the NIR and MIR regions (Landmann et al. 2019). By that, flowers add up on spectral information640

while SR is not increasing which might lead to an overestimation of SR by additionally increasing spectral641

diversity. They further argue that flowers drive spectral diversity by the spatial aggregation of flowers642

within an area (patchiness) and asynchronous flowering patterns (Almeida-Neto et al. 2004). Both cases643

would result in an overestimation of SR based on spectral diversity. In contrast to this assumption644

are recent results which indicate that the retrieval of plant traits from spectral data is hindered in the645

presence of increasing flower proportions (Schiefer et al. 2021). A decreased predictive power of traits646

from RS data inevitably leads to inaccurate estimates of FD which weakens the application potential647

of the SVH. Additionally, grassland communities are shaped by compositions of different life forms that648

show distinct adaptations to the environmental conditions of their habitat (Raunkiaer et al. 1934). We649

did not include this concept in our simulations, however, it can be assumed that the presence of species650

with an increased proportion of non-green material (bark, dead biomass) additionally influences spectral651

diversity. Cbrown has a strong impact on spectral diversity (Torresani et al. 2021) . Although they relate652

this effect mainly to changes in leaf pigments, the same accounts for the bark of woody species (e.g.653

dwarf shrubs such as C. vulgaris). Further research will be necessary to investigate the role of flowers654

and different life forms in the spectral-to-species diversity relationship. With the presented simulation655

setup, we created a suitable tool to address these research gaps in future work.656

Conclusions & Outlook657

According to the SVH, a positive relationship between spectral and species diversity in RS images is658

assumed. We present a detailed assessment of the SVH based on grassland simulations that were built659

on site- and season-specific vegetation surveys and in-situ trait measurements. Coupled with RTMs,660

our approach allowed an in-depth analysis of the theoretical background of the proposed relationships661

regarding different habitats, seasons and spatial resolutions. Our simulation design enabled us to bring662

an ecological context into our findings. In general, the universal applicability of the SVH for biodiversity663
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monitoring across seasons, sensors and ecosystems is lacking proof. Based on 45000 grassland simulations664

in five different spatial resolutions each, we could show that the spectral-to-species diversity is not stable665

across seasons and habitat types. Further, spectral diversity is mainly driven by the spatial resolution666

(i.e. pixel size) of the image and not by SR or FD per se. Moreover, we can assume that FD, which is667

an important driver of the spectral signature of a plant community, is not directly linked to the number668

of present species in an image. Our results clearly underline the context-dependency of the SVH and we669

argue that, although of promising value for distinct ecosystems, it is not universally applicable (Fig. 9).670

The presented framework provides ample opportunities to further assess the spectral-to-species rela-671

tionship regarding various aspects. By maintaining the hyperspectral resolution across all investigated672

spatial resolutions, our simulations provide the basis to assess the potential of future sensors that will673

possibly provide remote sensing data of finer spectral resolution than current missions. To analyse the674

effect of flower coverage across different spatial scales would be easily possible by including different675

flower spectra in the simulations. The same is true for different PFTs. Taking high computational re-676

sources into account, the simulations can be adjusted to finer spatial resolutions. Although of interest,677

it is beyond the scope of this study to test the impact of different measures for spectral diversity on the678

spectral-to-species relationship. However, this issue is definitely an aim of further research. We recognise679

that our study again brings focus to temperate grasslands only, as has been negatively pointed out as680

a shortfall in grassland monitoring studies (Thornley et al. 2023). However, the presented framework681

allows us to incorporate data from other suitable study sites which we warmly encourage. To conclude,682

the relevant question about what facet of diversity is the target objective of a study must be carefully con-683

sidered when interpreting results from spectral diversity assessments. The importance of understanding684

ecological concepts behind SR, species diversity and FD is a crucial prerequisite for reliable biodiversity685

assessments. Further, driving factors behind spectral diversity in RS images can be of many origins and686

are hard to disentangle without detailed in-situ measurements and a clear understanding of the surveyed687

habitat. Therefore, the further development of urgently needed tools for grassland diversity monitoring688

will involve the collaboration of RS experts and ecologists.689
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7 Appendix706

Calculation of population density and point patterns707

Under consideration of the sowing quantity per area and the species-specific weight of 1000 seeds, we708

derived an appropriate estimation of plant individual numbers. An exemplary calculation is presented in709

table A.4. Details on the two different used point pattern distribution types can be found in figure A.12.710

Table 4: Proportion of species (in %) in a seed mix (40 kg/ ha) for a universal pasture grassland with
10% herb content. Including the weight of 1000 seeds per species (”Tausendkorngewicht”, tkg) and the
final number of seeds per m². The description of the seed mix was taken from Camena-Samen (see
https://camena-samen.com/gruenlandmischungen/ for further details).

species % tkg (g) seeds per gramm in mix (in g) seeds in mix per ha seeds per m²

Lolium perenne 34.90 1.30 769.23 14000.00 10769230.77 1076.92

Bromus spec. 8.00 4.00 250.00 3200.00 800000.00 80.00

Festuca spec. 29.90 2.00 500.00 12000.00 6000000.00 600.00

Anthriscus sylvestris 0.60 3.50 285.71 240.00 68571.43 6.86

Bellis perennis 0.20 0.10 10000.00 80.00 800000.00 80.00

Cirsium arvense 0.20 1.10 909.09 80.00 72727.27 7.27

Plantago lanceolata 2.20 2.00 500.00 880.00 440000.00 44.00

Stellaria media 0.60 0.40 2500.00 240.00 600000.00 60.00

Centaurea jacea 0.50 1.20 833.33 200.00 166666.67 16.67

Trifolium repens 8.00 0.65 1538.46 3200.00 4923076.92 492.31

Phleum pratense 15.00 0.40 2500.00 6000.00 15000000.00 1500.00

Total - - - - - 3964

Details on PROSAIL parameterisation711

We used pixel-based trait means as input variables for each grassland unit (Table 1). Based on these712

parameters, we generated pixel-wise reflectance spectra for every grassland unit in its finest resolution713

(150 x 150 pixels). We then aggregated the reflectance spectra step wise towards the coarser resolutions by714

calculating the mean reflectance values from all spectra in the aggregated pixels. Consequently, we gained715
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Table 5: Number of recorded species (SR) and collected trait samples (nb Samp) from field campaigns
per site and season.

Site Season SR nb Samp

BL
spring 21 257
summer 28 177
autumn 23 187

LA
spring 15 137
summer 17 121
autumn 14 125

LU
spring 31 155
summer 31 139
autumn 34 176

a set of five spectral libraries for each grassland unit containing the respective number of spectra according716

to the number of pixels in the respective spatial resolution: From 22.500 spectra in the finest resolution717

(150 x 150 pixels) to nine spectra in the coarsest resolution (3 x 3 pixels). The same procedure was followed718

for all simulated grassland units from all diversity levels, sites and seasons. Some input parameters were,719

however, not easily measurable on the plants. They refer to specific plant characteristics which can720

often only be obtained with complex laboratory analysis. The structure parameter N, for example,721

is an unit less value that refers to the mesophyll structure of leaves based on a simple plate model722

(Jacquemoud, Stéphane and Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada,723

Pablo J and Asner, Gregory P and François, Christophe and Ustin, Susan L 2009). As monocotyledon and724

dicotyledon plants show different structural developments of their leaves, the N -value is often different725

for both of these classes. Monocotyledons are associated with a less complex mesophyll structure and,726

thus, fewer layers and receive smaller N -values than dicotyledons. Also the seasonal development and age727

of the leaves has a strong impact on their structure. Therefore, we chose to seasonally adjust N -values728

accordingly to both monocotyledons and dicotyledons. We chose N-values from the literature that are729

based on leaf-level inversions of the RTM PROSPECT for four different plant species (1 dicotyledon, 3730

monocotyledon) at three different time points of the growing period (Boren et al. 2019). They provide731

so far the most reliable record of N -values. According to the season and class affiliation, a random value732

within the range of the given N -value was assigned to each species in the simulated community (Table 1).733

We further included background soil reflectance from site-specific spectral soil reflectance measurements734

as input variable for rsoil. If pixels remained free of points (i.e. plant individuals) they were filled with735

the site-specific bare soil reflectance spectrum. This was mainly the case for very high spatial resolutions736

(1 m x 1 m and 0.2 m x 0.2 m).737

738

739

740

741
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Table 6: Ranges of leaf traits, pigments and structural canopy parameters from field measurements
per site and season. Cab: chlorophyll a & b content, Car: carotenoid content, Cw: Equivalent water
thickness, Cm: leaf mass per area, LAI: Leaf Area Index, MTA: Mean Tilt Angle.

Site Season Cab (mg/cm²) Car (µg/cm²) Cw (cm) Cm (g/cm²) LAI MTA (°)

BL
spring 33-157 15-39 0.009-0.9 0.001-0.33 1.2-5 41-72
summer 26-167 10-41 0.007-0.5 0.003-0.04 1-3 38-71
autumn 27-146 14-37 0.003-0.07 0.001-0.04 1.4-4.7 23-63

LA
spring 29-85 15-25 0.003-0.07 0.001-0.04 3-5.8 40-62
summer 27-81 14-24 0.007-0.09 0.002-0.03 1.2-4.1 39-67
autumn 35-77 16-24 0.007-0.06 0.002-0.04 1.5-5 42-60

LU
spring 31-95 15-27 0.003-0.04 0.002-0.01 1.3-2.8 43-66
summer 30-92 14-26 0.001-0.4 0.001-0.15 1.3-2.7 30-60
autumn 26-102 14-29 0.008-0.25 0.003-0.2 1.4-3.1 35-80

742
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Table 7: Results for different coefficients (from the linear regression models between different variables per
site and season. All variables were calculated based on the grassland simulations. SR - species richness.
Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry
grassland). Significance levels (p-value, significance of correlation): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1.

Site Coeff Spring Summer Autumn

(1) lm(Shannon ∼ SR)

BL p
R²

< 0.05
0.07

< 0.05
0.09

< 0.05
0.05

LA p
R²

< 0.05
0.03

< 0.05
0.07

< 0.05
0.75

LU p
R²

< 0.05
0.03

< 0.05
0.14

< 0.05
0.06

(2) lm(Simpson ∼ SR)

BL p
R²

< 0.05
0.64

< 0.05
0.39

< 0.05
0.71

LA p
R²

< 0.05
0.19

< 0.05
0.13

< 0.05
0.21

LU p
R²

< 0.05
0.38

< 0.05
0.50

< 0.05
0.09

(3) lm(Rao’s Q ∼ SR)

BL p
R²

< 0.05
0.02

< 0.05
0.01

< 0.05
0.06

LA p
R²

< 0.05
0.09

< 0.05
0.08

< 0.05
0.02

LU p
R²

< 0.05
0.04

< 0.05
< 0.01

< 0.05
0.02

(4) lm(mED0.2m ∼ SR)

BL p
R²

< 0.05
0.47

< 0.05
0.26

< 0.05
0.01

LA p
R²

< 0.05
0.13

< 0.05
< 0.01

< 0.05
< 0.01

LU p
R²

< 0.05
0.14

< 0.05
0.13

< 0.05
0.12

(5) lm(mED0.2m ∼ Rao’s Q)

BL p
R²

< 0.05
0.07

< 0.05
0.09

< 0.05
0.05

LA p
R²

< 0.05
0.03

< 0.05
0.07

< 0.05
0.75

LU p
R²

< 0.05
0.03

< 0.05
0.14

< 0.05
0.06
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Soudzilovskaia, and Peter M van Bodegom (2021). “Explaining discrepancies between spectral and in-

situ plant diversity in multispectral satellite earth observation”. In: Remote Sensing of Environment

265, p. 112684.

Hautier, Yann, David Tilman, Forest Isbell, Eric W. Seabloom, Elizabeth T. Borer, and Peter B. Reich

(2015). “Anthropogenic environmental changes affect ecosystem stability via biodiversity”. In: Science

348.6232, pp. 336–340. doi: 10.1126/science.aaa1788. eprint: https://www.science.org/doi/

pdf/10.1126/science.aaa1788. url: https://www.science.org/doi/abs/10.1126/science.

aaa1788.

Herrick, Etienne and Jennifer Blesh (2021). “Intraspecific trait variation improves understanding and

management of cover crop outcomes”. In: Ecosphere 12.11, e03817. doi: https://doi.org/10.1002/

ecs2.3817. eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecs2.

3817. url: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecs2.3817.

Heumann, Benjamin W, Rachel A Hackett, and Anna K Monfils (2015). “Testing the spectral diversity

hypothesis using spectroscopy data in a simulated wetland community”. In: Ecological Informatics

25, pp. 29–34.
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3 Median reflectance spectra of the 1000 simulated grassland communities for the lowest
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from the single simulations. Exemplary for BL - Bad Lauchstädt (nutrient rich). The
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4 Correlograms representing the bivariate relationships (R-values) between spectral diversity

(mED) and different taxonomic diversity indices calculated for each of the grassland simu-

lations based on in-situ species and trait data. Black numbers show Pearson’s correlation
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spatial resolutions, the upper triangle shows the correlations between the different diversity

indices (taxonomic and functional). R-values within the grey box show the correlations

between different taxonomic and functional indices and spectral diversity for different spa-

tial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ - Shannon Index, ’RaoQ’

- Rao’s quadratic entropy, ’SR’ - Species Richness. Sites: BL - Bad Lauchstädt, LA -

Luppeaue, LU - Lunzberge. See Figure 18 for spectral Rao’s Q. . . . . . . . . . . . . . . . 39

5 Taxonomic and functional diversity indices per diversity level for the LU site as an exam-

ple. Indices were calculated for each of the 1000 grassland simulations per diversity level

and for each season (in different colours). The species and trait data is based on in-situ

measurements from the study sites. Season-specific results from the linear regression model

between the respective index and species numbers are written in each panel. LU - Lunzberge. 40

6 Spectral diversity (mED in log+1) per diversity level. Depicted is the Bad Lauchstädt

(BL site) site in spring, summer and autumn as an example. Each box contains the mED

for all 1000 grassland simulations per diversity level (5 species to 20 species) in the finest

resolution (0.2 m pixel size). Results from the linear regression model between mED and

species numbers are written in each panel. The reader is referred to the remaining plots

of the other study sites in the supplement (Fig. A.16). . . . . . . . . . . . . . . . . . . . 40

7 Correlation coefficients for taxonomic (Number of Species, Shannon-Index) and functional

diversity (Rao’s Q) indices with spectral diversity (mED) from different perspectives.

Boxes show the R-values for the respective index and spectral diversity for (A) the single

sites, including all seasons and spatial resolutions, (B) single seasons, including all sites

and spatial resolutions, and (C) single spatial resolutions, including all sites and seasons.

BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry

grassland). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Spectral diversity per spatial resolution for each site and season. Each box contains the

spectral diversity of all grassland simulations in the respective spatial resolution (i.e. all

diversity levels combined per spatial resolution). The spectral resolution remained un-

changed across the different spatial resolutions (hyperspectral, 188 bands). BL - Bad

Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland). 41

35



9 Schematic overview on the influence of different scenarios of trait expressions on the rela-

tionship between spectral diversity and SR. The figure was inspired by results from Dı́az,

Sandra and Cabido, Marcelo (2001) that presented a detailed analysis on the mismatch

between SD and FD considering different settings. We expanded their concept to the spec-

tral domain. Case (a) represents high intraspecific trait variability at low levels of SR, e.g.

caused by strong environmental heterogeneity in an area. High spectral diversity leads to

an overestimation of SR in this case. Case (b) shows high interspecific trait variability,

increasing with increasing SR. In this case, the link between spectral diversity and SR is

given. Case (c) represents high trait convergence, i.e. different species develop similar sets

of traits in the same area. FD is low and leads to low spectral diversity that does not

represent high SR. Note that environmental heterogeneity or other factors driving spectral

diversity are not included in this graph. These can further lead to an overestimation of

spectral diversity and bias the spectral-to-species diversity relationship. . . . . . . . . . . 41

10 Soil reflectance spectra from all field sites. Samples were collected from the uppermost

layer and dried at 40 °C for at least 48 h. Afterwards, the samples were sieved to a grain

size of 1 mm. Soil reflectance was measured using the contact probe of a field spectrometer

(ASD FieldSpec 4®, Malvern Panalytical, UK) fixed to a stand. Measuring height was

adjusted to the diameter of the measured area (diameter = 5 cm, height = 10 cm) as well as

the incidence angle of the halogen lamp (< = 30°). A correction curve was recorded using a

white reference panel with 95% reflectance prior to the soil reflectance measurements. The

single samples were measured three times and turned approx 120° after each measurement.

Each run consists of three full spectral records (from 350 - 2500 nm wavelength), while

the outcome of reflectance values at individual wavelengths is calculated as the mean of 25

measurements at the exact same position of the spectrum. Samples were first measured

dry (dotted line) and then re-wetted (solid line) to 10% mass content H2O. Site codes: BL

- Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor) , LU - Lunzberge (dry

grassland). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

11 From SPAD-values in the field to total leaf chlorophyll (Cab) and carotenoid (Car) contents

using two sets of samples: A larger set of samples (n= ) that were measured with the

SPAD-chlorophyllmeter and a second set (n = 160) for calibration. Total leaf Cab was

calculated from SPAD-values under consideration of (1) the deviations between measured

Cab based on spectrophotometry and transformed SPAD-values based on Markwell et al.

(1995) (’SD from Markwell’). Further, taking into account (2) the ratio between Cab and

Car (’Cab:Car’) from the calibration set to derive final car for the first sample set. . . . . 42
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12 Realisation of two types of point pattern distributions for approximately 1200 points in

both cases (for better illustration). a) Poisson point pattern process for homogeneously

distributed species (e.g. Lolium perenne). The intensity function was parameterised with

the cover fractions of the individual species that were estimated during field work. b) A

Matern cluster process for species that grow clustered (e.g. T. vulgare). The table shows

the field data that have been used to parameterise the respective density functions. . . . . 43

13 Median reflectance spectra of the 1000 simulated grassland communities for the lowest and

highest species numbers in each season. Black lines depict the median spectrum of a single

grassland simulation in the finest spatial resolution, i.e. the median spectrum of 22500

pixels. Green areas show the upper and lower quartiles (75 % and 25 %) of the pixel-wise

spectra from the single simulations. Panels in the two columns on the left side show the

spectra of LA, the two columns on the right side show the spectra of LU. LA - Luppeaue

(nutrient-poor), LU - Lunzberge (dry-grassland). . . . . . . . . . . . . . . . . . . . . . . . 43

14 Taxonomic and functional diversity indices per site and season. Indices were calculated for

each of the 1000 grassland simulations per diversity level. In order to calculate them for

every single grassland simulation, we attached species-specific trait data to the individual

points in the two dimensional grassland communities. The species and trait data is based

on in-situ measurements from the study sites. Site codes: BL - Bad Lauchstädt (nutrient-

rich), LA - Luppeaue (nutrient-poor). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 The relationship between Rao’s Q (Functional diversity) and Shannon index (Species di-

versity) per site. Data was summarised for all seasons in one plot. Overall, the linear

regression model suggests that there is a significant relationship between Rao’s Q and

Shannon index, although in BL and LA the model explains only a small proportion of

the variance in Rao’s Q. Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue

(nutrient-poor), LU - Lunzberge (dry grassland). . . . . . . . . . . . . . . . . . . . . . . . 44

16 Spectral diversity (mED in log+1) per diversity level for the sites LA and LU across all

seasons. Each box contains the mED for all 1000 grassland simulations per diversity level

(5 species to 25 species) in the finest resolution (0.2 m pixel size). The relationship between

mED and diversity level is not stable across the sites and seasons. . . . . . . . . . . . . . 45

17 Correlation between the two metrics for spectral diversity. Spectral Rao’s Q and mED

have been scaled before the linear regression model was applied. Correlations were all non

significant and R²-values were low (p ¡ 0.05 in all cases, see plot panels for site-specific

R²-values.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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18 Correlograms representing the bivariate relationships (R-values) between spectral diversity

(Rao’s Q) and different taxonomic diversity indices calculated for each of the grassland

simulations based on in-situ species and trait data. Black numbers show Pearson’s cor-

relation coefficient. The lower triangle shows the correlations between spectral Rao’s Q

of the different spatial resolutions, the upper triangle shows the correlations between the

different diversity indices (taxonomic and functional). R-values within the grey box show

the correlations between different taxonomic and functional indices and spectral diversity

for different spatial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ - Shan-

non Index, ’RaoQ’ - Rao’s quadratic entropy, ’SR’ - Species Richness. Sites: BL - Bad

Lauchstädt, LA - Luppeaue, LU - Lunzberge. . . . . . . . . . . . . . . . . . . . . . . . . 46
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Figure 4: Correlograms representing the bivariate relationships (R-values) between spectral diversity
(mED) and different taxonomic diversity indices calculated for each of the grassland simulations based
on in-situ species and trait data. Black numbers show Pearson’s correlation coefficient. The lower triangle
shows the correlations between the mED of the different spatial resolutions, the upper triangle shows the
correlations between the different diversity indices (taxonomic and functional). R-values within the grey
box show the correlations between different taxonomic and functional indices and spectral diversity for
different spatial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ - Shannon Index, ’RaoQ’ -
Rao’s quadratic entropy, ’SR’ - Species Richness. Sites: BL - Bad Lauchstädt, LA - Luppeaue, LU -
Lunzberge. See Figure 18 for spectral Rao’s Q.
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Figure 5: Taxonomic and functional diversity indices per diversity level for the LU site as an example.
Indices were calculated for each of the 1000 grassland simulations per diversity level and for each season
(in different colours). The species and trait data is based on in-situ measurements from the study sites.
Season-specific results from the linear regression model between the respective index and species numbers
are written in each panel. LU - Lunzberge.

Figure 6: Spectral diversity (mED in log+1) per diversity level. Depicted is the Bad Lauchstädt (BL site)
site in spring, summer and autumn as an example. Each box contains the mED for all 1000 grassland
simulations per diversity level (5 species to 20 species) in the finest resolution (0.2 m pixel size). Results
from the linear regression model between mED and species numbers are written in each panel. The reader
is referred to the remaining plots of the other study sites in the supplement (Fig. A.16).

Figure 7: Correlation coefficients for taxonomic (Number of Species, Shannon-Index) and functional
diversity (Rao’s Q) indices with spectral diversity (mED) from different perspectives. Boxes show the
R-values for the respective index and spectral diversity for (A) the single sites, including all seasons
and spatial resolutions, (B) single seasons, including all sites and spatial resolutions, and (C) single
spatial resolutions, including all sites and seasons. BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue
(nutrient-poor), LU - Lunzberge (dry grassland).

.
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Figure 8: Spectral diversity per spatial resolution for each site and season. Each box contains the spectral
diversity of all grassland simulations in the respective spatial resolution (i.e. all diversity levels combined
per spatial resolution). The spectral resolution remained unchanged across the different spatial resolutions
(hyperspectral, 188 bands). BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU -
Lunzberge (dry grassland).

Figure 9: Schematic overview on the influence of different scenarios of trait expressions on the relationship
between spectral diversity and SR. The figure was inspired by results from Dı́az, Sandra and Cabido,
Marcelo (2001) that presented a detailed analysis on the mismatch between SD and FD considering dif-
ferent settings. We expanded their concept to the spectral domain. Case (a) represents high intraspecific
trait variability at low levels of SR, e.g. caused by strong environmental heterogeneity in an area. High
spectral diversity leads to an overestimation of SR in this case. Case (b) shows high interspecific trait
variability, increasing with increasing SR. In this case, the link between spectral diversity and SR is
given. Case (c) represents high trait convergence, i.e. different species develop similar sets of traits in
the same area. FD is low and leads to low spectral diversity that does not represent high SR. Note that
environmental heterogeneity or other factors driving spectral diversity are not included in this graph.
These can further lead to an overestimation of spectral diversity and bias the spectral-to-species diversity
relationship.

41



Figure 10: Soil reflectance spectra from all field sites. Samples were collected from the uppermost layer
and dried at 40 °C for at least 48 h. Afterwards, the samples were sieved to a grain size of 1 mm. Soil
reflectance was measured using the contact probe of a field spectrometer (ASD FieldSpec 4®, Malvern
Panalytical, UK) fixed to a stand. Measuring height was adjusted to the diameter of the measured
area (diameter = 5 cm, height = 10 cm) as well as the incidence angle of the halogen lamp (< = 30°).
A correction curve was recorded using a white reference panel with 95% reflectance prior to the soil
reflectance measurements. The single samples were measured three times and turned approx 120° after
each measurement. Each run consists of three full spectral records (from 350 - 2500 nm wavelength), while
the outcome of reflectance values at individual wavelengths is calculated as the mean of 25 measurements
at the exact same position of the spectrum. Samples were first measured dry (dotted line) and then
re-wetted (solid line) to 10% mass content H2O. Site codes: BL - Bad Lauchstädt (nutrient-rich), LA -
Luppeaue (nutrient-poor) , LU - Lunzberge (dry grassland).

Figure 11: From SPAD-values in the field to total leaf chlorophyll (Cab) and carotenoid (Car) contents us-
ing two sets of samples: A larger set of samples (n= ) that were measured with the SPAD-chlorophyllmeter
and a second set (n = 160) for calibration. Total leaf Cab was calculated from SPAD-values under con-
sideration of (1) the deviations between measured Cab based on spectrophotometry and transformed
SPAD-values based on Markwell et al. (1995) (’SD from Markwell’). Further, taking into account (2) the
ratio between Cab and Car (’Cab:Car’) from the calibration set to derive final car for the first sample
set.
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Figure 12: Realisation of two types of point pattern distributions for approximately 1200 points in
both cases (for better illustration). a) Poisson point pattern process for homogeneously distributed
species (e.g. Lolium perenne). The intensity function was parameterised with the cover fractions of the
individual species that were estimated during field work. b) A Matern cluster process for species that
grow clustered (e.g. T. vulgare). The table shows the field data that have been used to parameterise the
respective density functions.

Figure 13: Median reflectance spectra of the 1000 simulated grassland communities for the lowest and
highest species numbers in each season. Black lines depict the median spectrum of a single grassland
simulation in the finest spatial resolution, i.e. the median spectrum of 22500 pixels. Green areas show the
upper and lower quartiles (75 % and 25 %) of the pixel-wise spectra from the single simulations. Panels
in the two columns on the left side show the spectra of LA, the two columns on the right side show the
spectra of LU. LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry-grassland).
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Figure 14: Taxonomic and functional diversity indices per site and season. Indices were calculated for
each of the 1000 grassland simulations per diversity level. In order to calculate them for every single
grassland simulation, we attached species-specific trait data to the individual points in the two dimensional
grassland communities. The species and trait data is based on in-situ measurements from the study sites.
Site codes: BL - Bad Lauchstädt (nutrient-rich), LA - Luppeaue (nutrient-poor).

Figure 15: The relationship between Rao’s Q (Functional diversity) and Shannon index (Species diversity)
per site. Data was summarised for all seasons in one plot. Overall, the linear regression model suggests
that there is a significant relationship between Rao’s Q and Shannon index, although in BL and LA the
model explains only a small proportion of the variance in Rao’s Q. Site codes: BL - Bad Lauchstädt
(nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland).
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Figure 16: Spectral diversity (mED in log+1) per diversity level for the sites LA and LU across all
seasons. Each box contains the mED for all 1000 grassland simulations per diversity level (5 species to
25 species) in the finest resolution (0.2 m pixel size). The relationship between mED and diversity level
is not stable across the sites and seasons.

Figure 17: Correlation between the two metrics for spectral diversity. Spectral Rao’s Q and mED have
been scaled before the linear regression model was applied. Correlations were all non significant and
R²-values were low (p ¡ 0.05 in all cases, see plot panels for site-specific R²-values.)
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Figure 18: Correlograms representing the bivariate relationships (R-values) between spectral diversity
(Rao’s Q) and different taxonomic diversity indices calculated for each of the grassland simulations based
on in-situ species and trait data. Black numbers show Pearson’s correlation coefficient. The lower
triangle shows the correlations between spectral Rao’s Q of the different spatial resolutions, the upper
triangle shows the correlations between the different diversity indices (taxonomic and functional). R-
values within the grey box show the correlations between different taxonomic and functional indices
and spectral diversity for different spatial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ -
Shannon Index, ’RaoQ’ - Rao’s quadratic entropy, ’SR’ - Species Richness. Sites: BL - Bad Lauchstädt,
LA - Luppeaue, LU - Lunzberge.
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