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Abstract

Covering 30 - 40% of the terrestrial surface, grasslands are important hosts of biodiversity, crucial for
nutrient cycles and carbon sequestration. However, these ecosystems face a pressing threat in the form
of biodiversity loss, which can disrupt their functioning and resilience. Addressing this challenge requires
effective monitoring of biodiversity changes on large scales. Remote sensing emerges as a valuable tool
in this endeavour, enabling the assessment of grassland biodiversity through the analysis of vegetation
patterns, species composition, and ecosystem health over extensive areas.

According to the spectral variation hypothesis (SVH), the link between pixel-to-pixel spectral variation
and species diversity in remote sensing images can be used to retrieve plant diversity based on spectral
data. Nevertheless, the transferability of the proposed relation across ecosystem types, seasons and spatial
resolutions remains unclear. The absence of comprehensive data has hindered systematic assessments of
the SVH so far, which would ideally incorporate coherent sets of diversity estimates from remote sensing
data and in-situ plant diversity measurements.

With this study, we present a combined approach that brings together trait data from field mea-

surements, simulations of spatial species distributions and radiative transfer models for a systematic and
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in-depth analysis of the SVH in temperate grasslands. Based on simulated grassland communities with
different diversity levels, we assessed the spectral-to-species diversity relationship across (1) three tem-
perate grassland types, (2) three seasons and, (3) five spatial resolutions (from 10 m to 0.2 m pixel size).
We used the mean Euclidean distance (mED) and Rao’s Q as measures for spectral diversity and different
indices to describe the species and trait diversity of the simulated grassland communities.

Based on 45000 simulated grassland communities in five different spatial resolutions, we found that the
spectral-to-species diversity relationship is not stable across grassland types and seasons, despite the used
spectral diversity metric. Correlations with spectral diversity were inconsistent for the different applied
diversity indices and no single index outperformed the others. Spectral diversity was mainly driven by
the spatial resolution (i.e. pixel size) of the image and not by species richness (SR) or functional trait
diversity (FD) per se. Our results further underline that the link between SR and FD is not always
prominent in plant communities and the basic assumption of the SVH is fulfilled only under certain
conditions. Consequently, we argue that FD, which is an important driver of the spectral signature of a
plant community, is not inevitably linked to the number of present species in an image. We conclude that
the interplay of SR and FD is crucial for the expression of the spectral-to-species diversity relationship.
This study clearly underlines the context-dependency of the SVH and we point out that, although of

promising value for distinct ecosystems, it is not universally applicable.

Keywords— spectral heterogeneity, vegetation remote sensing, species richness, functional diversity,

radiative transfer models, spatial resolution

1 Introduction

Biodiversity is declining globally at incomparable rates and across all types of ecosystems (Diaz et al.
2019). This loss is associated with dramatic effects on ecosystem functions and services that provide the
basis for global cycles and human well-being (Cardinale et al. 2012). Plant diversity plays a crucial role
in the maintenance of ecosystem stability, productivity and health and is therefore of special interest for
the monitoring of ecosystems under climate change (de Bello et al. 2021; Hautier et al. 2015). Covering
around 30 - 40% of the terrestrial surface, grasslands are the most intensively used land-cover type (Gibson
2009). By hosting a large variety of plant species and providing habitats to other organisms, they are
of utmost importance for the maintenance of global biodiversity. Further, they provide essential carbon
sinks and therefore contribute substantially to mitigating global warming caused by carbon emissions
(Petermann et al. 2021).

Earth observation data play an important role in the development of tools to quantify plant diversity
continuously across large spatial scales. In-situ measurements of plant diversity are time and labour

intensive, restricted to a limited spatial extent and the trade-off between time and observation area
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needs to be considered carefully. They are further biased by the seasonal occurrence of the plants,
the accessibility of the field site and the experience of the observer (Burg et al. 2015). Considering the
limitations of traditional vegetation surveys, the additional application of remote sensing (RS) techniques
can provide a helpful expansion. According to a review of Wang et al. (2019), the assessment of plant
diversity from RS data can be differentiated into four groups: (1) indirectly through habitat mapping, (2)
directly through the mapping of individual plant distributions, (3) the mapping of functional diversity
(based on plant traits, which are more closely related to ecosystem functioning than the species per se),
and, (4) based on spectral variability. Recognising the value of all mentioned methods, we focus on the
retrieval of grassland diversity based on spectral variability in this study.

Introduced by Palmer et al. (2000), the Spectral Variability Hypothesis (SVH) in its original version
states that the spectral variability of an RS image is linked to the species richness (SR) of the captured
area. Spectral variability (or spectral diversity) describes the quantitative differences in the reflectance
spectra between the spatial units (pixels) in a RS image. The basic SVH assumption is that increased
spectral variability reflects an increased variety of habitats in the surveyed area and a higher number of
habitats can harbour more species. Accordingly, spectral variability, which indirectly reflects the diversity
of habitats, can be used as an indicator for SR (ibid.). Over the years, the SVH passed through a scientific
development in which both its name (towards Spectral Variation Hypothesis) and both the response and
explanatory variables evolved continuously. The assumed spectral-to-species diversity relationship has
been applied to RS data in order to assess not only SR (Hall et al. 2012; John et al. 2008; Lucas et al.
2010; Rocchini, Duccio 2007) but also other related diversity measures, such as species diversity (SD,
Hauser et al. 2021; Heumann et al. 2015; Oldeland et al. 2010; Wang et al. 2018b) or functional diversity
(FD, Pacheco-Labrador et al. 2022; Schneider et al. 2017; Schweiger et al. 2018). These are three among
an ample variety of measures that provide different perspectives on biodiversity. The metrics are often
used jointly to gain a comprehensive understanding of ecosystem health and stability. In summary, SR
quantifies the total number of species, SD considers both species richness and their relative abundance,
and FD evaluates the variety and variability of functional traits and roles exhibited by species. Recent
studies have shown that the use of different biodiversity measures can lead to different outcomes regarding
the strength of the spectral-to-species diversity relationship (Hauser et al. 2021; Pacheco-Labrador et
al. 2022). The choice of the most appropriate measure of spectral diversity is an object of ongoing
discussion. Among the most commonly applied indices are the mean Euclidean distance (mED), Rao’s
quadratic entropy (Rao’s Q, Rocchini, Duccio and Marcantonio, Matteo and Ricotta, Carlo 2017), the
coefficient of variation (CoV), and the standard deviation. All four indices are quantitative measures
that provide insights into the distribution of spectral data. Higher values of each index generally indicate
greater spectral diversity, while lower values suggest lower diversity. Rao’s @ considers both richness
and evenness, while the other indices focus primarily on dissimilarity or variation. mED calculates
pairwise dissimilarities, while standard deviation measures absolute variability and CoV assesses relative

variability by normalising it with respect to the mean. mED and Rao’s Q are multivariate metrics that



98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

are more suitable for hyperspectral data, whereas CoV and standard deviation are univariate metrics
that account for single bands only. Consequently, they require substantial dimensionality reduction and

are not suitable to reflect the variability of hyperspectral data in the mulitdimensional space.

Drivers of spectral variation

The reflectance patterns of plant communities are governed by a combination of physiological, anatomical,
and biochemical characteristics of the plants. These factors interact with incident light across different
wavelengths of the electromagnetic spectrum, leading to distinctive reflectance patterns that can be
captured by remote sensing technologies. Plant canopy reflectance is driven by the set of plant traits that
cover the above-ground parts of plants which can be referred to as optical plant traits (G. P. Asner 1998;
Cavender-Bares et al. 2017). Depending on the spatial resolution of the sensor, the received signal is
composed by more or less mixed reflectances of several plant individuals and the background reflectance.
We can assume that this signal is mainly determined by the dominant species in the plant community.
According to the SVH, we expect a higher spectral variability for areas with higher SR and consequently
a more diverse set of optical traits. Recent studies pointed out that species and their optical traits are
not the only important drivers for spectral variation in RS images. Other important factors are (1)
vegetation cover (Hauser et al. 2021), (2) habitat type (Perrone et al. 2023; Rossi et al. 2022), (3) the
spatial distribution patterns and abundances of the species (Fassnacht et al. 2022; Wang et al. 2018a),
(4) the seasonal development of the vegetation (Thornley et al. 2022; Wang et al. 2016), (5) and the
spatial resolution of the RS data (Rocchini, Duccio 2007; Wang et al. 2018b). Of particular importance
is the vegetation cover, since background soil reflectance can have major effects on the optical signal
and can lead to an increase of spectral diversity which might cause an overestimation of SR (Gholizadeh
et al. 2018; Hauser et al. 2021; Wang et al. 2019). Further, the spatial distribution patterns of different
species in the prevailing plant community influence the spectral variation in remote sensing images. Some
species, such as Tanacetum vulgare, grow in patches while others, such as Lolium perenne, are distributed
homogeneously. This causes local variations in the vegetation composition across an area, with "hotspots’
of species and trait density in some patches. Spatially heterogeneous trait distribution patterns are locally
expressed in the reflectance patterns and increase the spectral variability. These patterns are enhanced
by the variety of life forms in grassland ecosystems. Different species of a grassland community can
exhibit a large variation in size and growth types (such as grasses, herbaceous species, small shrubs,
Petermann et al. 2021). Woody species, such as Calluna vulgaris, introduce an additional effect of bark
(non-greenish plant material that is not part of dead vegetation) to the spectral reflectance pattern and
thereby increase spectral diversity.

Beyond different spatial distribution patterns, the species of a plant community occur in different
proportions (i.e. ’species abundances’). Recent studies have shown that spectral diversity is influenced
not only by species SR but rather by the interplay of SR and the single species abundances (i.e. ’evenness’

of a community) (Rocchini et al. 2014; Wang et al. 2018b). Abundance-weighted diversity indices,
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such as Simpson’s (Simpson 1949) or Shannon’s index (Magurran et al. 2010), express stronger links
to spectral diversity than SR (Wang et al. 2018a). This can be explained by the fact that the sensor
receives a mixed spectral signal that contains the spectral signatures of all plant species in a pixel. This
mixed signal is mainly driven by the most dominant plant species, which is more appropriately reflected
using abundance-weighted diversity indices. Additionally, seasonal effects influence the spectral-to-species
diversity relationship. Throughout the seasons, temperate grassland communities exhibit changes in their
species composition, vegetation structure and trait phenological conditions. Recent studies have reported
that the timing of sampling has a strong effect on the spectral-to-species diversity relationship (Thornley
et al. 2022) and should therefore be considered in diversity assessments based on RS data. Further,
different management practices must be considered when assessing grassland diversity from RS data as
these change the phenological condition and structure of an area independently from the seasonal cycle
(Rossi et al. 2022). Finally, the spatial resolution of the RS image (i.e. pixel size) plays a major role in
the spectral-to-species diversity relationship (e.g. Rocchini, Duccio 2007; Rossi et al. 2022; Wang et al.
2018b). The ratio between the size of a pixel and the observed objects determines the degree to which
the received spectral signal is a mixture of different reflectance spectra (Cavender-Bares et al. 2017).
This is especially apparent in grasslands where the pixel size and the individual plant size can differ
considerably (Rocchini et al. 2022). Depending on the applied sensor and observed life form, small pixels
can already contain a mixture of several plant individuals. Wang et al. (2018b) therefore recommend a
spatial resolution from 1 mm to 10 cm for the assessment of herbaceous plant diversity. However, such
fine resolutions are only achieved by drones, which do not meet the requirements for large-scale coverage
for diversity monitoring. All these parameters are fundamental drivers of spectral variation in RS images.
Unfortunately, they rarely occur exclusively and their single effects on spectral variability are hard to
disentangle. Although presenting a promising and straightforward approach in times of urgently needed
grassland diversity monitoring, we should acknowledge that the SVH exhibits various weaknesses (see
also Fassnacht et al. 2022; Schmidtlein et al. 2017). A detailed analysis of the effects of different drivers
on the spectral-to-species diversity relationship in grasslands on large scales is a challenging venture. This
is mainly caused by strong practical limitations in the experimental design. On the one hand, exhaustive
datasets to test the coherence of diversity estimates from remote sensing signals with in-situ measurements
of plant diversity are scarce. On the other hand, to analyse the influence of sensor-induced scaling effects,
tremendous data processing efforts are required. These are usually avoided due to limitations in human

and financial resources.

Simulation studies to bridge the data gap

A promising approach to fill this gap is the targeted design of simulation experiments that allow to
produce a large number of artificial plant communities. Coupled with spectral data or radiative transfer
models (RTMs) to generate the spectral data, plant community simulations are a powerful tool to increase

the size of the test data and bridge the gap between field observations and RS data. However, recent
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studies have shown that the use of pure spectra from leaf measurements (i.e. via leaf clip, Zhao et al.
2021) does not lead to reliable results as the soil reflectance and effects of volumetric scattering cannot
be taken into account, although background soil reflectance has been shown to have a strong impact on
the spectral variability (Gholizadeh et al. 2018). Additionally, the precise combinations of traits, species
diversity, and vegetation cover responsible for the observed spectral variations from air- or space-borne
measurements remain unclear, unless these data can be aligned with in-situ measurements (Badourdine
et al. 2022). Due to restrictions in the experimental design, none of the studies considered the effects of
spatial species distributions in combination with in-situ measurements of plant traits. The spatial plant
species distribution across a habitat can lead to different spectral reflectance patterns. Let us compare
a uniform plant distribution with stable cover percentages with an area where species are clustered and
occur in varying proportions. Depending on the spatial resolution we consider, the first area will exhibit
a uniform spectral signal, while the latter will inherently display greater spectral diversity. Consequently,
including the spatial plant distribution and corresponding traits in the study design might improve the
SVH assessment.

In this study, we present a combined approach that brings together trait data from field measurements,
simulations of spatial species distributions and RTMs for a systematic and in-depth analysis of the
SVH in temperate grasslands. For this purpose, we collected species data and performed in-situ trait
measurements of biophysical properties from three different grassland types in Germany: a nutrient-
poor, a nutrient-rich and a dry grassland area. The biophysical properties of these grasslands were
measured in spring, summer and autumn 2021 to capture the site- and season-specific aspects of the
prevailing plant community in the respective areas. Based on the species data (full vegetation survey
including species abundances), we simulated two-dimensional spatial plant distribution patterns that
represent artificial grassland communities on a fixed area of 30 m « 30 m. In combination with our
trait database, we parameterised a leaf- and canopy-RTM (PROSAIL, Feret et al. 2023; Jacquemoud,
Stéphane and Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada, Pablo J and
Asner, Gregory P and Frangois, Christophe and Ustin, Susan L 2009) to generate season- and site-
specific canopy reflectances according to the grassland simulations. Using this large set of simulations as
model landscape patches, we systematically assessed the spectral-to-species diversity relationship across
(1) three different temperate grassland types, (2) three seasons and, (3) five different spatial resolutions
(from 10 m to 0.2 m pixel size, in line with real-world space- and airborne sensors). We used the mean
Euclidean distance (mED) and Rao’s Q as measure for spectral diversity and different indices to describe

species and trait diversity of the simulated grassland communities.

2 Materials and Methods

We used simulated spatial distributions of plant communities based on field observations to test the

spectral-to-species diversity relationship in temperate grasslands for different spatial resolutions. Traits
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Figure 1: General workflow from species and trait sampling, over grassland simulations and spectra
generation to statistical analysis. Species and trait data were collected for three sites and in three
seasons, respectively. The simulations were performed for five different diversity levels (5 to 25 species)
and with 1000 different species composition variations per diversity level. Spectra were generated by
passing the pixel-wise mean trait values to PROSAIL, for the same grassland simulation represented in
five spatial resolutions (10 m to 0.2 m pixel size). Based on the pixel-wise reflectance values, spectral
diversity was calculated (mean Euclidean distance and spectral Rao’s Q). Measures for taxonomic and
functional diversity were calculated for every single grassland simulation based on the incorporated species
information and trait values. Finally, we calculated the correlation coefficients between the different
spectral diversity metrics for Species Richness (SR), Shannon-Index, Simpson-Index and Rao’s Q to test
the bivariate relationships between multiple variables at different pixel sizes.

Fieldwork:
species & trait data,
\ structural measurements

from in-situ measurements were used to parameterise radiative transfer models (RTMs) with coherent site-
and season-specific trait data. Using pixel-wise optical trait means, we applied PROSAIL to simulate the
spectral reflectance of the simulated grasslands (Fig. 1). The species and trait information together with
the spectral reflectance patterns were finally used to test the spectral-to-species diversity relationship.
All simulations, further calculations and statistical analyses were performed in R version 4.1 (R Core

Team 2020).

Field Work
Field sites

Samples were collected in three structurally different grassland sites in the surroundings of the cities of
Leipzig (Saxony, Germany) and Halle (Saxony-Anhalt, Germany): (1) The Luppeaue (LA, 51°31°’7.8”N;
11°53’19.9”E, nutrient-poor grassland), (2) Bad Lauchstadt (BL, 51°23’26.4”N, 11°52’35.9”E, nutrient-
rich), and (3) the Lunzberge site (LU, 51°31’45.2”N, 11°53°25.9”E, dry grassland). A more detailed

description of the sites can be found in Ludwig et al. (2022).

Soil reflectance, vegetation surveys & trait sampling

Measurements on each field site were carried out at the end of April, July and September 2021. To
minimise the observer bias, the surveys were always performed by the first author. In order to represent
the site-specific soil reflectance differences in our simulation experiments, soil samples were collected from
all field sites and respective reflectance spectra measured using the contact probe of a field spectrometer
(ASD FieldSpec 4®, Malvern Panalytical, UK) in the lab (Fig. A.10). To maximise the effect of

background soil reflectance, we included dry soil spectra in the RTMs.



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

Further, species and trait data were collected from the three field sites to create a database for the
grassland simulation experiments. The vegetation surveys and trait sampling were designed in order to
assess the typical dominance aspects of the prevailing vegetation of each site. Plant traits were chosen
in accordance with the PROSAIL input parameters that was later used to simulate community-specific
canopy-level reflectances (Fig. 1). To conduct the vegetation surveys, we recorded all species present
within a 2 m = 2 m survey frame. This frame was placed randomly 20 times across the study sites. Plots
were at least 5 m apart from each other. Edge zones of the sites were avoided to allow for a continuous
species composition and to exclude new species from neighbouring habitats. In each plot, we recorded the
cover fraction of all species present within the frame and the overall cover fractions of green vegetation,
and bare soil. Coverage was estimated as total cover fraction on a scale from 0 — 100 %. For each species
in a plot, the vegetative status was recorded (brown or photosynthetic active) as well as their affiliation

to mono- or dicotyledons.

Leaf- and plant-based measurements

We collected ten plants per species at each field site and during three seasons. To account for intra-specific
trait variability (ITV), we processed each plant sample individually. We measured the Equivalent Water
Thickness (EWT, in ¢cm) and Leaf Mass per Area (LMA, in g/cm?) for each plant following Perez-
Harguindeguy et al. 2016, excluding petioles and thick nerves. The trait values were later transformed
to fit the unit-specific requirements of PROSAIL (Tab. 1).

We determined leaf pigments using two sample sets in order to enhance the accuracy. First, we
collected a calibration set of + 160 leaf samples. For each sample, we used a handheld SPAD-Chlorophyll
meter (SPAD-502, KONICA Minolta) to measure SPAD-values as proxy of leaf greenness. The same leaf
sample was instantly stored at - 74 °C in the field and later chemically analysed to determine chlorophyll
a, b (Cab) and carotenoid contents (Car) through photospectrometry in the lab. This calibration set was
necessary, because the precise chemical determination of pigments requires different processing compared
to the measurements of leaf traits using fresh leaf material. Additionally, we measured the leaf SPAD-
value of each species in the plot. Leaf nerves, senescent or necrotic parts were carefully avoided. We used
the average of five measurements per leaf while still being attached to the plant as a species-specific SPAD-
value and did this for three leaves per plant. We transformed SPAD-values into total leaf chlorophyll
content using typical calibration equations that are based on chemical determination (Markwell et al.
1995). Further, we assessed the deviation of the SPAD-values to the chemically determined Cab based
on the calibration sample set and included this deviation in our SPAD-value transformation in order
to enhance the accuracy of the SPAD transformation (for more details see Ludwig et al. 2022). Car
contents cannot be directly derived from SPAD-values. Instead, we used the calibration set to calculate

the Cab:Car ratio and then derived Car contents from the SPAD-based Cab values.
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Canopy-based measurements

In order to obtain structural parameters for the RTM, we measured the Leaf Area Index (LAI) and the

Mean Tilt Angle (MTA) using an LAI-2200C (Plant Canopy Analyzer®, LiCor® Biosciences Inc., USA)

in each plot. The LAI is a unitless index that corresponds to the accumulated one-sided leaf area per

area on the ground and can be treated as indicator of vegetation density. The denser the vegetation

cover, the higher the LAI. The MTA is the mean leaf angle distribution of the vegetation within a plot.

Both values were assessed as the mean of five evenly distributed measurements across a 2 m = 2 m plot

(4 quadrants & 1 centre).

Table 1: List of input parameters for the radiative transfer model PROSAIL. We incorporated traits
from (1) in-situ trait measurements and leaf sampling in the plots, (2) from structural measurements of
canopy characteristics, and (3) from other sources. Site-specific ranges can be found in Tab. A.G. spr -

spring, sum - summer, aut - autumn.

Parameter Description Ranges Source or equation
(1) Leaf- and plant-based parameters
spr 29 - 157
(Cab/ch) E }élc?rfiﬁyn a ke sum 26 - 167 SPAD conversion based on Markwell
ne aut 26 - 146 et al. (1995) 4+ Standard Deviation
derived from spectrophotometry (Lud-
wig et al. 2022), Cab = 0.0893 %
IOSPAD0'256 + SD
Car spr 15 -39
2 Carotenoid content sum 10 - 41 Via linear regression from Cab content
(ng/cm”)
e aut 14 - 37
Cbrown ?;zzzﬁtplgment 0-1 Field observation: species-wise for
brown (1) or green (0) individuals
Equivalent water spr 0.003 - 0.9 EWT[L] = L‘iv_c;‘/%/ng
Cw (cm) . sum 0.001 - 0.5 - 1
thickness EWT[cm] = —oo0—
aut 0.003 - 0.07 BEwT[ L]
Spr 0.01-0.3
(C;cmz) ]I;gjfafézss sum 0.001 - 0.15 Field sampling

aut 0.002 - 0.25

(2) Canopy-based parameters

LAI Leaf area index

spr 0.3-5.0
sum 0.3 - 4.0
aut 0.5 - 5.0

LiCor2200C

lidfa (°) Mean Tilt Angle

spr 41-72
sum 30 - 71
aut 23 - 80

LiCor2200C

(3) Parameters from other sources

Monocots & Dicots
spr 1.0-1.5 & 1.9-2.5

N Structure parameter sum 1.4-1.7 & 1.6- 2.9 Boren et al. 2019
aut 1.5-1.7 & 1.6-2.9
rsoil Background soil reflectance  reflectances from 0-1 Spectrometry of site-specific soil sam-
ples (Fig. 10)
tts (°) Solar zenith angle (°) 34 - 58 Calculated per site and season
tto (°) observer zenith angle 10 Fixed
psi (°) relative azimuth 0 Fixed
hspot hotspot parameter 0.01 Fixed
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Simulation experiment
Simulated grassland communities

We used site- and species-specific field data from the vegetation surveys in order to generate spatially
explicit two dimensional point pattern distributions that represent artificial grassland communities of
different diversity levels (hereafter ‘grassland simulations’). All grassland simulations were created within
an observation window of 30 m x 30 m. This base size allowed us to represent the same grassland
simulation in different spatial resolutions that resemble the most commonly used sensor types for grassland
diversity monitoring (Tab. 2).

We applied two different point distribution functions from the spatstat-package in order to create
the points patterns (i.e. grassland simulations). In the simulations, each plant individual is represented
by a single point and all points are distributed independently from each other. Different species are
included as different point types and specific parameters allow to include species-specific point densities
in the distribution functions. In order to control the effect of the background soil reflectance, population
densities were fixed to the same point numbers in all simulations (4000 (BL and LA sites) and 1000 (LU
site) individuals per m?). We calculated this density based on the composition of a common agricultural
seed-mixture for pastures with an herb content of 10% (BL and LA sites) and nutrient-poor grassland
(LU site, Tab. A.4). This number is comparable to other studies (Weiner et al. 2001), however, literature
on grassland community simulations as detailed as ours is sparse. In the following, we describe the four

steps of the simulation procedure exemplary for a single site and season (Fig. 2).

5= m)

. N . sample distribution from n attach trait data to species generate spectra (RTM) for the same
1 5'“’]“:'3_"?"5' petr'sg}"f":s | species — merge to single _ (i.e. points) grassland unit in five spatial resolutions
point = 1 plant individua site-& season-specific (from 10 m to 0.2 m pixel size)

/ \grassland community/ \ / \ /

Figure 2: General workflow for point pattern distributions as basis for the grassland simulations. First,
we use two point distribution functions to create 50 different point patterns per species. In this process,
species-specific distribution patterns and cover fractions from field observations were considered. Second,
point patterns are combined at different diversity levels to create the grassland simulations. Each diversity
level is represented by 1000 grassland simulations with different species combinations. Third, trait values
from field sampling are attached to the species individuals in the simulations. Forth, each simulated
grassland is represented in five different spatial resolutions. Finally, pixel-wise canopy-level reflectance
spectra are generated for the single grassland simulations in five spatial resolutions (from 10 m to 0.2 m
pixel size).

First, we created point pattern distributions within the observation window for each single species that
was recorded in the vegetation surveys. The observation window was set to 30 z 30 area units. We further
included the recorded species-specific cover fractions from all plots to include the observed variations in
the simulations. An adjustment of the observation window allowed us to scale the number and density of

points from the plot level up to the desired grassland simulation size of 30 m x 30 m. Two types of point
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pattern functions were applied: (1) a homogeneous Poisson point process (Kingman 1992) for species
such as Bromus specs., Arrhenatherum spec. or Poa specs. with a homogeneous distribution pattern
across the study sites, and (2) a Matérn cluster process (Matérn 1960) for species such as Nardus stricta
or bigger clusters (e.g. Tanacetum vulgare).

The Poisson point process is realised by the rmpoispp-function in spatstat (Baddeley et al. 2005).
Here, point patterns are created based on the intensity function A(x, y, m). A is "the average number of
points of type m per unit area near the location (z, y)” (ibid.). We parameterised A by incorporating
a vector including the different cover fractions of each species as recorded in the 20 plots at the respec-
tive observation time. The Matérn cluster process (Matérn 1960) is realised by the rMatClust-function
(Baddeley et al. 2005). This process includes the intensity factor x that describes the expected number
of cluster centres per unit area. We parameterised x using the respective species’ abundance probability
across the whole field site that was recorded during the vegetation survey. The scale argument defines the
radius of the cluster, we parameterised it by using the plot-wise cover fractions for the respective species.
The argument p allows defining the mean number of points per cluster and is set to a random number
between 10 and 100 as the exact number of individuals per cluster is hard to define in the field. Every
point is attributed with z/y coordinates within the observation window. We created a total number of
50 independent point pattern distributions per species. Since the points are distributed randomly in each
iteration, a reasonable variation between the point patterns is included in the simulations.

Second, we created 1000 grassland simulations for five different diversity levels (n = 5, 10, 15, 20, 25

species, respectively) by random sampling of n single distribution patterns from the before created point
patterns to one combined grassland simulation containing n species. 1000 ensure ample variations but are
still computationally feasible. The random sampling included a probability vector based on the relative
cover fractions to maintain the species ratios as recorded in the field. The sampling for one grassland
simulation was repeated until the area was filled with the respective point numbers (BL & LA sites: 4000
points/ 1 area unit, LU site: 1000 points/ 1 area unit). Consequently, all grassland simulations for one
site contain the same point numbers (i.e. plants) regardless of species numbers they contain. Third, we
incorporated the collected in-situ trait data in the simulated grassland simulations. A coherent set of
species-, site- and season-specific trait values was assigned to each point (i.e. plant individual) in the
grassland simulations. The complete parameter list can be found in Tab. 1.
Forth, a set of five regular, quadratic grids was used to divide each simulated grassland simulation into
virtual pixels. The grid width varied according to the spatial resolution of commonly used optical sensors
in Earth observation (Tab. 2). The points were assigned to the pixels of a unit based on their a-/y-
coordinates. By that, we obtained pixel-wise species- and trait information. Mean trait values were
calculated per pixel and passed to the RTM in order to generate canopy-level reflectance spectra of the
simulated grasslands in the respective spatial resolution. This enabled us to directly test and compare
the effects of sensor induced scaling effects based on the exact same grassland community.

The same procedure was followed for all three field sites and for three seasons each (including the site-
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and season-specific species inventories and trait data).

Table 2: Spatial resolutions chosen in accordance to commonly used sensor types. Each simulated
grassland simulation is represented in these five spatial resolutions. The pixel counts refer to the basic
unit of a 30 m = 30 m tile in our simulations.

spatial resolution

10 z 10 66 3z3 lz1 0.2 2 0.2
(m z m)
pixel counts 3z3 5x5 10 z 10 30 x 30 150 z 150
sensor type Sentinel-2 RapidEye Planet, SPOT IKONOS Digital Orthophoto

Radiative Transfer Model PROSAIL and model parameterisation

RTMs are physical models that can be used to simulate and describe the interactions of sunlight with
plant canopies and the underlying soil. They can be applied to study the effects of reflectance, absorption
and scattering on the leaf-level (e.g. PROSPECT, Verhoef 1985; Verhoef, W 1984) and canopy-level (e.g.
4Sail, Verhoef et al. 2007) and help in understanding the light-plant interactions. PROSAIL is a two-
dimensional RTM that combines the leaf- and canopy-level interactions (Jacquemoud, Stéphane and
Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada, Pablo J and Asner, Gregory P
and Francois, Christophe and Ustin, Susan L 2009). We applied the hemispherical stream of PROSAIL
implemented in the hsdar-package (Lehnert et al. 2019) which uses a combination of Prospect-5B (Feret,
JB and Frangois, C and Asner, G and Gitelson, A and Martin, R and Bidel, L. and Ustin, S and Le
Maire, G and Jacquemoud, S 2008) and 4Sail to generate pixel-based reflectance spectra for the simulated
grassland simulations on the canopy-level. To reduce the dimensionality of the data, we first performed
a spectral resampling to 10 nm width using the spectralResample-function and removed the water bands
(1340 - 1420 nm and 1800 - 1940 nm). The remaining hyperspectral data (188 bands) were kept across

all spatial resolutions.

Diversity metrics: spectral, taxonomic and functional diversity

Based on the species abundances and trait data, we calculated different indices for taxonomic diversity
for every single grassland simulation using the FD-package (Laliberté et al. 2014). Previous studies led
to ambiguous results regarding the strength of the relationship between spectral diversity and different
taxonomic diversity indices (Badourdine et al. 2022; Fauvel et al. 2020; Oldeland et al. 2010; Wang et al.
2018Db). Consequently, we tested the four most commonly used indices (Tab. 3): (1) species richness (SR),
(2) Shannon’s diversity index (H’), (3) Simpson’s diversity index (D), and (4) Rao’s quadratic entropy
(Rao’s Q). Shannon’s and Simpson’s diversity index both include the evenness and species richness of a
plant community, whereas Shannon’s Index is more sensitive to rare species. Due to the differences in
units and trait value ranges, the data were scaled and centred before the calculation of Rao’s Q.

Based on the 188 bands of the pixel-wise reflectance spectra, we calculated two spectral diversity indices

for every grassland simulation in five different spatial resolutions, respectively: (1) the mean Euclidean
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Table 3: Taxonomic and functional diversity indices used in this study, their description and source.

Index Short Description Source

. . Th i t i
Species Richness SR 1€ Specles coulit In & -
given grassland simulation

A measure of entropy that considers the

Shannon’s diversity index H’ species’ proportions besides species Magurran et al. 2010

numbers in the quantification of diversity

Describes the probability of

selecting two different species from
random sampling with replacement;
sensitive to imbalanced species proportions

Simpson’s diversity index D Simpson 1949

Includes the species abundances

as well as the dissimilarities among
the species in the multi-
dimensional trait space

Rao’s quadratic entropy Rao’s Q Botta-Dukat 2005

distance (mED, Rocchini, Duccio and Chiarucci, Alessandro and Loiselle, Steven A. 2004) as the mean
values of pairwise mED between the pixels of one grassland simulation, and (2) Rao’s Q which is the
abundance-weighted sum of squared pairwise distances between wavelength reflectances (hereafter ’spec-
tral Rao’s Q’, Rocchini, Duccio and Marcantonio, Matteo and Ricotta, Carlo 2017). We used the FD-
package to calculate spectral Rao’s Q from the first nine components after performing a PCA on the
spectral data to reduce its dimensionality (Dahlin 2016). The reflectance data were scaled and centred
beforehand. Finally, the correlations between the different taxonomic, functional and spectral diversity

indices were tested using Person’s correlation coefficient from linear correlation analyses (R, -1 to +1).

3 Results

The number of recorded species varied between field sites and seasons and ranged from 14 (LA site,
nutrient poor) to 34 (LU, dry grassland, Tab. 5). Additionally, a multi-seasonal set of leaf samples was
collected to provide species-, site- and season-specific traits for the grassland simulations that were passed

to PROSAIL. An overview on the number of collected samples can be found in Tab. 5.

Spectra across diversity levels and seasons

The grassland simulations were based on in-situ trait measurements and coupled with RTMs to generate
community specific reflectance patterns. The resulting spectra show typical spectral vegetation features
and are comparable to spectral field measurements. In the region of the visible light (vis, 400 - 700 nm),
the chlorophyll-peak is clearly expressed and shows slight changes across the seasons indicating minimal
changes in chlorophyll concentrations (Fig. 3 & Fig. A.13). The red edge (750 nm) and NIR-plateau
(700 - 1300 nm) are fully expressed in all sites and seasons. Changes in the NIR-plateau are apparent in

the spectra from the BL and LU sites from spring to summer (Fig. 3 & Fig. A.13) indicating stressful
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Figure 3: Median reflectance spectra of the 1000 simulated grassland communities for the lowest and
highest species numbers in each season in the BL site. Black lines depict the median spectrum of a single
grassland simulation in the finest spatial resolution, i.e. the median spectrum of the reflectance spectra
of 22500 pixels in one simulated grassland simulation. Green areas show the upper and lower quartiles
(75% and 25%) of the pixel-wise spectra from the single simulations. Exemplary for BL - Bad Lauchstadt
(nutrient rich). The reader is referred to the supplementary for the remaining sites.
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conditions around the time of sampling that can be related to heat or drought. Further, the spectra
from the LU site (nutrient poor) show a less prominent red edge and NIR-plateau. The absence of a
well-defined red edge and a less distinct NIR-plateau can be indicative of sparse vegetation or canopy gaps
which is typical for dry grassland areas. In areas with lower vegetation density or gaps in the canopy,
the reflectance signal may be influenced by a mixture of both vegetation and background reflectance
(Fig. A.13). In the spectra from the LU site, the influence of the background soil reflectance caused by
the lower population density in the simulations is clearly visible. The SWIR-region (1300 - 2500 nm)
is affected by leaf water content and structure. Regarding spectra of the five species simulations, the
variability in this region is particularly high if the influence of the soil reflectance is stronger (LU site,

Fig. A.13).

Links between taxonomic and functional diversity

We simulated grassland communities in different spatial resolutions and generated their spectral re-
flectances on the canopy level using RTMs in order to examine the spectral-to-species diversity relation-
ship. According to the SVH, a strong link is expected. We used mED and Rao’s Q to calculate spectral
diversity. Although both metrics only show a weak correlation (Fig. 17), the overall patterns between
the different indices for taxonomic, functional and spectral diversity are the same. In the following, we
describe the results referring to mED as spectral diversity metric (see Fig. 18 for spectral Rao’s Q).

The overall patterns resulting from the correlation analysis were inconsistent across the study sites and
seasons. Only few variables showed the expected stable positive relationship, such as Shannon- and
Simpson-Index since they are mathematically related to each other. Further, both species diversity
indices were significantly correlated with species numbers (p < 0.05 for all sites and seasons, specific
R2-values are indicated in Fig. 5, Fig. A.14). Shannon’s and Simpson’s Index increased with increasing
species number across all sites and seasons (Fig. 5 & A.14). In contrast, raw species numbers showed no
or only in some cases weak to moderate correlations to functional trait diversity (FD, Fig. 4, Fig. 18).
This is especially apparent for LU where mean Rao’s Q values are almost stable across the five diversity
levels and seasons (Fig. 5). Results from the linear regression indicate a significant relationship between
FD and SR (p < 0.05 for all seasons) but also that a major part of the total variation in the data cannot

be explained by the model (R? < 0.05 for all seasons).

Links between spectral diversity, taxonomic and functional diversity

Results from our simulation experiments did not show a consistent correlation between raw species
numbers and spectral diversity. This was the case for both mED and spectral Rao’s Q (Fig. 18). The
assumption of the SVH that higher species numbers result in higher spectral diversity was only met in

one site and season (BLgpring, Fig. 4). In the BL site, the strength of the correlation increased towards
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finer spatial resolutions (from Rigm = 0.37 to Rg2om = 0.68, Fig. 4). In summer, R-values for the BL
sites differed strongly between the five spatial resolutions and indicate a negative correlation towards
the finest spatial resolution (from Rjp,, = 0.01 to Rgom = -0.5, Fig. 4). The opposite was the case for
the same site in autumn (Fig. 6). Also regarding the other sites and seasons, correlations between raw
species numbers and spectral diversity for different spatial resolutions were not stable. On the LA site,
both strength and direction of the correlation changed across the seasons (Fig. 4). On the dry grassland
site (LU site), results from the simulations indicate an inverse correlation between raw species numbers
and spectral diversity on different spatial scales (Fig. 4). Moving from raw species numbers to abundance
weighted diversity indices, the correlation analysis did not reveal a stable pattern. In some cases, the
correlation between spectral diversity and Shannon’s or Simpson’s index was strongly pronounced and
increased towards finer spatial resolutions (e.g. BLspring, Rshannon, 0.2m = 0.72 and LAgymmer,autumn, Fig.
4). However, this trend was highly variable across sites and seasons. For the LU site, R-values generally
ranged around R = 0, indicating no correlation between Shannon- or Simpson index and spectral diversity

across all spatial resolutions.

Links across sites, seasons and spatial resolution

Summarised for seasons and spatial resolutions, the relationship between species numbers and spectral
diversity was weak and varied between sites as well as seasons (Fig. 7A). For the dry grassland site (LU
site), R-values indicate a negative relation between species numbers and spectral diversity and show low
variation across seasons and spatial resolutions. The opposite was the case for the BL site, where R-values
vary substantially across the seasons and spatial resolutions and range from positive to negative R-values.
However, the median Rp;, ~ 0 indicates no correlation between the two variables in general. Correlations
between the abundance-weighted Shannon-Index and spectral diversity were weak for all sites (median
Rpr, = 0tomedian Ry 4 = 0.25, Fig. 7TA). R-values from the three sites ranged between R = —0.25—0.75
across seasons and spatial resolutions and did not show a clear trend (Fig. 7A). With regard to functional
diversity (Rao’s Q), median R-values were positive and similar for all sites (median Rpy, 4, v = 0.2, Fig.
7A), however, indicating a weak positive correlation with spectral diversity. Additionally, the variation
of R-values across the seasons and spatial resolutions differed between the sites.

Considering single seasons, the strength and direction of the correlation between the different indices and
spectral diversity was both index- and season-specific. Median R-values across all sites indicate a negative
correlation between species numbers and spectral diversity for all seasons (Fig. 7B). Median R-values
for correlations between Shannon-index and spectral diversity were low, indicating a weak relationship
between the two variable (Fig. 7B). The same was true for Rao’s Q, although the range of R-values
across sites and spatial resolutions within one season were larger. In general, the ranges differed between

the seasons and indices and did not show a clear pattern. For the number of species, results indicate a
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large variation in R-values in spring which decreased towards autumn, i.e. correlations between species
numbers and spectral diversity became more similar between sites and spatial resolution in autumn.
Regarding functional diversity (Rao’s Q), a contrary trend was observed.

With regard to the spatial resolution, the strength and direction of the correlation depended both on the
considered metric and the spatial resolution itself. Median R-values for the correlation between species
numbers and spectral diversity are stable around R = -0.25 (Fig. 7C). The variation in R-values for all
sites and seasons increased towards the finest resolution. Median R-values indicate no correlation between
Shannon-Index and spectral diversity at coarse resolutions (median Rygmy—1m & 0, Fig. 7C) and a slight
positive trend towards the finest resolution. For Rao’s Q, results indicate an increase in the strength of
the correlation with spectral diversity towards the finest resolution. Additionally, the variation of the
R-values across sites and seasons is lowest for this index (Fig. 7C).

Regarding the relation between spectral diversity and spatial resolution in detail, results from the grass-
land simulations show a strong influence of the spatial resolution on the simulated spectral diversity.

Across all sites and seasons, spectral diversity increases towards the finest spatial resolutions (Fig. 8).

4 Discussion

Using a simulation setup to generate large numbers of artificial grassland communities provides a scalable
framework to robustly assess the theoretical background of the spectral-to-species diversity relationship.
Based on multi-seasonal and site-specific field sampling, the simulated communities exhibit through the
course of seasonal changes regarding both species composition and trait expression. This provides the
unique opportunity to contextualise our findings with a direct link to the observed habitat itself. Our
results underline the strong context dependency of the proposed relationship as both spatial scale and
habitat type strongly influence the correlation between spectral and species diversity. The relationship
between SR and FD mediates the species-to-spectral diversity relationship, however, this basic assumption
of the SVH is not fulfilled in all plant communities. Further, seasonal effects are likely to be masked by
the impact of site-specific management on local plant traits.

Based on our simulations, we cannot support the transferability of the SVH across habitat types. Our
results rather reflect the context-dependency of the proposed relationship between different aspects of
biodiversity and spectral diversity, showing positive correlations for single cases only. Recent literature
has shown ambiguous results regarding the application of the SVH for plant diversity detection. Several
studies based on single habitat types provide robust evidence for a positive correlation between spectral
and species diversity (Badourdine et al. 2022; Rocchini et al. 2014; Rocchini, Duccio and Chiarucci,
Alessandro and Loiselle, Steven A. 2004). However, other studies regarding a broader spatial extent cov-
ering different habitats reported unstable or negative relationships (Fassnacht et al. 2022; Schmidtlein et

al. 2017), supporting the paradigm of habitat-dependency (Perrone et al. 2023). Considering the variety
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and uniqueness of single habitat types, the observed inconsistencies among results do not come as a sur-
prise. We included intraspecific trait variability (ITV) across sites and seasons to account for this variety,
generating RTM based canopy reflectance spectra. This separates our experimental design from studies
using random samples out of predefined trait ranges. Using trait ranges might be appropriate for agricul-
tural study sites with more or less controlled conditions where community structure and environmental
settings are homogeneous. Here, one can assume lower intraspecific trait variability (ITV) (Herrick et al.
2021). This assumption does not account for semi-natural grasslands: a global meta-analysis by Siefert
et al. (2015) has shown that ITV accounts for up to 25% of the total within-community trait variance.
Consequently, using individual-based trait values allowed us to account for ITV to some degree and mimic
spectral responses more close to reality. Within a plant community, species vary in abundance and cover
fractions. This introduces another dimension of heterogeneity into the habitat. Our simulations were
set up in a way that maintained the proportions of the single species as they were recorded in the field
to ensure reasonable cover fractions in the grassland communities. As a consequence, dominant species
from the respective field sites remain dominant in the simulations along the diversity gradient and are
weighted more heavily in the calculation of FD. This is reflected in the low correlations between FD and
SR (Tab. A.7). The inconsistent relationship between SR and FD leads us away from the notion of
spectral diversity as measure for SR. The identity of single species in a plant community is not the most
relevant parameter with regard to its canopy reflectance. Similar as in the concept of plant functional
types (PFT), we can assume that the optical contribution of species is more important than their identity.
The concept of PFTs can help to group plant species according to their responses to the environment
and their effects on ecosystem functioning (Diaz, Sandra and Cabido, Marcelo 2001). In our study, we
focused on trait measurements from individual species to calculate FD. However, the species converge
in only a few PFTs which is further increased through the skewed abundances of single species. Our
results show that variations in FD within the same diversity level were larger than the variation of FD
between the different diversity levels. This indicates the occurrence of a limited set of dominant species
with characteristic optical traits across the simulations of different diversity levels. It is likely that the
same dominant species (or PFTs) are the main contributors to FD for the individual sites, regardless of
the simulated SR. Variations in vegetation cover have been reported to be a dominant driver of spectral
diversity in grasslands (Hauser et al. 2021). In our simulations, we minimised the influence of soil, envi-
ronment and textures to particularly shed light on the effects of optical traits and canopy structure across
sites and seasons. Earlier versions of the grassland simulations with low population densities resulted
in large proportions of bare soil pixels in fine spatial resolutions (3 m and smaller, results not shown)
and did not allow drawing conclusions on the importance of optical plant traits on spectral diversity.
Therefore, population densities were estimated based on seed mixtures (4000 individuals / m? for the
BL and LA sites). Only for the dry grassland site (LU site) we chose a lower population density to
represent the natural conditions of this specific habitat type appropriately (1000 individuals / m?). In

this case, the simulations reflect the strong impact of background soil reflectance which can be typical
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for dry grasslands and hampers diversity estimations based on RS data for these habitats. Less dense
vegetation inevitably leads to a stronger impact of the background soil reflectance (Fig. A.13), textures
and environmental heterogeneity on the spectral signal. Setting this high content of spectral information
in relation to sparse vegetation can lead to an inverse spectral-to-species diversity relationship as reported
here and in recent studies (Fassnacht et al. 2022; Hauser et al. 2021; Rossi et al. 2022). Comparing our
results (inconsistent relationship between SR and spectral diversity) to previous studies, we can assume
that not trait and canopy features, but excluded factors, such as texture and environmental features,
dominate spectral diversity. The role of background soil reflectance allows various interpretations, as
results from dry grassland sites have shown. However, our results underline the context-dependency of
the proposed relationship (see also Perrone et al. 2023; Schmidtlein et al. 2017). Finally, we need to
consider that, compared to the global spectrum of grassland types, the grasslands chosen as reference in
our study are rather homogeneous in structure and vegetation composition (all temperate grassland from
the same latitude). However, differences in the spectral-to-species diversity responses in our simulations
are already heavily pronounced between study sites. Different species communities and dynamics lead
to complex patterns of spectral diversity in both space and time (Rossi et al. 2021). Interestingly, our
results do not suggest substantial differences in the spectral-to-species diversity relationship between sea-
sons. This can be explained by the site-specific dynamics and management which influence the vegetation
structure and species compositions and are therefore captured by our trait sampling. We collected data
from study sites with different management regimes: The LA site (nutrient-poor) was mowed in early
summer, consequently the plant community and its related traits from the summer sampling rather re-
semble a typical spring community. The LU site (dry grassland) was occasionally grazed by sheep which
partially disturbed the growth of distinct herbaceous species and led to a homogeneous canopy height.
Only the BL site (nutrient-rich) remained undisturbed throughout the whole vegetation season. How-
ever, the zero-impact management regime caused an accumulation of dead biomass, i.e. increasing the
percentage of photosynthetically inactive vegetation in the plots. These different dynamics represent a
part of the complex variety of confounding factors in spectral-to-species diversity relationships that occur
in “real-world” scenarios and influence this relationship over time. Although the time point of data ac-
quisition is crucial for a more reliable diversity detection from RS data (Thornley et al. 2022), our results
clearly show that results can still be misleading if management is not taken into account and support a
major flaw of the SVH for SR detection (Fassnacht et al. 2022). In the context of utilising the spectral
variation approach, it may be prudent to reconsider the exclusive pursuit of SR as an ecological target.
Instead, a more comprehensive understanding of ecosystem dynamics may be attained by concurrently
considering both the spatial and temporal dimensions of spectral diversity. In this regard, Rossi et al.
(2021) have presented promising findings that exemplify this integrated approach. The mediating role
of spatial resolution on the strength of the spectral-to-species diversity relationship has been repeatedly
reported in recent studies (e.g. Fassnacht et al. 2022; Rossi et al. 2022; Thornley et al. 2023). Based

on findings from an experimental grassland site, Wang et al. (2018b) showed that the spectral-to-species
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relationship breaks down from pixel sizes of 10 cm x 10 cm and larger. The same pattern is reflected
in our results which show an increasing strength of the correlation between FD and spectral diversity
towards the finer spatial resolutions (1 m, 0.2 m, Fig. 7). However, our results cannot confirm that
spectral diversity at finer spatial resolutions is directly related to higher FD as the correlation across
sites and seasons is weak (Tab. A.7). On the contrary, spectral diversity increases with finer spatial
resolutions more significantly than with increasing FD (Fig. 8). The spectral signal obtained from a
pixel is composed by all optical traits of the species present within this pixel and the larger the difference
between the pixel size and the size of the plant individual, the more mixed is the spectral signal. The
mismatch of this ratio is heavily pronounced in grasslands and leads to a strong spectral mixture. In
general, a relationship between spectral diversity and SR is not to be expected at spatial resolutions
that exceed the size of a plant individual (Fassnacht et al. 2022; Thornley et al. 2022). To overcome the
limitations of SR, the use of abundance-weighted diversity metrics has been recommended by different
authors (Heumann et al. 2015; Oldeland et al. 2010; Wang et al. 2018a). Based on our simulations, the
application of the Simpson or Shannon index did not lead to stronger correlations or more consistent
results across sites, seasons or spatial resolutions. It can be assumed that the spatial arrangement of a
plant community has a strong impact on the detected spectral signal. Different growth types (patchy
vs. homogeneous) and heterogeneous plant cover fractions across an area can increase spectral diversity
independently from the SR within the area. Rare species or species with low cover fractions are likely to
be underrepresented in the spectral signature. Considering the complex three dimensional structure of
the stands, this effect would be even more heavily pronounced as their optical traits do not contribute to
the spectral signal, which is a function of exposure towards the sensor. This fundamental weakness of the
SVH has already been pointed out by Fassnacht et al. (2022) and our results indicate that this may hold
true: even if regarded for an ‘ideal’ scenario including only canopy-reflectance, spectral diversity cannot
reflect SR or FD as long as species are not equally distributed (spatially and abundance-wise) within the
regarded area. Unfortunately, species are usually not distributed homogeneously in natural ecosystems
and our simulations clearly show this flaw that hinders a reliable universal application of the SVH across
ecosystem types. The same fundamental limitations occur in the context of the so-called spectral species
concept (Féret, JB and Asner, G 2014). This concept likewise assumes that species feature unique sets of
optical traits that lead to distinct spectral differences. However, the actual size of the species in relation
to the pixel size as well as their spectral and trait-based uniqueness determine whether this assumption
actually holds true (Rocchini et al. 2022). These complex dependencies can also explain the variable
relationships observed in our study. Interestingly, the choice of spectral diversity index did not change
the outcome of the correlation analysis and the variability of the spectral-to-species diversity relationship
is equally represented by mED and spectral Rao’s Q (Fig. 4, Fig. 18). In comparison to mED, the
calculation of spectral Rao’s Q requires much higher computational efforts while potentially delivering
similar informative value (see also Perrone et al. 2023). Although of high interest, it is beyond the scope

of this study to analyse the performance of different spectral diversity indices. However, the introduced
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simulation framework provides the basis for further research on this topic.

Challenges and limitations

Only a few studies tried to tackle the spectral-to-species diversity relationship based on plant community
simulations. Badourdine et al. (2022) applied a restricted modelling process by creating rain forest tree
populations based on a stratified random sampling of spectral data acquired from imaging spectroscopy.
Although presenting promising results for forest diversity monitoring, the authors state that their study
design leaves open questions with regard to the actual drivers behind the positive relationship. Using
spectral data that cannot be related to in-situ measurements does not provide the needed information on
trait combinations, canopy structure and community assembly underlying the observed spectral diversity.
Pacheco-Labrador et al. (2022) approached the SVH by creating artificial plant communities based on
species-specific trait data from trait databases fed into RTMs to generate spectral data. This design
allowed them to generate a large number of species-specific spectra that could be used for the sampling
of plant communities. Again, this study presented a positive spectral-to-species diversity relationship,
however, spatial effects and the context-dependency of ecosystem types cannot be considered under this
setup. Following up on these promising studies, we addressed the research gap by creating spatially
explicit grassland community simulations. In our simulations, the spectral signal is highly influenced by
the species/ trait distribution, species cover fractions and canopy structural parameters that are based
on site- and season-specific in-situ measurements. It should be noted that our simulations represent an
‘ideal’ state of canopy-reflectance: they do not include parameters such as dead biomass and assume ideal
illumination conditions. The simulations were designed in order to unravel the spectral-to-species diversity
relationship caused by optical leaf traits only, i.e. to test the theoretical background of the SVH which is
mainly the interactions between spectral, species, and functional trait diversity. Determining the number
of plant individuals per unit area posed a challenge in configuring the simulation. Population densities
vary across habitats and regions, and precise figures are limited in the relevant literature. While not the
optimal approach, we derived population densities from agricultural seed mixtures. This method enabled
us to establish an upper limit for plants in the simulated observation area, ensuring sufficiently high
cover fractions to minimize strong background reflectance. Simultaneously, it maintained the population
density at a level conducive to the realistic coexistence of plants under plausible conditions. For some
delicate species (e.g. N. stricta, A. serpyllifolium), SPAD measurements are impossible or potentially
not robust. This might introduce bias in the generated canopy-level reflectances as the retrieval of
chlorophyll content for the RTMs is not ideal. The use of the SPAD instrument is not ideal for semi-natural
grasslands (Ludwig et al. 2022). However, including the variation of SPAD vs. chemical measurements
in the chlorophyll calculations is, for now, an appropriate measure to tackle the insensitivity of SPAD
measurements for community means of chlorophyll contents. Considering the simulated spectra, our

models delivered spectral reflectance patterns for grasslands of different habitats and diversity levels that
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are comparable to spectral field measurements. Interestingly, the variance between the median spectra of
the single grassland simulations is highest for the lowest diversity levels (Fig. 1). This is very likely caused
by the limited species pool that we used as the basis for the grassland simulations. As an example: Based
on a species pool of 20 species that we randomly drew from (without replacement), grasslands consisting
of 15 species will be more similar to each other than grasslands with only five species drawn from the same
species pool. This similarity in species composition within the same diversity level and, consequently,
optical traits, is reflected in the spectral signal of the grassland simulations. Two parameters associated
with changes in spectral diversity have not been included in our simulations: flowers and differences in
life forms. The presence of flowers is timely limited and coupled with a decrease of chlorophyll levels,
thereby altering the reflectance spectrum of a plant community on short time scales (Shen et al. 2009).
Colour pigments of non-greenish flowers are associated with changes in the VIS and NIR regions of the
electromagnetic spectrum of light. They increase reflection in the VIS region and cause lower reflectance
in the NIR and MIR regions (Landmann et al. 2019). By that, flowers add up on spectral information
while SR is not increasing which might lead to an overestimation of SR by additionally increasing spectral
diversity. They further argue that flowers drive spectral diversity by the spatial aggregation of flowers
within an area (patchiness) and asynchronous flowering patterns (Almeida-Neto et al. 2004). Both cases
would result in an overestimation of SR based on spectral diversity. In contrast to this assumption
are recent results which indicate that the retrieval of plant traits from spectral data is hindered in the
presence of increasing flower proportions (Schiefer et al. 2021). A decreased predictive power of traits
from RS data inevitably leads to inaccurate estimates of FD which weakens the application potential
of the SVH. Additionally, grassland communities are shaped by compositions of different life forms that
show distinct adaptations to the environmental conditions of their habitat (Raunkiaer et al. 1934). We
did not include this concept in our simulations, however, it can be assumed that the presence of species
with an increased proportion of non-green material (bark, dead biomass) additionally influences spectral
diversity. Cbrown has a strong impact on spectral diversity (Torresani et al. 2021) . Although they relate
this effect mainly to changes in leaf pigments, the same accounts for the bark of woody species (e.g.
dwarf shrubs such as C. wvulgaris). Further research will be necessary to investigate the role of flowers
and different life forms in the spectral-to-species diversity relationship. With the presented simulation

setup, we created a suitable tool to address these research gaps in future work.

Conclusions & Outlook

According to the SVH, a positive relationship between spectral and species diversity in RS images is
assumed. We present a detailed assessment of the SVH based on grassland simulations that were built
on site- and season-specific vegetation surveys and in-situ trait measurements. Coupled with RTMs,
our approach allowed an in-depth analysis of the theoretical background of the proposed relationships
regarding different habitats, seasons and spatial resolutions. Our simulation design enabled us to bring

an ecological context into our findings. In general, the universal applicability of the SVH for biodiversity
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monitoring across seasons, sensors and ecosystems is lacking proof. Based on 45000 grassland simulations
in five different spatial resolutions each, we could show that the spectral-to-species diversity is not stable
across seasons and habitat types. Further, spectral diversity is mainly driven by the spatial resolution
(i.e. pixel size) of the image and not by SR or FD per se. Moreover, we can assume that FD, which is
an important driver of the spectral signature of a plant community, is not directly linked to the number
of present species in an image. Our results clearly underline the context-dependency of the SVH and we
argue that, although of promising value for distinct ecosystems, it is not universally applicable (Fig. 9).

The presented framework provides ample opportunities to further assess the spectral-to-species rela-
tionship regarding various aspects. By maintaining the hyperspectral resolution across all investigated
spatial resolutions, our simulations provide the basis to assess the potential of future sensors that will
possibly provide remote sensing data of finer spectral resolution than current missions. To analyse the
effect of flower coverage across different spatial scales would be easily possible by including different
flower spectra in the simulations. The same is true for different PFTs. Taking high computational re-
sources into account, the simulations can be adjusted to finer spatial resolutions. Although of interest,
it is beyond the scope of this study to test the impact of different measures for spectral diversity on the
spectral-to-species relationship. However, this issue is definitely an aim of further research. We recognise
that our study again brings focus to temperate grasslands only, as has been negatively pointed out as
a shortfall in grassland monitoring studies (Thornley et al. 2023). However, the presented framework
allows us to incorporate data from other suitable study sites which we warmly encourage. To conclude,
the relevant question about what facet of diversity is the target objective of a study must be carefully con-
sidered when interpreting results from spectral diversity assessments. The importance of understanding
ecological concepts behind SR, species diversity and FD is a crucial prerequisite for reliable biodiversity
assessments. Further, driving factors behind spectral diversity in RS images can be of many origins and
are hard to disentangle without detailed in-situ measurements and a clear understanding of the surveyed
habitat. Therefore, the further development of urgently needed tools for grassland diversity monitoring

will involve the collaboration of RS experts and ecologists.
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7 Appendix

Calculation of population density and point patterns

Under consideration of the sowing quantity per area and the species-specific weight of 1000 seeds, we
derived an appropriate estimation of plant individual numbers. An exemplary calculation is presented in

table A.4. Details on the two different used point pattern distribution types can be found in figure A.12.

Table 4: Proportion of species (in %) in a seed mix (40 kg/ ha) for a universal pasture grassland with
10% herb content. Including the weight of 1000 seeds per species (” Tausendkorngewicht”, tkg) and the
final number of seeds per m?. The description of the seed mix was taken from Camena-Samen (see
https://camena-samen.com/gruenlandmischungen/ for further details).

species % tkg (g) seeds per gramm in mix (in g) seeds in mix per ha seeds per m?
Lolium perenne 34.90 1.30 769.23 14000.00 10769230.77 1076.92
Bromus spec. 8.00 4.00 250.00 3200.00 800000.00 80.00
Festuca spec. 29.90 2.00 500.00 12000.00 6000000.00 600.00
Anthriscus sylvestris  0.60 3.50 285.71 240.00 68571.43 6.86
Bellis perennis 0.20 0.10 10000.00 80.00 800000.00 80.00
Cirsium arvense 0.20 1.10 909.09 80.00 72727.27 7.27
Plantago lanceolata 2.20 2.00 500.00 880.00 440000.00 44.00
Stellaria media 0.60 0.40 2500.00 240.00 600000.00 60.00
Centaurea jacea 0.50 1.20 833.33 200.00 166666.67 16.67
Trifolium repens 8.00 0.65 1538.46 3200.00 4923076.92 492.31
Phleum pratense 15.00 0.40 2500.00 6000.00 15000000.00 1500.00
Total - - - - - 3964
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Details on PROSAIL parameterisation

We used pixel-based trait means as input variables for each grassland unit (Table 1). Based on these
parameters, we generated pixel-wise reflectance spectra for every grassland unit in its finest resolution
(150 x 150 pixels). We then aggregated the reflectance spectra step wise towards the coarser resolutions by

calculating the mean reflectance values from all spectra in the aggregated pixels. Consequently, we gained
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Table 5: Number of recorded species (SR) and collected trait samples (nb Samp) from field campaigns
per site and season.

Site Season SR nb Samp

spring 21 257
BL  summer 28 177
autumn 23 187

spring 15 137
LA summer 17 121
autumn 14 125

spring 31 155
LU summer 31 139
autumn 34 176

a set of five spectral libraries for each grassland unit containing the respective number of spectra according
to the number of pixels in the respective spatial resolution: From 22.500 spectra in the finest resolution
(150 x 150 pixels) to nine spectra in the coarsest resolution (3 x 3 pixels). The same procedure was followed
for all simulated grassland units from all diversity levels, sites and seasons. Some input parameters were,
however, not easily measurable on the plants. They refer to specific plant characteristics which can
often only be obtained with complex laboratory analysis. The structure parameter N, for example,
is an unit less value that refers to the mesophyll structure of leaves based on a simple plate model
(Jacquemoud, Stéphane and Verhoef, Wout and Baret, Frédéric and Bacour, Cédric and Zarco-Tejada,
Pablo J and Asner, Gregory P and Francois, Christophe and Ustin, Susan L 2009). As monocotyledon and
dicotyledon plants show different structural developments of their leaves, the N-value is often different
for both of these classes. Monocotyledons are associated with a less complex mesophyll structure and,
thus, fewer layers and receive smaller N-values than dicotyledons. Also the seasonal development and age
of the leaves has a strong impact on their structure. Therefore, we chose to seasonally adjust N-values
accordingly to both monocotyledons and dicotyledons. We chose N-values from the literature that are
based on leaf-level inversions of the RTM PROSPECT for four different plant species (1 dicotyledon, 3
monocotyledon) at three different time points of the growing period (Boren et al. 2019). They provide
so far the most reliable record of N-values. According to the season and class affiliation, a random value
within the range of the given N-value was assigned to each species in the simulated community (Table 1).
We further included background soil reflectance from site-specific spectral soil reflectance measurements
as input variable for rsoil. If pixels remained free of points (i.e. plant individuals) they were filled with
the site-specific bare soil reflectance spectrum. This was mainly the case for very high spatial resolutions

(Imx1mand0.2mx0.2m).
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Table 6: Ranges of leaf traits, pigments and structural canopy parameters from field measurements
per site and season. Cab: chlorophyll a & b content, Car: carotenoid content, Cw: Equivalent water
thickness, Cm: leaf mass per area, LAIL: Leaf Area Index, MTA: Mean Tilt Angle.

Site Season  Cab (mg/cm?) Car (pg/cm?) Cw (cm) Cm (g/cm?) LAI  MTA (°)

spring 33-157 15-39 0.009-0.9 0.001-0.33 1.2-5 41-72
BL summer 26-167 10-41 0.007-0.5 0.003-0.04 1-3 38-71
autumn 27-146 14-37 0.003-0.07  0.001-0.04  1.4-4.7 23-63
spring 29-85 15-25 0.003-0.07  0.001-0.04 3-5.8 40-62
LA  summer 27-81 14-24 0.007-0.09  0.002-0.03  1.2-4.1 39-67
autumn 35-77 16-24 0.007-0.06  0.002-0.04 1.5-5 42-60
spring 31-95 15-27 0.003-0.04  0.002-0.01 1.3-2.8 43-66
LU  summer 30-92 14-26 0.001-0.4 0.001-0.15  1.3-2.7 30-60
autumn 26-102 14-29 0.008-0.25 0.003-0.2 1.4-3.1 35-80

742
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Table 7: Results for different coefficients (from the linear regression models between different variables per
site and season. All variables were calculated based on the grassland simulations. SR - species richness.
Site codes: BL - Bad Lauchstddt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry
grassland). Significance levels (p-value, significance of correlation): 0 “*** 0.001 “** 0.01 “*’ 0.05 ‘> 0.1
1.

Site Coeff Spring Summer Autumn

(1) Im(Shannon ~ SR)

BL p <005 <0.05 < 0.05
R?2 0.07 0.09 0.05
LA p <005 <0.05 < 0.05
R?2 0.03 0.07 0.75
LU p <005 <0.05 < 0.05
R2 0.03 0.14 0.06
(2) Im(Simpson ~ SR)
BL p <0.05 <0.05 < 0.05
R2 0.64 0.39 0.71
LA p <005 <0.05 < 0.05
R?2 0.19 0.13 0.21
LU p <005 <0.05 < 0.05
R?2 0.38 0.50 0.09
(3) Im(Rao’s Q ~ SR)
BL p <005 <0.05 < 0.05
R2 0.02 0.01 0.06
LA p <0.05 <0.05 < 0.05
R2 0.09 0.08 0.02
LU p <005 <0.05 < 0.05
R?2 0.04 < 0.01 0.02
(4) lm(mEDo.Qm ~ SR)
BL p <005 <0.05 < 0.05
R2 0.47 0.26 0.01
LA p <005 <0.05 < 0.05
R2 0.13 < 0.01 < 0.01
LU p <0.05 <0.05 < 0.05
R?2 0.14 0.13 0.12
(5) Im(mEDg.2m ~ Rao’s Q)
BL p <0.06 <0.05 < 0.05
R?2 0.07 0.09 0.05
LA p <005 <0.05 < 0.05
R2 0.03 0.07 0.75
LU p <005 <0.05 < 0.05
R2 0.03 0.14 0.06
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List of Figures

1 General workflow from species and trait sampling, over grassland simulations and spectra
generation to statistical analysis. Species and trait data were collected for three sites and
in three seasons, respectively. The simulations were performed for five different diversity
levels (5 to 25 species) and with 1000 different species composition variations per diversity
level. Spectra were generated by passing the pixel-wise mean trait values to PROSAIL,
for the same grassland simulation represented in five spatial resolutions (10 m to 0.2 m
pixel size). Based on the pixel-wise reflectance values, spectral diversity was calculated
(mean Euclidean distance and spectral Rao’s Q). Measures for taxonomic and functional
diversity were calculated for every single grassland simulation based on the incorporated
species information and trait values. Finally, we calculated the correlation coefficients
between the different spectral diversity metrics for Species Richness (SR), Shannon-Index,
Simpson-Index and Rao’s Q to test the bivariate relationships between multiple variables
at different pixel sizes. . . . . . . . .. e e e e e e e e e 7

2 General workflow for point pattern distributions as basis for the grassland simulations.
First, we use two point distribution functions to create 50 different point patterns per
species. In this process, species-specific distribution patterns and cover fractions from field
observations were considered. Second, point patterns are combined at different diversity
levels to create the grassland simulations. Each diversity level is represented by 1000
grassland simulations with different species combinations. Third, trait values from field
sampling are attached to the species individuals in the simulations. Forth, each simulated
grassland is represented in five different spatial resolutions. Finally, pixel-wise canopy-
level reflectance spectra are generated for the single grassland simulations in five spatial
resolutions (from 10 m to 0.2 m pixel size). . . . . . ... .. ... . ... ... 10

3 Median reflectance spectra of the 1000 simulated grassland communities for the lowest
and highest species numbers in each season in the BL site. Black lines depict the median
spectrum of a single grassland simulation in the finest spatial resolution, i.e. the median
spectrum of the reflectance spectra of 22500 pixels in one simulated grassland simulation.
Green areas show the upper and lower quartiles (75% and 25%) of the pixel-wise spectra
from the single simulations. Exemplary for BL - Bad Lauchstddt (nutrient rich). The

reader is referred to the supplementary for the remaining sites. . . . . . .. ... ... .. 14
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Correlograms representing the bivariate relationships (R-values) between spectral diversity
(mED) and different taxonomic diversity indices calculated for each of the grassland simu-
lations based on in-situ species and trait data. Black numbers show Pearson’s correlation
coefficient. The lower triangle shows the correlations between the mED of the different
spatial resolutions, the upper triangle shows the correlations between the different diversity
indices (taxonomic and functional). R-values within the grey box show the correlations
between different taxonomic and functional indices and spectral diversity for different spa-
tial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ - Shannon Index, 'RaoQ’
- Rao’s quadratic entropy, 'SR’ - Species Richness. Sites: BL - Bad Lauchstadt, LA -
Luppeaue, LU - Lunzberge. See Figure 18 for spectral Rao’s Q. . . . . . .. ... ... ..
Taxonomic and functional diversity indices per diversity level for the LU site as an exam-
ple. Indices were calculated for each of the 1000 grassland simulations per diversity level
and for each season (in different colours). The species and trait data is based on in-situ

measurements from the study sites. Season-specific results from the linear regression model

between the respective index and species numbers are written in each panel. LU - Lunzberge. 40

Spectral diversity (mED in log+1) per diversity level. Depicted is the Bad Lauchstadt
(BL site) site in spring, summer and autumn as an example. Each box contains the mED
for all 1000 grassland simulations per diversity level (5 species to 20 species) in the finest
resolution (0.2 m pixel size). Results from the linear regression model between mED and
species numbers are written in each panel. The reader is referred to the remaining plots
of the other study sites in the supplement (Fig. A.16). . .. .. ... ... ... .....
Correlation coefficients for taxonomic (Number of Species, Shannon-Index) and functional
diversity (Rao’s Q) indices with spectral diversity (mED) from different perspectives.
Boxes show the R-values for the respective index and spectral diversity for (A) the single
sites, including all seasons and spatial resolutions, (B) single seasons, including all sites
and spatial resolutions, and (C) single spatial resolutions, including all sites and seasons.
BL - Bad Lauchstiadt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry
grassland). . . . .. L L L
Spectral diversity per spatial resolution for each site and season. Each box contains the
spectral diversity of all grassland simulations in the respective spatial resolution (i.e. all
diversity levels combined per spatial resolution). The spectral resolution remained un-

changed across the different spatial resolutions (hyperspectral, 188 bands). BL - Bad

Lauchstédt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland). 41

35



10

11

Schematic overview on the influence of different scenarios of trait expressions on the rela-
tionship between spectral diversity and SR. The figure was inspired by results from Diaz,
Sandra and Cabido, Marcelo (2001) that presented a detailed analysis on the mismatch
between SD and FD considering different settings. We expanded their concept to the spec-
tral domain. Case (a) represents high intraspecific trait variability at low levels of SR, e.g.
caused by strong environmental heterogeneity in an area. High spectral diversity leads to
an overestimation of SR in this case. Case (b) shows high interspecific trait variability,
increasing with increasing SR. In this case, the link between spectral diversity and SR is
given. Case (c¢) represents high trait convergence, i.e. different species develop similar sets
of traits in the same area. FD is low and leads to low spectral diversity that does not
represent high SR. Note that environmental heterogeneity or other factors driving spectral
diversity are not included in this graph. These can further lead to an overestimation of
spectral diversity and bias the spectral-to-species diversity relationship. . . . . .. .. ..
Soil reflectance spectra from all field sites. Samples were collected from the uppermost
layer and dried at 40 °C for at least 48 h. Afterwards, the samples were sieved to a grain
size of 1 mm. Soil reflectance was measured using the contact probe of a field spectrometer
(ASD FieldSpec 4®  Malvern Panalytical, UK) fixed to a stand. Measuring height was
adjusted to the diameter of the measured area (diameter = 5 ¢cm, height = 10 cm) as well as
the incidence angle of the halogen lamp (< = 30°). A correction curve was recorded using a
white reference panel with 95% reflectance prior to the soil reflectance measurements. The
single samples were measured three times and turned approx 120° after each measurement.
Each run consists of three full spectral records (from 350 - 2500 nm wavelength), while
the outcome of reflectance values at individual wavelengths is calculated as the mean of 25
measurements at the exact same position of the spectrum. Samples were first measured
dry (dotted line) and then re-wetted (solid line) to 10% mass content H>O. Site codes: BL
- Bad Lauchstddt (nutrient-rich), LA - Luppeaue (nutrient-poor) , LU - Lunzberge (dry
grassland). . . . .. L L e e
From SPAD-values in the field to total leaf chlorophyll (Cab) and carotenoid (Car) contents
using two sets of samples: A larger set of samples (n= ) that were measured with the
SPAD-chlorophyllmeter and a second set (n = 160) for calibration. Total leaf Cab was
calculated from SPAD-values under consideration of (1) the deviations between measured
Cab based on spectrophotometry and transformed SPAD-values based on Markwell et al.
(1995) (’SD from Markwell’). Further, taking into account (2) the ratio between Cab and

Car ("Cab:Car’) from the calibration set to derive final car for the first sample set.
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17

Realisation of two types of point pattern distributions for approximately 1200 points in
both cases (for better illustration). a) Poisson point pattern process for homogeneously
distributed species (e.g. Lolium perenne). The intensity function was parameterised with
the cover fractions of the individual species that were estimated during field work. b) A
Matern cluster process for species that grow clustered (e.g. T. vulgare). The table shows
the field data that have been used to parameterise the respective density functions. . . . .
Median reflectance spectra of the 1000 simulated grassland communities for the lowest and
highest species numbers in each season. Black lines depict the median spectrum of a single
grassland simulation in the finest spatial resolution, i.e. the median spectrum of 22500
pixels. Green areas show the upper and lower quartiles (75 % and 25 %) of the pixel-wise
spectra from the single simulations. Panels in the two columns on the left side show the
spectra of LA, the two columns on the right side show the spectra of LU. LA - Luppeaue
(nutrient-poor), LU - Lunzberge (dry-grassland). . . . .. ... ... ... ... .. ....
Taxonomic and functional diversity indices per site and season. Indices were calculated for
each of the 1000 grassland simulations per diversity level. In order to calculate them for
every single grassland simulation, we attached species-specific trait data to the individual
points in the two dimensional grassland communities. The species and trait data is based
on in-situ measurements from the study sites. Site codes: BL - Bad Lauchstadt (nutrient-
rich), LA - Luppeaue (nutrient-poor). . . . . . . ... ... ..
The relationship between Rao’s Q (Functional diversity) and Shannon index (Species di-
versity) per site. Data was summarised for all seasons in one plot. Overall, the linear
regression model suggests that there is a significant relationship between Rao’s Q and
Shannon index, although in BL and LA the model explains only a small proportion of
the variance in Rao’s Q. Site codes: BL - Bad Lauchstidt (nutrient-rich), LA - Luppeaue
(nutrient-poor), LU - Lunzberge (dry grassland). . . . .. ... ... ... ... .....
Spectral diversity (mED in log+1) per diversity level for the sites LA and LU across all
seasons. Each box contains the mED for all 1000 grassland simulations per diversity level
(5 species to 25 species) in the finest resolution (0.2 m pixel size). The relationship between
mED and diversity level is not stable across the sites and seasons. . . . .. ... ... ..
Correlation between the two metrics for spectral diversity. Spectral Rao’s Q and mED
have been scaled before the linear regression model was applied. Correlations were all non
significant and R2-values were low (p j 0.05 in all cases, see plot panels for site-specific

RZvalues.) . . o oo
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Correlograms representing the bivariate relationships (R-values) between spectral diversity
(Rao’s Q) and different taxonomic diversity indices calculated for each of the grassland
simulations based on in-situ species and trait data. Black numbers show Pearson’s cor-
relation coefficient. The lower triangle shows the correlations between spectral Rao’s Q
of the different spatial resolutions, the upper triangle shows the correlations between the
different diversity indices (taxonomic and functional). R-values within the grey box show
the correlations between different taxonomic and functional indices and spectral diversity
for different spatial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ - Shan-
non Index, 'Rao@’ - Rao’s quadratic entropy, 'SR’ - Species Richness. Sites: BL - Bad

Lauchstddt, LA - Luppeaue, LU - Lunzberge. . . . . .. .. .. .. ... ... .. ....
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Figure 4: Correlograms representing the bivariate relationships (R-values) between spectral diversity
(mED) and different taxonomic diversity indices calculated for each of the grassland simulations based
on in-situ species and trait data. Black numbers show Pearson’s correlation coefficient. The lower triangle
shows the correlations between the mED of the different spatial resolutions, the upper triangle shows the
correlations between the different diversity indices (taxonomic and functional). R-values within the grey
box show the correlations between different taxonomic and functional indices and spectral diversity for
different spatial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ - Shannon Index, 'RaoQ’ -
Rao’s quadratic entropy, 'SR’ - Species Richness. Sites: BL - Bad Lauchstadt, LA - Luppeaue, LU -

Lunzberge. See Figure 18 for spectral Rao’s Q.
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Figure 5: Taxonomic and functional diversity indices per diversity level for the LU site as an example.
Indices were calculated for each of the 1000 grassland simulations per diversity level and for each season
(in different colours). The species and trait data is based on in-situ measurements from the study sites.
Season-specific results from the linear regression model between the respective index and species numbers
are written in each panel. LU - Lunzberge.
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Figure 6: Spectral diversity (mED in log+1) per diversity level. Depicted is the Bad Lauchstadt (BL site)
site in spring, summer and autumn as an example. Each box contains the mED for all 1000 grassland
simulations per diversity level (5 species to 20 species) in the finest resolution (0.2 m pixel size). Results
from the linear regression model between mED and species numbers are written in each panel. The reader
is referred to the remaining plots of the other study sites in the supplement (Fig. A.16).
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Figure 7: Correlation coefficients for taxonomic (Number of Species, Shannon-Index) and functional
diversity (Rao’s Q) indices with spectral diversity (mED) from different perspectives. Boxes show the
R-values for the respective index and spectral diversity for (A) the single sites, including all seasons
and spatial resolutions, (B) single seasons, including all sites and spatial resolutions, and (C) single
spatial resolutions, including all sites and seasons. BL - Bad Lauchstadt (nutrient-rich), LA - Luppeaue
(nutrient-poor), LU - Lunzberge (dry grassland).
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Figure 8: Spectral diversity per spatial resolution for each site and season. Each box contains the spectral
diversity of all grassland simulations in the respective spatial resolution (i.e. all diversity levels combined
per spatial resolution). The spectral resolution remained unchanged across the different spatial resolutions
(hyperspectral, 188 bands). BL - Bad Lauchstadt (nutrient-rich), LA - Luppeaue (nutrient-poor), LU -
Lunzberge (dry grassland).
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Figure 9: Schematic overview on the influence of different scenarios of trait expressions on the relationship
between spectral diversity and SR. The figure was inspired by results from Diaz, Sandra and Cabido,
Marcelo (2001) that presented a detailed analysis on the mismatch between SD and FD considering dif-
ferent settings. We expanded their concept to the spectral domain. Case (a) represents high intraspecific
trait variability at low levels of SR, e.g. caused by strong environmental heterogeneity in an area. High
spectral diversity leads to an overestimation of SR in this case. Case (b) shows high interspecific trait
variability, increasing with increasing SR. In this case, the link between spectral diversity and SR is
given. Case (c) represents high trait convergence, i.e. different species develop similar sets of traits in
the same area. FD is low and leads to low spectral diversity that does not represent high SR. Note that
environmental heterogeneity or other factors driving spectral diversity are not included in this graph.
These can further lead to an overestimation of spectral diversity and bias the spectral-to-species diversity
relationship.
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Figure 10: Soil reflectance spectra from all field sites. Samples were collected from the uppermost layer
and dried at 40 °C for at least 48 h. Afterwards, the samples were sieved to a grain size of 1 mm. Soil
reflectance was measured using the contact probe of a field spectrometer (ASD FieldSpec 4®  Malvern
Panalytical, UK) fixed to a stand. Measuring height was adjusted to the diameter of the measured
area (diameter = 5 cm, height = 10 cm) as well as the incidence angle of the halogen lamp (< = 30°).
A correction curve was recorded using a white reference panel with 95% reflectance prior to the soil
reflectance measurements. The single samples were measured three times and turned approx 120° after
each measurement. Each run consists of three full spectral records (from 350 - 2500 nm wavelength), while
the outcome of reflectance values at individual wavelengths is calculated as the mean of 25 measurements
at the exact same position of the spectrum. Samples were first measured dry (dotted line) and then
re-wetted (solid line) to 10% mass content H20O. Site codes: BL - Bad Lauchstéddt (nutrient-rich), LA -
Luppeaue (nutrient-poor) , LU - Lunzberge (dry grassland).
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Figure 11: From SPAD-values in the field to total leaf chlorophyll (Cab) and carotenoid (Car) contents us-
ing two sets of samples: A larger set of samples (n=) that were measured with the SPAD-chlorophyllmeter
and a second set (n = 160) for calibration. Total leaf Cab was calculated from SPAD-values under con-
sideration of (1) the deviations between measured Cab based on spectrophotometry and transformed
SPAD-values based on Markwell et al. (1995) (’SD from Markwell’). Further, taking into account (2) the
ratio between Cab and Car ('Cab:Car’) from the calibration set to derive final car for the first sample
set.
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Figure 12: Realisation of two types of point pattern distributions for approximately 1200 points in
both cases (for better illustration). a) Poisson point pattern process for homogeneously distributed
species (e.g. Lolium perenne). The intensity function was parameterised with the cover fractions of the
individual species that were estimated during field work. b) A Matern cluster process for species that
grow clustered (e.g. T. vulgare). The table shows the field data that have been used to parameterise the
respective density functions.
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Figure 13: Median reflectance spectra of the 1000 simulated grassland communities for the lowest and
highest species numbers in each season. Black lines depict the median spectrum of a single grassland
simulation in the finest spatial resolution, i.e. the median spectrum of 22500 pixels. Green areas show the
upper and lower quartiles (75 % and 25 %) of the pixel-wise spectra from the single simulations. Panels
in the two columns on the left side show the spectra of LA, the two columns on the right side show the
spectra of LU. LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry-grassland).
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Figure 14: Taxonomic and functional diversity indices per site and season. Indices were calculated for
each of the 1000 grassland simulations per diversity level. In order to calculate them for every single
grassland simulation, we attached species-specific trait data to the individual points in the two dimensional
grassland communities. The species and trait data is based on in-situ measurements from the study sites.
Site codes: BL - Bad Lauchstddt (nutrient-rich), LA - Luppeaue (nutrient-poor).

BL LA LU
10.0 - P<0.05%** * p<0.05%** ® 10.0- P<0.05%** .
Rz =0.17 R2 = 0.51 Rz =0.19 ©
7.5~
7.5~
5.0- 5.0-
2.5- 2.5-
. . 0.0- . . . 005 . .
1 2 0.5 1.0 1.5 2.0 o 1 2

Shannon Index

Figure 15: The relationship between Rao’s Q (Functional diversity) and Shannon index (Species diversity)
per site. Data was summarised for all seasons in one plot. Overall, the linear regression model suggests
that there is a significant relationship between Rao’s Q and Shannon index, although in BL and LA the
model explains only a small proportion of the variance in Rao’s Q. Site codes: BL - Bad Lauchstadt
(nutrient-rich), LA - Luppeaue (nutrient-poor), LU - Lunzberge (dry grassland).
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Figure 16: Spectral diversity (mED in log+1) per diversity level for the sites LA and LU across all
seasons. Each box contains the mED for all 1000 grassland simulations per diversity level (5 species to

25 species) in the finest resolution (0.2 m pixel size). The relationship between mED and diversity level
is not stable across the sites and seasons.
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Figure 17: Correlation between the two metrics for spectral diversity. Spectral Rao’s Q and mED have
been scaled before the linear regression model was applied. Correlations were all non significant and
R2-values were low (p j 0.05 in all cases, see plot panels for site-specific R2-values.)
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Figure 18: Correlograms representing the bivariate relationships (R-values) between spectral diversity
(Rao’s Q) and different taxonomic diversity indices calculated for each of the grassland simulations based

on in-situ species and trait data.

Black numbers show Pearson’s correlation coefficient.

The lower

triangle shows the correlations between spectral Rao’s QQ of the different spatial resolutions, the upper
triangle shows the correlations between the different diversity indices (taxonomic and functional). R-
values within the grey box show the correlations between different taxonomic and functional indices
and spectral diversity for different spatial resolutions. Labels: ’Simpson’ - Simpson-Index, ’Shannon’ -
Shannon Index, 'RaoQ’ - Rao’s quadratic entropy, 'SR’ - Species Richness. Sites: BL - Bad Lauchstédt,
LA - Luppeaue, LU - Lunzberge.
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