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Abstract
We present an application of design-of-experiment (DoE) based history matching as
an approach to reduce and investigate parameter uncertainties in finite-element models
for repositories of high-level radioactive waste. We combine experimental data from
the FE-experiment at the Mont Terri underground research laboratory in Switzerland
with thermo-hydro-mechanical modeling using the open-source package OpenGeoSys.
Uncertainties were reduced by an initial parameter screening to find heavy hitters and
an experiment-matching procedure using Monte-Carlo sampling on a Gaussian proxy
model to fit the error between modeling response and the experiment. Furthermore,
we performed a global sensitivity analysis based on the proxy model, demonstrating the
spatial impact of parameter sensitivities. Very good agreement between the experimental
data and the model was found for the temperature response, whereas the pressure match
hints at a significant remaining gap in the physical models and/or structure. This gap
could not be filled within the scope of our contribution and needs further investigation.
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1. Introduction

To date, the computational uncertainty assessment as part of simulations of high-level
radioactive waste repositories remains a rather challenging task. This is mainly due to
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model complexity and large spatial and temporal scale ranges relevant to the repository
system evolution. These challenges explain, at least in part, why literature data are only
available on single, very specific aspects of the entire repository system. Although a lot
of research has been done based solely on transport phenomena, e.g. [1, 2, 3, 4], only a
few studies exist focusing on uncertainties involving thermo-hydro-mechanical processes
[5, 6, 7, 8, 9, 10]. However, the hydraulic and mechanical integrity of geotechnical and
geological barriers play a central role in retarding radionuclide migration in the post-
closure phase of a repository. Therefore, the uncertainty of THM processes must be
taken into account in safety assessment procedures. A common approach to speed-up
coupled simulations is by the replacement of specific physical processes with surrogate-
models, as done by Hu and Pfingsten for the saturation profile of granular bentonite in
the FE-experiment [10]. However, these models require large experimental data sets or
extensive modelling for building the proxy and have usually only very restricted validity.

The origins of uncertainties in computational models mimicking those processes are
manifold: We distinguish between (i) parameter uncertainties stemming from their natu-
ral variability over space and time or a lack of detailed knowledge, including measurement
uncertainties. Furthermore, there are (ii) model uncertainties stemming from reducible
simplifications like geometric simplifications, mathematical simplifications, or the numer-
ical discretization. This includes the more challenging gaps in a model due to unknown
or deliberately omitted effects, and also rare events that present challenges both for the
elaboration of quantitative physical theories and their statistical description. Specific to
repository models, significant disturbances to the natural state are caused by the excava-
tion of the mine itself, which dominates the early stages of repository evolution [11]. The
excavation-induced changes of hydro-mechanical boundary conditions and chemical equi-
libria in the near-field also represent initial conditions for the post-closure phase. In this
study, we include the process of excavation to generate a reasonable initial mechanical
state for the heating phase. Nevertheless, we perform the excavation run determinis-
tically, neglecting the effects coming from its variability because of a lack of data and
to keep the problem still tractable. The most significant post-closure effects are due to
emitted decay heat, triggering major changes in the physical properties and states of the
host rock in the near-field. Chemical and biological processes also play an important
role in the later stages when canister corrosion begins to affect it. While there exist
several studies dealing with heterogeneities and transport phenomena[12, 13, 14, 15], to
date, it remains unclear what role heterogeneities at different scales play in the safety
assessment when studying the thermo-hydro-mechanical evolution of a repository. The
types of processes and also their impact depends very much on the host rock in which
the canister is emplaced [16]. An overview can be found elsewhere [17, 18, 19].

Based on the Full-Scale Emplacement (FE) experiment in the underground research
lab at Mont Terri [20], we provide a first attempt to model uncertainties based on a
coupled three-dimensional thermo-hydro-mechanical (THM) model with focus on uncer-
tainties relating purely to the host rock. To speed up simulations, we incorporate an
effective description of mechanical effects into a non-isothermal flow model, as proposed
by [21] for saturated conditions and generalize the approach to unsaturated media under
the Richards assumption in the present study.

For uncertainty quantification, we use a history matching workflow based on design-of-
experiments (DoE), a surrogate model approach widely used in different disciplines (e.g.,
for reservoir modeling [22]) and proposed by the authors in [8] to treat uncertainties in
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the evolution of radioactive waste repositories. The use of metamodeling tools is not new
in the field, e.g. [15] used a surrogate model to accelerate uncertainty quantification of
computationally expensive multiphase flow simulations involving heterogeneous porous
media with high-dimensional input and function-valued output also in the context of
radioactive waste repositories. Also, other studies exist that use surrogate modeling as
part of the performance assessment of radioactive waste repositories [23, 24, 25]. While we
show that the metamodeling tools in this study are adequate for the given problem, we are
aware at the same time that future studies potentially require the inclusion of a number
of additional parameters that might show the limits of the classical tools used herein.
Therefore, we would also like to stress that future workflow advancements will profit from
an immense amount of work done over recent years to improve these models namely by
implementing better learning strategies using adaptive methods [26, 27, 28, 29] and to
better deal with high-dimensional problems by building the proxy in active subspaces [30,
31, 32]. However, the main feature of the used workflow is the combination of a surrogate
model with prior parameter uncertainties that are further reduced by comparing the
model outcome to the experimentally measured responses which is a new approach for
dealing with the reliability of a disposal site for high-level radioactive waste. Such a
history matching approach is very similar to a Bayesian inference approach (see e.g., [33]),
however, some differences exist as pointed out below. Combining both, metamodeling
and Bayesian inference for studying the reliability of complex technological systems is
still a field of active research in the reliability engineering community [34, 35, 36] as
pointed out by [37] recently:

Addressing modeling complexity remains a significant challenge for Bayesian
inference applications because integrating metamodeling techniques is not
trivial. The challenge here is to establish a fully automated integration pro-
cess that addresses different degrees of competency for the end user and a
wide range of application problems with a certain degree of robustness.

Our history matching workflow employs a ’brute-force’ direct Monte Carlo sampling
method to overcome the main flaws of widely used Markov chain (MCMC) and minimiza-
tion techniques for parameter fitting on response surfaces with multiple minima. This
reduces the issue of workflow-robustness mainly to the issue of meaningfull parameter
identification and a proxy error given the appropriateness of the models being used. The
proxy error as well as poor chain convergence in MCMC techniques are typical reasons
why true posteriors in a Bayesian sense won’t be generated.

In general, uncertainty quantification and sensitivity analysis is not just a final step
of the safety assessment, but can be understood as part of an iterative process of model
development and calibration [38]. We see our work as a contribution subscribing to this
idea. So, despite neglecting certain aspects and effects (uncertainties stemming from the
geometry, bentonite, excavation/construction, extended sets of physical effects, etc.), we
aim to reduce the entire uncertainty space to some extent in the present work, leaving
room for further studies to build upon this work.

The paper is structured as follows: We have divided the entire article into two
parts, deterministic modeling and statistical modeling. The deterministic section consists
of theoretical derivation of the governing equations, computational details, and model
preparation of the initial state. The statistical modeling section comprises the descrip-
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tion of the methodology, subsections for software and data, and finally the conclusions’
subsection.

2. Deterministic modeling

2.1. Theoretical formulation
The evolution of temperature, pressure and displacement of the host rock around a

heat-emitting canister emplaced in an underground rock laboratory can be best described
in terms of a coupled thermo-hydro-mechanical (two-phase flow) and component model,
like the TH2M model (see Tab. 1 for a model overview) introduced by Grunwald et al.
(2022) [39]. Pitz et al. (2023) [40] showed that temperature and pore pressure can be
very well-matched by applying Richards’ assumption, as long as excess gas pressures can
dissipate quickly and dissolution of gas in the liquid phase can be neglected. Under this
assumption, the governing equations simplify to the following set consisting of an energy
balance (1), a mass balance (3) and the momentum balance equation (4) [41].

0 = (ρcp)eff
∂T

∂t
+ L0

∂θvap
∂t

− div (Keff gradT ) + div

(
L0qv

ρLR

)
+ gradT · (cpLρLRw̃LS + cp, vapρvapw̃vapS)

(1)

where L0 represents the volumetric latent heat of water vaporization:

L0 = ρLR

[
2.501× 106 J kg−1 − 2369.2 J kg−1

(
T

K
− 273.15

)]
(2)

0 =
(
ρLR − ρW

vap
)
[ϕ+ pLRSL(αB − ϕ)βp,SR]

dSL

dt
+ ρLRSL [ϕβp,LR + SL(αB − ϕ)βp,SR]

∂pLR
∂t

+ ϕ

[
(1− SL)

∂ρW
vap

∂pLR

]
∂pLR
∂t

+ div
(
ρLRw̃LS + ρW

vapw̃vapS

)
+ SLρLRαB div

∂u

∂t

+

[
ϕ(1− SL)

∂ρW
vap

∂T
− ρLRSL [ϕβT,LR + (αB − ϕ)tr(αT,SR)]

]
∂T

∂t

(3)

0 = div (σ′ − αBχpLRI) + [(1− ϕ) ρSR + SLϕρLR]b (4)

The effective stress rate σ̇′ is given by a generalized form of Hooke’s law to account for
thermal effects:

σ̇′ = C:
(
ϵ̇−αT,SRṪ

)
(5)

Where the double dot product ’:’ denotes the contraction of the last two indices of the
elasticity tensor C with the two indices of the generalized strain rate tensor. Through-
out the paper, we will focus on temperature and pressure predictions in comparison to
experimental results. To speed up the scoping simulations, we simplify the model fur-
ther, following the approach published by the authors in an earlier contribution [42] for
saturated media. Using this approach, the anisotropic elastic behavior of the solid is
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reduced to a scalar (isotropic) expression that can effectively represent the impact of the
volumetric deformation on the pressure changes. This simplification reduces the number
of needed primary variables from five (T , p, ux, uy and uz) to just two (T and p), such
that the momentum balance is dropped from the set of PDEs and the last term of Eq. (3)
can be written in terms of temperature and pressure derivatives:

ϕ

(
(ρLR − ρW

vap)
∂SL

∂pLR
+ (1− SL)

∂ρW
vap

∂pLR
+ SL

(
ρLRβp + χSα

2
Bβ

σ
)) ∂pLR

∂t
(6)

+

(
ϕ(1− SL)

∂ρW
vap

∂T
− SLρLR (ϕβT,LR + (αB − ϕ)tr(αT,SR)− ασ

T )

)
∂T

∂t
(7)

+div (qw + qv) = QH . (8)

Here, ασ and βσ are terms describing the thermal expansivity and storage contributions
coming from the elastic behavior of the solid. In [42], two models were derived corre-
sponding to two limiting cases in terms of stress and kinematics. One is based on the
assumption of hydrostatic stress conditions, and the other only allows uniaxial deforma-
tion. Although both conditions are not met in general cases, the latter model has been
shown to give relatively good pressure prediction for the given test case under saturated
conditions. Even for anisotropic materials, good agreement could be found if the material
axis is rotated along the main diagonal of the material coordinate system such that all
elastic constants enter into the correction factor in an average sense. The coefficients for
the uniaxial model were calculated according to Eq. (27) in [42]:

βσ=uniaxial =
1

C3333
(9)

ασ=uniaxial =αB

(
αTS;z + αTS;x

C1133

C3333
+ αTS;y

C2233

C3333

)
(10)

Cijkl corresponds to the entries of the elasticity tensor. The given equations are exact
if only uniaxial deformation along the third direction (regarding the material coordinate
system) occurs. Generally, there is no preferential direction. In the given problem,
the transverse-isotropic elasticity tensor of clay was rotated along the main diagonal of
the material coordinate system (i.e. normal 111) for an effective averaging of all three
principal directions. Eqn. (6) provides a straightforward generalization of the equations
presented in [42] to unsaturated conditions based on Richard’s approximation. The
energy balance equation is unaffected by these changes.

These simplifications allow us to evaluate the THM model with the efficiency of a
hydro-thermal model under a moderate loss in accuracy only. A brief overview of models
and their abbreviations used throughout this publication is given in Tab. 1.

2.2. Computational details
All simulations were performed using the OpenGeoSys numerical simulator (OGS-6)1

[43, 44], an open-source code for modeling thermo-hydro-mechanical-chemical processes

1https://www.opengeosys.org/
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Table 1: Explanation of numerical models and their abbreviations used in this work.

Model
abbreviation Description

THM
This abbreviation refers to the umbrella term of thermo-hydro-
mechanical coupled models in this paper. It includes saturated uniphase
models as well multiphase and multi-component models.

TH2M

The model featuring non-isothermal two-phase (liquid and gaseous
phase) two-component (water and non-aqueous component) flow with
linear poro-elasticity. This model is the most comprehensive model de-
scribed herein.

TRM

The non-isothermal Richards mechanics implementation based on the
non-isothermal Richards flow equation coupled to linear poro-elasticity.
It includes a vapor diffusion model and can be used to model both sat-
urated and unsaturated problems.

TRuni
The same as TRM without the mechanical coupling. It contains cor-
rection terms in the mass balance equation accounting for the thermo-
mechanical coupling.

in porous and fractured media. The three-dimensional hexahedral model domain with
dimensions 100 m x 80 m] x 100 m is intended to capture the near-field thermo-hydro-
mechanical behavior around a tunnel filled with high-level radioactive waste. The tunnel
is aligned along the y-axis and starts at y = 0 and has a length of 50m. A detailed
description of the implementation of the experiment can be found elsewhere [20]. A two-
dimensional vertical cut through the mesh is depicted in Fig. 1. The model domain was
subdivided into 164 471 linear hexahedral elements. The sampling runs were conducted
with an assembly based on the non-isothermal flow equations with simplified elasticity
corrections (later referred to as TRuni) as given by Eqs. (1) and (6). For verification,
additional runs were conducted based on the mechanically fully coupled model (later
referred to as TRM) as given in Eqs. (1) to (4). Both are assembled and solved using
a monolithic scheme with an iteration-based adaptive time stepper over a simulation
time of t = 3.83 a. Nonlinearities are resolved with an iterative-incremental Newton-
Raphson solution strategy, while time integration is fully implicit based on a backward
Euler scheme. The relative tolerances for the nonlinear solver were set to 10−6 for
all primary variables. The linear system was solved using the Eigen library’s iterative
solvers IDRSTABL [45, 46] for TRM and BiCGSTAB [47] for TRuni, both with an error
tolerance of 10−12 and using the Jacobi preconditioner.

2.3. Model preparation
2.3.1. Equilibration

Prior to excavation, we prepared an equilibrated initial state by setting the dis-
placement everywhere to zero and applying a linear temperature and pressure profile
(Tmax = T (z = −50m) = 293.15 K, Tmin = T (z = 50m) = 287.15 K, pmax = p(z =
−50m) = 2.5 MPa, pmin = p(z = 50m) = 1.5 MPa). The initial effective stress was com-
puted from the given total stress and pressure profile using the relation σ′

ij = σij+αBpδij .
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Table 2: Van Genuchten parameters used for bentonite

Material S0 ϕ Sres Smax m pb
bentonite pellets (GBM) 0.56 0.331 0.01 1 0.45 18 MPa
bentonite blocks 0.19 0.331 0.01 1 0.45 30 MPa

The numerical values were taken from ranges given in the literature [48, 49]:

σ′
xx =− 4.5 MPa + 0.85× (2.0− 0.01m−1z) MPa (11)

σ′
yy =− 2.5 MPa + 0.85× (2.0− 0.01m−1z) MPa (12)

σ′
zz =− 6 MPa + 0.85× (2.0− 0.01m−1z) MPa (13)

σ′
ij

∣∣
i ̸=j

=0MPa (14)

An equilibration step was skipped, as the given conditions satisfy the momentum balance
equation ∂j(σ

′
ij − αBpδij) + ρgi = 0. All remaining out-of-balance forces stemming from

numerical inaccuracies are discarded when assembling the discrete force balance. As
boundary conditions, we set all surface-normal displacements to zero along all outer
boundaries. Additionally, Dirichlet conditions were also applied at z = −50m as well
as at z = 50m setting temperature and pressure to their corresponding maximal and
minimal values compatible with geothermal and hydrostatic gradients. All remaining
boundaries were taken as free boundaries (homogeneous Neumann type).

2.3.2. Excavation and application of shotcrete
The excavation was performed over a time span of 181 days for the cavern and 91 days

for the tunnel. For this purpose, all material domains inside the tunnel were gradually
deactivated, beginning with the cavern entry and ending at y = 50m. The pressure
along the newly generated boundary was set to a value that corresponds to 90% relative
humidity. The excavation phase was followed by a shotcreting and ventilation phase in
which the shotcrete was applied with initial and boundary conditions corresponding to
90% relative humidity followed by linear drying to 60% relative humidity over a time
span of 336 (FE-cavern) and 778 days (FE-tunnel).

2.4. Back-filling
The entire tunnel was then closed with a porous concrete wall, a bentonite block

wall, emplaced with heaters, concrete and bentonite pedestals and backfilled granular
bentonite and finally sealed with a plug. Initial pressures based on water saturation were
calculated from the van Genuchten curves of the respective materials. The numerical
values of the water content and the van Genuchten parameters used in our model are
given in Tab. 2.

The reactivation steps of the material groups are summarized in Tab. 3. The tem-
perature of all back-filled materials were set to 291.15 K.

2.5. Heating phase
After back-filling, the cross-sectional 2D slice of the entire model domain through the

tunnel looks as depicted in Fig. 1. The heaters, modeled by applying thermal properties
7



Table 3: Durations used for backfilling.

step section on y-axis duration
porous concrete wall + bentonite block wall 59.8-54.4 30 d
heater 1 + GBM 59.8-42.2 32 d
heater 2 + GBM 59.8-33.6 61 d
heater 3 + GBM 59.8-25 31 d
plug + completion 59.8-0 14 d
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Figure 1: Vertical-cross section of the 3D model at x = 0 of the mesh sketching the color-coded material
domains.

of steel lying on compacted bentonite blocks (pedestals) are surrounded by GBM pellets
as filling material. The tunnel consists of a 20 cm excavation damage zone with reduced
clay parameter values. The surface was backed by a 20 cm layer of shotcrete. The heating
profile with their exact dates can be found elsewhere [20]. First, heater 1 (the one that
was back-filled first) was turned on at a power of 500 W. One month later, the heating
power was increased to 1000 W. Another month later, all three heaters were turned on
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at a power of 1350 W. Results for specific observation points for the full TRM model and
the TRuni model together with their corresponding experimental results can be found in
subsection 3.4.5.

3. Statistical modeling

3.1. Methodology
This paper follows the approach introduced out in [8]. A sketch of the workflow for

uncertainty quantification is depicted in Fig. 2. The first step requires the aggregation
of experimental material parameters 1 . Detailed knowledge of spatial variations is ad-
vantageous, as well as data on parameter distributions, as they reduce the uncertainty
and the efficiency of the workflow significantly. However, the data provided by techni-
cal reports provides in most cases only min and max values. In the second step, the
objective function needs to be defined 2 . In the present work, we will use a history
match error defined as an integral measure over all time steps for all response variables
and observation points. For the history match filtering procedure, we will use an ac-
cumulated normalized error over all six observation points for both response variables
p and T . In the third step, parameter screening is conducted to identify heavy-hitters,
i.e. parameters that contribute most to the results, that will be used in further analysis
3 . For this purpose, different screening designs can be used. We restrict our screening

procedure to one-variable-at-a-time (OVAT) and Plackett-Burman designs. Using the
identified heavy-hitters, a space-filling design like Latin-hypercube sampling can be used
to build a proxy for the objective functions 4 . Typical proxies include multidimensional
polynomials, neural networks, or Gaussian process regression. In our study, we use the
latter. Having built the proxy, it can be deployed for cheap evaluation either as part
of a global sensitivity analysis 10 , see also [50], or to perform a direct Monte Carlo
sampling 5 to explore the entire parameter uncertainty space. Although considered a
’brute-force’ method, it is a very effective way to perform a model calibration, regardless
of multiple local minima that may be present in the model prediction. The results of the
sampling can be used to apply a filter 6 to match results to the experimental response
data allowing for parameter estimation or runs of the full deterministic model 7 for
confirmation, further evaluation 9 e.g. to analyze safety measures like integrity criteria
in terms of cumulative distribution functions or to perform a forecast to get projections
for experimentally available data.

3.2. Software
The entire workflow was implemented in Python and uses ogs6py [51] and VTUinter-

face [52] for OGS pre- and post-processing [21]. The experimental designs were created
using the pyDOE22 library, while GPy [53] was used for proxy modeling. The global
sensitivity analysis was done using the package SALib3. The t-test was conducted with
the help of the statsmodels package [54].

2https://pypi.org/project/pyDOE2/
3https://salib.readthedocs.io/
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Figure 2: Schematic sketch of the workflow.

3.3. Data
The material properties for the Opalinus clay were mainly compiled from swisstopo’s

database and reports [55] and [56]. In Tab. 4, we provide the used low/best/high values.
If data was present in both resources, we took the min/max values resulting in the greater
interval. In this study, we assume a uniform/loguniform distribution for all parameters, as
in many cases no information on probability density functions could be obtained. In most
cases, the low/mid/max values correspond to the natural variability or uncertainty in
measurements of the properties, while for other parameters like cs the resulting variability
also arises from different temperature regimes (T = 20◦C: cs = (1040± 170) J kg−1K−1

and T = 80◦C: cps = (1380± 10) J kg−1K−1). Parameters used for other material groups
can be found in Section Appendix B. It has been discussed elsewhere (e.g., [57, 58, 59])
that variations of the thermodynamic fluid properties of water might play a significant
role. Therefore, we used the IAPWS water model for the viscosity and fluid density,
resulting in non-constant water thermal expansivity and compressibility [60].

3.4. Results and discussion
The analysis was conducted at six observations points listed in Tab. 5:
Keeping in mind that the heaters were placed along y-axis, this implies that a cross-

section between the first and the second heater is chosen. The points 1-3 are aligned in
the bedding plane, the points 4-6 in a direction normal to the bedding plane. All points
lie in the Opalinus clay and span a distance between 3.5 and 13 m from the tunnel wall
and correspond to actual sensors that were installed in boreholes drilled from within the
FE-Tunnel during the instrumentation phase. An illustration can be found in Fig. 8 of
the implementation paper by Müller et al. [20]. The history match error metrics are
then defined for each response quantity by

Ehm =

√√√√ 1

n

n∑
i=1

(dobsi − dsimi )2. (15)

Here, n is the number of measured instances (data points) in time. Different derived
and combined metrics for the various quantities and observation points are discussed
later in the manuscript.
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Table 4: Used parameters for clay

Parameter symbol low best high unit distribution
Young’s modulus E1[56] 2.2 · 109 7.2 · 109 8.1 · 109 Pa uniform
Young’s modulus E3[56] 6.1 · 108 2.8 · 109 3.5 · 109 Pa uniform
Young’s modulus EDZ E1[56] 0.2 · 109 2.16 · 109 4.86 · 109 Pa uniform
Young’s modulus EDZ E3[56] 0.61 · 108 0.84 · 109 2.1 · 109 Pa uniform
Shear modulus G13[56] 1.2 · 109 2.4 · 109 3.7 · 109 Pa uniform
Poisson’s ratio ν12[56] 0.28 0.33 0.38 -
Poisson’s ratio ν13[56] 0.16 0.24 0.32 -
lin. thermal expansion
coefficient of the solid a⊥s [55] 0.8 · 10−5 1.9 · 10−5 3 · 10−5 K−1 uniform
lin. thermal expansion
coefficient of the solid a

∥
s [55] 1.0 · 10−5 1.4 · 10−5 1.8 · 10−5 K−1 uniform

Porosity ϕ[56] 0.13 0.16 0.21 -
Porosity EDZ ϕ[56] 0.13 0.16 0.21 -
Solid grain density ρs[55] 2680.0 2700.0 2720.0 kgm−3 uniform
Specific isobaric heat
capacity of the solid cs[55] 870.0 1040.0 1390.0 J kg−1K−1 uniform
Heat conductivity
of the solid K⊥

s [56] 1.0 1.2 3.1 Wm−1K−1 uniform
Heat conductivity
of the solid K

∥
s [56] 1.0 2.1 3.1 Wm−1K−1 uniform

Intrinsic permeability k⊥s [55] 0.5 · 10−20 0.6 · 10−20 0.7 · 10−20 m2 loguniform
Intrinsic permeability k

∥
s [55] 1.3 · 10−20 1.5 · 10−20 2 · 10−20 m2 loguniform

Intrinsic permeability EDZ k⊥s [55] 1.2 · 10−19 1.0 · 10−18 1.2 · 10−17 m2 loguniform
Intrinsic permeability EDZ k

∥
s [55] 1.2 · 10−19 1 · 10−18 2 · 10−17 m2 loguniform

EDZ thickness lEDZ 0 0.5 1 m uniform

Table 5: Observation points

Observation point Coordinates (x,y,z) in meter
pt1 (4.593, 32.966, 2.517)
pt2 (7.142, 32.588, 4.287)
pt3 (11.66, 32.765, 8.508)
pt4 (−3.602, 32.598, 3.714)
pt5 (−4.998, 32.612, 6.282)
pt6 (−8.956, 32.638, 11.702)

3.4.1. Parameter Screening (Step 3)
The purpose of the initial screening step (workflow step 3 in Fig. 2) is to identify

relevant parameter uncertainties and parameters whose variability has no significant
impact on the output response. This behavior is not just dependent on the considered
value range and the considered quantity itself, it is also a function of space and time
(see [50]). As the purpose is to reduce the computational complexity at later workflow
steps, no thorough investigation should be done at the screening stage. Therefore, we
used relatively simple (i.e. small) designs for the parameter screening: a one variable at
a time (OVAT) screening for non-interfered main effects and a folded Plackett-Burman
design for creating Pareto charts to obtain a complementary picture based on main effects.
Both designs were evaluated for every response variable and at all six observation points.
For the OVAT design, we took the ’best’ values (see table 4) as reference and changed
all parameters separately to their min/max values, whereas the Placket-Burman design
uses the min/max values only. The results of both designs were compared for pt1 and
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temperature (Figs. 3a and 3c) as well as for pt2 and pressure (Figs. 3b and 3d). Both
combinations were selected because in both cases the t-test revealed significant results.
For other combinations, the null hypothesis from the F-test couldn’t be rejected, so their
results lack significance (see [61] for more details on t-test and hypothesis testing in the
context of regression analysis). This confirms the experiences we had with a simpler
model of a heat source in a saturated, homogeneous medium [8]. We conclude that even
the folded design is not suitable for parameter screening with the history match error
and these kinds of thermo-hydro-mechanical coupled models. Nevertheless, the results
clearly show the impact of different screening methods and also give rise to the conclusion
that the sensitivity is affected by the choice of observation points (compare the spatio-
temporal sensitivity from [50]). Although not surprising, it is an effect one should keep
in mind already during the initial screening. Although there are well-known downsides of
OVAT-screening designs such as the possibility that potential effects could be overlooked,
we conclude that the combination of the modelers experience and his/her insight into the
physical model together with testing of multiple response variables at different locations
should be sufficient to select all relevant parameters for proxy building. Other (OVAT)
screening designs, like the Morris method ([62]) require multiple parameter sweeps to
cover the sampling space as only small parameter changes are considered.

Combining both screening methods, we were able to reduce the uncertainty space
from originally 20 parameters to the following 14 parameters which we consider to be
significant for further investigation: K⊥

s ,K∥
s , cs, G13, E3, a∥s , a⊥s , k∥, k⊥, ϕ, lEDZ, ϕEDZ,

k
∥
EDZ, k⊥EDZ.

3.4.2. Proxy building (Step 4)
Based on the 14 heavy hitters found in the previous step, we used a Latin-hypercube

sampling scheme with 500 sampling points on which the proxy is defined workflow step
4 . The size of the sampling scheme was chosen from the tradeoff between the required

computational effort and proxy error. For this purpose, we calculated the coefficient
of determination R2 as well as the root-mean-square error (RMSE) for each response
variable and at each observation point. The results are summarized in Tab. 6. For this
purpose, the LH sample was split up into a training set with 450 points and a testing set
with 50 points. Both measures were calculated using ten proxy rebuilds by selecting every
time new training and testing points. The final values were taken from the minimum
(R2) and maximum (RMSE) value of one of the rebuilds for each point and variable.
For all runs, the deterministic TRuni forward model was used to obtain temperature and
pressure responses. In Figs. 4a-4f we provide the time series output of all simulated curves
at all observation points for both response variables to display the full prior parameter
uncertainty. Additionally, the experimental data are displayed. What can be seen already
at this stage is that the qualitative behavior of the experimental curves is mostly met by
the modeling curves, except for the pressure dip of the most distant observation point.
However, it is not clear whether the optimization regarding one variable at one particular
point contradicts the optimization with regard to another point or variable, especially
because the experimental curves are, for some cases on opposing ends of the sampled
response spectrum. However, this will be discussed in a thorough analysis later. For all
observation points and both response variables, we normalized the input data using the
mean and standard deviation, as the numerical values of different parameters are in very
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Figure 3: Sensitivity screening with the OVAT method and a t-test of all included THM clay parameters.

different ranges. The normalized input was used to build a proxy of the history match
error based on Eq. (15) using Gaussian process regression. For each combination of
observation point and variable the prediction of the history match error was taken from
the conditional mean of the Gaussian process. This was done with the Python package
GPy using a Matern52 kernel. The Gaussian process uses a constant mean function and
a separate length scale for each parameter. The hyperparameters were optimized using
a scaled conjugated gradient algorithm as implemented in GPy.
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Figure 4: Ensemble run temperature and pressure curves generated from LHS design based on prior
distributions for the first three observation points. The measured response is painted black. Colored
curves present modeled responses of TRuni model for different sets of parameters.
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Table 6: Proxy Quality measures.

Temperature Pressure
R2 RMSE R2 RMSE

pt1 0.999 0.01 K 0.991 51513 Pa
pt2 0.999 0.01 K 0.996 7398 Pa
pt3 0.998 0.00 K 0.896 8753 Pa
pt4 0.997 0.01 K 0.943 47973 Pa
pt5 0.993 0.01 K 0.988 10277 Pa
pt6 0.995 0.01 K 0.993 1060 Pa

3.4.3. Monte Carlo (MC) sampling (Step 5)
Given the (uniform) input parameter distributions (Tab. 4), the entire parameter

space was sampled using a direct Monte Carlo sampling strategy with a size of N = 106

(workflow step 5 in Fig. 2). The proxy models optimized using the Latin-hypercube-
training data set were evaluated on the entire sampling space, providing an estimation
of the history match error for each set of parameters at each observation point for tem-
perature and pressure. The result gives us a distribution of the history match error on
the one hand and allows for solving the inverse problem (i.e. parameter estimation) on
the other.

3.4.4. History Matching (Step 6)
The selection of a subsample of MC analysis results that is compatible with the

experimental data set allows us to reduce the uncertainty of the problem further. This
selection is done by filtering of the MC sample with history match criteria (workflow
step 6 in Fig. 2). In general, the history match criteria are based on three sources of
error. The proxy error Eproxy, the experimental error Eexp representing the uncertainty
coming from measurements of temperature and pressure and the model error Emodel. As
no data are available for the experimental error and all curves are only analyzed in terms
of their changes with respect to the first time step, we neglect the experimental error and
try to get an estimation of the model error in the following analysis. The proxy error
can be evaluated in terms of the RMSE of the proxy, EproxyVAR,PT = 2RMSEVAR,PT

assuming a 95% confidence interval. As it is assumed to be stochastic, we assume that the
remaining systematic deviations constitute the model error, which we thereby estimate
by the minimal history match error. In the following analysis, the unit afflicted history
match errors are normalized by their maxima and analyzed by taking the sum over all
points and response variables. Let {xk} ⊂ A be a sample of the sampling space A. Then,
we have a prediction of the history match error for each variable and each observation
point given by the proxy:

xk 7→ Ehm
VAR,PT
k ,VAR ∈ {T, p},PT ∈ {pt1, pt2, pt3, pt4, pt5, pt6} (16)

To be able to combine errors for different observation points and for different variables,
we define a normalized error by
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Êhm
VAR,PT
k =

Ehm
VAR,PT
k

max
k

({
Ehm

VAR,PT
k

}) (17)

We also define condensed error metrics in the following way for the variables

Êhm
VAR
k =

∑
PT

Êhm
VAR,PT
k , (18)

and analogous for the points

Êhm
PT
k =

∑
V AR

Êhm
VAR,PT
k (19)

to allow for variable wise and point-wise analyses. Finally, we have a overall metric
summed over all points and variables:

Êhmk =
∑
VAR

Êhm
VAR
k . (20)

An analogous notation is also used for the proxy error. The model error estimations based
on temperature matches and pressure matches separately can be found via the following
subsamples that uses for each variable or for each point the corresponding minimium
and considers all sampling points that are within the proxy error. So we obtain for each
variable

{xk}|VAR :=

{
xk | Êhm

VAR
(xk) < min

k

(̂
Ehm

VAR
k

)
+ Êproxy

VAR
}

(21)

and similarly, for each point

{xk}|PT :=

{
xk | Êhm

PT
(xk) < min

k

(̂
Ehm

PT
k

)
+ Êproxy

PT
}
. (22)

The estimates for the model error can then be found by taking the minimum of the
overall metric for each subsample:

ÊmodelVAR = min
k

({̂
Ehm(xk) | xk ∈ {xk}|VAR

})
(23)

As corresponding numerical values we find Êmodel|T = 1.88 and Êmodel|p = 2.344
keeping in mind that both values are normalized, and their theoretical maximum is
2× 6 = 12 as the upper bound for each individual term is one.

With these relations, we can now define two thresholds for the history matching
procedure:

Θ̂T/p = Êmodel|T/p + Êproxy (24)

In the upcoming analysis, we will apply both thresholds to investigate their influence
on the distribution of modeling results, referred to as the ’posterior.’ It is essential
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to emphasize that the term ’posterior,’ consistently used throughout this publication,
is not a posterior in a strict Bayesian sense. This departure primarily arises from the
introduction of extra uncertainties attributed to the proxy model, which is why we enclose
the term in single quotation marks.
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Figure 5: Temperature and pressure responses at the first three observation points: Best fit results. The
measured curve is plotted alongside the TRuni and the fully coupled TRM response.
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In Figs. 5a-5f, the experimental results for the first three observation points are de-
picted together with simulation results of the best overall match for a complete TRM
model and the TR model with simplified HM-coupling based on the uniaxial strain
approximation. The results for the remaining points are presented in the appendix
(Fig. A.12). As already shown for saturated media, nearly perfect agreement between
TRM and TRuni is found for the temperature, and also relatively good agreement for the
pressure response. We deduce from the theoretical derivation of the TRuni model that
similar agreement can be found also for other parameter combinations. Having shown
the validity of the simplified forward model, we can now analyze the history matching
capabilities. The smaller numerical value of the model error Êmodel|T is reflected by
the decent temperature match for all observation points. However, for pressure, we find
somehow conflicting behavior: an underestimation of the pressure peak with an increased
drainage at the closest point whereas the point in the middle exhibits an overestimation.
The reason can be manifold: stemming from oversimplified models or inaccurate data
of the bentonite and shotcrete, a greater extent of the excavation damaged zone and
fracturing therein [63], the tight coupling of material interfaces to neglected effects of
thermo-filtration and thermo-osmosis which are assumed to play a significant role in
clay-rich formations under thermal gradients [64]. Additionally, the pressure dip that
happens in the first year observed at pt1 and pt2 is weaker pronounced in the TRuni
model possibly hinting to a reach in the HM coupling. For pt3 the pressure dip is not
reflected at all in the models at least for the given parameter set.
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Figure 6: Parameter estimation for two selected parameters based on subsamples {xk} | T and {xk} | p
compared to the prior parameter distribution. The counts are given in arbitrary units (a.u.).
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Figure 7: Parameter estimation for two selected parameters based on criteria thresholds Θ̂T and Θ̂p

compared to the prior parameter distribution. The counts are given in arbitrary units (a.u.).
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3.4.5. Parameter estimation
The subsamples, Eq. (21) obtained from applying the matching criteria, were analyzed

in terms of their input parameters and compared to the full MC sample, Fig. 6. The
results for the remaining parameters can be found in the appendix A.13. While some
parameters, like the Young’s modulus, don’t show a selection effect, other parameters like
K⊥

s lead to an inconclusive selection when T and p are selected separately. This hints
to greater model errors suspected for the pressurization in clay. To account for these
model errors, we analyzed the parameter input based on the overall history match error
and the thresholds given in Eq. 24. Two selected representative parameter distributions
are plotted in Fig. 7. The remaining parameters can be found in A.15. As expected,
we observed a very similar behavior in the Young’s modulus E3, a parameter that is
less sensitive to the model outcome for most points according to the initial screening.
However, for K⊥

s both samples exhibit a clustering at lower values, very similar to the
temperature-based subsample in Fig. 6 which is due to the fact that the best matches
are dominated by the temperature match which is overall better, which can be observed
in Fig. 8. This is due to the fact that temperature propagation is essentially reduced
to a simple heat-conduction problem, whereas the physics of pressure propagation is
significantly more complex.

In the next step 7 , both parameter subsets were used to run the complete TRuni
forward model. To limit the computational effort, we selected randomly 100 sampling
points from both subsamples. We also calculated the RMSE values for all runs. The
exact values are provided in the appendix (see A.7 and A.7). They agree mostly with the
values already estimated from the latin-hypercube sampling plan, however some values
tend to be a bit larger, which we attribute to the fact that the MC sampling covers a
greater uncertainty space, i.e., the interpolation problem becomes an extrapolation prob-
lem for some sampling points. In Fig. 8a-8f we plotted the response by filling the space
between the lowest and highest projection. Here, we see clearly the difference between
the temperature-based and pressure-based threshold. While the pressure uncertainty
width/range seems to be doubled for the first point, it is about the same range for the
last point. This is also reflected in the fact that the qualitative behavior of the model
for the last observation point agrees quite well, while for the point closest to the heater
the model predicts a rapid pressure decrease, which is not found in the experiment.

3.5. Point-based analysis
Adding up the normalized history matches for temperature and pressure, but for

each point separately, we find the best point-based matches by their minimum plus twice
the RMSE of the proxy. This allows us to perform a parameter estimation for each
individual point (Fig. 9). This analysis gives us the ability to identify contradictions
in the model prediction. To focus on the effects, this analysis was restricted to the
first three observation points only. The parameter that stands out most is the porosity,
where lower values are preferred for pt5, whereas in contrast higher values are preferred
for pt6 whereas pt4 does not exhibit a clear tendency. A similar behavior can also be
found for the shear modulus, but contradicting tendencies can also be observed for other
parameters as well.

The results of the corresponding full forward model runs are presented in Figs. 10a-
10f. While all colors lie more or less above each other for the temperature, we see clear
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Figure 8: History matched prediction ranges for both thresholds together with the experimental results.
The results of the remaining three observation points are plotted in A.17

differences for the pressure. Curves that minimize the history match error for pt1 (blue)
are not minimizing the history match error for pt2 (red) or pt3 (green). These results
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point to an incompleteness in the model description. This incompleteness could be linked
to oversimplified representation of the bentonite, for example. This hypothesis will be
tested in later studies. Nevertheless, this result is a clear demonstration of the added
value of UQ analyses beyond the aspects of uncertainty quantification and reduction
themselves: they provide insights into model insufficiencies that drive hypotheses for
model improvement.

3.6. Global Sensitivity Analysis (Step 10)
To attribute the uncertainty to individual parameters and their combinations, we

performed a global sensitivity analysis using the proxy for both variables and for all
three observation points (workflow step 10 in Fig. 2).

To sample the input space, the filtered parameter distributions from thresholds ΘT

and Θp were fitted using triangular, uniform, loguniform and truncated normal distribu-
tions depending on their shapes. The input space was then sampled using their corre-
sponding fitted distributions employing the sampling scheme of Saltelli and Tarantola [4].
Alike with the parameter estimation, Θp yields very similar results, which is why they
are not depicted here. The influence of prior and ’posterior’ parameter ranges has been
discussed elsewhere [8]. The Sobol indices of first and second-order were calculated using
their Monte-Carlo estimates based on a sampling size of 32, 768. The sampling size was
chosen such that for all indices, the width of the 0.95 confidence interval was below 0.02.
The results are depicted in Fig. 11. In this analysis, we focus again on three observation
points, pt1, pt2, and pt3 only. The results for the remaining points are presented in
Fig. A.19. Due to the symmetric representation, we scaled the second-order indices by
a factor of 0.5. For temperature, the main impact comes from the thermal conductivity,
especially K⊥ and the specific heat capacity cp. While for pt1 the effects are dominated
by the main effects (diagonal), for pt2 and pt3 the impact comes also from the interaction
between cs and K⊥. The behavior is reversed for the pressure: big changes can be seen
between pt1, pt2, and pt3, while pt2 and pt3 diagonal effects seem to have a big impact
on pt1 nearly all effect indices have a somewhat comparable contribution. We attribute
this behavior to the functional behavior of the pressure over time. As the objective func-
tion is an integral measure of the difference between the model and the experimental
curve, but the model curves show more or less a similar decline crossing the experiment
measurement, no parameter could be identified that, clearly, changes/reduces the error.
This is basically an expression of temporal variations of sensitivity at specific measure-
ment points in transient problems [50]. As seen in the distribution of all simulated curves
around the experimental one at pt1, most parameters that have an impact on pressure
only change the position and the height of the maximum but not the slope of the decline
(c.f. Fig. 4b). This behavior favors second-order indices, as combined changes improve
the fit. However, it is also a sign of a remaining model error, as also the best fit remains
unsatisfactory. According to our the parameter estimation, E3, a⊥s , a

∥
s and k⊥ have

the same parameter range as the prior. This behavior is also reflected in the sensitivity
analysis for all points. The biggest impact can be found for pt3. Nevertheless, for pt3,
the uncertainty reduction due to the filter is the smallest.
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Figure 9: Parameter estimation based on subsamples {xk}|PT optimized for each point. The counts are
given in arbitrary units (a.u.).
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Figure 10: Subsampled observation point-based history matched forward runs. Black: experimental
measurement, blue: pt1-match, red: pt2-match, green: pt3-match

4. Conclusions

In this paper, we presented the application of an experimental design-based uncer-
tainty workflow to a full-scale emplacement experiment of a repository for high-level23



radioactive waste. We used experimental data from the underground research labora-
tory at Mont Terri to compare with our simulations. Based on a coupled non-isothermal
Richards flow model with different representations of mechanical coupling, we focused on
parameter uncertainties of the surrounding clay rock. We combined experimental and
modelling results to build a proxy model of the history match error. An initial screening
step allowed us to reduce the number of significant uncertain parameters from 20 to
14 needed for building the proxy. This procedure allowed us to perform a parameter
estimation, which we used to infer final forward model runs which are believed to be
representative. Furthermore, we used the proxy to perform a global sensitivity analysis.

The applied methodology turned out to be a very valuable tool for studying pa-
rameter uncertainties and checking model validity in the context of radioactive waste
disposal. The Gaussian proxy model allowed us to efficiently investigate the match be-
tween experimental and model responses, and to perform parameter estimation that
further narrowed our prior expert (”measurements”) guesses. For many parameters, the
uncertainty range could thus be reduced. The corresponding response curves agreed
very well for the temperature, but greater differences were found for the pressure re-
sponse, especially for points closer to the tunnel where the heaters were placed. These
results point us to one or more remaining gaps in the model description, as competing
hypotheses remain as to the origin of these differences. Specifically, we suspect them to
originate from geometrical aspects of uncertainties and also uncertainties of parameters
/ constitutive models in other material groups like the bentonite or shotcrete that we
neglected in this study. The forward model used consisted of a simplified description of
mechanical effects that allowed us to evaluate the THM model with the computational
efficacy of a TH model. This model was a generalization of a simplification approach
proposed earlier by the authors[42]. Evaluations with the full-complexity THM model
showed only relative differences of a few percent in the pressure response within the give
time frame, such that we conclude its validity under partially saturated conditions. This
is an important result in itself, as this approximation is of great value in situations where
primarily temperature and pressure predictions are of interest.

Future work would benefit from more detailed knowledge of the statistical behavior of
material parameter properties of all material domains, as specific parameter distributions
would have allowed us to reduce the uncertainty in the early stages further.

Although it is difficult to rank other potential effects in their suspected impact on
uncertainty without a detailed investigation, we hypothesize that remaining uncertainties
stem from the representation and parameterization of the bentonite buffer, shotcrete and
EDZ as well as geometrical effects which should be the matter of future work.

Although some challenges in tackling complexities remain, we conclude that the work-
flow presented herein is well suited for examining sensitives and uncertainties as part of
a proper safety assessment and to validate the models employed therein.
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Figure 11: Global sensitivity analysis based on threshold ΘT for the first three observation points.
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Appendix A.1. Comparison between the simplified TRuni and the fully coupled TRM
model
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Figure A.12: Temperature and pressure responses at the last three observation points: Best fit results.
The measured curve is plotted alongside the TRuni and the fully coupled TRM response.
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Appendix A.2. Parameter estimation based on each variable selected subsample
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Figure A.13: Parameter estimation based on each variable selected subsample. The counts are given in
arbitrary units (a.u.).
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Figure A.14: Parameter estimation based on each variable selected subsample. The counts are given in
arbitrary units (a.u.).
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Figure A.15: Parameter estimation for two selected parameters based on criteria thresholds Θ̂T and Θ̂p

compared to the prior parameter distribution. The counts are given in arbitrary units (a.u.).
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Figure A.16: Parameter estimation for two selected parameters based on criteria thresholds Θ̂T and Θ̂p

compared to the prior parameter distribution. The counts are given in arbitrary units (a.u.).
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Figure A.17: History matched prediction ranges for both thresholds together with the experimental
results.

34



Table A.7: Proxy errors Êproxytemperature from the difference between the history-matched forward runs
to the proxy predictions.

RMSE (LHS) RMSE (MC/Θ̂T ) RMSE (MC/Θ̂p)
pt1 0.01 K 0.01 K 0.01 K
pt2 0.01 K 0.02 K 0.02 K
pt3 0.00 K 0.01 K 0.01 K
pt4 0.01 K 0.02 K 0.01 K
pt5 0.01 K 0.03 K 0.02 K
pt6 0.01 K 0.01 K 0.01 K

Table A.8: Proxy errors Êproxypressure response from the difference between the history-matched forward
runs to the proxy predictions.

RMSE (LHS) RMSE (MC/Θ̂T ) RMSE (MC/Θ̂p)
pt1 51513 Pa 97232 Pa 101039 Pa
pt2 7398 Pa 23681 Pa 23493 Pa
pt3 8753 Pa 13505 Pa 14305 Pa
pt4 47973 Pa 74623 Pa 60725 Pa
pt5 10277 Pa 9960 Pa 10992 Pa
pt6 1060 Pa 606 Pa 711 Pa

Appendix A.3. Proxy quality from MC match.
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Figure A.18: Ensemble run temperature and pressure curves generated from LHS design based on prior
distributions for the first three observation points. The measured response is painted black. Colored
curves present modeled responses of TRuni model for different sets of parameters.
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Figure A.19: Global sensitivity analysis based on threshold ΘT .
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Appendix B. Other Material Parameters

Table B.9: Material parameters for bentonite and concrete material parts. Thermal conductivity models
used in the study: a) Keff = (1 − SL)Kdry + SLKwet, b) Keff =

√
1− SLKdry +

√
SLKwet, c) Keff =

Kdry
1−SLKwetSL .

title symbol unit granular bentonite concrete/
bentonite blocks shotcrete

Solid density ρs kg m−3 2500.0 2500.0 2706
Specific heat capacity cs J kg−1 K−1 800 800 750
Thermal expansivity as K−1 3.0e-6 3.0e-6 0.8e-5
Young’s modulus E Pa 18e6 24e6 2e10
Poisson’s ratio ν 1 0.35 0.2 0.15
saturated thermal conductivity Kwet W m−1 K−1 1.2 0.96 1.83
dry thermal conductivity Kdry W m−1 K−1 0.35 0.26 0.98
shape variation K(SL) - - c b a
Intrinsic permeability k m2 3.5e-20 2.5e-21 1e-19
Porosity ϕ 1 0.331 0.331 0.25
Biot-Willis coefficient αB 1 0.6 0.6 0.6
Saturation: Van Genuchten,
residual liquid saturation Sr

L 1 0.01 0.01 0.01
Saturation: Van Genuchten,
residual gas saturation Sr

g 1 1e-15 1e-15 1e-15
Saturation: Van Genuchten,
exponent m 1 0.45 0.45 0.33
Saturation: Van Genuchten,
entry pressure pb Pa 18e6 30e6 1.0e6
Relative permeability: Van Ge-
nuchten, residual liquid saturation Sr

L 1 0.01 0.01 0.01
Relative permeability: Van Ge-
nuchten, residual gas saturation Sr

g 1 1e-15 1e-15 1e-15
Relative permeability: Van Ge-
nuchten, exponent m 1 0.45 0.45 0.33
Relative permeability: Van Ge-
nuchten, minimmum relative
permeability kmin

r 1 1e-9 1e-9 1e-9
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