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Abstract (300 words max.) 
Nitrate (NO3) adversely impacts groundwater quality. In coastal salinized groundwater 
systems, contamination from various NO3 inputs and complex hydrogeochemical 
processes make it difficult to distinguish NO3 sources and identify potential NO3-
transformtation processes. Effective field-based NO3 studies in coastal areas are needed to 
improve the understanding of NO3 contamination dynamics in groundwater of such 
complex systems. This study focuses on a typical Mediterranean coastal agricultural area, 
located in Tunisia, experiencing substantial NO3 contamination from multiple 
anthropogenic sources. Major NO3 sources and their contributions are identified, and 
potential NO3-transformation processes are described by combining multiple isotopic 
tracers (δ18OH2O, δ2HH2O, δ15NNO3, δ18ONO3, and δ11B) with the Bayesian isotope MixSIAR 
model. Results reveal NO3 concentrations in groundwater above the natural baseline 

threshold suggesting anthropogenic influence. The isotopic composition of NO3 indicates 
that manure, soil organic matter, and sewage are the potential sources of NO3, while δ11B 
values constrain the NO3 contamination to manure; a finding that is supported by the 
MixSIAR model that reveals manure-derived NO3 dominates over other likely sources. 
Nitrate derived from manure is attributed to organic fertilizers used to promote crop 
growth, and livestock that deposit manure directly on the ground surface. Evidence for 
ongoing denitrification in groundwaters is supported by an enrichment in both 15N and 18O 
in the remaining NO3, although isotopic mass balances between the measured and the 
theoretical δ18ONO3 values also suggest the occurrence of nitrification. The simultaneous 
occurrence of these biogeochemical processes with heterogeneous distribution across the 
study area reflect the complexity of interactions within the investigated coastal aquifer. The 
multiple isotopic tracer approach used here can identify the effect of anthropogenic 
activities on NO3 sources and geochemical processes in coastal environments, which is 
fundamental for sustainable groundwater resources management.  
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1 Introduction 

Nitrate (NO3) is a ubiquitous environmental contaminant that is primarily associated with 

anthropogenic activities, with limited contributions from natural geological and 

atmospheric sources in most areas (Hendry et al., 1984; Holloway and Dahlgren, 2002; 

Scanlon et al., 2008). NO3 concentrations in groundwater systems above the maximum 

drinking water concentration of 50 mg/L (WHO, 2017) have been observed in numerous 

countries with industrial agriculture. Example of aquifers with elevated groundwater NO3 

concentrations include the Mediterranean coastal aquifer of Taleza in Algeria with 

concentrations of up to 230 mg/L (Boumaiza et al., 2020), the Córdoba aquifers in 

Argentina with concentrations of up to 500 mg/L (Blarasin et al., 2014), the Weining 

groundwater system in China with concentrations of up to 800 mg/L (He et al., 2022), and 

the Noyil river basin aquifer in India in which NO3 concentrations to up to 1,500 mg/L are 

reported (Jacks and Sharma, 1983). These and several other studies focussed on 

groundwater NO3 contamination due to the adverse effects of NO3 on both human and 

environmental health. For example, long-term consumption of excessive NO3 in drinking 

water increases methemoglobinemia in infants (blue baby syndrome), and spontaneous 

abortion, thyroid disorders, colorectal and stomach cancer, and neural tube defects in adults 

(Schroeder et al., 2020; Ward et al., 2018). The discharge of NO3 into surface water bodies 

causes eutrophication of freshwater and marine environments, leading to considerable 

reduction of aquatic life and biodiversity (Brookfield et al., 2021; Gomez Isaza et al., 2020; 

Yeshno et al., 2019). Incomplete denitrification of NO3 in aquifer systems leads to the 

formation and release of nitrous oxide gas (N2O), which is a powerful greenhouse gas 

contributing to global climate change (Sutton et al., 2011; Weeks and McMahon, 2007). 
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Dissolved NO3 can also oxidize and mobilize heavy metals such as uranium and selenium 

(Mills et al., 2016; Moon et al., 2007).  

Stable isotopic tracers have been widely used to investigate groundwater NO3 

contamination sources and processes. The stable isotopes of nitrate (δ15NNO3 and δ18ONO3) 

constitute a powerful tool not only for distinguishing NO3 sources, but also for assessing 

the biogeochemical processes that govern NO3 cycling and persistence within groundwater 

systems (Blarasin et al., 2020; Boumaiza et al., 2022a; Lane et al., 2020; Zendehbad et al., 

2019). However, isotopic signatures of some NO3 sources overlap, and processes such as 

nitrification, denitrification, and ammonia volatilization can change NO3 concentrations 

and modify δ15NNO3 and δ18ONO3 values, masking the isotopic signature of the original NO3 

sources (Jin et al., 2015; Kendall et al., 2007). Thus, additional isotope tracers (e.g., δ11B, 

87Sr/86Sr, and δ34S) and statistical Bayesian models (e.g., MixSIAR) have also been used, 

separately or combined with the stable isotope composition of NO3 to efficiently track NO3 

sources and quantify their relative contributions (Boumaiza et al., 2022b; Erostate et al., 

2018; Kaown et al., 2023; Kruk et al., 2020). Hence, multi-isotope approaches are 

promising tools for identifying the NO3 sources and evaluating the fate of NO3 within 

groundwater systems.  

Worldwide population growth has introduced an increased level of anthropogenic 

activities in rural and developing areas. Excessive use of synthetic and organic fertilizers 

in agricultural fields to promote crop growth contribute up to 80% of the worldwide 

reactive produced nitrogen and releases NO3 to groundwater (Lasagna and De Luca, 2017; 

Pulido‑Bosch et al., 2018). In developing urban areas, NO3 can be transported to 

groundwater by wastewater discharge from inefficient private sanitation systems and sewer 
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systems (Boumaiza et al., 2020; Matiatos, 2016; Puig et al., 2017; Vystavna et al., 2017). 

The level of NO3 contamination and its fate in groundwater systems not only depends on 

the type and intensity of anthropogenic activities, but also on the structure and 

hydrogeological characteristics of affected aquifers. In coastal aquifers, it is particular 

challenging to study the sources and fate of groundwater NO3 contamination because 

seawater intrusion, induced by the overexploitation of groundwater and sea level rise due 

to climate change, can lead to mutually interacting sources and geochemical processes 

(Boumaiza et al., 2020; Elmeknassi et al., 2022). In addition, elevated NO3 concentration 

in groundwater can fuel a number of complex geochemical reactions (Re et al., 2021; Re 

and Sacchi, 2017). Therefore, field-based NO3 studies in coastal aquifers are needed to 

improve the understanding of NO3 contamination in such complex hydrogeological 

systems.  

One of the coastal groundwater systems, underlying an important economically 

strategic agricultural area, is the plain of Oussja-Ghar-Melah (OGM) in Tunisia. This 

groundwater system is located along the Mediterranean coast where groundwater resources 

are heavily affected by multiple anthropogenic sources of NO3 that contribute to 

deteriorating groundwater quality, and is also at risk from seawater intrusion owing to 

overexploitation of local groundwater resources (Carrubba, 2017; Ben Ammar et al., 2016). 

The OGM system is subject to complex hydrogeochemical processes that can impact the 

fate of NO3 within the aquifer. Moreover, the Ghar-El-Melh Lagoon (GEM Lagoon), which 

was designated a UNESCO-Ramsar ecological site (No.1706) in 2007 is located down 

hydrologic gradient from the OGM aquifer system emphasizing the international 

importance of the study area. Previous groundwater quality investigations within the OGM 
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plain chiefly focused on assessing groundwater salinization and only hypothesized 

potential NO3 sources (Ben Ammar et al., 2016; Bouzourra et al., 2015). A detailed 

investigation of groundwater NO3 contamination and potential transformation processes 

affecting NO3 in the aquifer underlying the OGM plain have not yet been conducted. 

Therefore, the main objectives of this study are: (i) to identify the dominant anthropogenic 

sources of NO3 and distinguish potential NO3 transformation processes within the OGM 

groundwater system by combining multiple stable isotope tracers (δ18OH2O, δ2HH2O, 

δ15NNO3, δ18ONO3, and δ11B); and (ii) quantify the contributions of different NO3 sources 

by using a Bayesian isotope mixing model (MixSIAR). Ultimately, the outcomes of this 

study will help local groundwater managers to develop sustainable environmental 

management strategies for the OGM plain; and inform future studies of the many 

Mediterranean coastal systems with similar environmental stresses.   

2 Description of the study area 

 Geographic location and climate 

The study area of the OGM is a coastal agricultural plain located at the border of the 

Provinces of Bizerte and Ariana in northeastern Tunisia (Figure 1). The study area is 

surrounded from the southwest to the northeast by a series of discontinuous mountains (i.e., 

Menzel Ghoul, Kechabta, and Nadhour) varying in altitude from 300 to 400 m above sea 

level. Towards the south, the OGM plain is an open and flat valley system belonging to the 

Medjerda paleodelta. The northeast-southeast boundary of the study area constitutes the 

GEM Lagoon, which is connected to the Mediterranean Sea (Figure 1). The study area 

covers a surface of about 60 km2, with topography characterized by a slight downslope 

from the hinterland in the southwest towards the Mediterranean Sea in the east and 
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northeast (Ben Ammar et al., 2016). Several large rural villages are located in the study 

area including Ghar-El-Melh to the northeast, Zouaouine and Gournata to the southwest, 

and Oussja within the center of the plain. Between these population centers are many 

smaller rural communities. 

The climate of the study area is subhumid Mediterranean with two distinct periods: 

(i) a wet period, occurring from October to April, with a monthly average temperature of 

11 °C; and (ii) a dry period, occurring from May to September, with a monthly average 

temperature of 27 °C (Ben Ammar et al., 2016). The OGM region captures an average 

annual precipitation amount of about 500 mm with 90% occurring during the wet period 

(Ben Ammar et al., 2016). The assessed mean annual potential evapotranspiration is 

estimated to be ~1,350 mm, clearly indicating a deficient annual water budget for the study 

area. Nevertheless, the excess of meteoric precipitation during the wet period provides 

potential for aquifer recharge (Ben Ammar et al., 2016; Bouzourra et al., 2015).  

 Geology 

The study area belongs to a tectonic depression that filled with clastic sediments following 

a major Mio-Pliocene subsidence. This depression was previously invaded by a postglacial 

marine transgression, developing a marine paleoenvironment; after which the depression 

gradually infilled with fluvial deposits (i.e., sand, silt, and clay) initially transported by the 

Medjerda River (Burrolet and Dumon, 1952; Pimienta, 1959). The study area thus evolved 

from a marine lagoon into a coastal evaporitic basin, in which the GEM Lagoon represents 

the current remnant of the Utique paleoshoreline (Bouzourra et al., 2015). The aquifer 

under the plain of OGM is comprised of granular material provided by the Late-

Pliocene/Quaternary deposition.  
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Figure 1. Simplified geology of surface deposits over the plain of OGM region, and 
schematic cross-section AA’ through the study area (adapted from Burrolet and Dumon, 
1952; Melki et al., 2011). In dashed red is the approximate limit of the study area. Only the 
permanent streams are indicated in this figure. 
 
 

Geophysical Seismic reflection investigations demonstrated that the thickness of 

the Plio-Quaternary deposits varies from 300 m at the southwest sector of the study area to 

>600 m in the northeast (Melki et al., 2011). The granular Plio-Quaternary deposits 

unconformably rest on Mio-Pliocene sequence that consists of clay, marl, and gypsum, 
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which outcrops in the surrounding mountains (Figure 1). Miocene rocks are covered in 

some places by clay material attributed to the Early Pliocene (Burrolet and Dumon, 1952; 

Chelbi et al., 1995). A ~300 m thick Late-Pliocene formation (Porto Farina formation) 

overlies the impervious Miocene and Early Pliocene units, and is mainly composed of sand 

and sandstone with clays intercalations (Burrolet and Dumon, 1952; Melki et al., 2011). 

 Hydrogeological background 

The OGM plain overlies an unconfined heterogeneous granular aquifer with a thickness of 

up to 100 m (Ben Ammar et al., 2016). This aquifer is mainly recharged by direct 

precipitation, runoff from the surrounding mountains, and by several permanent streams 

including the Saadane, El-Kherba, and El-Melah streams in the north, and Tlil stream in 

the southwest, all of which are sourced from the surrounding mountains. These streams 

drain small catchment areas ranging from 6 to 17 km2 (Saadaoui, 1983). The water table in 

the aquifer varies between 2 and 24 m depth below the ground surface, and groundwater 

generally flows northeastward towards the GEM Lagoon and Mediterranean Sea (Ben 

Ammar et al., 2016). The chemistry of groundwater within the OGM aquifer is dominated 

by chloride-water type, i.e., (Na, Ca)-Cl-rich, which are hypothesized to reflect multiple 

hydrogeochemical processes including dissolution/precipitation of carbonate minerals, 

dissolution of gypsum and halite, and cation exchange (Ben Ammar et al., 2016; Bouzourra 

et al., 2015). Groundwater salinization is thought to be the result of seawater intrusion and 

the deposition of seawater aerosols flushing into the subsurface (Ben Ammar et al., 2016).  

The OGM aquifer system is considered to be vulnerable to the contamination with 

three levels based on the DRASTIC index (Ouerghi, 2021). These are as follows: (i) a zone 

with low vulnerability to contamination, representing 28% of the study area, and located 
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in the northeastern portion of the study area proximal to Ghar-El-Melh village; (ii) a second 

zone, occupying the center of the study area (45%) close to Oussja and Zouaouine villages 

with an average vulnerability level; and (iii)  a third zone with very high vulnerability level 

(27%) located in the southwestern part of the study area (around Gournata). 

 Land use and anthropogenic contamination 

The earliest first settlements in the study area include the large villages of Ghar-El-Melh 

in the northeast, Zouaouine and Gournata in the southwest, and Oussja in the center of the 

plain (Figure 1). Subsequently, several small rural communities developed throughout the 

study area with an approximate combined population of 19,000 permanent inhabitants. The 

rural communities in the study area are connected to a potable water supply via a pipeline-

system provided by SONEDE (Société Nationale d'Exploitation et de Distribution des 

Eaux). However, only 60% of the rural sectors, including the large villages of Ghar-El-

Melh and Oussaja, are connected to a sewage network, which has only operated since 2010. 

Before 2010, all the communities used private septic tank systems.  

Despite increased urbanization across the study area, agricultural fields still 

dominate the land use (~80%). Agricultural activities (i.e., production of various vegetables 

in open agricultural fields) are supported by irrigation using surface waters from three 

following sources: (i) the Medjerda River located at the south of the study area, (ii) an 

artificial drainage network operated since 1990 over the central part of the study area, and 

(iii) a series of small dams installed at the edges of the surrounding mountains to the north. 

In addition, there is a large number of shallow hand-dug wells (~1,500 wells) in the study 

area that are used to obtain groundwater for irrigating the agricultural fields (Ben Ammar 

et al., 2016; Bouzourra et al., 2015). 



11 
 

The effect of both agriculture and urban development resulted in a deterioration of 

groundwater quality with regards to nitrate concentrations (Bouzourra et al., 2015; 

Ouerghi, 2021). Reported groundwater NO3 concentrations ranged from 5 to 150 mg/L, 

with elevated NO3 concentrations coinciding with locations of intense urbanization and 

agricultural activities (Ben Ammar et al., 2016; Bouzourra et al., 2015). These researchers 

suggested that organic/synthetic fertilizers used for agriculture, livestock (i.e., cattle for 

dairy and meat production) manure, and septic tanks constituted the major sources of NO3 

(Ben Ammar et al., 2016; Bouzourra et al., 2015; Carrubba, 2014). However, clear 

evidence demonstrating the sources of the groundwater NO3 contamination has not been 

reported. Increasing demand for irrigation water has generated substantial groundwater 

exploitation reaching 13 million cubic meters per year (in 2009), which is roughly 2-fold 

higher than the annual aquifer recharge (Ben Ammar et al., 2016; Bouzourra et al., 2015; 

MAT, 2006). Hence, overexploitation of groundwater led to drop in elevation of the water 

table within the OGM aquifer that has subsequently supported seawater intrusion in some 

locations, along groundwater salinization to as much as 3,000 mg/L for total dissolved 

solids (Ayache et al., 2009; Bouchouicha, 2004; Bouzourra et al., 2015).  

3 Material and methods 

 Sampling network and protocol 

A comprehensive water sampling campaign was carried out between October 19 and 

November 2, 2022. The sampling campaign included 21 groundwater samples collected 

over the entire study area and 2 surface water samples, one each collected from the GEM 

Lagoon and the Mediterranean Sea (Figure 2). Groundwater samples were collected from 

shallow irrigation wells having 2-3 m diameters, with a static groundwater depth of 2-20 
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m below the ground surface. Prior to sampling, stagnant groundwater present in the wells 

was purged using a pumping system. During pumping the physico-chemical parameters 

(temperature (T), pH, total dissolved solids (TDS), electrical conductivity (EC), and 

dissolved oxygen (DO)) of the pumped groundwater were monitored using a calibrated 

portable multiparameter probe (Lange sensION 156 Hach Instrument), until stabilized 

within ±10%. Groundwater was then collected at the discharge pipe of the pumping system. 

During fieldwork, the water samples for major ion analyses were filtered using 

0.45-μm nitrocellulose membrane filters attached to 100-mL luer-lock syringe samplers, 

before being poured in two separate 40-mL amber bottles. Cation samples were acidified 

to pH <2 by adding 2-3 drops of ultrapure nitric acid (HNO3) to prevent major cation 

precipitation or adsorption during storage. The samples for δ2HH2O and δ18OH2O analyses 

were collected in 25-mL amber bottles, whereas those for δ15NNO3/δ18ONO3, and δ11B 

analyses were filtered into 50-mL and 250-mL polyethylene bottles, respectively. All water 

samples were collected in bottles without headspace and closed with caps containing 

Teflon septa parafilm to prevent evaporation. All water samples were temporarily stored 

in a portable cooler before being transferred further to a refrigerator for storage at 4°C at 

the completion of the fieldwork day until analysis. The samples collected for isotopic 

analysis of NO3 were frozen to avoid variations caused by biological processes until the 

targeted isotopic analyses were performed in the laboratory. 

 Laboratory chemical and stable isotope analyses 

Chemical analyses (HCO3
-, Br-, NO3

-, Cl-, K+, Mg2+, NH4
+, Na+, Ca2+ and SO4

2-) were 

performed at the Laboratory for Inorganic and Organic Chemistry of the Technical 

University of Darmstadt (Germany). HCO3 concentrations were determined using 
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Alkalinity Checker® (HI775, Hanna Instruments, Woonsocket, USA), whereas the other 

ion concentrations were determined using a Metrohm 882 Compact Ion Chromatograph 

plus equipped with a Metrosep A Supp 5-250 column for anions and a Metrosep C 4-250 

column for cations (Metrohm, Herisau, Switzerland). The water stable isotope (δ2HH2O and 

δ18OH2O) analyses were completed at the Laboratory of the Institute of Soil Physics and 

Rural Water Management in Vienna (Austria). These isotopic values were measured using 

a laser-based isotope analyzer (Picarro L2140-i) according to the analytical scheme 

recommended by the International Atomic Energy Agency (IAEA) (Penna et al., 2010). 

Nitrate stable isotope (δ15NNO3 and δ18ONO3) analyses were completed at the Helmholtz 

Center for Environmental Research in Halle/Saale (Germany), using the denitrifier method 

with bacteria strains of Pseudomonas chlororaphis (ATCC #13985 equal to DSM-6698) 

according to the protocols recommended by Casciotti et al. (2002) and Sigman et al. (2001).  

Boron (B) concentrations and δ11B values in water samples were both analyzed at 

the Isotope Science Laboratory of the University of Calgary (Alberta, Canada). 

Concentrations of dissolved boron in groundwater were measured using a Varian 725 

inductively coupled plasma-optical emission spectrometer (ICP-OES) with a measurement 

uncertainty ±2%, whereas δ11B values were measured using a Neptune Multi-Collector 

Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) (Thermo Scientific) 

according to the analytical schemes recommended by Guerrot et al. (2011) and Gaillardet 

et al. (2001) depending on the B concentration of the samples. The isotope values, 

expressed in per mil (‰) using delta (δ) notation, were calculated using Equation 1, in 

which Rsample and Rstandard are the sample and the international reference standard values of 

the heavier to the lighter isotope, respectively (i.e., 2H/1H, 18O/16O, 15N/14N, or 11B/10B). 
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 δ  = 
 Rsample  −   Rstandard

Rstandard
  (1) 

The international reference standards relative to which the sample isotopic values 

are reported are the Vienna Mean Standard Ocean Water (VSMOW) for δ2HH2O, δ18OH2O 

and δ18ONO3, and atmospheric nitrogen (AIR) for δ15NNO3. The precision of the analytical 

instrument was generally better than ±0.3‰ for δ2HH2O and ±0.1‰ for δ18OH2O, whereas 

the reproducibility for the δ15NNO3 and the δ18ONO3 measurements were ±0.6‰ and ±0.4‰, 

respectively. The isotope measurements of δ11B had a mean precision of ±2‰, which was 

determined following a replicate analysis of standards and samples. In the present study, 

the δ18OH2O and δ2HH2O values are interpreted according to the Global Meteoric Water Line 

(GMWL) (Craig, 1961) and the Western Mediterranean Meteoric Water Line (WMMWL) 

(Celle, 2000). 
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Figure 2. Perspective overview of study area (Google Earth) with location of groundwater samples and surface water samples collected over the 
study area. Groundwater sampling sites are indicated with numbers 1 to 21, whereas surface water samples are GEM (Ghar-El-Melh Lagoon) and 
MS (Mediterranean Sea). The red dashed line is the approximate limit of the study area including the GEM Lagoon. 
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 Nitrate sources determination, apportionment, and transformation 

To identify the predominant NO3 sources in water samples, the δ15NNO3 versus δ18ONO3 

diagram (Kendall, 1998) is used. This diagram provides zones of isotopic compositions 

that correspond to specific sources of NO3, which include atmospheric precipitation (AP), 

NO3-based synthetic fertilizers (NOF), sewage and manure (S&M), NO3 that is formed 

from nitrification of NH4-fertilizers (NHF), or soil organic nitrogen (SON). To identify the 

occurrence of nitrification, an isotopic mass balance (Δδ18ONO3) between the measured 

δ18ONO3 and the theoretical δ18ONO3 is calculated. The theoretical δ18ONO3 is evaluated by 

using Equation 2 (Aravena and Mayer, 2010), where δ18OH2O represents the measured 

oxygen groundwater stable isotope ratio and δ18OO2 is the isotopic ratio of atmospheric 

oxygen assumed in equilibrium with a constant value of +23.5‰ (Aravena and Mayer, 

2010; Blarasin et al., 2020; Moore et al., 2006). The contribution of NO3 derived from 

nitrification process is calculated as a portion of the theoretical δ18ONO3 to the measured 

δ18ΟNO3 (Torres-Martínez et al., 2021). 

 δ18ONO3 (theoretical)  = �
2
3

  δ18OH2O�  + �
1
3

 δ18OO2�   (2) 

 

Other diagrams and a Bayesian isotope model are used to distinguish between 

sewage and manure sources affecting groundwater contamination. Here, a diagram 

comparing B concentrations and δ11B values and a plot of δ15NNO3 versus δ11B values are 

used. Both of these diagrams provide distinct zones for manure and sewage, thus providing 

a means to differentiate between manure and sewage sources (Komor, 1997; Puig et al., 

2017; Vengosh et al., 1994). The MixSIAR model (Parnell et al., 2010) is used to quantify 

the proportional contributions of the identified NO3 sources in the groundwater system. 
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More detail on the MixSIAR model development can be found in Stock et al. (2018). The 

inputs for the MixSIAR model are the δ15NNO3 and δ11B values measured in groundwater 

samples and the different δ15NNO3 and δ11B end-member isotopic values of the sources of 

nitrate. Here, the δ15NNO3 and δ11B end-members are adopted from Kaown et al. (2023), 

who investigated NO3 contamination in an area with comparable anthropogenic sources.  

4 Results 

 Chemical and isotopic composition of water  

The chemical and isotopic results for the groundwater samples as well as the surface water 

samples collected from the GEM Lagoon and the Mediterranean Sea are listed in the 

Supplementary Table S1. Groundwater exibits TDS values ranging from 630 to 4,280 mg/L 

reflecting the existance of fresh to brackish waters within the OGM aquifer. The isotopic 

compositions of the groundwater samples range from −5.7‰ to −4.1‰ for δ18OH2O and 

from −32.1‰ to −24.3‰ for δ2HH2O, with d-excess values ranging from +8 to +15‰ with 

a median value of +12‰. The GEM Lagoon sample has the highest δ18OH2O and δ2HH2O 

values (+1.4‰ and +9.7‰, respectively) and is comparable to the sample from the 

Mediterranean Sea (+1.3‰ and +9.5‰, respectively). These saline surface water samples, 

with TDS ranging from 33,000 to 39,000 mg/L, are enriched in 2H and 18O compared to 

groundwater samples and exhibit a low d-excess value (−1.1‰). 

 Distribution of nitrate across the study area 

NO3 concentrations in groundwater samples range from 4 to 489 mg/L, with an average of 

132 mg/L (n=21). Surface water samples from the GEM Lagoon and the Mediterranean 

Sea have NO3 concentrations of 87 and 104 mg/L, respectively (Supplementary Table S1). 

The distribution of NO3 concentrations throughout the study area (Figure 3) shows two 
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groundwater samples (#1 and #21) with NO3 concentrations <10 mg/L located at the 

boundaries of the study area. Sample #1 is from the southwestern portion of the study area 

(sector of Gournata), whereas sample #21 is from the northeastern part of the study area 

(sector of Ghar-El-Melh village). In 2010, NO3 concentrations in groundwater from these 

sectors were measured at 43 and 38 mg/L, respectively (Ben Ammar et al., 2016). In 2010, 

groundwater samples most affected by NO3 were observed in the sectors of Oussja and 

Zouaouine, with NO3 concentrations ranging from 50 to 136 mg/L (Ben Ammar et al., 

2016). This is consistent with observations from the present study, as elevated NO3 

concentrations are observed in these same sectors, but with a maximum of 378 mg/L 

(sample #8), i.e., two times higher than the NO3 concentration measured in 2010. In this 

area, there is a high number of wells supplying groundwater with elevated NO3 

concentrations >150 mg/L (Figure 3), suggesting the existence of major and permanent 

sources of NO3 affecting groundwater. The highest NO3 concentration (489 mg/L) is 

observed in the groundwater sample #17 collected between Ghar-El-Melh and Oussja 

village at a location dominated by agricultural activities and surrounded by multiple 

individual residences. 
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Figure 3. Spatial distribution of NO3 concentrations in groundwater throughout the study area.  
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 Isotopic compositions of nitrate and boron and sources of nitrate 

The δ15NNO3 values in groundwater range from +4.7 to +13.7‰ with a median value of 

+7.1‰, and δ18ONO3 values vary between +4.1 and +15.6‰ with a median value of +7.5‰ 

(Supplementary Table S1). These median values are consistent with the range (4.9-11‰ 

and 5.7-12‰, respectively) of NO3-isotopic compositions observed in other North-African 

coastal studies (Boumaiza et al., 2022a, 2022b, 2020; Re et al., 2021). The measured δ11B 

values in groundwater samples range from +12.4 to +42.9‰, whereas in the GEM Lagoon 

and Mediterranean Sea they are +42.3 and +41.4‰, respectively (Supplementary Table 

S1). All groundwater samples (n=20) plot within the manure and sewage field of the 

Kendal diagram (Figure 4a), suggesting that manure and human wastewater are the main 

sources of NO3 to local groundwater. However, 14 samples have NO3 isotopic 

compositions that overlap with NO3 from soil-derived nitrogen (Figure 4a). Boron isotope 

data indicate that manure is the principal source of NO3 for most of the groundwater 

samples (18 out of 20) as well as the GEM Lagoon and the Mediterranean Sea (Figures 4b, 

c). The two remaining groundwater samples (#6 and #11) likely derive their NO3 from 

mineral fertilizer (Figure 4b, c).  

In the MixSIAR model, four NO3 sources are selected including manure (M), 

sewage (S), soil organic nitrogen (SON) (Figure 4a) and mineral fertilizer (NO3-based 

fertilizers: NOF (Figure 4b, c). The assigned δ15NNO3 end-members are 15.3±0.1‰ for M, 

14.3±2.0‰ for S, −0.6±4.1‰ for SON, and 0.9±2.0‰ for NOF, whereas the δ11B end-

members are 33.1±2.1‰ for M, 5.4±2.7‰ for S, −2.6±1.9‰ for SON, and 2.0±1.0‰ for 

NOF (Kaown et al., 2023). MixSIAR results reveal that manure is the primary source of 

NO3 (60.4%), followed by NOF (19.1%), SON (16.1%), and sewage (4.3%) (Figure 4d). 
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(a) (b) 

  
(c) (d) 

Figure 4. (a) Plot of δ15NNO3 versus δ18ONO3 values on Kendall diagram; (b) Plot of δ15NNO3 versus δ11B values; (c) Plot of B 
concentrations versus δ11B values; and (d) apportionment of NO3 sources based on the MixSIAR model (M: manure, NOF: NO3-
based fertilizers, SON: soil organic nitrogen, S: sewage). Boxplots illustrate the 25th, 50th, and 75th percentiles, while the whiskers 
indicate 5th and 95th percentiles. 
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5 Discussion 

 Water origin and influencing processes  

The isotopic compositions of the groundwater samples are comparable to those from other 

studies undertaken on North-African Mediterranean coastal aquifers (Boumaiza et al., 

2022a, 2020; Chafouq et al., 2018; Elmeknassi et al., 2022; Moussaoui et al., 2023). 

Furthermore, the groundwater isotopic compositions are comparable to the local weighted 

isotopic mean of wet season precipitation (δ18OH2O = −4.7‰, and δ2HH2O = −26.1‰) (Ben 

Ammar et al., 2020), suggesting that the OGM aquifer is mainly recharged by meteoric 

precipitation during the wet season, consistent with the fact that most precipitation occurs 

during the wet period from October to April in the study region. Most of δ18OH2O and 

δ2HH2O values plot along the GMWL (Craig, 1961) and the WMMWL (Celle, 2000) in 

Figure 5, suggesting that groundwater is mainly recharged through direct infiltration of 

meteoric recharge. The hydrogeological characteristics of the study area, i.e., an 

unconfined granular aquifer with a transmissivity of about 1-9×10−4 m2/s (Ben Ammar et 

al., 2016), are supportive of this conclusion.  

Since substantial agricultural and irrigation activities occur across the study area, 

hydrogen and oxygen isotope fractionation affecting infiltrating water due to evaporation 

is expected if irrigation water-return flow is a significant source of recharge (Clark and 

Fritz, 1997; Harvey and Sibray, 2001; Mahlknecht et al., 2008). Some groundwater 

samples (#5, #15, #16, and #17) exhibit d-excess values <10‰, which could indicate some 

evaporation influence, but most samples (n = 17/21) have d-excess values >10‰, which is 

too high for significant evaporation effects (Santoni et al., 2018). The δ18OH2O values 

display little variability (with values of −4.9±0.5‰) across the groundwater samples with 
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a wide range of measured TDS values (629-4,280 mg/L) (Supplementary Figure S1a). This 

suggests that evaporation is not the dominant process that increases groundwater salinity 

(Jia et al., 2017; Torres-Martínez et al., 2021). Rather, the increase in TDS appears to be 

caused by mixing with seawater. This notion is supported by the fact that the groundwater 

isotopic data plot along a line directed towards the isotopic composition of Mediterranean 

Sea and GEM Lagoon water (Figure 5). The water samples collected from the GEM 

Lagoon and from the Mediterranean Sea plot below the WMMWL and exhibit a low d-

excess value (−1.1‰) (Figure 5; Supplementary Table S1). These observations indicate 

heavy isotope enrichment due to evaporative isotope fractionation effects and indicates the 

source water for the GEM Lagoon is from the Mediterranean Sea. 

 

 
Figure 5. Distribution of isotopic values of water samples including groundwaters, surface 
water from GEM Lagoon, and surface water from the Mediterranean Sea. 
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 Nitrate origin in groundwater system 

All the measured NO3 concentrations in the groundwater samples exceed the natural 

baseline threshold value of 3 mg/L (Ogrinc et al., 2019; Zendehbad et al., 2019), suggesting 

anthropogenic contamination in the study area, with 71% of the NO3 concentrations in 

groundwater exceeding the drinking water limit. The finding from diagnostic plots (Figure 

4) that manure is the dominant source of the elevated NO3 concentrations in these 

groundwaters is consistent with land use within the OGM plain. Specifically, the OGM 

plain is a traditional agricultural area with a long history of intense 

fertilization/cultivation/irrigation activities. Manure-derived NO3 in the groundwater 

appears to be linked to the excessive use of animal manure, which is applied as fertilizer 

for crops in agricultural areas, as well as manure that accumulates on the ground surface at 

local animal farms (Ben Ammar et al., 2016; Carrubba, 2017). Furthermore, these 

agricultural activities result in the accumulation of soil organic nitrogen and the subsequent 

formation of NO3 from manure-based fertilizers infiltrating into the groundwaters as 

revealed by the quantified NO3 contributions from manure, NOF, and SON (Figure 4d). 

Infiltrating rainwater and irrigation return flow contribute to the leaching of NO3 from 

fertilizers and their by-products, which is then transported into the underlying groundwater 

system (Malki et al., 2017; Zhang et al., 2014). Leaching fertilizers is supported by the 

moderate positive correlation (R2=0.5) between groundwater NO3 concentrations and 

δ18OH2O values for groundwater samples (Supplementary Figure S1b) with manure-derived 

contributions (60.4%) dominating over synthetic fertilizers (19.1%) according to the 

MixSIAR model. However, the contribution of synthetic fertilizers to NO3 in groundwater 
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is relatively high compared to other Mediterranean agricultural areas, where contributions 

range between 8 and 15% (Boumaiza et al., 2022a, 2022b).  

Elevated NO3 concentrations (>150 mg/L, Figure 3) are observed in groundwater 

down hydrogeologic gradient of the rural communities, suggesting that the minor sewage 

contribution revealed by MixSIAR model is potentially from residences using inadequate 

private sanitation systems (Ben Ammar et al., 2016; Carrubba, 2014). While efficient 

private sanitation systems have a closed septic tank connected to a seepage distribution 

field (MDDELCC, 2015), many private sanitations systems in North-Africa rely on a 

unique open-bottom tank through which human waste can directly seep into the subsurface 

and reach groundwater (Boumaiza et al., 2021, 2019). Consequently, sewage-derived NO3 

in groundwater is likely from direct wastewater discharge or leakage from inadequate 

private sanitation systems. Even though ~40% of private homes in the OGM area rely on 

the use of private sanitation systems (Ben Ammar et al., 2016), the sewage contribution 

quantified by MixSIAR is low (4%), whereas δ11B values indicate negligible sewage 

contributions towards NO3 in the OGM groundwater system. It is likely that mixing of 

sewage-sourced and manure-sourced NO3 occurs within the OGM groundwater system 

although the isotope data demonstrate the manure is chief source of NO3 contamination. It 

is also important to note that the present study relies on MixSIAR isotopic end-member 

values from another similar cases study (Kaown et al., 2023), and therefore analysing the 

isotopic end-member compositions of local sources is necessary to refine our estimates and 

thus improve characterization of the local NO3 sources.  

The elevated NO3 concentrations in samples collected locally from the GEM 

Lagoon and the Mediterranean Sea, combined with δ11B-evidence of manure influence, 
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may reflect organic manure used as part of the Ramli agricultural systems distributed across 

the banks of GEM Lagoon (Aissaoui, 2020). Also, it cannot be rule out that there are 

potential groundwater-surface water interactions that allow transport of NO3 from the 

OGM groundwater system into the GEM Lagoon and the Mediterranean Sea (e.g., 

submarine groundwater discharge). NO3 transport from the OGM groundwater system to 

the GEM Lagoon is further supported by groundwater flow as it is directed from the OGM 

aquifer towards the GEM Lagoon (Supplementary Figure S2).  

 Nitrate transformation processes in the OGM groundwater system 

The most common nitrogen transformation processes include nitrification and 

denitrification, which are biogeochemical processes mostly inherent to shallow 

groundwater systems that are dependent on redox conditions (Gutiérrez et al., 2018). 

During the denitrification process, 15N and 18O become progressively enriched in the 

remaining NO3, and δ15NNO3 and δ18ONO3 values in the remaining NO3 pool increase as the 

NO3 concentration decreases (Kendall et al., 2007). Hence, the dual isotope plot of δ15NNO3 

versus δ18ONO3 reveals that if microbial denitrification occurs in groundwater, it will 

manifest as a positive slope of 0.5 or higher on the trendline between δ15NNO3 and δ18ONO3 

values of NO3 (Böttcher et al., 1990; Chen and MacQuarrie, 2005; Fukada et al., 2004; 

Singleton et al., 2007). In Figure 4a, the plot of δ15NNO3 against δ18ONO3 values shows a 

positive slope of 0.9 suggesting that denitrification appears to occur in the OGM 

groundwater system. However, denitrification cannot be the only biogeochemical 

processes responsible for decreases in NO3 concentrations because the correlation between 

δ15NNO3 values and NO3 concentrations is weak (R2 = 0.03, Supplementary Figure S1c). 

Nevertheless, because most groundwater samples (n = 19/20) have positive Δδ18ONO3 
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values ranging from +1.2 to +10.7‰ (Supplementary Table S1), the δ18ONO3 data are also 

consistent with denitrification occurring within the OGM groundwater system. On the 

other hand, because some of groundwater samples plot within/near the expected theoretical 

interval of δ18ONO3 that ranges from 4.0 to 5.1‰ (Figure 4a; Supplementary Table S1), 

nitrification must also be occurring within the OGM groundwater system.  

Dissolved oxygen measured in groundwater samples from the study area ranges 

from undetected to 7 mg/L (Supplementary Table S1). Hence, the DO concentrations in 

groundwater samples with values >4 mg/L would tend to limit denitrification (Nikolenko 

et al., 2018), which is not expected in highly oxygenated groundwaters. However, 

denitrification could occur at anoxic sub-regions along the flow-paths and not necessarily 

at the sampling locations. The plot of DO concentrations against pH values (Supplementary 

Figure S1d) shows that groundwater samples #7, #8, #10, #12, and #13 (with measured DO 

concentrations ranging from 0.2 to 3.3 mg/L) fall into the optimal denitrification zone, 

suggesting that these samples are undergoing denitrification potentially under partially 

oxidized conditions. In Figure S1e, groundwater samples #2, #9, #14, #16, and #21 plot 

within the optimum nitrification zone suggesting NO3 may reflect nitrification whereby 

potential partial nitrification contributed an estimated of 76, 57, 71, 50, and 57%, 

respectively, (Supplementary Table S1). The Δδ18ONO3 values for samples #1 (8.9‰), #7 

(10.8‰), and #21 (10.3‰) are high due to elevated measured δ18ONO3 values, which range 

from 11.7 to 13.7‰. This suggests that denitrification is taking place in the aquifer yielding 

groundwater at wells #1, #7, and #21. However, sample #21 also falls within the optimal 

nitrification zone due to its elevated DO concentration (Supplementary Figure S1d), even 

though it has similar NO3 isotopic values to that of sample #7 (Figure 4a). All the above 
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observations support that both denitrification and nitrification are important geochemical 

processes of the nitrogen cycle within the OGM groundwater system. 

6 Conclusion 

The present study combined multiple environmental isotopic tracers (δ18OH2O, δ2HH2O, 

δ15NNO3, δ18ONO3, and δ11B) with a Bayesian isotope MixSIAR model to distinguish NO3 

sources and their relative contributions; and to identify potential NO3-transformation 

processes in a coastal aquifer located in Tunisia. All collected groundwater samples from 

the Mediterranean OGM coastal agricultural plain have NO3 concentrations exceeding the 

threshold of anthropogenic inputs, and most NO3 concentrations in groundwater are above 

the drinking water limit of 50 mg/L. The isotopic composition of NO3 revealed different 

anthropogenic sources contribute to NO3 contamination of the local groundwater with 

manure, sewage, and soil organic as the potential NO3 sources. Nonetheless, the δ11B 

values indicate that NO3 is chiefly derived from manure. The Bayesian isotope MixSIAR 

model results support manure as the major source of NO3 to these groundwaters. The 

present study highlights the usefulness of δ11B to separate nitrate and other contaminants 

from sewage and manure, because δ15NNO3 and δ18ONO3 values are commonly not capable 

of differentiating these sources and are often masked by various simultaneously occurring 

NO3 transformation processes. Evidence of denitrification and nitrification are observed 

with heterogenous occurrence/distribution within the OGM groundwater system, reflecting 

the complexity of the study area, which is also influenced by seawater intrusion.  

The measured NO3 concentrations in the collected groundwater samples are two 

times higher than that measured previously in 2010. This suggests the existence of 

continuous sources of NO3 that are deteriorating groundwater quality in the OGM aquifer. 
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Adaptation and mitigation strategies are required to improve the groundwater quality in the 

future. Optimization strategies, including an introduction of environmentally safe 

agricultural practices and an implementation of regulations for managing wastewater, are 

encouraged to achieve a sustainable management of this economically strategic agricultural 

area. The present study highlights the elevated NO3 concentrations measured in the GEM 

Lagoon with potential contribution of NO3 via interactions between groundwater of the 

OGM aquifer and surface water of the GEM Lagoon. This issue is of particular importance 

because input of nutrients to the GEM Lagoon can lead to eutrophication limiting its 

biodiversity. 
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.Supplemental Table S1: Chemical and isotopic data 
ID pH DO 

(mg/L) 
T  

(°C) 
EC  

(µS/cm) 
TDS  

(mg/L) 
Ca 

(mg/L) 
Mg 

(mg/L) 
Na 

(mg/L) 
K 

(mg/L) 
Cl 

(mg/L) 
SO4 

(mg/L) 
Br 

(mg/L) 
NO3 

(mg/L) 
HCO3 
(mg/L) 

B 
(mg/L) 

CBE 
(%) 

1 7.4 0 20.9 1937 973 84.4 44.5 339.7 8.4 369.8 126.6 1.6 3.9 264.7 0.86 13 
2 7.63 6.98 21.8 3620 1872 377.9 57.2 391.0 4.2 760.1 326.4 2.3 272.9 93.9 0.18 9 
3 7.62 0 20.7 3140 1611 393.9 51.7 289.1 4.2 601.8 367.5 2.1 189.0 75.6 0.14 12 
4 7.48 0 20.4 2950 1507 358.5 52.6 220.4 12.3 618.0 199.2 1.9 177.0 152.5 0.13 9 
5 7.26 0 21.3 4380 2280 376.6 66.5 564.0 5.9 925.7 576.2 2.8 87.0 80.5 0.52 9 
6 7.14 0 23 6590 3490 238.9 57.8 1213.0 14.2 1767.8 444.9 5.7 74.2 115.9 2.95 6 
7 7.37 3.05 19.4 5760 3030 405.2 121.1 851.8 7.8 1438.6 531.4 3.8 25.3 96.4 0.04 11 
8 7.55 3.33 22.3 2630 1338 169.6 71.5 215.7 5.5 503.9 154.8 1.9 377.7 108.6 0.17 3 
9 7.5 5.95 18.5 5250 2760 496.0 121.3 583.4 6.7 1207.6 628.0 3.5 85.2 85.4 0.45 9 
10 7.14 0.21 21.8 3940 2040 357.0 120.6 401.6 13.4 1028.4 230.9 3.3 149.3 107.4 0.25 12 
11 7.47 0 20.6 5010 2630 478.3 99.0 612.0 3.5 1174.0 666.6 3.1 61.7 90.3 1.72 9 
12 7.37 0.74 21.4 1841 922 142.0 33.0 273.7 2.0 251.5 195.0 1.2 152.0 184.2 0.16 13 
13 7.05 0.95 21.8 2910 1496 253.3 37.0 325.3 11.8 566.6 362.7 2.0 114.1 95.2 0.60 6 
14 7.24 6.81 19.6 2580 1311 239.2 60.1 240.1 7.2 495.5 157.1 1.8 127.7 87.8 0.16 14 
15 7.32 0 23 1280 634 127.2 18.8 137.5 2.7 286.7 38.1 1.1 43.4 87.8 0.54 12 
16 7.31 5.64 21.6 1272 629 102.4 33.6 145.7 5.3 231.7 90.8 0.9 19.8 128.1 0.14 14 
17 7.22 0 20.3 2760 1406 269.2 83.4 271.2 8.9 466.0 187.5 1.4 489.1 92.7 0.26 10 
18 7.28 0 20.5 1853 928 82.3 45.5 200.3 7.7 311.8 165.7 1.2 69.3 118.3 0.25 4 
19 7.39 0 21.3 2350 1187 281.0 67.0 245.0 5.8 516.2 191.7 1.6 216.6 93.9 0.25 12 
20 7.17 0 22.2 7980 4280 186.8 168.4 1400.1 46.8 2337.8 297.0 8.7 31.6 87.8 0.34 7 
21 7.59 4.5 21.1 4290 2250 133.9 90.3 704.1 24.1 1209.7 171.3 4.9 3.8 162.3 0.40 6 

GEM 7.19 6.46 25.1 60300 39200 271.2 1570.1 13491.2 560.4 20109.5 3399.1 88.1 86.8 173.2 3.87 7 
MS 7.4 8.45 23.8 50200 33300 189.4 1342.7 11670.6 520.8 17863.4 3198.9 80.3 104.1 179.3 5.08 5 

Note: CBE is the Charge Balance Error, which is verified for the whole of analyzed samples with mean CBE ⩽10%. Here, the mean CBE is about 9%. 
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Supplemental Table S1: Chemical and isotopic data (continue)  
ID δ18OH2O  

(‰VSMOW) 
δ2HH2O  

(‰VSMOW) 
d-excess 

(‰) 
δ15NNO3 
(‰AIR) 

δ18ONO3  
(‰VSMOW) 

Theoretical  
δ18ΟΝΟ3 (‰) 

Δδ18ΟΝΟ3 
(‰) 

Contribution  
of ΝΟ3 (%)1 

δ11B 
(‰ NBS-951) 

1 -5.7 -30.9 14.6 13.7 12.9 4.0 8.9 31 29.7 
2 -4.8 -28.1 10.3 7.3 6.1 4.6 1.4 76 35.9 
3 -4.8 -26.9 11.8 - - 4.6 - - 37.5 
4 -4.5 -25.9 10.2 5.8 6.0 4.8 1.2 81 34.3 
5 -4.2 -24.5 9.1 5.9 6.7 5.0 1.7 75 27.4 
6 -5.7 -32.1 13.3 4.7 5.7 4.0 1.6 71 13.6 
7 -4.4 -25.5 10.0 11.7 15.6 4.9 10.8 31 34.8 
8 -5.3 -31.2 11.2 7.4 10.1 4.3 5.8 42 39.8 
9 -4.2 -24.3 9.1 8.8 8.9 5.0 3.9 57 33.8 

10 -4.5 -26.5 9.8 5.2 6.5 4.8 1.7 74 29.3 
11 -4.1 -24.8 8.0 7.3 8.9 5.1 3.8 58 12.4 
12 -5.0 -27.1 12.8 8.9 4.1 4.5 -0.4 - 35.4 
13 -4.8 -26.9 11.9 6.3 9.1 4.6 4.5 51 42.9 
14 -4.9 -26.2 12.6 6.0 6.5 4.6 1.9 71 36.4 
15 -5.5 -29.7 14.2 6.7 4.7 4.2 0.6 88 24.1 
16 -5.5 -29.7 14.3 6.8 8.4 4.2 4.2 50 33.5 
17 -5.5 -30.4 13.6 8.6 6.4 4.2 2.3 65 30.0 
18 -5.1 -27.6 13.0 8.1 7.9 4.5 3.5 56 42.6 
19 -5.4 -30.8 12.2 6.1 7.7 4.3 3.4 55 41.2 
20 -5.1 -27.2 13.8 11.7 14.8 4.4 10.3 30 27.4 
21 -5.4 -28.7 14.8 6.8 7.3 4.2 3.1 57 37.7 

GEM 1.4 9.7 -0.6 - - - - - 42.3 
MS 1.3 9.5 -1.1 - - - - - 41.4 

1: Contribution of nitrate from nitrification is the portion of the theoretical δ18ΟΝΟ3 (‰) relative to the measured δ18ONO3 (‰). 
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Supplementary Figures S1a-d: Correlation of different chemical and isotopic values. In Figure S2, a positive trend is indicated based on 
groundwater samples traced with blue circles, whereas red triangle are groundwater samples that are not considered. 

  
Supplemental Figure S1a  Supplemental Figure S1b 

  
Supplemental Figure S1c Supplemental Figure S1d 
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Supplementary Figure S2. General piezometric map of the study area (adapted from Ben Ammar et al. (2016). 
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