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Abstract

Adsorption processes with carbon-based adsorbents have received substantial attention as a solution
to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-
based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an
extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was
investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-
flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the

different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed
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monolayer adsorption capacities of 28 to 667 mg/g and physical adsorption energies of 13 to
21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10% enhanced the adsorption and
reduced the equilibrium time to 2 hours, while the WHO drinking water guideline of 30 pugU/L could
be achieved for an initial concentration of 250 pgU/L. Uranium adsorption with PBSAC was
favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2COsg), UO2(CO3).%,
(UO2)2C0O3(0OH)3z") predominated in the solution, and the ToF-SIMS analysis revealed that the
adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle
diffusion. For the uranyl cations (UO2%*, UO,OH*) at pH 2 to 4, only shallow adsorption in the
outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium
from contaminated natural water (67 pugU/L) and meeting both German (10 ugU/L) and WHO
guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid

treatment technologies for uranium removal, for instance, from high-level radioactive waste.
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Physico-chemical water treatment; carbonaceous activated carbon; uranyl; adsorption mechanisms;

ToF-SIMS; adsorptive interactions
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ToF-SIMS

U-COOH interaction
inside the pore

1. Introduction

The occurrence of uranium (U) in natural waters is a global threat to human health because of its
chemitoxicity (Ansoborlo et al., 2015; Lapworth et al., 2021). Human health can be adversely
affected by the poisoning of the lungs, liver, reproductive system, kidney, and bones (Ma et al.,
2020Db). the World Health Organization (WHO) and the US Environmental Protection Agency (EPA)
have set a uranium guideline of 30 pg/L in drinking water (EPA USA, 2018; WHO, 2017). Even
stricter guideline values are suggested by Canada (20 ug/L) and Germany (10 pg/L) for drinking
water (Banning and Benfer, 2017; Health-Canada, 2017). Uranium contamination in groundwater
occurs either naturally through dissolution from mineral formations or through anthropogenic
activities, such as mining, ore processing, and farming with a reported concentration in the range of
< 0.1 pg/L to 69 mg/L across the world (Abd EI-Magied et al., 2021; Ma et al., 2020b; Smedley and
Kinniburgh, 2023; Waseem et al., 2015). To meet the guidelines for typical global occurrence

concentration (up to 69 mg/L), a treatment with ~100% U removal would be required.

Natural uranium is comprised of three radioactive isotopes: 238U, 2®*U, and 24U. While Z8U is the

most abundant with 99.28%, 2*°U has an abundance of 0.72% and high radioactivity. The depleted
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uranium (DU), on the other hand, which resulted from the enrichment process of 2°U, has 30% less
radioactivity than natural uranium (Craft et al., 2004). Depleted uranium is commonly used by the
industry interested in the chemical and biological properties of uranium rather than its radioactive
properties (Amrute et al., 2013; Betti, 2003). Albeit the danger behind the exposure to radiation, the

chemical toxicity of depleted or natural uranium is greater (Rump et al., 2019).

Uranium in natural waters is principally found in the two stable oxidation states — U(V1) and U(1V).
Under reducing conditions, U(IV) species of low solubility dominate, while in oxidizing
environments, U(VI) predominates in the form of uranyl ion (UO2?*) (Alam and Cheng, 2014;
Williamson et al., 2014). The hydrated U(VI), or UO2(H20)s ?*, has a linear O=U=0 entity with five
water molecules that bind in a pentagonal fashion with a U-OH, distance of 2.48 A (hydrated radius)
(Aaberg et al., 1983). This was recently supported by extended X-ray absorption fine structure
(EXAFS) and quantum chemical calculations (Grenthe et al., 2021). UO2?* cation is highly sensitive
to hydrolysis (the loss of protons from bound water molecules) and can form stable complexes;
particularly oxygen-containing ligands like OH-, CO3™, SO4*, POs* (Mihr-Ebert et al., 2019; Nolan
et al., 2021; Smedley and Kinniburgh, 2023). The ternary complex Ca,UO2(CO3)s is one extremely
stable example (Endrizzi and Rao, 2014; Shang and Reiller, 2020). Uranium speciation and
complexation are controlled by the physicochemical parameters including, pH, redox potential (Eh),
and temperature (Catalano et al., 2006; Go6tz et al., 2011), as well as the presence of dissolved organic
ligands (Bone et al., 2020). For the distribution of U(V1) species in a ternary UO2?*/CO3?>/H20 open
system, such as in the case of an oxidizing freshwater, UO,?* and its hydrolysed forms UO2(OH)*
and UO2(OH); are predominant up to pH 6, whereas from pH 7, the carbonate complexes, such as
UO2C03(g), UO2(CO3)2% and UO,(COs)s* are formed (Krestou and Panias, 2004). When including
S04%, PO4*, Si04% and F, further complexes UO2S04, UO2HPO4, UO2(OH)3SiO4" and UO2F* can
be formed at pH < 6, and ternary uranyl carbonates complexes are formed in the presence of Mg and
Ca at pH > 7 (Smedley and Kinniburgh, 2023). The characteristics of uranyl and uranyl carbonate

species UO,?*/C0O3%/H,0 in an open system are reported in Table 1.
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Table 1. Characteristics of uranyl species in the ternary UO2?*/CO3?/H,0 system

U(VI) species Hydration Hydration Gibbs free energy of Diffusion coefficient
radius 2 (A) number 2 formation ° (kJ/mol) ® (102°m?/s)

Uo,* 2.48 (U-On,0) 5 -952 7.6

UO.OH* - - -1160 -

UOZ(OH)Z (aq) - - —1368 -

UO2CO3 (ag) 2.34 (U-Oco,?) 3 -1536 6.7

UOZ(CO3)22_ 24 (U_O 0032—) 1 —2105 55

UOZ(CO3)34_ 239 (U_O (:032_) O —2660 56

2 The values of the hydration radius and hydration number of the different uranium species are taken
from Kerisit and Liu (2010).
b The Gibbs free energy and diffusion coefficient values are from Grenthe et al. (1992).

Common technologies used for uranium removal from water are classified into chemical methods,
such as precipitation (Mellah et al., 2007), bioremediation by (bio)sorption (Krawczyk-Bérsch et al.,
2018), and physiochemical methods, such as nanofiltration/reverse osmosis (NF/RO) (Shen and
Schéfer, 2014) and adsorption (Tian et al., 2021). NF/RO membranes can achieve 90-99% of uranium
removal (EPA, 2007). However, uranium can be adsorbed and saturated in the membrane material
(Schulte-Herbriiggen et al., 2016; Torkabad et al., 2017), for example by the attachment of the
positive U(VI) complexes to the negative COO™ entities of polyamide (PA) (Torkabad et al., 2017),

which is the most common material used in NF/RO fabrication (Karan et al., 2015).

Adsorption, on the other hand, is widely used for uranium removal, because it is generally more
practical, easily scalable, and efficient compared to other methods, with a large number of inorganic-
based adsorbents (Bakhsh et al., 2022; Cali et al., 2018; Fan et al., 2012; Thapa et al., 2021; Zhao et
al., 2023a), organic (carbon) based adsorbents (Donat and Erden, 2017; Hu et al., 2016; Yi et al.,
2020b; Zhao et al., 2017), framework materials (Guo et al., 2021; Jun et al., 2021), and composite
nanomaterials (Abd El-Magied et al., 2021; Song et al., 2021; Zhu et al., 2021a). Carbon-based
adsorbents and composite nanomaterials can offer a higher adsorption capacity than inorganic and
framework materials, which in addition, exhibit inferior mechanical properties and are difficult to

recycle (Jun et al., 2021; Ma et al., 2020a). Carbon materials, for instance, are characterised by large
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specific surface areas, pore volumes, high heat resistance, and ease of functionalisation (Jun et al.,

2021), and thus are widely used for uranium removal (Table S1).

Granular activated carbon (GAC) and powdered activated carbon (PAC) are the most common
adsorbents in water treatment (Worch, 2021) and have been applied for uranium removal (Caccin et
al., 2013; El-Sayed, 2008; Mellah et al., 2006). Such conventional activated carbon materials (GAC
and PAC) are formed by the carbonisation and activation of natural carbon sources, such as coconut
shells, coal, or pitch (John Presin Kumar et al., 2021). This generally results in a non-uniform shape,
internal surface area, and wide pore size distribution which affect the adsorption properties (Miller,
2010). To achieve a more well-defined carbon-based material with a narrower pore size distribution,
a polymeric precursor strategy can be employed (Chen et al., 2018; Huang et al., 2021). This is the
case of polymer-based spherical activated carbon (PBSAC) which is produced in a batch process by
carbonisation of the non-porous starting material followed by activation to establish the pore system

as described elsewhere (Bohringer et al., 2011).

PBSAC has a higher specific area (1769 to 2125 m?/g) and pore volume (0.65 to 1.29 cm®/g)
compared to conventional PAC (505 to 1676 m?/g, 0.35 to 0.89 cm®/g (Partlan et al., 2016)). In
addition, the pore size of PBSAC (1.3 to 2.3 nm (Tagliavini et al., 2017)) is larger than the ionic (0.1
to 0.2 nm (Bastrakov et al., 2010)) and hydrated (0.5 to 0.9 nm) (Nichols et al., 2008) diameter of
uranyl species. This could result in fast adsorption kinetic and enhanced internal transport. Schrage
et al. (2014) have previously investigated unmodified (<1 % surface oxygen content) and modified
PBSAC (15% surface oxygen content) with a reported uptake at pH 5 of 0.3 mg/g and 8 mg/qg,
respectively. The results were explained by the electrostatic interaction with the carboxyl groups of
the oxidised carbon on the surface. However, the kinetics and the isotherms as well as the potential

adsorption and mass transfer mechanisms at different uranium species are unknown.

In carbon-based materials, uranium adsorption occurs generally through physical adsorption, mainly
through electrostatic attraction by specific functional groups, such as coordination/complexation by

donor ligands, and ion exchange processes (Jun et al., 2021). Weaker intermolecular van der Waals
6
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interactions, hydrogen bonding, cation/x, and hydrophobic interactions can also contribute to uranium
adsorption (Duan et al., 2021; Wang et al., 2022b). Recent varieties of AC highlight their
functionalised surface and large pore volume as the primary reason for uranium adsorption, while the
interaction with the functional moieties, (especially O-containing) such as C=0, OH, COOH, C=0
facilitate physical adsorption (Alahabadi et al., 2020; Aslani and Amik, 2021; Kiitahyali and Eral,

2004; 2010; Zhu et al., 2021b).

The interactions between uranium and AC are dependent on uranium speciation and AC surface
chemistry at different pH. Due to the various functional groups on their surfaces and the presence of
a 7 electron system that confers them with Lewis basic properties, AC materials are amphoteric by
nature and generally exhibit a positive charge pH < 5 (Chingombe et al., 2005; Julien et al., 1998).
This hinders the adsorption as uranium species at pH <5 (UO2?*, UO,0H") are positively charged
(Mellah et al., 2006; Wang et al., 2022b). The pH range 5.0 to 6.5 has been reported as the best
adsorption window due to the electrostatic interaction between positive uranyl (UO2?*, UO20H")
species and the deprotonated functional groups (-OH, —-COOH) of the AC at this pH (Abd EI-Magied
et al., 2021; Alahabadi et al., 2020; Aslani and Amik, 2021; Belgacem et al., 2014; Guo et al., 2021,
Kiitahyali and Eral, 2004; Mellah et al., 2006; Song et al., 2021; Villalobos-Rodriguez et al., 2012;
Yaman and Demirel, 2021; Yi et al., 2020b; Zhang et al., 2021b; Zhu et al., 2021b). At pH >7, most
of the reported AC surface becomes negative due to the deprotonation of functional groups and
anionic uranyl complexes (UO2(COs).*, UO,(COs)s*) are subsequently repelled from the AC surface
(Abd El-Magied et al., 2021). While conventional AC achieves limited adsorption capacity due to
the non-selective adsorption sites, functionalised carbon-based adsorbents with specific functional
groups having high affinity to uranium can be more selective and thus exhibit higher adsorption
capacities (Table S1). A recent study demonstrated that carbon-based adsorbents with grafted
phosphoric acid groups could achieve an adsorption capacity of 617 mgU/g (at pH 4.5) and 3 s to
achieve equilibrium (Zhao et al., 2023b). This is simply because of the high chelating affinity of
uranyl ions/complexes to phosphate groups (Yang et al., 2015). However, the complex preparation

7
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processes such functionalised carbon-based adsorbents always need highly toxic, flammable, and
volatile chemicals, which can lead to secondary pollution, hence hindering their scale-up (Wang et
al., 2022a). PBSAC, on the contrary, is developed with a simple process from a well-defined
precursor and exhibits a very smooth and uncharged carbonaceous surface with high pore volume
and surface area (Bohringer et al., 2011), while the adsorption mechanisms have not been identified
for uranium species. Due to the carbonaceous surface, the relevant mechanism is likely to be physical
adsorption originating from weaker short-range interactions between uranium and the carbon surface

(Guo et al., 2021; Xie et al., 2019).

Universal short-ranged van der Waals interactions of low binding strength are expected to be relevant
in facilitating physical adsorption (Israelachvili, 2011; Petrovic et al., 2022; Pourhakkak et al., 2021),
as reported for various heavy metals, including uranium (Srivastava et al., 2021). Cation-r interaction
(ashort-range force <0.5 nm) with the polarised n-electron rich region was reported to be an important
interaction for heavy metals (Mahadevi and Sastry, 2013; Shi et al., 2013; Tran et al., 2017a; Yi et
al., 2020a; Zhang et al., 2021a). This mechanism applied to uranium removal using AC fibre-titanate
nanotubes composite (Duan et al., 2021), modified graphene oxide (Amini et al., 2021), biochars (Hu
et al., 2018; Xu et al., 2020) and pine-derived carbon (Philippou et al., 2018) showing the affinity of
uranium towards surfaces rich in © electrons. Following the adsorption of the adsorbate to the surface
of the adsorbent, surface diffusion and intra-particle diffusion occur to enter the pores (Sahoo and
Prelot, 2020). The presence of carboxylic groups inside the pores can exert an attractive force on the
surface-adsorbed uranium, which facilitates the diffusion of uranium into the pores of PBSAC
(Schrage et al., 2014). In order to visualise uranium species adsorbed and elucidate possible
mechanisms, time of flight secondary ion mass spectrometry (ToF-SIMS), which performs chemical
imaging of surfaces and depth profiling with high mass and spatial resolution, can be employed (Han
etal., 2020; Proriol Serre et al., 2019; Zhao et al., 2020). ToF-SIMS can offer more sensitive analysis
with greater chemical selectivity than other surface and interface analysis techniques, such as X-ray
photoelectron spectroscopy (XPS), with 1 to 2 nm information depth (Watts and Goacher, 2022).

8
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Such a method (ToF-SIMS) has previously investigated uranium adsorption in organic materials

(Yang et al., 2022).

While the adsorption of uranium was previously investigated with PBSAC (Schrage et al., 2014),
fundamental mechanisms that underpin this adsorption were investigated in this study. Uranium
removal with PBSAC was confirmed with contaminated natural water. The specific research
questions are: i) what are the adsorption Kinetics, isotherms, and thermodynamics of uranium with
PBSAC?; ii) what are the dominating adsorption mechanisms (short- and long-range interactions) of
the different uranium species with PBSAC?; and iii) what is the limiting mass transfer step (surface

adsorption, intra-particle diffusion) during the adsorption process of uranium with PBSAC?

2. Materials and methods

2.1. Polymer-based spherical activated carbon material

PBSAC of different sizes and surface oxygen content were provided by Blicher GmbH (Erkrath,
Germany). Material characteristics of PBSAC, including particle diameter, surface oxygen content,
activation level, tap density, and surface area are summarised in Table 2. Morphology imaging and
surface chemistry characterisation can be found elsewhere (Tagliavini et al., 2017; Trinh and Schéfer,
2023), in which the results confirmed the homogenous size, spherical shape, and micropores

distribution, with a hydrophobic character and uncharged surface over the pH range 4.5-9.5.

Table 2. Proprieties of the various PBSAC investigated in this work (Bohringer et al., 2011;
Tagliavini et al., 2017)

PBSAC Code Average particle Surface oxygen Activation Tap density Surface Area

diameter (um) content (%) level (o/mL) (m?g)
MKD 200 200 5 4 0.60 1440
MKD 450 450 5 4 0.40 1920
015 200 1.5 4 0.60 1436
010 200 10 4 0.59 1436

2.2. Static adsorption experiments
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To evaluate the kinetics, isotherms and thermodynamics of uranium adsorption to PBSAC, static
adsorption tests were conducted using an incubator shaker (Innova 43 R, New Brunswick Scientific,
USA). Varying amounts of PBSAC according to the desired concentrations (0.01-10 g/L) were
measured using an analytical balance (AC 210P, Sartorius, Germany) and transferred (without any
pre-treatment) into conical shaker flasks (250 mL, Duran group, Germany) containing 250 mL
uranium solution. Once the PBSAC was added to the adsorbate solutions, the shaker was set to a
constant temperature of 20°C and a shaking speed of 260 rpm for 26h. For adsorption
thermodynamics, the temperature was varied from 10 to 80 °C. 5 mL of samples of supernatant
(PBSAC-free) were extracted using a 5 mL pipette (Eppendorf, Germany) at a defined interval (7, 10,
15, 30, 45,60 min, and 2, 3,5, 7, 9, 24, 26 h). The samples were stored in 5 mL plastic vials, acidified
at 2% (w/w) HNOs (Merck, Suprapure 65%, Germany) and kept at an ambient temperature until ICP-

MS analysis.

2.3. Uranium and solution chemistry

A stock solution of 1 g/L U was made by diluting 16.7 mg of uranyl chloride hydrated (UO2Cl>.3H20)
(IBILABS, purity 99.9%, USA) in 100 mL Milli-Q water (MilliQ A+ system, Millipore, Germany).
The stock solution was used to prepare the adsorbate solutions of different uranium concentrations
(0.25 to 100 mgU/L) in a background comprised of 1 mM NaHCOs (Bernd Kraft, purity >99.7%,
Germany) and 10 mM (0.58 g/L) NaCl (VWR chemicals, purity >99.9%, Germany). The required
NaHCO3z and NaCl volumes were added from 100 mM NaHCOs (8.4 g/L NaHCOg, pH 8.3+0.1) and
1 M NaCl (58.4 g/L NaCl, pH 6.5+0.1) stock solutions prepared in MilliQ water. The pH was adjusted
using 1 M HCI prepared from HCI 37% solution (Roth, Germany) and 1 M NaOH prepared from

dissolved NaOH pellets (Merck, purity >99%, Germany).

2.4. Menzenschwand spring water

Natural water samples containing uranium were collected from various sites close to Krunkelbach Pit

near the municipality Menzenschwand (Waldshut, Baden-Wurttemberg, Germany) on 02/06/2021,
10
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where a spring water conduit which contained significant levels of uranium
(N47°50.332°E008°02.824; Figure S1) was selected for investigating uranium adsorption with
PBSAC in real water conditions. The water characteristics of the different collected samples are
detailed in Table S2. Krunkelbach Pit was known for investigating and exploiting uranium deposits
from 1961 until 1991 in the Menzenschwand region. The mining operation was shut down due to
various protests (Steen, 2004). Since 2005, water from the uranium ore deposit has been used to run
a radon bath in Menzenschwand, and the natural occurrence provided a suitable ‘real water’ for

verification of results.

2.5. Water analysis

Uranium analysis was performed with inductively coupled plasma - mass spectrometry (ICP-MS)
(Agilent, model J8403A 7900 ICP-MS, Japan). For calibration, standard solutions with
0.25 — 1000 pgU/L were prepared from uranium stock solutions of 0.5 and 2 mgU/L acidified in 2%
(w/w) HNOs (Merck, Suprapure 65%, Germany). The concentration of uranium in the stock solutions
was verified with ICP multi-element standard (ICP standard solution VI 30 elements, 9.9 £ 0.5

mgU/L, Certipur®, Germany). Calibrations and limit of detection (LOD) are shown in Figure S2.

For water analysis of the real water sample, ion chromatography (IC) (Metrohm 580 Professional,
Switzerland) with an anion exchange column (A Supp 5 column, Metrohm, Switzerland) was used to
determine anion concentrations (see calibration curve and LOD in Figure S3). For total organic
carbon (TOC) and inorganic carbon, a total carbon analyser (TOC-LCPH FA E200, Shimadzu, Japan)

was used (see calibration curves and LOD in Figure S4).

The pH and electrical conductivity (EC) were measured using a multi-parameter portable meter
(WTW ProfiLine pH/Con 3320, Germany) with separate pH (WTW SenTix 81, Germany) and
conductivity (WTW TetraCon 325, Germany) sensors. pH sensors were calibrated using technical
buffer solutions of pH 4, 7, and 10 (WTW, Germany). The EC sensor was calibrated using a

calibration standard of 0.01 M KCI (WTW, Germany).
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2.6. Adsorption kinetics and isotherms models

In aqueous-phase adsorption, various kinetic reaction models can be used to mathematically describe
the intrinsic kinetic adsorption constant, and therefore, establish the required contact time for effective
adsorption. The pseudo-first-order (Eq. (1) (Lagergren, 1898)), pseudo-second-order (Eg. (2)
(Blanchard et al., 1984)), and intraparticle diffusion (Eqg. (3) (McKay et al., 1980)) models are

commonly applied for this purpose.

q(t) = qe(1 — e 1)
_ qekyt

q(t) = T haut (2)

q(t) = kqt®> + const (3)

where q(t) (1g/g) is the uptake of the adsorbate, uranium in this case, as a function of time t (h), ge
(ug/g) is the uptake at equilibrium, k (1/h), k2 (g/ug-h), ka (Lg/g-h®®) are kinetic rate constants, and
const (ug/g) is the constant parameter of the intraparticle diffusion model, that depends on the

thickness of the boundary layer (Wang et al., 2022c).

The Kinetic rate constants of pseudo-first-order and pseudo-second-order can indicate the speed of
the adsorption, depending upon the concentration of the adsorbate (Bhalara et al., 2014; Saha and
Grappe, 2017). However, pseudo-second-order can fit better if the quantity of accessible adsorption
sites is assumed to be in excess, while pseudo-first-order is expected to fit better at low quantities of
adsorption sites (Guo and Wang, 2019; Liu and Shen, 2008). It should be noted that these models are
empirical and do not indicate explicitly which adsorption mechanism (film diffusion or intraparticle
diffusion) is limiting. The kinetic rate constant kq indicates the speed of adsorbate diffusion into the
pores of the adsorbent, and this process is generally slow and can be controlled by multiple processes
(film diffusion, surface adsorption, and surface diffusion) (Wang and Guo, 2022). For this, the pores

of the PBSAC are assumed to be big enough to allow uranium diffusion, and this is true since the
12
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hydrated diameter of uranyl species (0.5-0.9 nm (Nichols et al., 2008)) is smaller than the pore size

of PBSAC (1.3-2.3 nm (Tagliavini et al., 2017)).

Adsorption isotherms, on the other hand, are used to fundamentally understand the interaction of the
adsorbate with the adsorbent, while describing the adsorption behaviour, as well as the adsorption
efficiency and capacity at specific conditions (Al-Ghouti and Da'ana, 2020). Various adsorption
isotherm models have been used in the literature. The Freundlich and Langmuir models are the most
commonly used due to their simplicity, the significance of their model parameters and their easy
interpretability (Tran et al., 2017b). While the Freundlich isotherm is an empirical model (Eg. (2)
(Freundlich, 1907)) used for multilayer adsorption on heterogeneous sites, the Langmuir isotherm is
a model based on kinetics principles (Eg. (5) (Langmuir, 1918)) and assumes a monolayer reversible
adsorption with a fixed number of adsorption sites. In contrast to Langmuir, Freundlich isotherm does
not describe the saturation behaviour of an adsorbent, where the PBSAC surface area is in excess

compared to uranium (Table S3 and Table S4).

Qe = Kpcl/™ (4)
quLCe

= — 5

Q=717 Kice ()

where ce is the equilibrium concentration of uranium (mg/L), K is the Freundlich constant (mg/g),
nris the heterogeneity factor (unitless), gm is the maximum adsorption capacity (mg/g) and Ky is the

Langmuir constant related to the energy or enthalpy of adsorption (L/mg).

2.7. Thermodynamic parameters and adsorption energy
Thermodynamic parameters comprising of Gibbs free energy change (AG?), enthalpy change (AH?),
and entropy change (AS?) are used to identify whether the prevailing adsorption mechanism is

physical or chemical (Tran et al., 2016). AG® is calculated using Eq.(6) and Eq. (7), while AH® and
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AS? are calculated as the slope and intersect of the plot between the equilibrium adsorption coefficient

(Kq, dimensionless) and 1/T (Eq. (8)):

AG® = —R,T InK4 (6)
(e " MpBsAC
Kg=——

d Ce'V (7)

1K _ASO AH° @®)
PR R, TR,T

where Rg is the ideal gas constant (8.314 J/mol.K)

If uranium adsorption to PBSAC was predominantly physical adsorption due to electrostatic
interactions (Schrage et al., 2014), then a negative value with a high magnitude of AG® would suggest
that these interactions are energetically favourable (Haynes, 2016; Tran et al., 2016). In such a case,
AH® would be negative as well (Tran et al., 2016), and the magnitude of AH® would indicate the
interaction strength between uranium and the PBSAC surface. Exothermic adsorption with a lower
strength of uranium binding (as exhibited by interactions such as H-bonding and cation-r) would be

reflected with a magnitude of AHC < 40 kJ/mol (Inglezakis and Zorpas, 2012).

In physical adsorption, the activation energy (Ea, J/mol) is below the Ea range of chemical adsorption
(40 to 800 kJ/mol) and a lower magnitude would indicate weak binding (Tran et al., 2016). Ea is

determined from the Kkinetic rate constant (k) using Eq. (9):

a

Ink = —
n R.T

+InA (9)

where A (1/h) is the Arrhenius constant.

2.8. Data Analysis
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Removal (R, %) of uranium by PBSAC at a specific time from the start of static adsorption is
calculated using Eq. (10), while the adsorption uptake q(t) (1g/g) at a specific time is calculated using

Eq. (11):

—c(t
R = CO—C(). 100 (10)
Co

a =2y a

where co (Ug/L) is the initial uranium concentration and c(t) (ug/L) is the concentration of uranium

at time t (h), m (g) is the mass of PBSAC and V (L) is the volume of the supernatant.

The error associated with R(t) and q(t) were estimated through experimental error propagation

(Figure S5).

2.9. Time of flight — secondary ion mass spectrometry analysis

The PBSAC samples used for uranium adsorption were analysed, with a focus on the 28U isotope,
using TOF-SIMS 5 instrument (IONTOF GmbH, Minster, Germany) operated in both imaging and
spectrometric modes. In both operation modes, 30 keV Bis" cluster ions from the liquid metal ion gun
(LMIG) NanoProbe source were employed as primary probe-projectiles in a double-beam approach,
involving an electron-impact source of 1 keVV O" (300 nA) for sample sputtering in non-interlaced
may. The charge compensation was carried out in two ways: (i) 21 eV electrons flooding the surface
of the analysed sample after each shot with the primary Bis™ beam and (ii) Ar gas injection system

(Ar-GIS) maintaining the partial Ar gas pressure at 4-10° mbar (4-10* Pa) in the analysis chamber.

Imaging mode was done in delayed extraction (analysis duration 26 h) to achieve a mass resolving
power (MRP) of over 5000 and a lateral resolution of about 100 nm. This high-resolution “delayed-
extraction” mode (Benettoni et al., 2019) was employed for the initial localisation and identification

of uranium-containing phases in the PBSAC samples. The high lateral resolution of the imaging mode
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was achieved at the cost of the primary Bis" ion beam current reaching 0.02 pA with a 100 ps
repetition period. Analysis in this mode was performed by rastering the primary ion beams randomly

in 2048x%2048 pixels over a 300x300 um? field of view.

Spectrometry operation mode (analysis duration 14 to 24 h) possessing high mass-resolving power
and higher current of primary Bis" ions (0.5 pA with 100 s repetition period) was employed with a
lateral resolution of 5 um. The 35 ns Bis" ion bunch was compressed (bunched) to probe samples
with high mass-resolving power (MRP above 7000) over a 500500 um?2 area in randomly located
512x512 pixels. Data evaluation was performed using SurfaceLab 7.1 software (ION-TOF GmbH).
Having the highest count rate, the mass peak at 270.04 m/z, corresponding to secondary UO2" ions,
was employed to identify uranium species for uranium analysis in the spectrometry mode of ToF-
SIMS operation. The detailed mass spectrum of UO2* and UO,*-R fragments (down to 23’U*) is
shown in Figure S7, while the ToF-SIMS images of PBSAC in delayed extraction mode showing

both UO2" and UO-*-R fragments upon sputtering with 1 keV O2* ion beam are shown in Figure S8.

For sample preparation, and in order to inhibit further uranium diffusion inside the pores, the PBSAC
samples were frozen and then lyophilised at —15 °C in a freeze dryer (Alpha LSC plus, Martin Christ
Germany) for approximately 30 hours until all moisture had been sublimated. Before ToF-SIMS
analysis, the freeze-dried PBSAC samples were exposed to a vacuum of 10 mbar (10 Pa) for
30 minutes and flooded with Ar gas in 3 cycles. PBSAC samples were then immersed into 100% LR-
white resin (London Resin medium, soft uncatalysed, Agar Scientific, UK) medium in 2 mL tubes
and were kept at 80 mbar pressure for 1 hour to facilitate the resin infiltration. The resin was used to
keep the PBSAC together and fixed mechanically upon trimming. The tube with resin-immersed
PBSAC was then shaken for 24 hours using PTR-35 Multi-Rotator (Grant Instruments, Cambridge
UK) reciprocally within £60° angle at 3 rpm speed and vibrating within = 5° for 5 s in each extreme
(when tubes were slanted at +60° and —60° relatively to vertical orientation). Tubes with infiltrated
samples were kept without motion at room temperature for the next 24 hours to let PBSAC settle well.

Resin polymerisation was performed at 60°C for 48 hours, followed by cross-sectioning of resin-
16
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embedded samples using a Leica EM TRIM2 trimmer equipped with a diamond cutter to get a flat
section for ToF-SIMS analysis. To fit samples of resin-embedded PBSAC into a holder frame (7.8
mm diameter) made of polyetheretherketon (PEEK), the prepared cross-section was levelled and the
sample height was adjusted. The insulating sample frame was employed to reduce the distortion of
the equipotential surface under the analyser extractor and focusing lenses of ion/electron sources with
the charging sample. Figure S6 illustrates the different stages of the PBSAC preparation for TOF-

SIMS analysis.

3. Results and discussion

Static adoption of uranium with PBSAC was investigated for varying adsorbent characteristics
(surface area, surface oxygen content) and relevant solution chemistry (uranium concentration, pH).
The kinetics, isotherms and thermodynamics were analysed to elucidate the adsorption mechanisms,
while adsorption was visualised by ToF-SIMS analysis. The first parameter investigated was the

exposure time to establish the adsorption equilibrium time.
3.1. Equilibrium time of uranium adsorption with PBSAC

To quantify the equilibrium time of uranium adsorption by PBSAC, static adsorption experiments
were performed with MKD 200 and MKD 450 at a dose of 1g/L, and an environmentally relevant
uranium concentration of 250 ugU/L (Smedley and Kinniburgh, 2023) (Figure 1A, B, C). ToF-SIMS
analysis was used to visualise the adsorption (Figure 1D). The pixel-resolved uranium content in

PBSAC samples is shown in Figure S9.
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Figure 1. (A) uranium concentration, (B) removal and (C) uranium uptake as a function of time using
1g/L PBSAC (MKD 200 and MKD 450). (D) ToF-SIMS images of PBSAC MKD 200 in
spectroscopy mode showing the progression of adsorption of UO," at varying exposure times (Co
250 pgU/L, 1 mM NaHCOg, 10 mM NacCl, 20°C, 260 rpm, pH 8.1+0.3).

Both types of PBSAC (MKD 200 and MKD 450) removed uranium from water. Uranium
concentration dropped from 250 to 60 ug/L, corresponding to a removal of about 80%, while the
WHO guideline was not reached (Figure 1A). Prior equilibrium, MKD 450 exhibited higher uptake
than MKD 200, which can be attributed to the higher pore volume of MKD 450 (1.3 cm®/g compared
to MKD 200 0.65 cc/g (Bohringer et al., 2011)). The equilibrium uptake of 185 £ 20 pg/g was reached

at 7 hours for MKD 450, while MKD 200 required 24 hours to attain equilibrium (Figure 1C).
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ToF-SIMS analysis revealed that the adsorbed uranium was detected both on the surface and inside
the PBSAC, while the centre of the PBSAC remained unoccupied at 15 minutes, 2 hours, and 7 hours,
(Figure 1D). The internal part of most PBSAC appears to be completely occupied after 26 hours at
pH 8.1+£0.3 (Figure 1D). This indicates that the adsorption of uranium on the PBSAC surface was
followed by the intra-particle diffusion in the pores of the PBSAC. The latter mechanism is significant
for adsorbents with high porosity (Pauletto et al., 2020), such as the case of PBSAC, in which 98%
of the surface area consists of micro and mesopores with a diameter of less than 5 nm (Tagliavini et

al., 2017).

In the next section, apparent adsorption kinetics will be determined as a function of PBSAC dose and
type.

3.2. Kinetics of uranium adsorption with different PBSAC dosages

Apparent adsorption kinetics with different PBSAC types, uranium equilibrium concentration (Ce)
with the respective removal, uranium uptake at equilibrium (ge) and kinetic rate constant (k) with
increasing PBSAC dose were investigated (Figure 2). When surface area is the limiting factor, an
increase in the PBSAC dosage will enhance the removal, knowing that the surface area of the PBSAC
was always in excess (Table S4). Concentration, uptake, and removal of uranium as a function of
time and pseudo-first order fitting parameters can be found in Figure S11 and Table S5. Experimental
data fittings with pseudo-second-order and intraparticle diffusion models are shown in Figure S12,

Figure S13, and Table S6.
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Figure 2. (A) uranium equilibrium concentration, (B) removal, (C) uranium uptake at equilibrium

with their respective (D) k at different PBSAC dosages for MKD 200 and MKD 450 (co 250 ugU/L,
1 mM NaHCOgz, 10 mM NacCl, 20°C, 260 rpm, pH 8.0£0.2).

An increase in PBSAC dosage resulted in a significant decrease in uranium concentration, even
though the surface area of PBSAC was in excess at low dosage (Figure 2A). A dosage of 10 g/L
PBSAC (MKD 450) was required to reach the WHO guideline (30 ug/L (WHO, 2017)),
corresponding to a removal of 92%. This is higher than the achieved removal (70-80%) with
conventional activated carbon using the same adsorbent dosage of 10 g/L (Donat and Erden, 2017),
which can be attributed to affinity or boundary layer diffusion. The decrease in ge with PBSAC dose
suggests that either the surface area is a limiting factor or the adsorption of uranium is slow
(Figure 2C). MKD 200, at 2 — 10 g/L, and MKD 450, at 0.1 to 10 g/L PBSAC dose indeed took about
1to 7 hours to reach the equilibrium, whereas MKD 200 at 0.1 to 0.5 g/L took longer (>10 hours)

(Figure S10).

The kinetic rate constant (k) (equivalent to the speed of the adsorption reaction) increased with the
PBSAC dose (Figure 2D). This was due to the availability of a larger surface area with increased

PBSAC dose and ultimately more accessible active sites and faster adsorption. At 10 g/L, the k value
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for MKD 200 is comparable to conventional activated carbon (~2 1/h (Abd El-Magied et al., 2021)),

while a higher value was obtained with MKD 450 of a larger surface area (Table 2).

Adsorption Kkinetics revealed that the adsorption is determined by surface adsorption, while ToF-
SIMS confirmed the relatively slow advancement of pore diffusion inside the PBSAC. The next
section investigates the role of material properties for surface adsorption through variable surface

oxygen content of the PBSAC.
3.3. Kinetics of uranium adsorption with PBSAC at a varied surface oxygen content

To further confirm that surface adsorption is the rate-limiting step in the adsorption of uranium with
PBSAC, adsorption kinetics were investigated at varied surface oxygen content in PBSAC (Figure 3).

The pseudo-first-order fitting is shown in Figure S14, while the parameters can be found in Table S7.
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Figure 3. (A) Uranium equilibrium concentration and removal, (B) the kinetic ge and k using 1g/L
PBSAC as a function of surface oxygen content (co 250 ugU/L, 1 mM NaHCOs, 10 mM NacCl, 20°C,
260 rpm, pH 8.0£0.2).

When increasing the surface oxygen content from 1.5 to 10%, the uranium concentration at
equilibrium dropped from 62 to 10 pgU/L achieving the WHO guideline (Figure 3A) at what

conditions — these statements are a bit too general. Similarly, uranium removal increased from 81 to
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96% with increasing surface oxygen content (Figure 3A). Following the same trend, uranium uptake
at equilibrium almost doubled and increased from 71 to 165 pg/g. Surface oxygen content plays an
important role in surface adsorption, particularly in the presence of an affinity to oxygen-containing
functional groups (Fan et al., 2018; Yu et al., 2014; Yu et al., 2015). This is the case for PBSAC,
where uranium adsorption on the surface could be enhanced through an increase in the carboxyl group
moieties (Tagliavini et al., 2017). Hence, it enhances short-range interactions, including hydrogen
bonding, van der Waals forces, and anion-= interaction with the uranyl carbonate complexes (Guo et

al., 2021; Xie et al., 2019).

Assuming fixed surface area and pore characteristics at identical activation levels (Table 2), the faster
surface adsorption of uranium onto the surface of the PBSAC can be attributed to the increased
surface oxygen content. This faster adsorption rate at 10% oxygen content was obtained is shown in
Figure 3B. This could be due to enhanced short-range interactions, including hydrogen bonding, van
der Waals forces, and anion-x interaction with the uranyl carbonate complexes (Guo et al., 2021; Xie
et al., 2019). In this case, surface adsorption, which is a common transport mechanism in activated
carbon (Worch, 2021), appears to be the rate-limiting step in the adsorption of uranium onto PBSAC.

The adsorption capacity of PBSAC is now investigated with the Langmuir isotherm model.
3.4. lIsotherms of uranium adsorption with PBSAC

The adsorption capacity of PBSAC before saturation, along with kinetics, was investigated by
employing the Langmuir isotherm (Figure 4). The adsorption intensity at different uranium initial
concentrations was visualised by ToF-SIMS analysis (Figure 4E). Concentration, uptake, and
removal of uranium as a function of time and pseudo-first-order fitting parameters can be found in

Figure S15 and Table S8.
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Figure 4. (A) uranium equilibrium concentration (ce), (B) uranium removal, (C) uranium uptake at
equilibrium as a function of ce, and (D) k as a function of initial concentration (co) at 1 g/L of
MKD 200 and MKD 450. (E) ToF-SIMS images of MKD 200 showing adsorbed UO2?" at
equilibrium (exposure time of 26 h) (co 0.25 to 100 mgU/L, 1 mM NaHCOs3, 10 mM NaCl, 20-C, 260
rpm, pH 8.0+0.3). The lines in (C) show the Langmuir model fit.

The equilibrium concentration increased with the initial concentration of uranium (Figure 4A), and
with the overlapping error bars, the removal of uranium was in the range of 71-88 % (Figure 4B).
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However, at high uranium concentrations (100 mguU/L) MKD 200 dropped to 50%. The uptake at
equilibrium (qe) increased with equilibrium concentration (Figure 4C). The saturation could not be
observed for both MKD 450 at ¢o from 0.25 to 100 mgU/L, while MKD 200 was close to reaching
saturation at 100 mgU/L (Figure 4C). Higher initial concentrations (higher than 100 mgU/L) could
not be investigated due to radiation safety rules regarding uranium handling that impose strict limits
on the storage and handling of radioactive materials including depleted uranium. The Langmuir
isotherm fitted well, and the determined maximum adsorption capacity (qm) of 28 mgU/g for
MKD 200 and 667 mg/g for MKD 450 (Table S7). The gm for MKD 450 is significantly higher than
what has been reported for conventional AC (25 to 79 mgU/g; Table S1), and even higher than some
recent functionalized carbon-based adsorbents (up to 617.2; Table S1). The comparison with other
inorganic and carbon-based adsorbents can be found in Table S1. The independence of the kinetic
rate constant to the initial concentration of uranium, considering the overlapping error bars, was

expected as predicted by pseudo-first-order theory (Tran et al., 2017b).

The trend of the adsorbed mass at equilibrium could be observed with ToF-SIMS images (Figure 4E),
in which the uranium signal increases with elevated initial uranium concentration (also see Figure S9
for pixel-resolved uranium content in PBSAC samples). Even PBSAC samples that were saturated
(50 and 100 mgU/L; Figure 4), exhibited unoccupied volume that was not accessible to uranium
adsorption. This may be the case alike small pore regions found in commercial activated carbon may
not even be accessible to argon for BET characterisation (Nguyen and Bhatia, 2012). The saturation
time, which was presumably not completely reached for MKD 200, could be another reason that

explains the observed unoccupied volume in the PBSAC.

The adsorption mechanism (physical adsorption) will subsequently be confirmed by investigating the

role of temperature and adsorption thermodynamics of uranium with PBSAC.

24



485

486

487

488

489

490

491

492
493
494

495

496

497

498

499

500

501

3.5. Thermodynamics of uranium adsorption with PBSAC

Temperature plays an important role in the adsorption of uranium with carbon-based adsorbents
(Alahabadi et al., 2020; Yi et al., 2020b). Adsorption experiments were carried out at temperatures
between 10 and 80 °C, equilibrium concentration, removal, equilibrium uptake, and kinetic rate
constant were investigated (Figure 5). Concentration, uptake, and removal of uranium as a function

of time and pseudo-first-order fitting parameters can be found in Figure S16 and Table S10.
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Figure 5. (A) Uranium equilibrium concentration, (B) removal, (C) uranium uptake at equilibrium
with their respective (D) k at different temperatures at 1 g/L of MKD 200 and MKD 450
(co 250 pgU/L, 1 mM NaHCO3, 10 mM NacCl, 260 rpm, pH 8.0£0.2).

An effect of temperature on equilibrium concentration and removal was within the error (Figure 5A,
B). However, the uptake at equilibrium reduced with an increase in temperature (after 40°C) for both
MKD 200 and MKD 450 (Figure 5C). Lower adsorption at higher temperatures, which can be due to
the increasing Brownian motion of the molecules (Brush, 1968; Jakobsson and Chiu, 1988), is an
indication of physical adsorption (Liu, 2009; Worch, 2012). As temperature increases the motion of
the uranyl species increases, and this can hinder short-range interactions with the PBSAC surface,

such as van der Waals forces. This is also applicable for charged surfaces (unlike PBSAC), in which
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Brownian motion can affect the electrical double layer (Syed et al., 2013), and hence the long-range
interactions. These explanations are in agreement with previous adsorption studies that discuss the
effect of temperature on physical adsorption (Guo and Lua, 2002; Prajapati and Mondal, 2019; Tran
et al., 2018). Even though the rate of adsorption k increases with temperature, the desorption rate (not
determined in this work) should increase with temperature, particularly for exothermic processes,
such as in the case of physical adsorption (Islam et al., 2021). This may indicate that adsorption would

be thermodynamically unfavourable at higher temperatures (Erkey and Tirk, 2021).

To further confirm the type of the adsorption mechanism between uranium and PBSAC (physical or
chemical adsorption), thermodynamic characteristics, including the activation energy (Ea), enthalpy
change (AH®) and Gibbs free energy change (AG®) were investigated (Table 3). These parameters
provide information on inherent energetic changes in the adsorption process (Tran et al., 2017b). If
physical adsorption was predominant, the process should result in lower magnitudes of AH® (<40
kJ/mol) and AG® (20 to 0 kJ/mol) with a low energy requirement (Inglezakis and Poulopoulos, 2006;

Jaerger et al., 2015).

Table 3. Thermodynamic parameters of uranium adsorption with PBSAC with varying temperatures
(10to 80 °C).

PBSAC Thermodynamic Temperature (°C)
type parameter
10 20 30 40 50 60 70 80
Ka () 7 7 3 2 07 06 07 04
AG?® (kJ/mol) -18+1 -18+1 -20+2 -20#1 -18+3 -18+3 -19+3 -1743
MKD 200  AH° (kJ/mol) -17+3
AS® (kJ/mol) 48+7
Ea (kd/mol) 21+4
Ka () 5 2 4 7 7 04 12 05
AG® (kJ/mol) -20£2  -19x2  -21+2  -20£3  -21+3  -17+2  -20£3  -18%3
MKD 450  AH° (kJ/mol) -21+4
AS® (k/mol) 5448
Ea (kd/mol) 13+2
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The low magnitude (< 40 kJ/mol) and the negative values (-17 to —21 kJ/mol) of AH® indicate an
exothermic adsorption process with a relatively lower binding strength (physical adsorption) (Ho and
McKay, 1999). The negative value of AH® is in agreement with the trend of ge with temperature, if
e increases with T, then AH® must be positive (Tran et al., 2017b). AG® were all negative (between
-17 and -21 kJ/mol) and their lower magnitude (0 to —20 kJ/mol) suggested an energetically
favourable and spontaneous physical adsorption (Lung et al., 2021). The positive values of AS® may
indicate that uranium is not restrained at the interface and can diffuse into the pores (LeVan et al.,
2008). In addition, AS® also reflects the affinity of uranium to PBSAC, suggesting increased
randomness in the adsorption process (Al-Ghouti and Da'ana, 2020). Ea (21 and 13 kJ/mol) assumed
a value below the activation energy range for chemical adsorption (40 to 800 kJ/mol), which means
that the adsorption of uranium to PBSAC is indeed a physical process (Nollet et al., 2003). The Ea
(13-21 KJ/mol) obtained is close to the reported range of the adsorption energy (9 to 16 kJ/mol, Table

S1) of uranium to activated carbon.

The next section will investigate the role of speciation in the adsorption process. Naturally, speciation
changes with pH, and ToF-SIMS analysis can identify surface adsorption and intra-particle adsorption

of the different uranium species.
3.6. Role of uranium speciation in adsorption on PBSAC

With the presence of carbonates in the solution, different hydrolysed forms and carbonate complexes
are formed for uranium at different pH values (Krestou and Panias, 2004). This can affect adsorption.
PBSAC is an uncharged carbonaceous surface (Bohringer et al., 2011), which means that different
adsorption behaviours are expected with different uranium species. Equilibrium concentration,
removal, equilibrium uptake, and kinetic rate constant of uranium adsorption with PBSAC were
investigated at the pH range of 2 to 12 (Figure 6). Concentration, uptake, and removal of uranium as

a function of time and pseudo-first-order fitting parameters can be found in Figure S17 and Table S11.
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Figure 6. (A) uranium equilibrium concentration, (B) removal, (C) uranium uptake at equilibrium
with their respective (D) k as a function of pH at 1 g/L of MKD 200 and MKD 450 (co 250 ugU/L, 1
mM NaHCOs, 10 mM NacCl, 260 rpm). Uranium (V1) speciation in (B) was simulated using MINTEQ
(V3.1, Sweden) at the corresponding water matrix at 20°C and CO- to atmospheric pressure (partial
pressure 3.9-10* bar).

Equilibrium concentration and removal of uranium were affected by pH, in which the WHO guideline
was achieved at the pH range of 4 to 8, considering the error bars (Figure 6A, B). The same trend was
observed for uranium adsorption with activated carbon (Donat and Erden, 2017). The highest uptake
at equilibrium was obtained at the pH range of 6 to 8 where the species UO2CO3q) predominated the
solution together with the anionic uranyl carbonate complexes (UO2(CQs)2?~ and (UO2).CO3(0H)3Y)
(Figure 6B). At this pH, the OH groups of the carboxylic acid appeared to favour van der Waals
forces, hydrogen bonding and non-covalent m interactions. As the pH increased from 2 to 6,
equilibrium uptake increased from 0 to 220 pg/g (for an initial concentration of 250 pgU/L). In the
acidic pH range of 2 to 4, unfavourable adsorption of the predominant uranyl ion species (UO2%") was
observed. In this case, uranium may have few binding sites on the adsorbent surfaces, where the
competition of H3O™ ions is taking place (Schierz and Zanker, 2009). At pH > 8, the adsorption began

to decline to indicate that the species present in this pH range (negative uranium species) had a lower
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chance of adsorption onto PBSAC. The presence of the deprotonated carboxylic groups (COO"),
which generally deprotonate from pH 7.4 (Speight, 2005), may have repulsed the negative uranium

species and hindered the adsorption of uranium to the surface.

The interaction responsible for adsorption facilitated the adsorption of positive and neutral species
and restrained the negative species. As PBSAC is characterised by a neutral surface over pH 2 to 10,
with limited oxygen content on the surface (Tagliavini et al., 2017), the short-range van der Waals
interactions, together with hydrogen bonding and anion/cation-x interactions, may be responsible for

the adsorption of uranium to PBSAC.

To further understand the adsorption behaviour of the different uranium species, PBSAC samples of
different pH were analysed by ToF-SIMS upon interlaced sputtering with 1 keV O2" ion beam. ToF-
SIMS images of uranium signal as a secondary ion UO;" and the fragmentation ion UO;"-R at
different pH were identified (Figure 7). The mass spectra for various uranium signals are shown in

Figure S7.
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Figure 7. Tof-SIMS images of the secondary ions UO2"and UO,"-R on PBSAC at pH (A, B) 2, (C,
D) 4, (E, F) 6, (G, H) 8, (I,J) 10, and (K, L) 12. (M) Pixel resolved UO; content at different pH (co
250 pgU/L, 1 mM NaHCOs, 10 mM NacCl, 20°C, 260 rpm).

Within the whole pH 2-12 range, UO,?* ion counts in ToF-SIMS mass spectra originate from uranyl
stripped of its coordinating ligands due to strong molecular fragmentation upon sample sputtering
with 1 keV O" ion beam. This detachment of uranyl ligands made UO2?" ions the major U-
representative for all U-speciation revealed and allowed for a rough estimation of pixel-resolved U-
content from UQO2?* ion counts normalised to the total ion counts (TIC). The pixel-resolved
distribution of U-content (Figure 7) reveals several concentration bands corresponding to various U-
speciation available at different pH. At pH 2, UO,?*, the most abundant species, shows a very high
diffusion and weak adsorption resulting in a diffused UO." distribution pattern. At pH 4-6, carbonate
ligands facilitate fast adsorption limiting the uranyl diffusion within the outer PBSAC layers that

present in a ring-shaped UO2-C>H" distribution pattern (Figure 7D, F). This could be attributed to the
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interacted UO2(OH)™ present at pH 4-6 with the surface of the PBSAC, through non-covalent
interactions with carboxyl groups, that could not diffuse inside the PBSAC. The maximum amount
of adsorbed uranium was observed at pH 6-8. This broadly represents all U-containing groups
attached to PBSAC in various ways. At pH 8-12, UO,"-R fragments were found in the whole PBSAC
together with UO," fragments (Figure 7. H, J, and L). In this case, UO>"-R fragments could be
attributed to the surface adsorption and the entrapment of uranyl carbonate complexes inside the
PBSAC. This indicates that intra-particle diffusion of uranium is favourable for the uranyl carbonate
complexes. Development (and aggregation) of various large-size carbonate ligands at pH 8 may be a
reason for a reduced diffusion, resulting in a donut-shaped UO>" distribution pattern. The variety of
carbonate ligands is reduced and provides a quasi-homogeneous uranyl diffusion into PBSAC at pH
10. Hydroxyl ligands dominating at pH 12 define the diffusion of uranyl into PBSAC spheres. At pH
12, the homogeneous low yield of UO," may originate from the residual carbonate-coordinated uranyl

as well as from hydroxyl-coordinated one, revealing stronger adsorption compared to UO2%* at pH 2.

ToF-SIMS analysis revealed that the intra-particle diffusion is selective for the uranyl carbonate
complexes, while the adsorption of the uranyl species was mostly limited to surface adsorption. In
this process, several mechanisms could be involved in the adsorption, which is discussed in the next

section.
3.7. Suggested adsorption and transport mechanisms

According to the previous experimental results on adsorption Kinetics, isotherms and
thermodynamics, as well as ToF-SIMS analysis of PBSAC samples (time, concentration, and pH
series), the potential transport and adsorption mechanisms of uranium on PBSAC are proposed

(Figure 8).
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Figure 8. Schematic (not to scale) illustrating the potential mass transfer and adsorption mechanisms
of U(VI) species on PBSAC.

Surface adsorption is the rate-limiting step, evidenced by the increase in the kinetic rate constant (k)
with increasing oxygen content on the surface of PBSAC. Surface-adsorbed uranium subsequently
diffuses towards the core of the PBSAC. These are typical transport mechanisms of adsorbate in
activated carbon material, which are known as boundary layer diffusion (or external diffusion),
surface diffusion (or film diffusion at the adsorbent surface), and intraparticle diffusion (Sahoo and
Prelot, 2020; Tran et al., 2017b). The concentration gradient is the driving force of the different
diffusion steps (Wang and Guo, 2020). The internal diffusion has been visualised by ToF-SIMS
analysis for time series PBSAC samples, which showed the gradual diffusion of uranium inside the

PBSAC over the adsorption time.

Regarding the adsorption mechanisms, the positive uranyl species (UO2**, UO,OH™) are suggested
to be interacting with the PBSAC surfaces through van der Waals forces, n-electron cloud, or/and
hydrogen bonding. In the absence of functional groups of protonated functional groups, the ion
metals, which includes uranyl cations, tend to adsorb on the m-electron cloud in the basal planes of
the surface of AC (Wang et al., 2022b; Yoshihara et al., 2009). Weak van der Waals forces have
always been identified as an important contributor to the adsorption mechanism of metals in AC

(Kyzas et al., 2019). Furthermore, in carbon materials with carboxyl groups on the surface, uranyl
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ions adsorption on the surface can occur via inter/intra-molecular hydrogen bonding (Kannan et al.,
2017; Wu et al., 2014). This could explain why UO2%* species were limited to surface adsorption at
pH 2 as evidenced by ToF-SIMS. The presence of H3O" ions can compete with the uranyl cations to
exhibit the previous adsorption mechanisms (Schierz and Z&nker, 2009), which explains the low
adsorption obtained at pH 2-4. Charge interactions, on the other hand, are unlikely because, at the pH
conditions favouring the formation of uranyl cations species (pH 2-4), the carboxyl groups that may
exist on the PBSAC surface are not protonated yet, while Tagliavini et al. (2017) have reported an

overall neutrally charged surface of the PBSAC, which makes this mechanism unlikely.

In the presence of the negative uranyl carbonate complexes (at pH > 7), van der Waals forces together
with anion-r interactions and hydrogen bonding could be responsible for the adsorption mechanisms.
Such weak and short-range interactions were evidenced by thermodynamic parameters, which
showed that the adsorption process is reversible physical adsorption from forces with lower binding
energy (13 — 21 kJ/mol). By increasing the pH to 12, the adsorption of the negative uranyl carbonate
complexes is probably hindered by the deprotonated OH on the surface of the PBSAC, which can
cause charge repulsion, which is a long-range interaction, with the negatively charged uranyl
carbonate complexes. However, ToF-SIMS images at pH 10-12 revealed that uranium was inside the
PBSAC pores, which indicates that short-range interactions may have still occurred at this pH range.
The irrelevance of the charge repulsion and the absence of proton competition favoured the adsorption

of the neutral species UO2CO3(q) to PBSAC, which predominates the solution at pH 6.

Uranium removal by PBSAC adsorption is ideal for contaminated natural water sources with a pH of
6-7, because of the predominance of uranyl carbonate species. However, the presence of calcium or
magnesium (responsible for water hardness), which can form ternary complexes with uranyl
carbonates (Smedley and Kinniburgh, 2023), or the presence of competing metal cations such as iron
may interfere with adsorption (YYakout and Abdeltawab, 2015). Therefore, the removal of uranium

with PBSAC adsorption was investigated using real water contaminated with U.
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3.8. Uranium removal from natural water using PBSAC

The performance, in terms of uranium concentration and removal, of PBSAC was investigated in
natural water conditions. For this, spring water with naturally loaded uranium from St. Blasien-
Menzenschwand in the Waldshut region in Baden-Wurttemberg (Germany) (Figure S1), was treated
with MKD 200 at 1g/L, which was later visualised with ToF-SIMS (Figure 9). The water quality of

the real water is summarised in Table S2.
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Figure 9. (A) Removal and (B) supernatant concentration as a function of adsorption time. ToF-SIMS
elemental distribution images of (C) uranium, (D) phosphate, and (E) the overlay of uranium (green),
phosphate (red), and carbon (blue) on MKD 200 with adsorbed uranium from real water (co 67 pg/L
uranium, pH 6.7, PBSAC 1 g/L, 260 rpm, 26 h, and 20°C).

Removal of uranium from the contaminated spring water was 99 %, resulting in a uranium
concentration of 0.7 pg/L, which is well below the WHO guideline (30 pg/L; (WHO, 2017)) and the
German guideline (10 pg/L; (Banning and Benfer, 2017)) (Figure 9A, B). The presence of potential
competing inorganics such as arsenic (Table S2), which can also adsorb to PBSAC (Schrage et al.,
2014), appears to not interfere with the adsorption of uranium. However, the presence of organic

matter, which was not present in this particular natural water, could be a strong inhibitor of uranium
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adsorption in activated carbon (Yakout et al., 2013). This may require further investigation even

though Wolters et al. (2019) reported that PBSAC was resilient to organic matter interference.

ToF-SIMS analysis revealed that uranium was found distributed on the surface (less intense) of the
PBSAC sample (MKD 200) and at specific hotspots in higher amounts, which could be attributed to
oxygen-containing functional groups on the PBSAC surface (Figure 9C). It is expected that adsorbed
uranium diffuses into the pores (as evidenced by ToF-SIMS) leaving less uranium on the surface.
Interestingly, adsorbed phosphate was detected at different hotspots across the surface, which could
be attributed to uranium phosphate complexes (Smedley and Kinniburgh, 2023). However, its
adsorption on the PBSAC was not due to its complexation with uranium, since the phosphate hotspots

did not coexist with the uranium hotspots, as shown by the ToF-SIMS (Figure 9D, E).

4. Conclusions

The static adsorption experiments showed that PBSAC (at 1 g/L dosage) exhibited a slow equilibrium
time (7 to 24 hours) to achieve an equilibrium uptake of 185+20 pg/g from an initial concentration of
250 pgU/L at pH 8.0£0.3. To reach the WHO guideline (30 pgU/L) under the same conditions, 10 g/L
of PBSAC dosage or increasing surface oxygen content from 1.5 to 10% with 1 g/L PBSAC dosage

was required.

The Langmuir isotherm revealed a maximum adsorption capacity of 28 mg/g for MKD 200 and 667
mg/g for MKD 450, while the thermodynamics showed that the adsorption process was physical with

an adsorption energy of 13 to 21 kJ/mol.

Water chemistry (pH) had a significant effect on adsorption due to uranium speciation, where pH 6-
8 was found to be the most favourable condition for uranium adsorption. ToF-SIMS analysis could
identify the adsorption of the different uranium species on the surface or/and inside the mesoporous
structure of the PBSAC due to intraparticle diffusion. The adsorption of uranyl cations was limited

to surface adsorption, while the uranyl carbonate complexes were visualised inside the PBSAC. The
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adsorption of the different uranium species could be due to weak interactions with low binding

strength, corresponding to van der Waals, anion/cation-z, and hydrogen bonding interactions.

Treatment of contaminated spring water with PBSAC was successful, in that both WHO and German
guidelines for drinking water were met. PBSAC can also be tailored to further improve the adsorption
properties and could be used to develop hybrid adsorption-assisted membrane treatment technology

for uranium removal.
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