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Abstract

Ising models have been applied not only to describe physical systems but also systems of
interacting animals and humans. In contrast to physical entities, animal and humans exhibit more
complex behaviour such as risk aversion, so that certain payoffs are, for given expected payoff,
preferred to uncertain payofts. Here I extend the classical Ising model to consider of risk aversion,
and show that this affects the model’s stability domains: if individuals are risk averse and their
choices differ by the associated risk levels, then higher coupling constants are required to sustain
system states in which the riskier choice is abundant; otherwise the risky choice is accompanied
(bistability) or even replaced in the system by the less risky choice. The model and results are
applied to an economic incentive scheme for the conservation of biodiversity, the agglomeration
bonus, that induces not only conservation measures but rewards their spatial agglomeration. Here
conservation is the risky choice whose abundance in the land-use system is shown to decline if the

landowners are risk-averse.
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Highlights

Risk aversion is included in the classical Ising model

Risk aversion affects the stability domains of the model

The agglomeration bonus incentivises spatially aggregated biodiversity conservation

Risk-averse landowners under an agglomeration bonus conserve less land
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1 Introduction

After its introduction by Ernst Ising for the description of phase transitions in ferromagnets, the
Ising model has been applied to many systems in and outside physics. Physical applications include,
among others, spin glasses [1](Fischer and Hertz 1991) and ice-water phase transitions [2](Ma and
Sudakov 2017). Closely related are neural networks and applications in the field of computer-based
learning and pattern recognition [3—5](Jaynes 1957, Derrida et al. 1987, Krasnytska et al.
2021).Biological applications consider, e.g., cooperation among bacteria [6—7](Shi and Duke 1998,
Bai et al. 2010) genetics [8] (Majewksi 2001).

Its focus on the interaction between entities makes the Ising model especially suitable for the study
of social phenomena. Examples from human societies include social polarisation [9] (Schelling
1969), language change [10] (Stauffer 2008) and the formation and spread of opinions [11, 12]
(Grabowski and Kosinski 2006, Garrod and Jones 2021), as well as the dynamics of stock markets
[13] (Valle et al. 2021). In addition, Ising models have been used to model social interactions

among animals [14—16] (Battacharya and Vicsek 2010, Wilson 2017, Lecheval et al. 2018).

Relative to physical and simple biological entities, humans and many animals show more complex
decision behaviour. An important one is risk aversion. Spins, in their alignment, follow the simple
“objective” of minimising their free energy, which in the context of human behaviour means that
some expected payoff is maximised. Such behaviour that disregards uncertainties in the payoft is
termed “risk-neutrality”. In humans it is rather the exception in humans who are generally risk-
averse — aiming, next to the maximisation of expected payoffs, at the minimisation of the risk of
low payoffs [17, 18](Eeckhoud et al. 2005, Chen 2016). Often there is a trade-off between the two
objective (as, e.g., in finance), so that for a higher expected payoff a higher risk must be accepted.
Risk aversion is observed not only in humans but also in animals like lizards [19] (Batabyal et al.
2017), rats [20] (Constantinople et al. 2019), coral-reef fishes [21] (Coni et al. 2021), pigeons [22]
(Clayton et al. 2022) and chimpanzees [23] (Haux et al. (2023).

Here I extend the classical Ising model developed for the ferromagnet to study effects of risk
aversion in a model society of interacting individuals. After the analysis of the general model I
consider an application recently presented by Drechsler (2023) [24] who analysed the
agglomeration bonus for the conservation of biodiversity by Parkhurst et al. (2002) [25]. The
analysis was motivated by the fact that on private lands, biodiversity conservation measures are
usually implemented through spatially homogenous conservation payment schemes to offset the

profit losses and other costs incurred by conservation measures. To control not only for the amount
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but also the spatial allocation of conservation efforts (to counter the continuing fragmentation of

species habitats), coordination incentives have been proposed [26] (Nguyen et al. 2022).

The most popular and most frequently studied example is that agglomeration bonus [24, 26]
(Nguyen et al. (2022) and Drechsler (2023) in which the spatially homogenous base payment is
accompanied by a bonus for each adjacent land parcel that is conserved, too. Here I analyse how the
introduction of risk aversion changes the land use induced by the agglomeration bonus. Both in the
general analysis and the application, risk aversion reduces the abundance of the riskier choice in the

model system which either becomes bistable or is dominated by the less risky choice.

2 Ising model with risk aversion
2.1 Methods
Following Phan et al. (2003) [27], a society of individuals i (i = 1, ..., N) is considered, each with

the choice between two actions s; € {—1,+1} that lead to the individual’s benefits

K(S,):(h-f-GS,)S[-FiS,ZS/
o (1)

Here ¢; is a random number with mean zero and standard deviation one, so that /s; and o are the
mean and standard deviation of the normal distributed individual’s idiosyncratic benefit for chosen
s;. The term with s,Zs; describes the interaction of individual i with the individuals in its
neighbourhood L;. The number of individuals in this neighbourhood is assumed the same for all
individuals and equal to L. Parameter J/L measures the influence of each neighbour on the benefit
of individual i. In the ferromagnet, s; would be the spins, / the external field and J/L the coupling

constant.

Now I introduce an asymmetry in the interaction, so that J is a function of s; (if s; represents, e.g.,
the choice of a smartphone € {iphone, Samsung} this would mean that the decision to purchase an
iphone might be more strongly influenced by the peers’ choices than the decision to purchase a

Samsung phone). Formally, I assume that J(s;) = J, + s:A, so eq. (1) becomes

V(s)=(h+0e)s, +J°+—S"As,2s/
L el )



100 Like Phan et al. (2003) [27] I consider that the sizes of the s; are not known to individual 7, so the
benefit V; is uncertain with expectation value E;[V;]. The subscript i is suppressed here for
simplicity, and the subscript j indicates that £[] is evaluated as a function of the j contained in

neighbourhood L,. In addition to Phan et al. (2003) [27] I also consider the variance of the benefit,

var[Vi].
105
The risk attitude of the individuals is considered by assuming that they maximise the risk-utility
function
U/(S/):E/[K(S/)]—pvar/[K(Si)] (3)
110
where p > 0 models risk aversion, p = 0 risk neutrality, and p < 0 models risk-loving behaviour [28]
(Nakamura 2015). This function explicitly considers the trade-off between expected payoff and risk
mentioned above. For the expectation £,[V;] we have
s E [V (s))=(h+o¢)s, +(J,+5A)s,E [s,] )
and the variance equals
var [V (s,)] = E,[V,z(S,)]—E,[V,(S,)]z. )
120
The first term on the right-hand side, the expectation value of V(s;), equals
: : Jy+sAY 2
E Vi (s) 1= (h+oe) +2(h+oe )(J,+sAE [s,]+ (OT’j E, [( Z s } ]
JeL,
, (6)
125 and the second term, the square of the expectation value, equals
, , J, +sA
EV(s)] =(h+oe) +2(h+oe)(J, +SAE [s,]+ ( j {Z s }
jel
, (7)

so the variance of the benefit is
130
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Varj[Vi(Sf)]:[JJFLSiAJ- L HZ%}]E{Z‘%} :[J+ZgiA] Vaf{zsj}

Here the role of A becomes visible. For A > 0 the variance var;[Zs;] of the neighbouring spins is

(8)

weighted more strongly if s; = +1 than if s, = —1 (for A <0 the opposite is valid). Parameter A thus

measures the difference between the risks associated with the two choices s; = +1 and —1.

For evaluate the variance var[%;s;] in closed form, I consider that the number #," of positive s; is

binomial distributed with some mean Ly and variance Lu(1 — y). Quantity u is the proportion of

positive s;, which is related to the expectation value E/[s;] via

2 9)

This equation simply transforms between the range u € [0, 1] and the range E/[s;] € [-1, +1],
where, e.g., =0 < Ejs;] =—1 mean that none of the s; is equal to +1, £ = 0.5 < E[s;,] = 0 mean

that half of the s; are equal to +1, and u=1 < E/s;] = | mean that all s; are equal to +1.

Since n;" is binomial distributed, so is X;s;; and since the range [-L, L] of ¥;s; has twice the range [0,

L] of n;’, the variance of ¥;s; is four times that of »;". Using eq. (9), the variance thus is

var, {ZS/} =4Lu(l— ) ZL(I—(E/[S/.])2)

; (10)

and altogether

U(s,)) = (h+0e)s, +(J, +sM)sE [s,]- pws,2 (1 —(E,[s, ])2)

Assuming rational individuals that maximise their risk utility, action s; = 1 is chosen if and only if

AU, =U (s, =+1)=U (s, = -1) :2(h+ag,)+2J0E[s.]—4pJOA(l—(E.[s.])Z) >0
JEJ L JEJ (12)
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Again following Phan et al. (2003) [27], I assume that the &; are logistically distributed according to

1

Pr(e, <z)=——M ——
(& =2) 1+exp {—kz}

(13)

which for k = 7/3"2 is very close to the normal distribution with mean zero and standard deviation

one. Thus, the probability of individual i choosing s; = 1 is

1 T
Pr(s, =1)= , =—
5= I+exp{-pAU,} P 3o (14)
and the expectation value of s; is
Els 1= Pr(s, =+1) = Pr(s, ==1)
= ! -1~ : = tanh {- AU, / 2}
1+exp{-BAU, } 1+exp{-pAU,} ' 15)

Using the classical mean-field approximation, all individuals have the same payoffs /4, J and A, so

the expectation E[s;] and Ej[s;] are identical and the same for all 7, so that finally

m=E[s]= f(m)

with f(m) = tanh { SAU / 2} = tanh {ﬁ(m.]om -2 p‘;OA (l—mz)}

v

(16)

For p=0, eq. (16) represents the well-known self-consistency equation for the magnetisation in the
ferromagnet, while risk aversion, p > 0 reduces the argument in the tanh function. However, risk
aversion has only an effect if the risk difference A is non-zero. The effect of risk aversion further
diminishes with the size L of the neighbourhood, because the larger the neighbourhood the more the
variation in the s; cancels out (equivalent to the central limit theorem). And the effect of risk

aversion is strongest for m close to zero because here the variation in the s; (eq. 10) is highest.

Equation (16) is solved systematically for various combinations of £/, and SpA/L to explore the

impacts of the coupling constant J, and the risk term, pA/L. A change in S is equivalent to a
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reciprocal change in J, and pA/L, and is thus not analysed explicitly. The “external field” & whose
effect is the same as in the classical Ising model of the ferromagnet is set to zero to focus on the

joint impacts of coupling constant and risk aversion.

2.2 Results

Figure 1a shows the main effect of the risk term pA/L. For the ferromagnet, pA/L =0, eq. (16) has
(for & = 0) a single solution m* = 0 if £J, < 1, and otherwise a positive and a negative solution (the
zero solution becomes unstable) both of equal magnitude. The solid line in Fig. 1a shows these two
solutions for Ay = 1.2. If BpA/L is increased to 0.1, f(m) is represented by the purple line, showing
that the positive solution disappears and the negative solution slightly increases in magnitude. A
reduction to SpA/L =—0.1 (brown line) leads to the “opposite” result that the positive solution
slightly increases in magnitude and the negative solution disappears (which is readily explained by

the symmetry of eq. (16) with respect to the joint transformation s; — —s; and A — —A).

The disappearance of the positive or negative solution is discontinuous so that its magnitude does
not decline continuously to zero. The same is observed for the influence of S/, for given SpA/L. For
illustration, consider the brown line in Figure 1b which corresponds to the brown line in Fig. 1a (8/J,
= 1.2 and BpA/L = 0.1). Increasing B/, yields no positive solution until at a value of about 1.45
(orange line in Fig. 1b) a positive solution of m* ~ 0.7 appears. The value £/, = 1.4 is thus a critical

value below which no positive solution exists and above which the it emerges and increases

monotonously with further increasing 2/, (purple line in Fig. 1b).




210 Figure 1: Left-hand side (m: dashed line) and right-hand side (f{(m): other lines) of eq. (16) as
functions of m. In panel a the coupling constant is A/, = 1.2 and the black solid line represents SpA/
L =0, while the purple and brown lines represent SpA/L = +0.1 and —0.1, respectively. In panel b
the risk term is SpA/L = +0.1 and coloured lines represent, from bottom to top, fJo = 1.2, 1.45 and

1.7, respectively.
215

The dependence of the positive and the negative solutions on £/, and pA/L is shown
comprehensively in Fig. 2. First focus on the right halves, pA > 0, of the two panels. Two solutions,
a positive and a negative one, are obtained only for sufficiently large £J, above some critical (£Jy).
whose magnitude increases in a concave manner with increasing fSp|A|/L; while for smaller #J, only

220 a single (negative for A > 0 and positive for A < 0) solution exists. Statistical regression estimates

the phase boundary between the two regions in parameter space to

(pJ,), =1 +exp(l/4)(2ﬁpTA|j |

(17)

225
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Figure 2: Solution of eq. (16) as a function of the coupling constant A/, and the risk coefficient
PpA/L by continuous colour scale. The colour legend shows five selected colours and associated
levels of m*.Where both panels show the same value only a single solution exists; where the values
differ, panel a shows the larger of the two (which is the positive solution) and panel b shows the

230 smaller of the two (which is the negative solution).
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In the following I will consider only the positive solution, where it exists (Fig. 2a). For pA > 0 (area
above the phase boundary in Fig. 2a), its magnitude increases with increasing [/, and decreases
with increasing SpA/L; while for pA < 0 (left half of Fig. 2a) it increases with increasing £/, and
increasing fSp|Al/L.

The behaviour of the positive solution m* above the phase boundary, £/, > (/). can be seen more
clearly in Fig. 3a. The lines represent vertical cross-section through the contours in Fig. 1a above

the phase boundary, showing the dependence of m* as a function of £Jy, with B/, > (BJo). and (SJo).

defined above.

First consider the “starting points” of the lines. As demonstrated in Fig. 1b, a positive m* does not
exist for By < (B)y)., but emerges when S, crosses (). As Fig. 3a shows, the “critical” level m*,,
i.e. the level of m* that emerges when £J, crosses (o)., depends on (£Jo). of eq. (17). Statistical

regression of the numerical results relates m*; to (8/o). quite precisely via
1/2
m* = ((fJ,). 1) (18)

which is represented by the dashed line in Fig. 3a. Having estimated m*. as a function of (/). and
(B)o). as a function of BpA/L, turn to the behaviour of m* when £/, increases beyond (£/).. Plotting

the solid lines in Fig. 3a in log-log scale leads to straight lines with slopes of about 0.5, so that

m*—m* ~(BJ, —(BJ).)" (19)

Alternatively, one could relate m* — m*. to 1 — (8/o)/(BJo). Figure 3b relates these two quantities in

log-log scale, also obtaining straight lines with some slope £, so that
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Figure 3: Details of the model behaviour. Panel a shows the positive solution of eq. (16) m* as a
function of B/, for various levels of SpA/L > 0 (BpA/L increasing from the lower right to the upper
left with levels 0, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25). The dashed line marks the
minimum of m* as a function of (£/Jy)., where (/). is the critical level of (/) below which no
positive solution m* exists. Panel b shows the dependence of m* on £/, in log-log scale (further
explanations in the text). The solid line here represents SpA/L = 0 and the other lines represent,

from top to bottom, SoA/L = 0.001, 0.01 and 0.1.

m*_}n*‘ N[l_(/g‘j())cj

) BJ, (20)

For BpA/L= 0 the line slope is about k£ = 0.5, as in eq. (19), and for the considered non-zero levels of
PPA/L the slope is k = 5/8. Fixing J, at some particular level and identifying S as the inverse of the
temperature 7 of the spin system [27] (Phan et al. 2003), the term in parentheses in eq. (19) is the
relative deviation 1 — 7/T; of the temperature from its critical value 7t = 1/f.. Exponent £ is thus the

critical exponent that relates the order parameter of the spin system to the system temperature. For

the Ising model of the ferromagnet this value is known [29] to be 0.5 (e.g., Utermohlen 2018); the

value of about 5/8 obtained for non-zero SpA/N indicates a slight change of the system’s critical

behaviour.

Lastly, turn to the model behaviour for SpA/L < 0 (left half of Fig. 2a). There are no discontinuities

in m* as a function of /; (Fig. 4), but with increasing Bp|A|/L the lines increasingly and smoothly



295

300

305

310

315

320

deviate from the square-root shape obtained for SpA/L = 0, so that at larger Sp|A|/L a sigmoid

dependence of m* on £/, is observed.
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Figure 4: Positive solution m* of eq. (16) as a function of £/, for various levels of SpA/L <0 (SpA/
L decreasing from the lower left to the upper right with levels 0, —0.001, —0.01, —0.1).

3 Application: the agglomeration bonus

As described in Drechsler (2023) [24], under an agglomeration bonus scheme the conservation of a

land parcel i earns a payment of size

Pi =Py +bz X
Jely (21)

where py is a spatially homogenous base payment and the bonus b is paid for each conserved land
parcel in the neighbourhood L; (typically the von-Neumann neighbourhood of the four adjacent land

parcels or the Moore neighbourhood of the eight adjacent land parcels).

Conservation of land parcel i also incurs a cost (e.g., forgone agricultural revenues)

¢, =c,(1-o¢,) 22)
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where ¢; is a normal distributed random number with mean zero and standard deviation one, and o
measures the spatial variation of the conservation costs in the model landscape. If conservation of

land parcel i is represented by x; = 1 and economic use by x; = 0 the profit V; on land parcel i is

V(x) ZX,(PO +bzx/j+co(l_o-gi)(l_x,)

< (23)
With the transformation s; = 2(x; — 1/2) this writes
V.'(s)= ! (p,'-1 +b—L+051.)s,. +b—(s,. + I)Z s, |+const.
2 2 2 T’ (24)

with dimensionless quantities V;’ = Vi/co, po’ = po/co and b’ = b’/c (so all economic quantities are
scaled relative to the mean conservation cost ¢o), and where const. includes the terms independent

of s; and s;.

Writing s; + 1 = s; + 5,7 one obtains eq. (2) with
, b'L

l/l = pO — 1 + 7

J,=A=b"2 25)

According to Fig. 2, the positivity of A implies that the expected value m* of s; declines with

increasing disk aversion p. For a more practical understanding of the effect of p and an easier

reference to the results of Drechsler (2023) [24], I return to eq. (23) and insert the risk aversion

analogous to section 2 by calculating the variance of Vi(x; = 1) (since Vi{x; = 0) does not depend on

the x; in the neighbourhood of land parcel i, its variance is zero):

var, [V,(x, =1)]=b" var, {Z xl =Lu(1- )
jel, ’ (26)

with 1 = E[x;] = Pr(x;). Combining with eq. (24), the risk utility of landowner i becomes
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U/'(X,'): po'_'_b'L/U_pb'ZL’U(l_/u) x[:1
e % =0 27)
With eq. (13), and analogous to eq. (14), I obtain
u=f(u)= !
1+exp{—ﬂ(po '—1+b'Lyu—pb"” Ly(l—,u))} o8)

To derive a meaningful upper bound on p, consider that the payoff p,’ is certain, so that U;’(1)
cannot be smaller than py’; meaning that the risky part of the payoff from the bonus, pb**Lu(1 — u),
cannot be larger than the expectation part, 5’Lu. Considering an upper bound on b’ of 20 (which
well encompasses values in real conservation payment schemes [24]: Drechsler (2023)), this

requirement is fulfilled for all i € [0, 1] if p<0.05.

As already discussed by Drechsler (2023) [24], eq. (28) has either a single or two stable solutions
1*, shown in the upper and lower panels of Fig. 5, respectively. Comparing the panels reveals that
increasing risk aversion leads to more parameter combinations with bistability, especially at large

bonuses b where the single solution with large p* is accompanied by a solution with small z*.

4 Discussion

Ising models are increasingly used for the description of biological and social systems in which
interactions between individuals plays a role. In contrast to physical entities like magnetic spins,
living individuals often exhibit more complex decision behaviour and reaction to other individuals’
decisions. An important one that is considered here is attitude towards risk and uncertainty; and in
particular that humans and many animals are usually averse to risk and, next to the maximisation of
expected payoffs aim at the minimisation of risk. This is reflected in the applied mean-variance
criterion [28] (Nakamura 2015) in which the variance of the payoff, multiplied by some risk-
attitude factor p (> 0 for risk aversion), is subtracted from the expected payoff. In the present paper
I integrated this decision model into the classical Ising model and analysed the model using the

mean field approach by Phan et al. (2003) [27].
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Figure 5: Equilibrium proportion (as the solution of eq. (28)) of conserved land parcels p*, by
continuous colour scale from zero to one, as a function of the scaled base payment S(p,” — 1) and the
scaled bonus Bb’L. The colour legend shows six selected colours and associated levels of p*. If
there is only a single solution w* it is shown in both panels; if there are two solutions the upper one
is showing in the respective upper panel and the lower solution in the lower panel. Risk aversion

increases from left to right with p=0, 0.01 and 0.05.

As a first result it turns out that risk aversion has only an effect if the magnitude of the risk differs
between the two choices available to an individual in an Ising model, described by the parameter A
in eq. (2). Technically this was considered here by depending the coupling constant on the value (+1
or —1) of the “spin” s;. Not very unexpected, the equilibrium proportion of individuals choosing a
particular s; is reduced if the risk associated with that s; is larger than that associated with the
opposite s; (indicated in Fig. 2a by the size of the positive solution, m* > 0, declining with

increasing risk difference A > 0).
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Increasing the product of risk difference A and risk aversion p raises the critical level £J. of the
coupling constant J (with S the inverse temperature or inverse spatial heterogeneity in the
individuals’ idiosyncratic payoffs). If pA > 0, for fJ > BJ. the m* depends on the difference fJ — [J.
in a very similar manner as it depends on A/ if pA = 0. If BJ falls below SJ. (or pA increases so that

SJ. exceeds a given [J) the positive solution m* > 0 disappears.

An intuitive understanding of these results can be obtained from the application considered in
section 3. Here the decision to conserve a piece of land for biodiversity is rewarded by a payment p
that consists of a guaranteed base payment and a bonus for each conserved land parcel in the
neighbourhood. The latter is uncertain to the focal landowner — in contrast to the payoff from
economic use (e.g., agricultural profit) which is certain. If the base payment is rather small and the
bonus rather large the total payment p exceeds the economic payoff when all or many neighbours
conserve but falls short if none or only few neighbours conserve. Here the landowner has to decide
whether to choose the “payoff-dominant” strategy of conserving, or the “risk-dominant” strategy of
economic use. On the regional scale of multiple landowners this reflects in payoff and risk-
dominant Nash equilibria [25, 30] (Parkhurst et al 2002, Parkhurst and Shogren 2007) and the

bistability observed in the present analysis.

This bistability where the land-use system is either in a state of much conservation or in a state of
little conservation is observed even for risk-neutral landowners, p = 0 (Fig. 5a,b). Increasing risk
aversion, however, makes the landowners more sensitive to the risk difference, so that especially at
large levels of the bonus the range of base payments that leads to bistability expands (Figs. Sc—f).
Risk averse landowners are thus less inclined to choose the payoff-dominant conservation use f the

risk difference between conservation and economic use (bonus ~ A) is large.

From a conservation-practical point of view, one may ask how this risk can be mediated and the
landowners induced into conservation at a large scale. Experimental research on the agglomeration
bonus [30-33] (Parkhurst and Shogren 2007, Banerjee et al. 2014, 2016, 2018) highlights the
importance of information provision and communication between the landowners. Future research
may explore how these factors affect the performance of the agglomeration bonus in particular, and

the economic or social dynamics of interacting individuals in general.
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