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Abstract

Ising models have been applied not only to describe physical systems but also systems of 

interacting animals and humans. In contrast to physical entities, animal and humans exhibit more 

complex behaviour such as risk aversion, so that certain payoffs are, for given expected payoff, 

preferred to uncertain payoffs. Here I extend the classical Ising model to consider of risk aversion, 

and show that this affects the model’s stability domains: if individuals are risk averse and their 

choices differ by the associated risk levels, then higher coupling constants are required to sustain 

system states in which the riskier choice is abundant; otherwise the risky choice is accompanied 

(bistability) or even replaced in the system by the less risky choice. The model and results are 

applied to an economic incentive scheme for the conservation of biodiversity, the agglomeration 

bonus, that induces not only conservation measures but rewards their spatial agglomeration. Here 

conservation is the risky choice whose abundance in the land-use system is shown to decline if the 

landowners are risk-averse. 
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Risk aversion is included in the classical Ising model

Risk aversion affects the stability domains of the model

The agglomeration bonus incentivises spatially aggregated biodiversity conservation

Risk-averse landowners under an agglomeration bonus conserve less land
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1 Introduction

After its introduction by Ernst Ising for the description of phase transitions in ferromagnets, the 

Ising model has been applied to many systems in and outside physics. Physical applications include,

among others, spin glasses [1](Fischer and Hertz 1991) and ice-water phase transitions [2](Ma and 

Sudakov 2017). Closely related are neural networks and applications in the field of computer-based 

learning and pattern recognition [3–5](Jaynes 1957, Derrida et al. 1987, Krasnytska et al. 

2021).Biological applications consider, e.g., cooperation among bacteria [6–7](Shi and Duke 1998, 

Bai et al. 2010) genetics [8] (Majewksi 2001).

Its focus on the interaction between entities makes the Ising model especially suitable for the study 

of social phenomena. Examples from human societies include social polarisation [9] (Schelling 

1969), language change [10] (Stauffer 2008) and the formation and spread of opinions [11,  12]

(Grabowski and Kosiński 2006, Garrod and Jones 2021), as well as the dynamics of stock markets 

[13] (Valle et al. 2021). In addition, Ising models have been used to model social interactions 

among animals [14–16] (Battacharya and Vicsek 2010, Wilson 2017, Lecheval et al. 2018).

Relative to physical and simple biological entities, humans and many animals show more complex 

decision behaviour. An important one is risk aversion. Spins, in their alignment, follow the simple 

“objective” of minimising their free energy, which in the context of human behaviour means that 

some expected payoff is maximised. Such behaviour that disregards uncertainties in the payoff is 

termed “risk-neutrality”. In humans it is rather the exception in humans who are generally risk-

averse – aiming, next to the maximisation of expected payoffs, at the minimisation of the risk of 

low payoffs [17, 18](Eeckhoud et al. 2005, Chen 2016). Often there is a trade-off between the two 

objective (as, e.g., in finance), so that for a higher expected payoff a higher risk must be accepted. 

Risk aversion is observed not only in humans but also in animals like lizards [19] (Batabyal et al. 

2017), rats [20] (Constantinople et al. 2019), coral-reef fishes [21] (Coni et al. 2021), pigeons [22] 

(Clayton et al. 2022) and chimpanzees [23] (Haux et al. (2023).

Here I extend the classical Ising model developed for the ferromagnet to study effects of risk 

aversion in a model society of interacting individuals. After the analysis of the general model I 

consider an application recently presented by Drechsler (2023) [24] who analysed the 

agglomeration bonus for the conservation of biodiversity by Parkhurst et al. (2002) [25]. The 

analysis was motivated by the fact that on private lands, biodiversity conservation measures are 

usually implemented through spatially homogenous conservation payment schemes to offset the 

profit losses and other costs incurred by conservation measures. To control not only for the amount 
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but also the spatial allocation of conservation efforts (to counter the continuing fragmentation of 

species habitats), coordination incentives have been proposed [26] (Nguyen et al. 2022).

The most popular and most frequently studied example is that agglomeration bonus [24, 26] 

(Nguyen et al. (2022) and Drechsler (2023) in which the spatially homogenous base payment is 

accompanied by a bonus for each adjacent land parcel that is conserved, too. Here I analyse how the

introduction of risk aversion changes the land use induced by the agglomeration bonus. Both in the 

general analysis and the application, risk aversion reduces the abundance of the riskier choice in the

model system which either becomes bistable or is dominated by the less risky choice. 

2 Ising model with risk aversion

2.1 Methods

Following Phan et al. (2003) [27], a society of individuals i (i = 1, …, N) is considered, each with 

the choice between two actions si  {–1,+1} that lead to the individual’s benefits

. (1)

Here ei is a random number with mean zero and standard deviation one, so that hsi and s are the 

mean and standard deviation of the normal distributed individual’s idiosyncratic benefit for chosen 

si. The term with siSsj describes the interaction of individual i with the individuals in its 

neighbourhood Li. The number of individuals in this neighbourhood is assumed the same for all 

individuals and equal to L. Parameter J/L measures the influence of each neighbour on the benefit 

of individual i. In the ferromagnet, si would be the spins, h the external field and J/L the coupling 

constant.

Now I introduce an asymmetry in the interaction, so that J is a function of si (if si represents, e.g., 

the choice of a smartphone  {iphone, Samsung} this would mean that the decision to purchase an 

iphone might be more strongly influenced by the peers’ choices than the decision to purchase a 

Samsung phone). Formally, I assume that J(si) = J0 + siD, so eq. (1) becomes

. (2)
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Like Phan et al. (2003) [27] I consider that the sizes of the sj are not known to individual i, so the 

benefit Vi is uncertain with expectation value Ej[Vi]. The subscript i is suppressed here for 

simplicity, and the subscript j indicates that E[] is evaluated as a function of the j contained in 

neighbourhood Li. In addition to Phan et al. (2003) [27] I also consider the variance of the benefit, 

varj[Vi]. 

The risk attitude of the individuals is considered by assuming that they maximise the risk-utility 

function

, (3)

where r > 0 models risk aversion, r = 0 risk neutrality, and r < 0 models risk-loving behaviour [28]

(Nakamura 2015). This function explicitly considers the trade-off between expected payoff and risk 

mentioned above. For the expectation Ej[Vi] we have

(4)

and the variance equals

. (5)

The first term on the right-hand side, the expectation value of Vi
2(si), equals 

, (6)

and the second term, the square of the expectation value, equals

, (7)

so the variance of the benefit is
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. (8)

Here the role of D becomes visible. For D > 0 the variance varj[Ssj] of the neighbouring spins is 

weighted more strongly if si = +1 than if si = –1 (for D < 0 the opposite is valid). Parameter D thus 

measures the difference between the risks associated with the two choices si = +1 and –1.

For evaluate the variance varj[Sjsj] in closed form, I consider that the number nj
+ of positive sj is 

binomial distributed with some mean Lm and variance Lm(1 – m). Quantity m is the proportion of 

positive sj, which is related to the expectation value Ej[sj] via

. (9)

This equation simply transforms between the range m  [0, 1] and the range Ej[sj]  [–1, +1], 

where, e.g., m = 0   Ej[sj] = –1 mean that none of the sj is equal to +1, m = 0.5   Ej[sj] = 0 mean 

that half of the sj are equal to +1, and m = 1   Ej[sj] = 1 mean that all sj are equal to +1.

Since nj
+ is binomial distributed, so is Sjsj; and since the range [–L, L] of Sjsj has twice the range [0, 

L] of nj
+, the variance of Sjsj is four times that of nj

+. Using eq. (9), the variance thus is

, (10)

and altogether

. (11)

Assuming rational individuals that maximise their risk utility, action si = 1 is chosen if and only if

. (12)
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Again following Phan et al. (2003) [27], I assume that the ei are logistically distributed according to

(13)

which for k = p/31/2 is very close to the normal distribution with mean zero and standard deviation 

one. Thus, the probability of individual i choosing si = 1 is

(14)

and the expectation value of si is

(15)

Using the classical mean-field approximation, all individuals have the same payoffs h, J and D, so 

the expectation E[si] and Ej[sj] are identical and the same for all i, so that finally

(16)

For r = 0, eq. (16) represents the well-known self-consistency equation for the magnetisation in the 

ferromagnet, while risk aversion, r > 0 reduces the argument in the tanh function. However, risk 

aversion has only an effect if the risk difference D is non-zero. The effect of risk aversion further 

diminishes with the size L of the neighbourhood, because the larger the neighbourhood the more the

variation in the sj cancels out (equivalent to the central limit theorem). And the effect of risk 

aversion is strongest for m close to zero because here the variation in the si (eq. 10) is highest.

Equation (16) is solved systematically for various combinations of bJ0 and brD/L to explore the 

impacts of the coupling constant J0 and the risk term, rD/L. A change in b is equivalent to a 
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reciprocal change in J0 and rD/L, and is thus not analysed explicitly. The “external field” h whose 

effect is the same as in the classical Ising model of the ferromagnet is set to zero to focus on the 

joint impacts of coupling constant and risk aversion.    

2.2 Results

Figure 1a shows the main effect of the risk term rD/L. For the ferromagnet, rD/L = 0, eq. (16) has 

(for h = 0) a single solution m* = 0 if bJ0 ≤ 1, and otherwise a positive and a negative solution (the 

zero solution becomes unstable) both of equal magnitude. The solid line in Fig. 1a shows these two 

solutions for bJ0 = 1.2. If brD/L is increased to 0.1, f(m) is represented by the purple line, showing 

that the positive solution disappears and the negative solution slightly increases in magnitude. A 

reduction to brD/L = –0.1 (brown line) leads to the “opposite” result that the positive solution 

slightly increases in magnitude and the negative solution disappears (which is readily explained by 

the symmetry of eq. (16) with respect to the joint transformation si → –si and D → –D).

The disappearance of the positive or negative solution is discontinuous so that its magnitude does 

not decline continuously to zero. The same is observed for the influence of bJ0 for given brD/L. For

illustration, consider the brown line in Figure 1b which corresponds to the brown line in Fig. 1a (bJ0

= 1.2 and brD/L = 0.1). Increasing bJ0 yields no positive solution until at a value of about 1.45 

(orange line in Fig. 1b) a positive solution of m*  0.7 appears. The value bJ0 = 1.4 is thus a critical 

value below which no positive solution exists and above which the it emerges and increases 

monotonously with further increasing bJ0 (purple line in Fig. 1b).
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Figure 1: Left-hand side (m: dashed line) and right-hand side (f(m): other lines) of eq. (16) as 

functions of m. In panel a the coupling constant is bJ0 = 1.2 and the black solid line represents brD/

L = 0, while the purple and brown lines represent brD/L = +0.1 and –0.1, respectively. In panel b 

the risk term is brD/L = +0.1 and coloured lines represent, from bottom to top, bJ0 = 1.2, 1.45 and 

1.7, respectively.

The dependence of the positive and the negative solutions on bJ0 and rD/L is shown 

comprehensively in Fig. 2. First focus on the right halves, rD > 0, of the two panels. Two solutions, 

a positive and a negative one, are obtained only for sufficiently large bJ0 above some critical (bJ0)c 

whose magnitude increases in a concave manner with increasing br|D|/L; while for smaller bJ0 only

a single (negative for D > 0 and positive for D < 0) solution exists. Statistical regression estimates 

the phase boundary between the two regions in parameter space to

(17)

Figure 2: Solution of eq. (16) as a function of the coupling constant bJ0 and the risk coefficient 

brD/L by continuous colour scale. The colour legend shows five selected colours and associated 

levels of m*.Where both panels show the same value only a single solution exists; where the values 

differ, panel a shows the larger of the two (which is the positive solution) and panel b shows the 

smaller of the two (which is the negative solution). 
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In the following I will consider only the positive solution, where it exists (Fig. 2a). For rD > 0 (area

above the phase boundary in Fig. 2a), its magnitude increases with increasing bJ0 and decreases 

with increasing brD/L; while for rD < 0 (left half of Fig. 2a) it increases with increasing bJ0 and 

increasing br|D|/L. 

The behaviour of the positive solution m* above the phase boundary, bJ0 > (bJ0)c can be seen more 

clearly in Fig. 3a. The lines represent vertical cross-section through the contours in Fig. 1a above 

the phase boundary, showing the dependence of m* as a function of bJ0, with bJ0 > (bJ0)c and (bJ0)c 

defined above.

First consider the “starting points” of the lines. As demonstrated in Fig. 1b, a positive m* does not 

exist for bJ0 ≤ (bJ0)c, but emerges when bJ0 crosses (bJ0)c. As Fig. 3a shows, the “critical” level m*c,

i.e. the level of m* that emerges when bJ0 crosses (bJ0)c, depends on (bJ0)c of eq. (17). Statistical 

regression of the numerical results relates m*c to (bJ0)c quite precisely via

(18)

which is represented by the dashed line in Fig. 3a. Having estimated m*c as a function of (bJ0)c and 

(bJ0)c as a function of brD/L, turn to the behaviour of m* when bJ0 increases beyond (bJ0)c. Plotting

the solid lines in Fig. 3a in log-log scale leads to straight lines with slopes of about 0.5, so that

. (19)

Alternatively, one could relate m* – m*c to 1 – (bJ0)c/(bJ0). Figure 3b relates these two quantities in 

log-log scale, also obtaining straight lines with some slope k, so that 
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Figure 3: Details of the model behaviour. Panel a shows the positive solution of eq. (16) m* as a 

function of bJ0 for various levels of brD/L  0 (brD/L increasing from the lower right to the upper 

left with levels 0, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25). The dashed line marks the 

minimum of m* as a function of (bJ0)c, where (bJ0)c is the critical level of (bJ0) below which no 

positive solution m* exists. Panel b shows the dependence of m* on bJ0 in log-log scale (further 

explanations in the text). The solid line here represents brD/L = 0 and the other lines represent, 

from top to bottom, brD/L = 0.001, 0.01 and 0.1.

(20)

For brD/L= 0 the line slope is about k  0.5, as in eq. (19), and for the considered non-zero levels of

brD/L the slope is k  5/8. Fixing J0 at some particular level and identifying b as the inverse of the 

temperature T of the spin system [27] (Phan et al. 2003), the term in parentheses in eq. (19) is the 

relative deviation 1 – T/Tc of the temperature from its critical value Tc  1/bc. Exponent k is thus the 

critical exponent that relates the order parameter of the spin system to the system temperature. For 

the Ising model of the ferromagnet this value is known [29] to be 0.5 (e.g., Utermohlen 2018); the 

value of about 5/8 obtained for non-zero brD/N indicates a slight change of the system’s critical 

behaviour.

Lastly, turn to the model behaviour for brD/L < 0 (left half of Fig. 2a). There are no discontinuities 

in m* as a function of bJ0 (Fig. 4), but with increasing br|D|/L the lines increasingly and smoothly 
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deviate from the square-root shape obtained for brD/L = 0, so that at larger br|D|/L a sigmoid 

dependence of m* on bJ0 is observed. 

Figure 4: Positive solution m* of eq. (16) as a function of bJ0 for various levels of brD/L ≤ 0 (brD/

L decreasing from the lower left to the upper right with levels 0, –0.001, –0.01, –0.1). 

3 Application: the agglomeration bonus

As described in Drechsler (2023) [24], under an agglomeration bonus scheme the conservation of a 

land parcel i earns a payment of size

(21)

where p0 is a spatially homogenous base payment and the bonus b is paid for each conserved land 

parcel in the neighbourhood Li (typically the von-Neumann neighbourhood of the four adjacent land

parcels or the Moore neighbourhood of the eight adjacent land parcels).

Conservation of land parcel i also incurs a cost (e.g., forgone agricultural revenues) 

(22)
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where ei is a normal distributed random number with mean zero and standard deviation one, and s 

measures the spatial variation of the conservation costs in the model landscape. If conservation of 

land parcel i is represented by xi = 1 and economic use by xi = 0 the profit Vi on land parcel i is

. (23)

With the transformation si = 2(xi – 1/2) this writes

(24)

with dimensionless quantities Vi’  Vi/c0, p0’  p0/c0 and b’  b’/c0 (so all economic quantities are 

scaled relative to the mean conservation cost c0), and where const. includes the terms independent 

of si and sj.

Writing si + 1 = si + si
2 one obtains eq. (2) with

. (25)

According to Fig. 2, the positivity of D implies that the expected value m* of si declines with 

increasing disk aversion r. For a more practical understanding of the effect of r and an easier 

reference to the results of Drechsler (2023) [24], I return to eq. (23) and insert the risk aversion 

analogous to section 2 by calculating the variance of Vi(xi = 1) (since Vi(xi = 0) does not depend on 

the xj in the neighbourhood of land parcel i, its variance is zero):

,  (26)

with m = E[xi] = Pr(xi). Combining with eq. (24), the risk utility of landowner i becomes

325

330

335

340

345

350



(27)

With eq. (13), and analogous to eq. (14), I obtain

. (28)

To derive a meaningful upper bound on r, consider that the payoff p0’ is certain, so that Ui’(1) 

cannot be smaller than p0’; meaning that the risky part of the payoff from the bonus, rb’2Lm(1 – m), 

cannot be larger than the expectation part, b’Lm. Considering an upper bound on b’ of 20 (which 

well encompasses values in real conservation payment schemes [24]: Drechsler (2023)), this 

requirement is fulfilled for all m  [0, 1] if r ≤ 0.05.

As already discussed by Drechsler (2023) [24], eq. (28) has either a single or two stable solutions 

m*, shown in the upper and lower panels of Fig. 5, respectively. Comparing the panels reveals that 

increasing risk aversion leads to more parameter combinations with bistability, especially at large 

bonuses b where the single solution with large m* is accompanied by a solution with small m*.

4 Discussion

Ising models are increasingly used for the description of biological and social systems in which 

interactions between individuals plays a role. In contrast to physical entities like magnetic spins, 

living individuals often exhibit more complex decision behaviour and reaction to other individuals’ 

decisions. An important one that is considered here is attitude towards risk and uncertainty; and in 

particular that humans and many animals are usually averse to risk and, next to the maximisation of 

expected payoffs aim at the minimisation of risk. This is reflected in the applied mean-variance 

criterion [28] (Nakamura 2015) in which the variance of the payoff, multiplied by some risk-

attitude factor r (> 0 for risk aversion), is subtracted from the expected payoff. In the present paper 

I integrated this decision model into the classical Ising model and analysed the model using the 

mean field approach by Phan et al. (2003) [27].
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Figure 5: Equilibrium proportion (as the solution of eq. (28)) of conserved land parcels m*, by 

continuous colour scale from zero to one, as a function of the scaled base payment b(p0’ – 1) and the

scaled bonus bb’L. The colour legend shows six selected colours and associated levels of m*. If 

there is only a single solution m* it is shown in both panels; if there are two solutions the upper one 

is showing in the respective upper panel and the lower solution in the lower panel. Risk aversion 

increases from left to right with r = 0, 0.01 and 0.05.

As a first result it turns out that risk aversion has only an effect if the magnitude of the risk differs 

between the two choices available to an individual in an Ising model, described by the parameter D 

in eq. (2). Technically this was considered here by depending the coupling constant on the value (+1

or –1) of the “spin” si. Not very unexpected, the equilibrium proportion of individuals choosing a 

particular si is reduced if the risk associated with that si is larger than that associated with the 

opposite si (indicated in Fig. 2a by the size of the positive solution, m* > 0, declining with 

increasing risk difference D > 0).
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Increasing the product of risk difference D and risk aversion r raises the critical level bJc of the 

coupling constant J (with b the inverse temperature or inverse spatial heterogeneity in the 

individuals’ idiosyncratic payoffs). If rD > 0, for bJ > bJc the m* depends on the difference bJ – bJc

in a very similar manner as it depends on bJ if rD = 0. If bJ falls below bJc (or rD increases so that 

bJc exceeds a given bJ) the positive solution m* > 0 disappears.

An intuitive understanding of these results can be obtained from the application considered in 

section 3. Here the decision to conserve a piece of land for biodiversity is rewarded by a payment p 

that consists of a guaranteed base payment and a bonus for each conserved land parcel in the 

neighbourhood. The latter is uncertain to the focal landowner – in contrast to the payoff from 

economic use (e.g., agricultural profit) which is certain. If the base payment is rather small and the 

bonus rather large the total payment p exceeds the economic payoff when all or many neighbours 

conserve but falls short if none or only few neighbours conserve. Here the landowner has to decide 

whether to choose the “payoff-dominant” strategy of conserving, or the “risk-dominant” strategy of 

economic use. On the regional scale of multiple landowners this reflects in payoff and risk-

dominant Nash equilibria [25, 30] (Parkhurst et al 2002, Parkhurst and Shogren 2007) and the 

bistability observed in the present analysis. 

This bistability where the land-use system is either in a state of much conservation or in a state of 

little conservation is observed even for risk-neutral landowners, r = 0 (Fig. 5a,b). Increasing risk 

aversion, however, makes the landowners more sensitive to the risk difference, so that especially at 

large levels of the bonus the range of base payments that leads to bistability expands (Figs. 5c–f). 

Risk averse landowners are thus less inclined to choose the payoff-dominant conservation use f the 

risk difference between conservation and economic use (bonus ~ D) is large.

From a conservation-practical point of view, one may ask how this risk can be mediated and the 

landowners induced into conservation at a large scale. Experimental research on the agglomeration 

bonus [30–33] (Parkhurst and Shogren 2007, Banerjee et al. 2014, 2016, 2018) highlights the 

importance of information provision and communication between the landowners. Future research 

may explore how these factors affect the performance of the agglomeration bonus in particular, and 

the economic or social dynamics of interacting individuals in general.
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