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Abstract: Slow release of emerging contaminants limits their accessibility from soil to
pore water, constraining the treatment efficiency of physio-chemical treatment sites. DC
fields mobilize organic contaminants and influence their interactions with geo-matrices
such as zeolites. Poor knowledge, however, exists on the joint application of heating and
electrokinetic approaches on perfluorooctanoic acid (PFOA) transport in porous media.
Here, we investigated electrokinetic PFOA transport in zeolite-filled percolation columns
at varying temperatures. Variations of pseudo-second-order kinetic constants (kpso) were
correlated to the liquid viscosity variations () and elctroosmotic flow velocities (Veor).
Applying DC fields and elevated temperature significantly (>37%) decreased PFOA
sorption to zeolite. A good correlation between #, Veor, and keso was found and used to
develop an approach interlinking the three parameters to predict the joint effects of DC
fields and temperature on PFOA sorption kinetics. These findings may give rise to future

applications for better tailoring PFOA transport in environmental biotechnology.
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1. Introduction

Persistent toxic perfluorooctanoic acid (PFOA) has been detected worldwide (Flores et al.,
2013; Lein et al., 2008; Lindim et al., 2015; Lorber et al., 2015), threatening the health of
aquatic living, animals, and humans (Benninghoff et al., 2012; Hoffman et al., 2010; Jeon
et al., 2010; Tsang et al., 2013). Although sorption and permeable reactive barrier (Qian et
al., 2022) efficiently remove PFOA from the soil pore water, the slow release of PFOA
from contaminated sites to pore water is prolonging and challenging risk management
(Cousins et al., 2022). There is hence interest in reducing PFOA sorption from soil, to
shorten the release period, especially for the high-concentration point-source soil

contamination sites.

Sorption reduction in kinetics is governed by the bulk transport, film transport, and intra-
particle transport steps (Tran et al., 2017), which may be regulated by electrokinetic and
heating approaches. Electrokinetic phenomena are induced by external direct current (DC)
electric fields allowing for the directional movement of charged particles in the electrolyte.
They include the electrophoresis of charged colloidal particles (Shan et al., 2020a, 2018),
the electro-migration of ions (Hunter, 2013; Sprocati and Rolle, 2022), and the
electroosmotic flow of liquid (EOF). Electrokinetic technology is commonly used to clean
contaminated soil sites, with the combination of surfactants, heating, etc (Ganbat et al.,
2022; Niarchos et al., 2022; Wen et al., 2021). EOF, as the surface charge-driven movement
of pore fluids (Elimelech et al., 1995) that can mobilize electrically neutral organic
contaminants and, thereby influence their interactions with sorbents (Shan et al., 2020b).
It originates from the electrical double layer in sorbent pores, and, hence, is thought to
efficiently control the liquid flow in the pore networks of sorbents (Shi et al., 2008) and
thereby the distribution of chemicals in the nano-size pores (Sprocati and Rolle, 2022). The
electroosmotic flow velocity (veor) is driven by the surface charge of the solid surface, the
electrical double layer thickness, the width of the capillary or pore width, and the liquid
viscosity (Lee et al., 2016; Probstein, 1994). And has a plug-shaped velocity profile
(Grimes et al., 2000; Kar et al., 2016; Lee and Keh, 2014; Rice and Whitehead, n.d.) that
allows for efficient water movement at distances as low as a few nanometers above a

sorbent surface. It has been found to reduce the sorption of electrically neutral oil
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contaminant phenanthrene (PHE) in geo-sorbents (silica, zeolite, and Al>O3) (Shan et al.,
2020b) or to increase dissolution and release of alginate-embedded solid PHE by 120-times

as compared to stagnant water conditions (Shi et al., 2008).

Temperature is another driver of the chemical sorption capacity of sorbents and the kinetics
of chemical sorption to sorbents, respectively (Do, 1998). The sorption capacity describes
the temperature-dependent equilibrium loading of adsorbate to sorbents and is often
approximated by Langmuir and Freundlich sorption models (Do, 1998). The sorption
kinetics reflects the sorption rate over time and is commonly described by kinetic sorption
models, including the intra-particle model, the pseudo-first-order (PFO), and the pseudo-
second-order (PSO) model (Kopinke et al., 2018; Tran et al., 2017). Finally, temperature
also influences the viscosity (#) as a further driver of chemical diffusion and electroosmotic

flow velocity (Ghosal, 2004).

Poor knowledge however exists on the joint application of heating and electrokinetic
approaches on PFOA transport and sorption in porous media. With a pKa of 0-1 (Goss,
2008), PFOA will be predominantly deprotonated at neutral pH. Electrokinetic PFOA
transport and sorption thus will be driven by EOF, sorption strength, and environmental
conditions such as temperature. Here, we investigated electrokinetic PFOA transport in
zeolite-filled percolation columns at pH = 7, yet varying temperatures, calculated PFOA
pseudo-second-order (PSO) kinetic constants (keso) of PFOA sorption to zeolite and
correlated them to viscosity changes () and calculated EOF velocities (Veor). We also
addressed the following questions: i) what are the effects of DC electric fields and
temperature on the transport and sorption of PFOA to zeolites? (ii) what are the driving

factors of possible synergetic effects? and (ii1) can the effects be predicted?
2. Material and Methods
2.1 Reagents and sorbents

Perfluorooctanoic acid (PFOA, Sigma-Aldrich, USA) was diluted with DI water to prepare
the storage solution for sorption experiments. PFOA standard (100 pg/mL in MeOH) (J&K

Scientific, Germany) was diluted with ultrapure water for LC-MS/MS measurements.
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Potassium dihydrogen phosphate and dipotassium hydrogen phosphate (Macklin, USA),
were diluted in DI water to prepare a 100 mmol/L phosphate buffer (PB, pH=7.0). The
specific surface area and average pore width distribution of zeolite (Si:Al =2.5:1, Macklin,
USA) were determined by a specific surface area and pore width analyzer (ASAP2460,
McMurraytec, USA) (Appendix A Table S1), the zeta potential of zeolite in 100 mM PB
(pH=7.0) was determined by a zeta potential analyzer (ZS90, Malvern, UK) with disposal
folded capillary cells.

2.2 Analytical methods

PFOA was quantified by a LC-MS/MS system (6460 and 1290 Infinity, Agilent, USA),
using a C18 column, (ZOBRAX RR Eclipse Plus, Agilent, USA). Methanol and 10 mmol/L
ammonium acetate were mixed as the mobile phase, following a time-dependent gradient
as listed in Appendix A Table S2. Multiple reaction monitoring and electron spray
ionization modes were adopted to quantify PFOA. Calibration curves (0.01-0.1, 0.1-1.0,
and 1.0-10 mg/L, cf. Appendix A Fig. S1) were established at the beginning of each
measurement batch with standards, batch samples < 50 and R*> > 0.999 were required to

control data quality.
2.3 Kinetics of PFOA sorption in percolation systems

Electrokinetic percolation columns adopted from our previous work (Shan et al., 2018)
were settled in a water bath with temperature-conditioning (DLSB 5L/10, Yuhua, China)
for kinetic experiments (Appendix A Fig. S2). Zeolite was washed 3 times with de-ionized
water and dried for 12 h at 80°C in the oven and kept in a vacuum desiccator till use. The
electrokinetic apparatus was wet-packed with 6 g zeolite in PB. Two disc-shaped Ti/Ir
electrodes at the top (cathode) and bottom (anode) of the column were connected to a DC
power pack (IT6720, Itech, China) to produce electric field strengths X=1, 2, and 3 V/cm,
resulting in stable direct currents 0f 0.03 A, 0.06 A, and 0.09 A, respectively. Then 10 mg/L
PFOA in PB electrolyte was pumped through the column under static temperatures of 10,
20, 30, 40, and 5001 with deviations < 2°C. 1 mL liquid was sampled before and after
percolation at given time intervals up to 48 hr. After centrifugation at 5000 x g, the

supernatant was measured with LC-MS/MS. Each experiment was conducted in triplicate.
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Breakthrough curves and the mass of PFOA accumulating on zeolite under varying DC
electric field strengths and temperatures can be depicted by the PFOA concentration

shifting over sorption time.
2.4 I1sotherm PFOA sorption experiments

Isotherm batch experiments were conducted in PB in sealed 15 mL polypropylene
centrifuge tubes at a sorbent-to-liquid ratio of 1:1000 (g/mL), with 8 initial PFOA
concentrations ranging from 1 to 8 mg/L. Zeolite and liquids in the centrifuge tubes were
equilibrated in a horizontal shaker with temperature conditioning (HNYC-211C, Ounuo,
China) at 150 r/min for 7 days at temperatures of 10 °C, 20 °C, 30 °C, 40 °C, and 50°C,
with fluctuations < 2 °C. Zeolite particles were ground into a fine powder with an average
particle diameter of 74 + 4 um to shorten the equilibrium time, the powder zeolite was only
used in isothermal experiments. After equilibrating for 7 days, liquid-zeolite suspensions
were centrifuged at 5000 % g for 10 min, 1 mL samples were taken by a syringe gently
from the supernatant and measured by LC-MS/MS. Each experiment was conducted in

triplicate.

2.5 Calculation of EOF velocities
EOF velocity (veor) in a pore of radius » (Vallano and Remcho, 2000) was quantified by
the maximum veor (VEoF,max) and a function (f (xr), which includes electrical double layer

and pore radius effects (Rice and Whitehead, 1965) (egs. 1-3)

Veor = Veor max * f (xr) (1)
X
Veor max = _M (2)
n
f(,(r):[l_Mj 3)
xrl,(xr)

where Iy is the modified Bessel function zero order, /; is the modified Bessel function of
the first order, « is the reciprocal of the electrical double layer thickness (1/m) (Sharma and
Hanumantha Rao, 2003), and r is the intra-particle pore radius of zeolite (m). & is the
dielectric constant, g is the vacuum permittivity (F/m), # is the liquid viscosity (Pa s), ¢ is

the zeta potential of zeolite (V), and X is the DC field strength (V/m).
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2.6 Kinetic and isotherm models

2.6.1. Kinetic equations

Sorption kinetic is the rate of PFOA adsorbed onto zeolite. It can be analyzed by
mathematical models including the intra-particle model (eq. 4), the pseudo-first-order
(PFO) model (eq. 5), and the pseudo-second-order (PSO) model (eq. 6).

The linearized expression of the intra-particle diffusion model (Lei et al., 2022) is

q =k t"*+C 4)
where &, (mg/g/min'?) is the kinetic constant of the intra-particle diffusion model and C
(mg/g) is a constant.
In the PFO model (Yu et al., 2009) the g. and g are the adsorbate concentration in the
sorbent at equilibrium and at time t (1/hr), respectively; kpro is the kinetic constant.

In(g, —0,) =Kot +1InQ, (5)
The PSO model can be described by the equation with kpso being the PSO kinetic constant
(g/mg/hr).

t 1 1
— == |t+ (6)
qt [qej kPSOqe2

2.6.2. Isotherm equations

Sorption isotherms describe the relationship between the amount of PFOA adsorbed onto
zeolite and the concentration of the adsorbate in the liquid at a constant temperature.
Sorption isotherms were analyzed by the Freundlich model and the Langmuir model (Tran

et al., 2017). The Langmuir approach can be described by the equation

— Qmax K LCE

7
1+ K, C, @

Qe

where Omax 1s the max sorption capacity at sorption equilibrium, K1 is the Langmuir
constant, Ce is the PFOA concentration in liquid (mg/L). The Freundlich model is described
by eq. 8, where Kr refers to the Freundlich constant ((mg/g)/ (mg/L)").

qe - KFCen (8)



188 3. Results and Discussion

189 3.1 Electrokinetic and temperature effects on PFOA sorption to zeolite

190  Heating and electrokinetics both decreased PFOA sorption on zeolite. Cumulative PFOA
191  mass thereby showed a bi-phasic behavior with a fast initial increase until ca. £ = 14 hr
192  followed by reduced mass accumulation increment rate thereafter (Fig. 1). In the absence
193  of DC, heating from 10 °C to 50 °C decreased PFOA loading from 10.1 mg to 7.6 mg (=25%
194  reduction) at # = 48 hr. A similar trend was found in the presence of DC, where heating
195  from 10 °C to 50 °C decreased sorbed PFOA mass at all electric field strengths applied;
196 e.g., after48 hrat X=1 V/cm from 9.4 mg to 7.4 mg (21%), at X=2 V/cm from 8.7 mg to
197 7.2 mg (17%) at X =2 V/cm, and at X = 3 V/cm from 8.1 mg to 6.7 mg (17%). At any
198  temperature tested, the application of DC fields likewise decreased PFOA loading to zeolite;
199  for instance, after 48 hr at X =3 V/cm by 20% at 10 °C, 15% at 20 °C, 15% at 30°C, 14%
200 at 40 °C, and 12% at 50 °C, respectively. Although PFOA may mostly be ionized (Goss,
201 n.d.) at pH = 7, observed electrokinetic effects on PFOA sorption are in accordance with
202 previous research on non-ionic phenanthrene sorption on mineral sorbents revealing
203  reduced veor-dependent phenanthrene sorption to zeolites in presence of DC electric fields
204  (Shan et al., 2020b). This shows that electrokinetic phenomena have reduced the
205 availability of PFOA molecules to e.g., intraparticle zeolite sorption sites. The good
206  correlation of the observed effects to veor further suggests that EOF is a good predictor for
207  electrokinetic sorption effects of anionic ambiphilic compounds such as PFOA where
208 interactions of the hydrophobic fluorocarbon part may drive its sorption rates (Yu et al.,
209  2009). Our study further extends our knowledge on the effect of temperature on
210 electrokinetic effects on contaminant sorption®® and, hence, allows us to apply heating and
211 electrokinetic phenomena as drivers for contaminant sorption in future technological

212 applications.
213 3.2 Electrokinetic and temperature effects on PFOA sorption kinetics

214  Sorption kinetics were further analyzed by fitting the time-dependent sorption data to the
215  pseudo-first-order (PFO), intra-particle diffusion and pseudo-second-order (PSO) models
216  (Ho et al., 2000; Morelis and van Noort, 2008). The regression correlations proposed the
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PSO model to better describe sorption kinetics (R> > 0.96) than the PFO model
(0.89<R?<0.99) or the intra-particle model (0.74<R?<0.91) (Fig. 2, Table 1, Appendix A
Tables S3 & S4). The kinetic constant of PSO (kpso) hence enabled us to compare PFOA
sorption kinetics at the different temperatures and electrokinetic conditions tested.
Increasing kpso (107 gzeolie/mgproa’h) thereby points at decreasing PFOA mass sorbing.
Heating from 10 to 50 °C in the absence of DC increased the kpso from 256 *107 g/mg/hr
to 920 *103 g/mg/hr (259%) in the absence of electric fields. In presence of DC, kpso
increased between 10 °C and 50 °C by 143% (X =1 V/cm), 91% (X' =2 V/cm), and 42%
(X' =3 V/cm) (Fig. 2, Table 1, Appendix A S3,). Observed temperature-induced increases
of kpso at a given electric field strength were lower at X=3 V/cm (25%) than at X=2 V/cm
(59%), X=1 V/cm (99%), and X =0 V/cm (218%) (Fig. 2, Table 1, Appendix A Fig. S3,
Tables S3 & S4).

Both heating and DC electric fields hence resulted in increased kpso, i.e., reduced PFOA
sorption and enhanced PFOA transport, respectively (Fig. 3, Appendix A Fig. S4). The
kinetic model analysis developed our previous work from a time point analysis to the
sorption kinetics over 48 hr. It also provided an appropriate parameter to quantitatively
depict electrokinetic effects on sorption kinetics and enabled comparisons between the
heating effect and the electrokinetic effects over time shifting (Qin et al., 2015; Shan et al.,
2020b).

3.3 Synergism of electrokinetic and heating effects on PFOA sorption

Our data propose that electrokinetic transport phenomena at the liquid-sorbent interface
may influence sorption kinetics. The veor has been discussed to be key to DC field effects
on the sorption of non-ionic phenanthrene at room temperature (Shan et al., 2020b). We
here further studied drivers of DC field effects at different temperatures on anionic, yet
partially hydrophobic PFOA. To do so, we first quantified veor in intra-particle pores of
zeolite under various temperatures and DC field strengths by equations 5-7, using
experimentally determined average pore width, and zeta potential of the zeolite sorbent.
The temperature-controlled sorption capacity was investigated by the sorption equilibrium
experiments, and analyzed by Freundlich and Langmuir equations (eqs. 7-8). Calculated

veor and isothermal parameters Kr and Kp were subsequently correlated to the
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experimentally derived kinetic constants (kpso).

Regression correlation showed that the veor and the kpso were highly linearly correlated at
all temperatures, with R> > 0.96 (Fig. 4A, Appendix A Table S5), suggesting that EOF was
an apparent driver for observed PFOA sorption kinetic variations. The slope values were
positive, indicating that increasing veor resulted in higher kpso, and, subsequently,
decreased PFOA sorption to zeolite in DC fields. DC effects thereby were significantly
(>500%) higher at 10°C as compared to 50°C (Table 2, Fig. 4A) indicating the synergetic
effects of heating and DC fields on PFOA sorption rates (Fig. 4B).

Linking the slope values (derived from linear veor-kpso fitting) with either the Langmuir
or Freundlich parameters showed a positive apparent quadratic correlation with R? = 0.996
for K1 and 0.955 for Kr (Fig. 4B). This suggests that K1 may be used to estimate
temperature DC-temperature effects on PFOA sorption on zeolites. Decreasing K. at higher
temperatures thus promotes DC field effects on PFOA sorption to zeolite; i.e. a
combination of high temperature and high DC field strength leads to less sorption and
higher PFOA transport. Such observation is in line with previous research revealing that
heating varies the sorption capacity, which in turn may also affect the sorption kinetics(Qu

et al., 2009; Yang et al., 2018).

Based on the apparent correlations, we further developed an approach to describe and
predict the temperature-dependent electrokinetic effects on PFOA sorption. The approach
combines veor (as a factor reflecting the presence of DC electric field), liquid viscosity (as
a factor reflecting the influence of temperature), and their joint impact on the kinetic
constant kpso (Fig. 5). At low liquid viscosity (e.g. at lower T) and high veor (e.g. at
elevated X) strongly reduced PFOA sorption, i.e. enhanced PFOA transport through zeolite
is evidenced. By contrast, at high viscosity and low veor, poor PFOA through zeolite is
calculated. Such temperature (i.e. liquid viscosity) dependent correlation extends previous
approaches to compare DC field effects on the sorption of a hydrophobic contaminant
(phenanthrene) to geo-sorbents(Shan et al., 2020b). Although PFOA in our system may be
mobilized both by electromigration and EOF, it further reveals that veor nevertheless may
be a good descriptor for DC field effects on PFOA sorption and transport in the geo-sorbent

zeolite.
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3.4 Relevance for environmental and biotechnological applications

Our results reveal that temperature and electrokinetic effects control the sorption kinetics
and concomitant transport of PFOA in the geo-sorbent zeolite. Electrokinetic techniques
hence may be promising to regulate PFOA-sorbent interactions. Our approach may also be
used to kinetically regulate the interaction of other contaminants and zeolite-like sorbents
in the manmade/natural environmental (bio-)technology (Qin et al., 2015; Shan et al.,
2018). Enhanced PFOA transport may reduce time and subsequent costs of physical-
chemical removal processes (e.g., permeable reactive barrier) around point source pollution
sites (Ma et al., 2022; Shojaei et al., 2021). As sorption effects in DC fields are temperature
dependent, our data further suggest that both the electric field strength and/or the
temperature of a given system can be adjusted to the transport needs for PFOA. In summer,
for instance, higher environmental temperatures may require lower DC field strengths as
in winter, where moderate heating may promote PFOA transport rates. Soil matrices
typically consist of a mixture of mineral and carbonaceous materials (Gill et al., 2014; Wick
et al., 2007), considering previously investigated mechanisms of electrokinetic-controlled
phenanthrene sorption on several carbonaceous sorbents (Qin et al., 2015; Shan et al.,
2020b), the temperature-controlled -electrokinetic approaches may enhance both
hydrophobic and hydrophilic chemical transport through mineral contents in the soil. Such
an approach may also elevate the transport, of a wide range of other similar contaminants
in zeolite-type geo-matrices, thereby promoting efficient transport to treatment zones and
so reducing the threat to the environment and human health. This may give rise to future
technical applications, which allow regulating sorption processes, for instance in response
to fluctuating adsorbate concentrations in contaminated water streams, in electro-

bioremediation, or to avoid unwanted sorption solutes in technical applications.
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Table 1. Kinetic parameters of the pseudo-second-order model at temperatures 10 - 50°C and DC field strengths 0 - 3 V/cm.

Pseudo-second-order

Pseudo-second-order

Pseudo-second-order

Pseudo-second-order

Temperature parameters no DC parameters X=1 V/cm parameters X =2 V/cm parameters X =3 V/cm
(O 03 I;l;:l)g/hr) g ';'}fﬁg(/}g; g ';'}fﬁg(ﬁfg K 1 l;l/)lsl(l)g(/}l(:; K
10 0.35 256 098 0.29 401 098 0.24 573 098 0.21 815 Oég
20 0.28 426 098 0.24 563 098 0.22 735 098  0.20 845 Oég
30 0.25 547 098 0.22 704 098 0.20 853 098 0.18 1087 099
40 0.22 709 098 0.20 834 099 0.19 946 099 0.17 1129 099
50 0.20 920 098 0.19 975 099 0.18 1096 099 0.17 1154 099

Table 2. Regression results of isothermal and slopes of electroosmotic flow velocity (veor) to the kinetic constant (kpso).

Freundlich Isotherm

Langmuir Isotherm

T Slope
parameters parameters

o Ky 2 qdm K. 2
9 5 (mg/g)(mg/L)" R mgg)  Lmg X
10 41 1072 0.78 0.99 6.3 220 0.99
20 24 933 0.80 1.00 59 200 0.99
30 24 871 0.80 1.00 5.6 200 0.99
40 15 724 0.80 1.00 55 180 0.99
50 8 692 0.80 1.00 53 160 1.00
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442 Figure 1. Perfluorooctanoic acid (PFOA) mass accumulated on zeolite under temperatures 10°C (blue), 20°C

443  (yellow) 30°C (green), 40°C (red), and 50°C (black).
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Figure 2. Effects of temperature (7= 10 - 50°C) on PFOA sorption kinetics DC field strengths of X = 0 (Fig.
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pseudo-second-order kinetic model, respectively.
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