
This is the preprint of the contribution published as: 

Jean-Louis, Gilles, Eckhardt, M., Podschun, S., Mahnkopf, J., Venohr, M. (2024): 
Estimating daily bicycle counts with Strava data in rural and urban locations 
Travel Behav. Soc. 34 , art. 100694 

The publisher’s version is available at: 

https://doi.org/10.1016/j.tbs.2023.100694 

https://doi.org/10.1016/j.tbs.2023.100694
https://doi.org/10.1016/j.tbs.2023.100694


Estimating bicycle counts with Strava 
data along a gradient of use intensities 

 

1. Abstract 
Reliable information on daily bicycle traffic provides a fundamental basis for city planners 
and scientists. We apply Generalised Boosted Regression Models to estimate daily bicycle 
counts for different German locations with different degrees of urbanisation. Altogether 
44,136 daily datapoints from 46 counter locations covering a time period of four years were 
considered. Crowdsourced fitness tracker data from Strava, socio-demographics, land use 
and weather data were used as independent variables. Our results indicate that weather has 
the strongest influence on estimated bicycle counts, exceeding the relevance of fitness 
tracker data. In an overall model daily bicycle counts were estimated with a mean absolute 
percentage error (MAPE) of 27.9%. In terms of location specific estimations, a MAPE of 11.2% 
was reached. With our approach, high-quality out-of-sample predictions are also feasible. 
Based on our estimations we assume the volatility of fitness tracker user share to have a 
major impact on model accuracy. 
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2. Introduction 
As studies show cycling has become increasingly popular over the last decades (Pucher & 
Buehler, 2017), probably because it is health-promoting and helps reduce ones personal 
carbon footprint. Increasing numbers of cyclists make it important for city and traffic 
planners to comprehend which factors affect spatial and and temporal cycling activities. 
The research project AQUATAG, within which this study is embedded,  aims to understand 
spatial distribution and dynamics of recreational activities in (e.g., swimming, diving), on (e.g. 
paddling, sailing) and along (e.g. cycling, walking) surface waters to assess the effects on 
aquatic ecosystems and potential conflicts between different activity types. In case of 
cycling, comprehensive data sets of bicycle counts are missing, which makes it more difficult 
to study the drivers affecting cycling activity. Traditionally, bicycle count could only be 
obtained from on-site monitoring, which limited the number and duration of observations. 
During the last years automated bicycle counters became more and more common, but the 
number of such automated counters is still small and they are often placed at larger and 
highly frequented streets. The increasingly common use of fitness tracker apps, such as 
STRAVA, added new possibilities to estimate bicycle counts or bicycle traffic volumes (both 



expressions are used synonymously) for unmonitored areas. However, a potential hurdle in 
the use of such crowdsourced data is the biased and rather small user group. Accordingly, 
different studies tried to assess the representativity of these data (Lee & Sener, 2021) and 
furthermore use it as a basis for actual bicycle count estimation, recently with help of 
machine learning approaches (Miah et al., 2022). 
With the present study we aim to build a generalisable model for the estimation of bicycle 
traffic counts to better understand the cyclist impacting dynamics and the spatial 
differences. We do this by using STRAVA data, representing one possible source of 
crowdsourced data, and monitored count data as a basis together with weather data, socio-
demographics and land use data. Further, in the context of a project addressing water-based 
recreation, our study, for the first time, also uses distance to surface water bodies as a 
potential driver. Our data set comprises 46 locations covering inner city areas, outskirts, and 
less urban areas in and around larger cities in Germany, allowing us to identify the major 
drivers explaining temporal and spatial differences in bicycle counts and to test the accuracy 
of our models under different site conditions. Last but not least, we approach the question of 
how model accuracy is affected by the share of bicyclists providing crowdsourced data. The 
outcomes are assumed to contribute additional knowledge for traffic related planners as well 
as recreational management. 
  
 
 

3. Background and research questions 
3.1. Literature review 
The literature provides a variety of different approaches to estimate bicycle counts. 
Dadashova and Griffin (2020) mention scaling methods, direct-demand modelling and time 
series amongst others as rather traditional methods. As such Hankey et al. (2012) and 
Hankey et al. (2017) provide scaling methods and modelling approaches for estimating 
bicycle traffic based on weather data, nearby built environment and socio-demographics, as 
well as street characteristics. During the last years it became more popular to use data from 
crowdsourced fitness tracker apps, with Strava leading the way. Livingston et al. (2021) 
predict bicycle traffic volumes for the city of Glasgow including regression models for so 
called out-of-sample predictions in order to estimate numbers for subsequent years. Nelson 
et al. (2021) choose input data from different cities to develop a more generalisable model. 
Lee and Sener (2021)  provide a literature review on the use of Strava Metro data for bicycle 
monitoring. Besides pointing out the opportunities of Strava data, they also stress potential 
challenges when using this data (e.g. “under-representativeness of the general population, 
bias towards and away from certain groups, and lack of demographic and trip details at the 
individual level”). This is in line with Conrow et al. (2018), Griffin and Jiao (2019) and Watkins 
et al. (2016) who report an overrepresentation of males and age groups between 25 and 44 
years for example. Studies like Roy et al. (2019) try to correct biases in Strava data by using 
Poisson regression including surrounding land use and socio-demographics. However, 
previous studies have also shown that linear models including Strava data are susceptible to 
high errors because of non-linear relationships between monitored count and Strava count 
data (Miah et al., 2021). Recent approaches take advantage of machine learning techniques 



combined with fitness tracker data besides other explanatory variables (see for example Al-
Ramini et al. (2022), Kamalapuram (2022) or Miah et al. (2022)). Miah et al. (2022) tested a 
variety of different machine learning approaches to predict bicycle traffic for the city of 
Portland. According to their random forest model results, Strava count is ranked as the most 
relevant driver amongst all explanatory variables, whereas their XGBoost model ranks speed 
limit as the most important driver followed by Strava count. 
 

3.2. Research and knowledge gaps 
In spite of a recently growing body of bicycle count prediction studies, the overall number of 
such publications is still rather low and remaining knowledge gaps could be identified. As 
Jestico et al. (2016) state, prediction models may only be suitable for locations with similar 
conditions. Thus, robust models should include input data from heterogenious and diverse 
locations, which was not always taken into account in previous studies.  
The examination of the relative influence of the considered predictors was rather 
approached in recent studies (cf. Miah et al. (2022), Al-Ramini et al. (2022) and Kamalapuram 
(2022)) with partly ambiguous results concerning their ranking, indicating a need for further 
research.  
However, the potential to predict bicycle counts for unknown locations and time periods 
which have not been included in training data sets at all is yet fairly unstudied and hardly 
addressed in the available literature. Besides that, former studies mostly only considered 
locations with medium to high bicycle traffic, ignoring areas representing lower bicycle 
counts.  Furthermore, Dadashova and Griffin (2020) state that future research should 
approach how the share of bicyclists using fitness tracker apps affects the accuracy of 
prediction models which are based on these data. For our analysis we include a wide range 
of different bicycle count locations covering different use intensities but also different shares 
of bicyclists using the fitness tracker Strava, in order to generate representative results 
ensuring additional value for the scientific literature. 
 

3.3. Research questions 
Based on our literature review we form the following research questions: 
I. Which are the most important predictors to estimate bicycle counts and how does 

their relative influence differ? 
II. How accurate are daily bicycle count estimations for unknown locations and time 

spans? 
III. How is model accuracy affected by the share of bicyclists providing crowdsourced 

data for estimation models? 

4. Methods and Data 
4.1. Input Data 
Hourly biking counts of the years 2017-2020 were provided by Strava_Inc. (2020) for the 
Spree-Havel and the Ruhr catchments, both representing study river basins of the AQUATAG 
project. Monitored bicycle count data for locations within the scope of the project areas 
were enquired from local administration authorities. Altogether, hourly and daily monitored 
bicycle count data have been available for 46 locations within the three German states Berlin 



(17), Brandenburg (14) and North Rhine-Westphalia (NRW) (15) (cf. Figure 1) for a time 
period of four years (2017-2020), including information from permanent and temporary 
counting stations.  

 

Figure 1: Locations of the bicycle counters used in the study. 

Each bicycle counting location was assigned to one or more OpenStreetMap (OSM) edges, 
since Strava data were provided in these spatial units. Thus, corresponding bicycle counts 
and STRAVA user counts could be derived. 

For each counter location the mean daily air temperature (in C°) and the daily precipitation 
sum (in mm) were extracted from the E-OBS dataset with a spatial resolution of 0.1° (Cornes, 
2018). Furthermore, we derived the absolute population as well as the population density 
per square kilometre from the latest available official census data, provided as grid with a cell 
size of 100 m * 100 m (Statistisches_Bundesamt, 2011).  
In similar studies age, gender and income are often the most commonly used socio-
demographic predictors. While income data was not available in an adequate spatial 
resolution, spatial information on age and gender could be received for December 2020 at 
administrative district level (mean size of 78.5 km² considering all available districts in all 
three states) from the statistical offices of Berlin-Brandenburg (Berlin-Brandenburg, 2021) 
and North Rhine-Westphalia (Nordrhein-Westfalen, 2022) and was assigned to the 
residential areas per district. Land use information on residential areas (Corine Land Cover 
Class “Urban fabric”) were taken from a landcover map LBM by (BKG, 2018). 



In order to substitute the lacking income data, spatial data on the composition of milieus was 
used. Here Sinus-Milieus® data were used, provided as a two-dimensional classification of 
citizens according to their social situation (lower class, middle class or upper class) and basic 
orientation (tradition, individualisation and reorientation) using age, gender, education and 
income to describe the different Sinus-Milieus® groups (Flaig & Barth, 2014). In our study the 
following groups are considered: expeditious milieu, hedonistic milieu, conservative 
established milieu, liberal intellectual milieu, performer milieu, adaptive pragmatic milieu, 
precarious milieu, socio-ecological milieu and traditional milieu. 
To derive milieu information for different buffer zones around the bicycle counter locations, 
we calculated weighted means under the consideration of population density (census data), 
residential area distribution and the respective demographic information at postal code 
level. Furthermore, we used the following features from OpenStreetMap (2022) to derive the 
bike path length within a given buffer zone: all key features of the class "highway" with the 
assigned value "cycleway", all key features of the class "cycleway", all features of the class 
"bicycle" tagged as "yes" and all features of the class "bicycle" tagged as "designated". 
Information on land use categories and levels of soil sealing were obtained from BKG (2018) 
to calculate average soil sealing levels and the relative share of the major land use types. 
According to Bossard et al. (2000) we distinguished “urban fabric” (CLC-code: 111, 112), 
“industrial, commercial and transport units” (CLC-code: 121, 122, 123, 124), “mine, dump 
and construction sites” (CLC-code: 131, 132, 133), “green urban areas” (CLC-code: 141, 142), 
“agricultural areas” (CLC-code: 211, 212, 213, 221, 222, 223, 231, 241, 242), “forest and near 
natural areas” (CLC-code: 311, 312, 313, 322, 323, 324, 331, 332, 333, 334, 335), “natural 
grassland” (CLC-code: 321), “wetlands” (CLC-code: 411, 412, 421, 422, 423) and 
“waterbodies” (CLC-code: 511, 512, 521, 522, 523). Additionally, the distance from each 
bicycle counting location to the nearest waterbody was calculated. 
Information on all socio-demographic, land cover and land use data variables (cf. Table 1) 
was derived for each counter location for buffer widths of 250m, 500m, 1000m, 2000m, 
4000m, 6000m, 8000m and 10000m. 
To capture temporal bicycle traffic dynamics, we included the variables weekend, public 
holiday and school holidays to the analysis. As the number of STRAVA users increased 
considerably during the study period year and month were introduced as variables, also 
accounting for temporal effects. 



Table 1: Initial set of independent variables for prediction models. 

Category Variable Source 

Temporal Variables 

Year Own calculations 
Month Own calculations 

Weekend Own calculations 
Public Holiday Own calculations 
School Holiday Own calculations 

Weekend, public holiday or school holiday Own calculations 

Strava Variables Number of Strava user counts Strava 
Percentage of commuting Strava users (%) Strava 

Weather Variables Precipitation (mm) E-OBS 
Average daily temperature (C°) E-OBS 

Land use, land cover 
and infrastructure 

  Sealing (%) BKG 
Urban fabric (%) BKG 

Industrial, commercial and transport units (%) BKG 
Mine, dump and construction sites (%) BKG 

Green urban areas (%) BKG 
Agricultural areas (%) BKG 

 
 
 

Forest and near natural areas (%) BKG 
 Natural grassland (%) BKG 

Wetlands (%) BKG 
Waterbodies (%) BKG 

Distance to waterbodies (m) BKG, manual 
  Bike path length (m) OSM 

Socio-demographics 

Absolute population an Census 
Population density (people per km²) Census 

Expeditious milieu an Sinus, Census 
Hedonistic milieu an Sinus, Census 

Conservative established milieu an Sinus, Census 
Liberal intellectual milieu an Sinus, Census 

Performer milieu an Sinus, Census 
Adaptive pragmatic milieu an Sinus, Census 

Precarious milieu an Sinus, Census 
Socio-ecological milieu an Sinus, Census 

Traditional milieu an Sinus, Census 
Male, Age 0-5 an Female, Age 0-5 an Statistical Office 

Male, Age 5-10 an Female, Age 5-10 an Statistical Office 
Male, Age 10-15 an Female, Age 10-15 an Statistical Office 
Male, Age 15-20 an Female, Age 15-20 an Statistical Office 

  Male, Age 20-25 an  Female, Age 20-25 an Statistical Office 
  Male, Age 25-30 an   Female, Age 25-30 an Statistical Office 
Male, Age 30-35 an Female, Age 30-35 an Statistical Office 

  Male, Age 35-40 an   Female, Age 35-40 an Statistical Office 
  Male, Age 40-45 an   Female, Age 40-45 an Statistical Office 
 Male, Age 45-50 an  Female, Age 45-50 an Statistical Office 
Male, Age 50-55 an Female, Age 50-55 an Statistical Office 

  Male, Age 55-60 an   Female, Age 55-60 an Statistical Office 
  Male, Age 60-65 an   Female, Age 60-65 an Statistical Office 
  Male, Age 65-70 an   Female, Age 65-70 an Statistical Office 
  Male, Age 70-75 an   Female, Age 70-75 an Statistical Office 
  Male, Age 75-80 an   Female, Age 75-80 an Statistical Office 
Male, Age 80-85 an Female, Age 80-85 an Statistical Office 
 Male, Age 85-90 an  Female, Age 85-90 an Statistical Office 

Male, Age 90 upwards an Female, Age 90 upwards an Statistical Office 
an Absolute number 

 
To distinguish whether counter locations are based in rather urban or rather rural areas we 
invoke the classification of Eurostat (2022) to differentiate NUTS3 regions according to the 
following types: “predominantly rural”, “intermediate” and “predominantly urban”. Based on 



the counter location within a certain NUTS3 region, one of the above stated settlements 
types is assigned according to Eurostat-Data (2022). 
The bicycle count locations D02 (Berlin – Jannowitzbrücke), R03 (North Rhine-Westphalia – 
Mühlheim) and BAR2 (Brandenburg – Eichhorst) were selected as case examples, since they 
differ regarding their daily bicycle counts and each represents one of the three involved 
states of this study (cf. Figure 1).  
 

4.2. Generalised Boosted (Regression) Models 
We use “Generalised Boosted (Regression) Models” (GBM), also referred to as “Boosted 
Regression Trees” (BRT), since this method can be used to approach all three research 
questions. GBM combine decision tree models with the method of boosting, that is building 
an ensemble of many decision trees whereby every new decision tree is based on the 
remaining residuals between monitored and estimated bycicle counts of its predecessor. The 
models are not only able to estimate a dependent variable based on a set of independent 
variables, but furthermore state the relative influence of the latter. The relative influence of 
each variable can be calculated with the R-package “gbm” package. In accordance with 
Friedman (2001) the relative influence of a variable is based on how often on average, across 
all trees, it is chosen to split a decision tree. For a more detailed explanation of BRT and GBM 
see Ridgeway (2007) and Elith et al. (2008). Within GBMs, different settings of higher-level 
properties, so called hyperparameters, are possible. These hyperparameters have an effect 
on the complexity, the learning speed and consequently the model results (Chicco, 2017) and 
therefore the best performing settings may be identified by comparing model accuracy 
results based on different hyperparameter combinations. The fitting of hyperparameters 
requires a training of the model under consideration of different hyperparameter settings 
and can result in an excessive amount of computation time. For the present model set-up 
517 independent variables, comprising all possible buffer widths, per 44,136 daily data points 
(cf. 5.1) would have to be considered for the training.  The identification of the different 
variable contributes was therefore done using standard hyperparameter settings (see “Buffer 
Detection Width Model” in Table 6). The hyperparameter fitting was done subsequently only 
using selected high-influence variables, defined as the most important buffer width per 
variable, and after an exclusion of variables with a non-significant relative influence (< 0.1 %).  

The hyperparameter tuning was done by performing a grid search in which the generalised 
boosted regression models were trained several times using different combinations of the 
following hyperparameter values: shrinkage rate (learning rate), interaction depth (maximum 
number of splits in each tree), minimum number of observations in trees' terminal nodes 
(“n.minobsinnode”). This results in 27 initial combinations of hyperparameter values.  

The root-mean-square error (RMSE) between monitored and estimated bicycle counts was 
used as performance criterium. Hyperparameter combinations with the least RMSE were 
chosen as reference point for a second grid search step. After this we tested whether a 
recommended default bag fraction of 0.5 (Ridgeway, 2007) or a greater one of 0.65 yielded 
better results. Resulting hyperparameter values were used accordingly for further modelling. 
For the final models we calculated RMSE, R², the mean absolute percentage error (MAPE), 
the Nash–Sutcliffe model efficiency coefficient (NSE) and the percent bias (PBIAS) in order to 
compare their performance with reference to Table 2. Altogether we test six different 



models (one standard model, one valuation model, one unknown year model and three 
different unknown location models). For the standard model the data set is randomly split 
into a training data set (70%) and a testing data set (30%). The validation model, however, 
used the entire data set as training data, which was also used to describe the overall model 
performance. In order to gain the model performance for each location, only data of the 
respective count location was used as training data. To determine the model performance 
for an untrained year (unknown year model), the training data set was restricted to a time 
span between 2017 and 2019, while 2020 was used for validation. Here again, we distinguish 
between an overall performance and performance for each location. For the unknown 
location models, in accordance to the other set-ups, data from one of the three locations was 
excluded from the training data sets and 2020 data was used for validation. 

 

Table 2: Goodness of fit taken from Pérez-Sánchez et al. (2017) based on Moriasi et al. (2007). 

 NSE PBIAS 
Very good 0.75 - 1.00 < ±10 
Good 0.65 - 0.75 ±10 - ±15 
Satisfactory 0.50 - 0.65 ±15 - 25 
Unsatisfactory < 0.50 ± 25 
 

To draw conclusions about which factors the MAPE depends on, we use linear regression 
models, estimating the MAPE of the standard model for each location based on the 
explanatory variables (i) median daily count, (ii) Strava user share, (iii) the standard deviation 
of Strava user share (as indicator for volatility), (iv) the number of daily datapoints per 
location which were included in the training data set and (v) the share of missing Strava 
values (Strava-NA) indicating the share of datapoints for which Strava information was 
missing. 

 

5. Results 
5.1. Descriptive statistics 
Bicycle counts from May 30th until November 1st 2019 of location D05 
(Berlin/Oberbaumbrücke)  were excluded as construction works at the site led to a change of 
the traffic guidance (Hering, 2019), which resulted in significantly less monitored bicycle 
counts but hardly unchanged Strava counts. Excluding these, we altogether used 44,136 daily 
data points from 46 counter locations as input data for our models. Counting locations in 
Berlin show the largest variability but also the highest number in daily bicycle volumes 
(Figure 2) with the lowest median of 501 for D24 (Alberichstraße) based in the outskirts and 
the highest median of 9219 for D05 (Oberbaumbrücke) in the city centre. The median daily 
bicycle counts of the North Rhine-Westphalia (NRW) locations in the Ruhr catchment area 
range from 48 at R08 (Jahnallee in Arnsberg) to 1474 at R02 (Grugatrasse in Essen). The 
lowest medians were observed for the counting stations in Brandenburg reaching from 27 at 
DSP4 (B179 in Löpten) to 286 at SPN1 (Ringchaussee in Burg). 



Using the settlement structure classification of Eurostat (2022) all counter locations in Berlin 
were classified as predominantly urban. All Brandenburg counter locations were assigned as 
intermediate. The western North Rhine-Westphalia counter locations (R01, R02, R03, R05, 
R06, R12) were classified as predominantly urban whereas the remaining eastern locations 
(R07, R08, R09, R10, R11, R13, R15, R16, R17) were classified as intermediate (cf. Figure 1). 

Figure 3 compares the daily monitored counts in 2020 versus the Strava bicylce counts for 
the three locations D02, R03 and BAR2. All three locations show a similar seasonal pattern 
with higher counts during the summer months and lower counts in winter. In case of BAR2 
Strava counts are almost consistently at 0 during the spring months. Strava user shares 
(calculated as the ratio between actual bicycle counts and Strava bicycle counts) for all 
locations grouped by state are shown in Figure 4. Average shares range between about 1% 
and approximately 4%. The Berlin locations show the lowest Strava user shares (mean = 0.87; 
median = 0.73), followed by the North Rhine-Westphalia based locations (mean = 3.81; 
median = 2.77) and the Brandenburg counter locations with the highest Strava user shares 
(mean = 5.47; median = 4.04). The maximum values reach up to 24% for the Berlin stations, 
up to 83% for North Rhine-Westphalia locations and in the case of Brandenburg 91%.  

 

 

Figure 2: Daily bicycle counts for all counter locations grouped by federal state. 

 



 

Figure 3: Comparison of monitored bicycle counts and Strava bicycle counts for the locations D02, R03 and BAR2. 

*Bicycle counts for October 2020 were not available for location BAR2. Hence, this period was not included. 



 

 

 

Figure 4: Daily share of Strava users in relation to daily bicycle counts per location in the respective federal state. 

5.2. Variable selection and relative influence on dependent variable 
The initial set of considered predictors consisted of 517 independent variables. From this a 
sub-set of 33 explanatory variables contributing the highest influence to estimated daily 
bicycle counts were selected for the further modelling tasks (Table 3). For visualised graphs 
of the average model estimation for varying values of the top three predictors in our 
standard model see Figure 6in the Appendix. 

Table 3: Independent variables included in the final models and their relative influence in the fitted standard model for the 
estimation of daily bicycle counts. 

ID Variable (measuring unit) Relative influence on daily 
bicycle volumes (%) 

1 Average Daily Temperature (degree Celsius) 24.45 
2 Percentage of commuting Strava users (%) 19.07 
3 Precipitation (mm) 11.12 
4 Male, Age 0-5 within 1000m (absolute 

number) 
7.83 

5 Number of Strava bicycle counts 7.01 
6 Male, Age 25-30 within 500m (absolute 

number) 
4.04 

7 Month 3.06 
8 Female, Age 40-45 within 4000m (absolute 

number) 
2.04 

9 Forest and Near-Natural Areas within 500m 
(%) 

1.71 

10 Year 1.70 
11 Sealing within 250m (%) 1.50 
12 Bike Path Length within 250m (m) 1.29 



13 Distance to Water (m) 1.20 
14 Waterbody within 10000m (%) 1.20 
15 Industrial, Commercial or Transport Units 

within 250m (%) 
1.18 

16 Mine, Dump or Construction Site within 
10000m (%) 

1.17 

17 Weekend, Public Holiday or School Holiday  1.14 
18 Agricultural Area within 6000m (%) 1.08 
19 Weekend 1.00 
20 Urban Green within 500m (%) 0.95 
21 Natural Grassland within 8000m (%) 0.81 
22 Male, Age 30-35 within 2000m (absolute 

number) 
0.71 

23 Conservative Established Milieu within 
4000m (absolute number) 

0.68 

24 Male, Age 90 upwards within 1000m 
(absolute number) 

0.63 

25 Urban Fabric within 250m (%) 0.60 
26 Liberal Intellectual Milieu within 500m 

(absolute number) 
0.44 

27 Wetlands within 4000m (%) 0.42 
28 Public Holiday 0.40 
29 School Holiday 0.40 
30 Female, Age 90 upwards within 4000m 

(absolute number) 
0.37 

31 Male, Age 85-90 within 4000m (absolute 
number) 

0.35 

32 Bourgeois Middle Class Milieu within 500m 
(absolute number) 

0.24 

33 Expeditious Milieu within 4000m (absolute 
number) 

0.22 

 

 

 

5.3. Model performance 
Table 4 collates the statistical performance parameter of the different GBM subdivided into 
an overall performance for all locations and such for the three case example locations. 

For all tested model variants, the results for Jannowitzbrücke (D02) with the second highest 
median bicycle count of all stations always provided the best statistical performance 
indicators, which, on the other hand were worst for Eichhorst (BAR2), having the lowest 
median counts out of the three case example locations.  

 

 



Table 4: Model performance of different GBM for all locations (overall) and for three exemplary locations. 

 

 

Considering Table 2, our results indicate that the validation model has performed best which 
makes sense since here all data has been used for training, so that the indicators basically 
describe the performance of the model training and not of the validation. The standard 
model performed second best, followed by the unknown year models. The least good 
performance was observed for the unknown location models, where unsatisfying 
performance values were obtained for all three locations (PBIAS), with BAR2 standing out 
with the only NSE below 0. In all cases estimations for the location D02 (Jannowitzbrücke) 
outperformed estimations for the location R03 (Mühlheim) which in turn outperformed 
estimations for the location BAR2 (Eichhorst). Exemplary visualisations for the unknown year 
model can be found in Figure 5 the Appendix. 

The upper graphs in Figure 7 display the median daily counts sorted in ascending order per 
location versus the MAPE (a) and versus the Strava user share (b), indicating higher median 

 
All locations 

Case study locations 

Model 
Jannowitzbrücke  

(D02) 
Radschnellweg Mühlheim  

(R03) 
Eichhorst  

(BAR2) 
Mean monitored 

annual bicycle counts 21,946,387 2,958,945 495,945 52,340 
Strava user share in % 1.91 % 0.80 % 3.65 % 2.73 % 

     
     

Validation 
(100 % data for 

training) 

MAPE: 19.1 % MAPE: 9.3 % MAPE: 22.4 % MAPE: 26.3 % 
R²: 0.98 R²: 0.95 R²: 0.92 R²: 0.87 

PBIAS: -0.4 % PBIAS: -0.4 % PBIAS: -1.9 % PBIAS: -4.7 % 
NSE: 0.98 NSE: 0.95 NSE: 0.92 NSE: 0.86 

 RMSE: 377.2 RMSE: 869.1 RMSE: 334.1 RMSE: 65.8 
     

Standard 
(70 % data for training) 

MAPE: 27.9 % MAPE: 13.3 % MAPE: 29.2 % MAPE: 43.0 % 
R²: 0.97 R²: 0.91 R²: 0.89 R²: 0.84 

PBIAS: -0.5 % PBIAS: 0.6 % PBIAS: -1.1 % PBIAS: -2.0 
NSE: 0.97 NSE: 0.91 NSE: 0.89 NSE: 0.84 

 RMSE: 433.2 RMSE: 1178.8 RMSE: 417.3 RMSE: 70.8 
     

Unknown year 
(years 2017-2019 for 

training) 

MAPE: 36.2 % MAPE: 17.7 % MAPE: 27.1 % MAPE: 50.7 % 
R²: 0.91 R²: 0.8 R²: 0.79 R²: 0.78 

PBIAS: -10.6 PBIAS: -0.7 % PBIAS: 0.3 % PBIAS: -15.9 % 
NSE: 0.9 NSE: 0.8 NSE: 0.77 NSE: 0.76 

 RMSE: 809.8 RMSE: 1739.2 RMSE: 657.1 RMSE: 102.0 
     

Unknown location 
(all data except case 

study location for 
training) 

 MAPE: 38.7 % MAPE: 37.2 % MAPE: 3253.0 % 
 R²: 0.83 R²: 0.81 R²: 0.35 
 PBIAS: 24.6 % PBIAS: -38.8 % PBIAS: 921.5 % 
 NSE: 0.53 NSE: 0.34 NSE: -85.84 

  RMSE: 2670.6 RMSE: 1125.0 RMSE: 1927.2 



daily counts are associated with lower Strava user shares and related to better model 
accuracy. The lower graphs show the standard deviation of Strava users sorted in ascending 
order versus the Strava user share (c) and versus the MAPE for the respective location (d), 
suggesting a relation of a higher Strava user volatility with an increased Strava user share and 
lower model accuracy.  

We used linear regression models to identify potential drivers for MAPE derived for the 
individual monitoring locations. Table 5 shows the results for the estimation of the MAPE of 
the standard model based on several independent variables characterising each location (see 
Table 7 in the Appendix for the data basis). Those were the share of Strava counts relative to 
the actual bicycle counts (Strava user share) as well as the standard deviation of this Strava 
user share as an indicator for volatility, the absolute number of datapoints per location in the 
training data set, the share of missing Strava information (Strava-NA) relative to the number 
of datapoints and the median daily count. For the locations SPN1, SPN5a and DSP5 no more 
than one Strava count were available. Hence, these counter locations could not be included 
in the regression models.  



Table 5: Linear regression results: Parameter estimates for MAPE estimation of the standard model and standard deviation 
in brackets. 

 Model 1 Model 2 Model 3 

(Intercept) 24.73 ** 25.58 * 14.79 

 (8.19) (9.47) (10.15)  

Standard deviation 
of Strava user 
share 

3.35 *** 3.32 *** 1.44 

 (0.81) (0.84) (1.14) 

Number of 
datapoints 

-0.01 * -0.01 * -0.01 

 (0.01) (0.01) (0.01) 

Share of Strava-NA 0.35 ** 0.34 ** 0.31 * 

 (0.11) (0.12) (0.12) 

Median daily count - -0.00 -0.00 

 - (0.00) (0.00) 

Strava user share - - 3.17 * 

 - - (1.38) 

N 43 43 43 

R2 0.70 0.70 0.74 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 

 

 

 

 

 

 

 

  



6. Discussion 
6.1. Descriptive statistics 

Bicycle counters in urban regions show higher bicycle counts than such based in intermediate 
urban/rural regions. Unfortunately, according to Eurostat (2022), our input data does not feature 
any predominantly rural counter locations. However, eleven locations (R11, R17, BAR2, SPN1, 
DSP1, DSP2, DSP3, DSP4, DSP5, DSP7 and DSP8) fulfil the first of three OECD requirements of less 
than 300 inhabitants per km² as rural condition, when derived for a 1km buffer. 

When comparing monitored bicycle counts and Strava counts for the same period in case of the 
predominantly urban counter location D02 (see Figure 3), both variables seem to show 
congruent temporal patterns at the beginning and at the end of 2020. A divergence can be 
observed around spring which can be attributed to an increase of Strava user share at the start of 
the corona pandemic and a decrease around school summer holidays. The scaling factor of 100:1 
is in line with an average Strava user share of 1% for this location and the corresponding year. 

For the less urban Brandenburg based location BAR2 (Eichhorst) with less bicycle counts and less 
Strava counts, the temporal patterns match not as good, as Figure 3 shows. In particular, the 
lower values are often underestimated as Strava counts less than 3 are set to 0 and higher counts 
are given in 5-count steps in order to ensure data privacy (Lee & Sener, 2021). In addition, the 
average share of Strava users is higher than at most Berlin locations but also varies much 
stronger over time. This variation could also be explained by the before mentioned rounding 
effect of using 5-count steps for Strava information, affecting smaller ratios between monitored 
counts and Strava counts much stronger as it is the case in more rural areas. Another interesting 
observation that can be made when comparing BAR2 and D02 are the inverted peaks. At D02 
count peaks are found during the week, while at BAR2 these were observed during weekends. 
This is in line with the higher number of commuting cyclists in urban areas during the week as 
well as with the higher numbers of recreational cyclists in less urban areas on the weekends. 

On average, Strava users shares decrease with the degree of urbanization, consequently being 
lowest in Berlin and highest but more volatile in Brandenburg. The Strava user shares of all North 
Rhine-Westphalia (NRW) locations, featuring both, urban and intermediate urban/rural areas, 
range between Berlin and Brandenburg. This pattern can be attributed to the fact that in order to 
reach a Strava user share below 1 %, a monitored count of at least 500 is needed, since the 
lowest Strava count greater than 0 is 5. In our dataset all Brandenburg locations have a median 
daily count below 500, whereas all Berlin locations show a median daily count above 500. In case 
of the North Rhine-Westphalia sites some counter locations are above and some are below this 
threshold. 

 

6.2. Variable selection and relative influence on independent variable 
The three dominating variables temperature, share of commuting stave users and precipitation 
together contribute 55 % of influence on the bicycle count prediction (Table 3). Weather related 
variables support the obvious assumption that at higher temperatures and no/less rain bicycle 
activities increase (cf. Figure 6). However, our model predictions indicate a certain temperature 
optimum around 22 °C indicating decreasing bicycle counts on hot days. In our model higher 
amounts of daily rain sums are associated with lower numbers of predicted bicycle counts. 



Nevertheless, it can be observed that this relationship is not linear, showing an increase of 
estimated bicycle counts for increasing daily precipitation sums from around 25 mm until ca. 40 
mm. We suppose that this is due to the fact that in both areas, North Rhine-Westphalia and 
Berlin-Brandenburg, the greatest precipitation amounts are observed in the warmer summer 
months, although this pattern is more pronounced in the latter case (ClimateData, 2022a, 
2022b).While weather data explain temporal dynamics on a macro scale, the share of commuting 
Strava users contribute to explain temporal differences on a microscale (work day - weekend / 
holidays) and parts of the spatial differences between urban and more rural areas, as described 
above. As can be seen in Figure 6 in our model an increasing share of commuting Strava users 
leads to higher numbers of estimated bicycle counts.  

From the selected 33 variables, 25 subordinated variables have an individual share of influence 
of ≤ 2 %, however, contributing 21.4 % in total. While the dominating variable are sufficient to 
describe the general spatio-temporal count dynamics, subordinated variables are supposed to 
explain local specifications at individual periods or locations. This would explain, why 
subordinated variables (e.g. month [7]), containing potentially correlated information of 
dominating variables (e.g. temperature [1]), do not have even lower influence. Similarly, four 
subordinated variables [17, 19, 28, 29] relate to workday-holiday information, which differ in the 
three considered states and contribute to explain these spatial differences. Another example are 
variables addressing land use [9, 11, 12, 13, 14, 15, 16, 18, 20, 21, 25, 27] with a total influence of 
13.1% in our standard model. Urban green and presence of surface water were reported to be 
generally preferred by recreationist and a factor affecting well-being (Venohr et al., 2018) and 
might have a positive effect on the surrounding microclimate of a counter location. This relatively 
low share of influence, might be explained by several reasons: a) cyclists (in particular commuter) 
prefer other aspects (e.g. shorter distance, quality of asphalt, car density or other security 
aspects) over land-use attributed, b) available counters do not cover the combination of high 
bicycle counts in e.g. a forested area, c) the used climate date do not have the required spatial 
resolution and precision to display microclimate conditions.  

6.3. Model performance and uncertainty 
Our standard model yielded an overall MAPE of 27.9% and showed better average MAPE for the 
urban Berlin based counter locations (13.7%) compared to the partly urban and partly 
intermediate urban-rural NRW counter locations (45.4%) and the entirely intermediate urban-
rural counter locations based in Brandenburg (56.2%). Our out-of-sample prediction models 
show good and useful prediction results for D02 but also less good results for other locations (cf. 
unknown location model for BAR2), with the unknown year models performing better than the 
unknown location models in all cases.  

Dadashova and Griffin (2020) provide an overview of studies predicting bicycle activity including 
prediction accuracy where El Esawey et al. (2015) with 10.4% reported the lowest MAPE values 
for their Vancouver based prediction model, being not too far from our average MAPE for the 
Berlin based counter locations. The average MAPE of the corresponding study Dadashova and 
Griffin (2020) was 29% which is comparable to our standard model overall MAPE. In contrast to 
our results Jestico et al. (2016) observed higher model error for high volume sites compared to 
low volume sites (cf. Miah et al. (2022)). 



Figure 7 shows that in our case counter locations with higher daily bicycle counts, most notably 
the Berlin locations, showed also decreased MAPE and lower Strava user shares but also a lower 
volatility of these user shares. According to Figure 7 d) locations with a higher MAPE show a 
higher volatility of Strava user shares, yet it has to be considered that higher Strava user shares 
are correlated with a higher volatility of Strava user shares (a Pearson test revealed a positive 
correlation of 0.8 between the two variables.). Therefore, excluding this variable from linear 
regression, as done in the linear regression model 1 and model 2 (Table 5) seemed sensible. 
Based on the statistically significant estimates of model 1 and model 2 it can be assumed that the 
MAPE for bicycle count predictions for a certain counter location depends on the standard 
deviation of Strava user shares as an indicator for volatility, the absolute number of datapoints in 
the training data set and the share of missing Strava information, which may be related to lower 
Strava counts being assigned as NA-values. Linear regression models showed that the daily count 
median did not have a significant effect on the MAPE (cf. model 2). While Jestico et al. (2016) did 
observe higher model errors for locations with increased bicycle counts our results show the 
opposite, i.e. increased errors for low bicycle counts . As a possible explanation we suggest 
elevated and highly volatile Strava user shares for low bicycle counts. This can arise from the 
rounding Strava counts in increments of five, having a bigger impact on smaller proportions (see 
Table 8 and  

Table 9 in the Appendix). This in total leads to a blur of the Strava user shares and impairs the 
model accuracy at lower counts.  Berlin stations account for the largest number of datapoints, 
the highest bicycle counts (with the least volatile user shares) and the least shares of missing 
Strava values (cf. Table 7), which leads to the best model performance for these stations. 

 

 

7. Conclusion 
In this study we have presented a machine learning approach that is able to estimate bicycle 
counts for urban and more rural locations, based on open source fitness tracker data, weather 
data, socio-demographics and land use information. Our prediction models suggest that even if 
bicycle count data from fitness tracker apps are available, weather variables and information on 
the bicyclist composition (share of commuters) reach a higher relative influence as predictors 
than the mere fitness tracker counts. A constant or uniformly changing Strava user share would 
allow estimating monitored bicycle counts by a simple factor or function. Consequently the 
volatility of fitness tracker user shares, can be seen as a main cause for model uncertainties and 
increased MAPE. Spatial differences in model accuracy are assumed to be based on this (being 
caused through rounding effects due to data privacy measures) as well as on the number of 
datapoints and the share of missing Strava data per counter location. Hence, estimation models 
based on Strava information should be used with caution for less frequented locations. As the 
daily mean temperature was found to be the main predictor of bicycle counts with increasing 
predicted counts until 22 °C and decreasing count predictions above this temperature, further 
research should focus on how the microclimate and associated land use features (e.g. blue-green 
infrastructure) affect bicycle count estimation.  

 



8. Appendix 
 

Table 6: Hyperparameters chosen after three step grid search. 

Hyperparameter 

Buffer Width 
Detection 

Model 
Standard 

Model 
Validation 

Model 
Unknown 

Year Model 
Unknown Location 

Models 

     D02 R03 BAR2 
Shrinkage Rate 0.3 0.08 0.1 0.05 0.1 0.1 0.1 
Interaction Depth 5 16 18 22 5 15 15 
Minimum Number of 
Observations in Trees' 
Terminal Nodes 5 13 9 17 5 5 5 
Bag Fraction 0.5 0.5 0.5 0.5 0.65 0.5 0.5 
Number of Trees 5000 5000 5000 5000 5000 5000 5000 
Cross Validations to 
Perform 10 10 10 10 10 10 10 

 

 

Table 7: Data basis for linear regression of standard model MAPE estimation. 

Station Region 

MAPE 
(standard 

model) 

Mean 
Strava user 
share (%) 

Median 
daily 
count 

Standard 
deviation of 

Strava user share 
Number of 
datapoints 

Share of 
Strava-NA 

D02 Berlin 13.29 0.80 7661 0.31 1461 6.16 
D03 Berlin 13.32 0.96 3228 0.50 1461 8.42 
D17 Berlin 17.03 1.30 2276 0.75 1461 11.98 
D20 Berlin 13.12 1.23 1020 0.65 1461 24.71 
D23 Berlin 16.08 0.64 1122 0.46 1453 49.14 
D13 Berlin 13.98 0.61 1272 0.39 1461 44.35 
D15 Berlin 13.16 0.72 1493 0.61 1461 35.73 
D05 Berlin 12.48 0.65 9219 1.25 880 13.98 
D18 Berlin 14.65 0.68 4219 0.37 1461 11.16 
D24 Berlin 18.51 1.09 501 1.10 1461 64.34 
D26 Berlin 13.79 1.24 3039 0.56 1461 10.47 
D27 Berlin 11.19 1.15 1125 0.60 1461 27.58 
D19 Berlin 11.47 0.64 3490 0.31 1461 10.27 
D21 Berlin 11.86 0.46 4783 0.22 1461 10.75 
D10 Berlin 13.37 0.62 5566 0.46 1461 8.76 
D12 Berlin 11.36 0.84 2097 0.47 1461 14.92 
D06 Berlin 13.57 1.15 3395 0.52 1461 10.34 
R13 NRW 83.53 6.04 90 9.73 1435 57.42 
R12 NRW 45.44 4.39 237.5 3.17 838 39.38 
R11 NRW 105.17 5.04 80 6.27 1159 69.28 
R17 NRW 59.64 4.18 67 13.08 1279 81.24 
R15 NRW 48.18 3.46 123.5 3.36 1344 70.83 
R03 NRW 29.2 3.65 957.5 2.19 1096 9.12 



R07 NRW 32.34 3.01 420 2.86 972 30.66 
R02 NRW 18.39 3.71 1474 1.85 945 2.86 
R01 NRW 20.59 0.83 638.5 0.40 938 56.72 
R16 NRW 57.45 8.00 128 9.07 752 38.83 
R05 NRW 30.79 2.36 880 1.63 365 7.40 
R06 NRW 19.57 1.47 686 0.96 365 28.22 
R10 NRW 45.01 1.27 398 1.01 619 59.13 
R08 NRW 50.62 7.47 48 3.91 93 83.87 
R09 NRW 34.74 5.31 199 4.24 93 25.81 

BAR4 Brandenburg 28.09 5.99 178 5.99 1395 56.63 
SPN1 Brandenburg 32.07 NA 286 NA 1429 100.00 
BAR2 Brandenburg 43.04 2.73 78.5 2.93 1358 76.66 
MOL4 Brandenburg 33.81 5.41 175 5.19 1372 38.63 
SPN5a Brandenburg 25.15 NA 231 NA 1355 100.00 
DSP1 Brandenburg 102.53 12.71 45.5 4.12 76 97.37 
DSP7 Brandenburg 86.75 16.17 39 15.82 104 75.96 

DSP11 Brandenburg 85.94 7.96 90 5.95 72 43.06 
DSP5 Brandenburg 27.03 4.24 223 NA 59 98.31 
DSP4 Brandenburg 91.47 11.07 27 5.97 57 94.74 
DSP6 Brandenburg 47.69 8.57 128 10.34 136 40.44 
DSP3 Brandenburg 27.52 1.80 146.5 1.91 80 93.75 
DSP8 Brandenburg 65.18 5.65 122 5.18 31 58.06 
DSP2 Brandenburg 91 4.63 64 4.97 71 60.56 

 

 

 



 

Figure 5: Predicted vs. monitored bicycle counts of the unknown year model. 

  



 

Figure 6: GBM prediction of bicycle counts for increasing temperature, percentage of Strava commuters and precipitation. 
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Table 8: Mean Strava user share and standard deviation for monitored count quantiles. 

Monitored count 
range 

Mean Strava user share 
(%) 

Standard deviation of 
Strava user share 

≤ 87 15.10 15.44 
87 - 234 5.27 3.46 

234 - 496 3.20 2.18 
496 - 917 1.90 1.69 

917 - 1608 1.30 1.12 
1608 - 2683 1.11 0.90 

28683 - 4837.125 1.00 0.77 
≥ 4837.125 0.69 0.50 

 

Table 9: Mean Strava user share and standard deviation for monitored Strava count quantiles. 

Strava count range Mean Strava user share 
(%) 

Standard deviation of 
Strava user share 

≤ 10 2.10 4.62 
10 - 20 1.99 3.47 
20 - 35 1.63 2.43 
≥ 35 1.73 1.65 
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