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Abstract 16 

Gut microbiome communities have a significant impact on bee health and disease and have been 17 
shown to be shaped by a variety of factors, including exposure to pesticides and inhive chemicals. 18 
However, it is unknown whether pesticide exposure affects the coexistence and cross-kingdom 19 
network parameters of bee gut microbiome communities because microbes may compete in the gut 20 
environment under different stressors. Therefore, we conducted additional analysis of the 21 
microbiome data from our previous study in which we discovered that exposure to two novel 22 
insecticides flupyradifurone (FPF) and sulfoxaflor (Sulf) or/and a fungicide, azoxystrobin (Azoxy) 23 
caused dysbiosis of bee gut microbiota that was associated with an increase in the relative 24 
abundance of opportunistic pathogens such as Serratia marcescens. We investigated for the first 25 
time the potential cross-kingdom fungal-bacterial interactions using co-occurrence pattern 26 
correlation and network analysis. We discovered that exposure to FPF or Sulf alone or in 27 
combination with Azoxy fungicide influenced the co-existence patterns of fungal and bacterial 28 
communities. Significant differences in degree centrality, closeness centrality, and eigenvector 29 
centrality distribution indices were also found in single and double-treatment groups compared to 30 
controls. The effects of FPF and Sulf alone on cross-kingdom parameters (bacterial to fungal node 31 
ratio, degree of centrality, closeness centrality, and eigenvector centrality) were distinct, but this 32 
was reversed when they were combined with Azoxy fungicide. The fungal and bacterial hub taxa 33 
identified differed, with only a few shared hubs across treatments, suggesting microbial cross-34 
kingdom networks may be disrupted differently under different stressors. Our findings add to our 35 
understanding of pesticide effects on the bee gut microbiome and bee health in general, while also 36 
emphasizing the importance of cross-kingdom network analysis in future microbiome research. 37 

Keywords: Gut microbiota, microbes’ coexistence, pesticides, dysbiosis, interkingdom network 38 
analysis, honey bees. 39 

40 
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1. Introduction 41 

The western honey bee, Apis mellifera, has a gut microbial community that is relatively 42 

stable and is thought to improve host health and defend against parasites and pathogens (Dosch et 43 

al., 2021; Huang et al., 2023; Kwong and Moran, 2016; Moran et al., 2019; Zheng et al., 2018). 44 

Many studies, however, have shown that pesticides and in-hive chemicals used in apiculture can 45 

disrupt the honey bee gut microbiome, putting host bee health at risk (Blot et al., 2019; Dai et al., 46 

2018; Hotchkiss et al., 2022; Kakumanu et al., 2016; E. Motta et al., 2018; Motta et al., 2022; Qi 47 

et al., 2022). However, the majority of these studies focused on the effects of pesticides on the 48 

bacterial communities of the microbiome, despite the fact that the bee microbiome includes 49 

members from many more kingdoms (archaea, fungi, protozoa, and viruses) (Engel et al., 2016). 50 

For example, until June 2023, only three studies looked at the effects of pesticides on both fungal 51 

and bacterial communities, compared to 22 studies that only looked at bacterial communities 52 

(personal literature survey, supplementary fig. S1). The relative and absolute abundances of the 53 

members of these microbial communities, as well as their interactions, will determine the 54 

microbiome's overall contribution to host health. 55 

Previous research found that a decrease in bacterial richness in the gut of solitary bee larvae 56 

Megachile rotundata after antifungal treatment, implying that changes in the fungal community 57 

caused changes in the bacterial community (McFrederick et al., 2014). Moreover, introducing 58 

Wickerhamomyces anomalus yeast to bees with a well-developed microbiota was 59 

immunomodulatory and had an effect on the overall microbial community (Tauber et al., 2019). 60 

Therefore, it is crucial to investigate how microbes coexist and interact under different stressors, 61 

as well as the effects on the host, including whether they are affected by dysbiosis in other 62 

microbiome members. This is because microbes may compete in the gut environment under 63 



4 
 

different stressors, with some directly or indirectly inhibiting the growth of others (McFrederick et 64 

al., 2014). 65 

Cross-kingdom network analysis aided in the identification of hub or keystone non-66 

bacterial species in the microbiome that can influence community stability and connectivity (Kim 67 

et al., 2020; Lee et al., 2022; Lemoinne et al., 2020). Although it has many unresolved intrinsic and 68 

technical limitations (Faust and Raes, 2012), it is still the only exploratory data analysis technique 69 

that allows researchers to infer microbial interactions from sequence data, particularly cross-70 

kingdom interactions. For instance, the network parameters provide key insights into the 71 

associations between taxa and the influence of some taxa on particular modules or the whole 72 

community (Peschel et al., 2021; Singavarapu et al., 2023). The current state of research assumes 73 

a simplified "competition vs. cooperation" framework in the microbiome between the bacterial and 74 

fungal kingdoms. As a result, it is critical to uncover potential pesticide effects on cross-kingdom 75 

networks to determine how pesticide exposure affects hub or keystone bacterial and non-bacterial 76 

species (Lee et al., 2022). 77 

Previously, we discovered that chronic exposure to field realistic concentrations of two new 78 

agrochemicals, sulfoxaflor (Sulf) and flupyradifurone (FPF), alone or in combination with 79 

azoxystrobin (Azoxy), had a significant impact on the composition of the honey bee microbial 80 

community (bacteria and fungi). Fungicide, insecticides, and fungicide-insecticides combinations 81 

all had varying effects on the relative abundance of the top ten genera of the bee gut microbiota. 82 

Moreover, dysbiosis of the gut microbiota has been linked to an increase in the relative abundance 83 

of  opportunistic pathogens like Serratia marcescens (Al Naggar et al., 2022).  However, it is 84 

unknown whether exposure to these pesticides affects the coexistence and cross-kingdom network 85 
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parameters of bacterial and fungal communities of the bee gut microbiome and its implication to 86 

the bee health in bee microbiome.  87 

To fill this knowledge gap, we conducted additional analysis of the microbiome data from 88 

our prior study (Al Naggar et al., 2022) to ascertain the impact of these novel insecticides (FPF and 89 

Sulf) or/and Azoxy fungicide on the honey bee gut microbial community coexistence and cross 90 

kingdom co-occurrence network characteristics. We hypothesized that pesticide exposure, either 91 

individually or in combination, would affect the coexistence and interkingdom network parameters 92 

of fungal and bacterial communities in the bee microbiome. 93 

2. Materials and methods 94 

2.1 Honey bees 95 

The experimental design was presented in detail in (Al Naggar et al., 2022).  Briefly, newly 96 

emerged bees were fed the gut homogenate of inhive (nurse) bees diluted 3:8 with sterile 1:1 97 

sucrose-water solution. This mixture was then given to experimental bees housed in metal cages 98 

via bulk feeding 24 h as described in detail in our previous work. Then the tube was removed and 99 

a new one containing 1:1 sucrose water- solution was provided for 4 days for microbiome 100 

establishment, following (Dosch et al., 2021). This method of developing the gut microbiota was 101 

chosen because it results in bees with gut communities like those found in natural bee colonies 102 

(Kwong et al., 2014; Zheng et al., 2017b).  103 

Sublethal and field-relevant concentrations of FPF (4.30 µg/g) or Sulf (46.97 ng/g) found 104 

in nectar were given chronically ad libitum to bees via sugar water for 10 days, while 3 % of the 105 

LD50 of Azoxy (38.18 µg bee-1) was used. At day zero of pesticide exposure, one bee from each of 106 

the 18 cages was collected (total 18 bees) and considered a reference sample to document the initial 107 

or background gut microbiota. Cages were then assigned to 6 treatments with three cages per 108 
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treatment and 30 bees per cage: control, FPF, Sulf, Azoxy, FPF+Azoxy, and Sulf+Azoxy as 109 

illustrated in Fig. 1. At 5 and 10 days after exposure, subsamples of 3 bees per cage (9 bees per 110 

treatment) were collected for microbiome analysis. Then the gut region, including the 111 

midgut/ventriculus, the ileum, and the rectum, was dissected out of each bee under sterile 112 

conditions and stored   at - 80 °C till genomic DNA extraction. 113 

2.2. Sequence data and statistical analysis 114 

The DNA extraction, amplicon library preparation, sequencing and bioinformatic analysis 115 

procedures were reported earlier (Al Naggar et al., 2022). We used the same sequence data 116 

deposited in the National Center for Biotechnology Information Sequence Read Archive (SRA) 117 

under BioProject ID PRJNA839609. The respective metadata, ASV matrices, taxonomic tables, 118 

representative sequences and phylogenetic trees were imported into R using the phyloseq package 119 

(McMurdie and Holmes, 2013). For this study the fungal and bacterial datasets were rarefied to 120 

1042 and 13204 reads per sample, respectively, to get all the treatments and replicates. In total 108 121 

individuals per treatment per time (9 individual x 6 treatments x 2 time points) and 9 time zero 122 

controls resulting in 117 individuals were used for analysis. 123 

The data consistency on the fungal and bacterial beta diversity was tested using Permanova 124 

and Principal Coordinate Analysis (PCoA) based ordinations using the Bray-Curtis distance with 125 

the functions adonis2, ordinate and plot-ordination implemented in phyloseq. The pattern of co-126 

existence of the fungal and bacterial communities in the bee gut across treatments was tested using 127 

mantel correlation test between the fungal and bacterial community Bray-Curtis distance matrices 128 

using the vegan package (Oksanen et al., 2022). Linear regression model was fitted, and the 129 

relationship was statistically tested and plotted using the stat_poly_line and stat_poly_eq functions 130 

of the ggpmisc extension of ggplot2 (Wickham, 2016).  Pairwise comparison between treatments 131 
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was done using pairwise Wilcoxon signed-rank tests followed by BH multiple-testing correction 132 

using the rstatix package (Kassambara, 2023). 133 

Bacterial and fungal cross-kingdom co-occurrence networks were constructed for each of 134 

the 6 treatments (Control, FPF, Sulf, Azoxy, FPF+Azoxy, Sulf+Azoxy) using the function 135 

multi.spiec.easi of SpiecEasi package (Kurtz et al., 2015). SpiecEasi controls the spurious co-136 

occurrences by controlling for the lack of independence in normalized count data, which accounts 137 

for the high number of edges in the network-based analysis of amplicon data sets. In addition, it 138 

estimates interactions through sparse inverse covariance selection of a transformed compositional 139 

data set than correlation. Networks were estimated by the Meinshausen and Bühlmann graph 140 

inference method. The nlambda and lambda.min.ratio values were optimized to get a network 141 

stability value close to 0.05 and network assessment was done over the nlambda values for every 142 

50 cross-validations. Networks were then plotted using the ggnet2 function of GGally package 143 

(Schloerke et al., 2021). Network structural and topological properties, including edges, centrality 144 

indices, and modularity were calculated using the igraph package (Csardi, Gabor, 2006). 145 

Modularity and modules (elementary components of any biological network, and their 146 

identification and characterization give  more information about the network's local interaction 147 

patterns and their contribution to the overall structure, connectivity, and function of the network) 148 

(Layeghifard et al., 2017) that are considered to be subcommunities in each network were 149 

determined based on a hierarchical agglomeration algorithm with modularity optimization using 150 

the cluster_fast_greedy function. Differences in the distribution of six network centrality measures 151 

(Dai et al., 2019; Deng et al., 2012) including node degree (number of links with other taxa also 152 

used to identify community hub taxa), betweenness (centrality based on a measure of a taxon's 153 

influence in the network), closeness (a measure of a taxon's closeness to all other members), 154 

closeness centrality (measures node efficiency in terms of connection to other nodes), eigenvector 155 
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centrality (a measure of a taxon’s linkage to others accounting for how connected the others are), 156 

and transitivity or clustering coefficient (a measure of the tendency of the nodes to cluster together) 157 

between treatments microbial networks were tested with pairwise Wilcoxon signed-rank tests 158 

followed by BH multiple-testing correction using the rstatix package (Kassambara, 2023). All 159 

statistical analyses were performed using R (R Core Team, 2020). 160 

3. Results 161 

3.1 Effects on beta diversity 162 

The effects of pesticides treatment on the microbial community composition of honey bee 163 

guts are consistent with our previous study, even though we increased the sample size and 164 

decreased the per sample read coverage. The only difference was that no significant interactive 165 

effect (treatment x time) on bacterial community composition was found using permutational 166 

multivariate analysis of variance (PERMANOVA), which was also marginally significant with p 167 

= 0.045 in the previous dataset. 168 

3.2 Effects on the coexistence pattern of bee gut microbiota 169 

The co-existence patterns of the fungal and bacterial communities in the honey bee gut were 170 

tested across the treatment groups using mantel test which revealed a significant correlation 171 

between the two communities only in the control samples (r = 0.231, p = 0.031). Consistently linear 172 

regression model analysis of the two distance matrices also showed a substantial relationship only 173 

for the control samples, implying that pesticide exposure disrupts this positive relationship (Fig. 174 

2). 175 

3.2 Effects on cross-kingdom network characteristics   176 
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Cross-kingdom bacterial and fungal community network analysis and visualization also 177 

revealed a significant impact of pesticides exposure on the co-occurrence network patterns as 178 

compared to control communities. The cross-kingdom network of FPF and Sulf, for example, has 179 

a higher percentage of modularity (76-79 vs. 69), a 1.7-fold decrease in the ratio of fungal to 180 

bacterial nodes (26-27% vs. 46%), a higher percentage of positive edges (91.3 vs. 84.8), and a 181 

lower percentage of negative edges (8.7 vs. 15.2) compared to control (Fig. 3).  Azoxy's cross-182 

kingdom network was relatively similar to the control. However, the double treatments FPF + 183 

Azoxy and Sulf +Azoxy affected these cross-kingdom network relationships differently compared 184 

to both control and single treatments (Fig. 3). 185 

In order to evaluate the underlying network community organization as well as the 186 

significance of the community members, we tested the distribution of six crucial network centrality 187 

indices. We found significant differences (P < 0.05) in the distribution’s indices of degree, 188 

closeness, and eigenvector centrality in single and double treatment groups compared to control 189 

(Table 1). The network transitivity was significantly different (P < 0.05) in all treated groups 190 

compared to controls except in the azoxy alone or combined with FPF treated groups. There were 191 

no significant differences in network betweenness centrality (P > 0.05) between treated and non-192 

treated (control) groups (Table 1). 193 

When we compared the network centrality indices of double treatments and single 194 

treatments, we discovered a significant difference (p < 0.05) in both closeness centrality and 195 

eigenvector centrality of the double treatment 'FPF plus Azoxy' compared to both FPF insecticide 196 

and Azoxy fungicide individually (Table 1). While we found a significant difference (p < 0.05) in 197 

both closeness and eigenvector centrality of the double treatment 'Sulf plus Azoxy' compared to 198 

both Sulf insecticide and Azoxy fungicide individually (Table 1).  We discovered that the number 199 
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of fungal nodes is greater than the number of bacterial nodes; however, the percentage of bacterial 200 

hubs (i..e the most connected OTUs, according to their degree) relative to the number of taxa was 201 

greater than the percentage of fungal hubs, and pesticide exposure altered the percentages of hubs 202 

in treated groups differently than in control groups (Fig. 4 a, b). Surprisingly, the identified fungal 203 

and bacterial hub taxa were distinct, with only a few hubs shared across treatments 204 

(Supplementary file S1). 205 

An interesting trend can also be seen in (Fig. 4 a, c, d, e), where we observed a decrease in 206 

the ratio of bacterial to fungal nodes, as well as the degree of centrality and closeness 207 

centrality while increasing eigenvector centrality in both the FPF and Sulf cross-kingdom networks 208 

when compared to the control. However, in cross-kingdom networks of the double treatments, this 209 

trend was reversed, indicating the impact of the fungicide Azoxy, as Azoxy alone showed a similar 210 

pattern to the control.  Furthermore, the cross-kingdom centrality closeness index was significantly 211 

lower (p < 0.05) in FPF alone or in combination with Azoxy, as well as in Sulf+Azoxy treated 212 

groups compared to controls (Fig. 4 f). 213 

4. Discussion 214 

Pesticides can disrupt gut microbes by either directly affecting microbe growth or by 215 

causing a decline in host health to the point where the host can no longer properly regulate its gut 216 

microbiota (Hotchkiss et al., 2022). It is, however, critical to investigate how microbes coexist and 217 

interact in the bee gut under various stressors, as well as the consequences to the host health.  218 

In this study, we investigated for the first time the potential of cross-kingdom fungal-219 

bacterial co-occurrence network analysis to unravel the impact of pesticide exposure on the co-220 

existence of fungi and bacteria in the bee gut, a method first developed for the soil microbiome 221 

(Barberán et al., 2012) and later used for the plant-microbiome (Cardinale et al., 2015; Chen et al., 222 
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2018). We found that exposure to two novel insecticides, FPF or Sulf alone or in combination with 223 

Azoxy fungicide impacted the co-existence patterns of the fungal and bacterial communities as 224 

well as their cross-kingdom network parameters. These results emphasize the detrimental effects 225 

of these pesticides and may help to explain the increase in the relative abundance of opportunistic 226 

pathogens, such as Serratia marcescens, that we previously identified due to dysbiosis of the gut 227 

microbiota after exposure to these pesticides (Al Naggar et al., 2022).   228 

High values of degree centrality and betweenness centrality, respectively, may indicate 229 

stronger relationships among taxa and a strong influence of some taxa on bridging or 230 

communicating between different parts of the network (Ma et al., 2016). In our study, in both the 231 

FPF and Sulf cross-kingdom networks, the degree of centrality and closeness centrality decreased 232 

while eigenvector centrality increased. This trend, however, was reversed in cross-kingdom 233 

networks of the double treatments, indicating the impact of the fungicide Azoxy, as Azoxy alone 234 

showed a similar pattern to control. These findings imply that different agrochemicals (insecticides, 235 

vs. fungicides) either alone or in combination had different effects on microbial communities cross-236 

kingdom network (Matsuzaki et al., 2023).  Previous research also revealed that the effect of 237 

pesticides on honey bee gut microbiota is pesticide dependent. For instance, glyphosate herbicide, 238 

as well as neurotoxic insecticides such as coumaphos, fipronil, thiamethoxam, and imidacloprid, 239 

have been shown to disrupt honey bee gut microbiota (Motta et al., 2018; Motta and Moran, 2020; 240 

Rouzé et al., 2019), whereas carbendazim fungicide does not (Wang et al., 2022).  241 

The hub taxa are more ecologically significant than other microbes because their removal 242 

would have an impact on the overall community assemblage (Faust and Raes, 2012). The hub 243 

microbes can have a significant impact on the microbial community by suppressing or inducing 244 

the development of other populations.  Even though the number of fungal nodes in the cross-245 

kingdom networks was greater than that of bacteria in the current study, the percentage of bacterial 246 
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hubs relative to the number of taxa was greater than that of fungi, and pesticides exposure altered 247 

the percentages of hubs in treated groups differently than in control groups. Furthermore, the fungal 248 

and bacterial hub taxa identified were distinct, with only a few hub taxa were shared across 249 

treatments, suggesting that different agrochemicals had different effects on microbial community’s 250 

cross-kingdom network connectivity and centrality. These effects may be attributed to the fact that 251 

fungi and bacteria coexist and interact both physically and chemically, exhibiting both antagonism 252 

and cooperation in a mixed bacterial-fungal complex habitat (Frey-Klett et al., 2011).  As a result, 253 

under various stressors, the bee gut microbiome cross-kingdom network patterns may be disrupted 254 

differently, resulting in a lack of similarity between microbiome hubs (Hernandez et al., 2021).  255 

5. Conclusion  256 

The insecticides FPF or Sulf, alone or in combination with the fungicide Azoxy, disturbed 257 

the coexistence patterns of fungal and bacterial communities as well as their cross-kingdom 258 

network characteristics, which is consistent with and clarifies our prior findings (Al Naggar et al., 259 

2022). Our research is the first, to our knowledge, to demonstrate how pesticide exposure disrupts 260 

cross-kingdom bacterial-fungal relationships in honey bee gut microbiota. In addition, it 261 

emphasizes the importance of studying the coexistence of different gut microbiota as well as cross-262 

kingdom network analysis in future bee gut microbiome research to improve our understanding of 263 

the effects of pesticide exposure on the reorganization of the bee gut microbiome and its 264 

implications for bee health. 265 

6. Acknowledgements 266 

This study was financially supported by the Helmholtz visiting researcher grant funded by 267 

Helmholtz Information & Data Science Academy (HIDA) the to YA.  268 



13 
 

7. Supplementary material 269 

Supplementary file S1: Interkingdom network analysis results for each treatment and summary of 270 

hub taxa identified. 271 

Figure S1. Literature review of the number of studies that investigated the effects of pesticides on 272 

the gut microbiota of bees between 2003 and 2023. 273 

8. References   274 

Al Naggar, Y., Singavarapu, B., Paxton, R.J., Wubet, T., 2022. Bees under interactive stressors: 275 
the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin 276 
disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. 277 
Science of The Total Environment 849, 157941. 278 
https://doi.org/10.1016/j.scitotenv.2022.157941 279 

Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore 280 
co-occurrence patterns in soil microbial communities. The ISME Journal 6, 343–351. 281 
https://doi.org/10.1038/ismej.2011.119 282 

Blot, N., Veillat, L., Rouzé, R., Delatte, H., 2019. Glyphosate, but not its metabolite AMPA, alters 283 
the honeybee gut microbiota. PLOS ONE 14, e0215466. 284 
https://doi.org/10.1371/journal.pone.0215466 285 

Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J., Berg, G., 2015. Bacterial networks and 286 
co-occurrence relationships in the lettuce root microbiota. Environmental Microbiology 17, 287 
239–252. https://doi.org/10.1111/1462-2920.12686 288 

Chen, Y., Sun, R., Sun, T., Liang, Y., Jiang, Y., Sun, B., 2018. Organic amendments shift the 289 
phosphorus-correlated microbial co-occurrence pattern in the peanut rhizosphere network 290 
during long-term fertilization regimes. Applied Soil Ecology 124, 229–239. 291 
https://doi.org/10.1016/j.apsoil.2017.11.023 292 

Csardi, Gabor, and T.N., 2006. The igraph software package for complex network research. 293 
InterJournal, complex systems 1695, 1–9. 294 

Dai, P., Yan, Z., Ma, S., Yang, Y., Wang, Q., Hou, C., Wu, Y., Liu, Y., Diao, Q., 2018. The 295 
Herbicide Glyphosate Negatively Affects Midgut Bacterial Communities and Survival of 296 
Honey Bee during Larvae Reared in Vitro. Journal of Agricultural and Food Chemistry 66, 297 
7786–7793. https://doi.org/10.1021/acs.jafc.8b02212 298 

Dai, W., Chen, J., Xiong, J., 2019. Concept of microbial gatekeepers: Positive guys? Applied 299 
Microbiology and Biotechnology 103, 633–641. https://doi.org/10.1007/s00253-018-9522-3 300 



14 
 

Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network 301 
analyses. BMC Bioinformatics 13, 113. https://doi.org/10.1186/1471-2105-13-113 302 

Dosch, C., Manigk, A., Streicher, T., Tehel, A., Paxton, R.J., Tragust, S., 2021. The Gut 303 
Microbiota Can Provide Viral Tolerance in the Honey Bee. Microorganisms 9, 871. 304 
https://doi.org/10.3390/microorganisms9040871 305 

Engel, P., Kwong, W.K., McFrederick, Q., Anderson, K.E., Barribeau, S.M., Chandler, J.A., 306 
Cornman, R.S., Dainat, J., de Miranda, J.R., Doublet, V., Emery, O., Evans, J.D., Farinelli, 307 
L., Flenniken, M.L., Granberg, F., Grasis, J.A., Gauthier, L., Hayer, J., Koch, H., Kocher, S., 308 
Martinson, V.G., Moran, N., Munoz-Torres, M., Newton, I., Paxton, R.J., Powell, E., Sadd, 309 
B.M., Schmid-Hempel, P., Schmid-Hempel, R., Song, S.J., Schwarz, R.S., VanEngelsdorp, 310 
D., Dainat, B., 2016. The Bee Microbiome: Impact on Bee Health and Model for Evolution 311 
and Ecology of Host-Microbe Interactions. mBio 7. https://doi.org/10.1128/mBio.02164-15 312 

Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews 313 
Microbiology 10, 538–550. https://doi.org/10.1038/nrmicro2832 314 

Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., Sarniguet, A., 2011. Bacterial-315 
Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food 316 
Microbiologists. Microbiology and Molecular Biology Reviews 75, 583–609. 317 
https://doi.org/10.1128/MMBR.00020-11 318 

Hernandez, D.J., David, A.S., Menges, E.S., Searcy, C.A., Afkhami, M.E., 2021. Environmental 319 
stress destabilizes microbial networks. The ISME Journal 15, 1722–1734. 320 
https://doi.org/10.1038/s41396-020-00882-x 321 

Hotchkiss, M.Z., Poulain, A.J., Forrest, J.R.K., 2022. Pesticide-induced disturbances of bee gut 322 
microbiotas. FEMS Microbiology Reviews. https://doi.org/10.1093/femsre/fuab056 323 

Huang, Q., Lariviere, P.J., Powell, J.E., Moran, N.A., 2023. Engineered gut symbiont inhibits 324 
microsporidian parasite and improves honey bee survival. Proceedings of the National 325 
Academy of Sciences 120. https://doi.org/10.1073/pnas.2220922120 326 

Kakumanu, M.L., Reeves, A.M., Anderson, T.D., Rodrigues, R.R., Williams, M.A., 2016. Honey 327 
Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Frontiers in Microbiology 328 
7. https://doi.org/10.3389/fmicb.2016.01255 329 

Kassambara, A., 2023. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 330 

Kim, H., Lee, K.K., Jeon, J., Harris, W.A., Lee, Y.-H., 2020. Domestication of Oryza species eco-331 
evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome 8, 20. 332 
https://doi.org/10.1186/s40168-020-00805-0 333 

Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015. 334 
Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLOS 335 
Computational Biology 11, e1004226. https://doi.org/10.1371/journal.pcbi.1004226 336 



15 
 

Kwong, W.K., Engel, P., Koch, H., Moran, N.A., 2014. Genomics and host specialization of 337 
honey bee and bumble bee gut symbionts. Proceedings of the National Academy of Sciences 338 
111, 11509–11514. https://doi.org/10.1073/pnas.1405838111 339 

Kwong, W.K., Moran, N.A., 2016. Gut microbial communities of social bees. Nature reviews. 340 
Microbiology 14, 374–84. https://doi.org/10.1038/nrmicro.2016.43 341 

Layeghifard, M., Hwang, D.M., Guttman, D.S., 2017. Disentangling Interactions in the 342 
Microbiome: A Network Perspective. Trends Microbiol 25, 217–228. 343 
https://doi.org/10.1016/j.tim.2016.11.008 344 

Lee, K.K., Kim, H., Lee, Y.-H., 2022. Cross-kingdom co-occurrence networks in the plant 345 
microbiome: Importance and ecological interpretations. Frontiers in Microbiology 13. 346 
https://doi.org/10.3389/fmicb.2022.953300 347 

Lemoinne, S., Kemgang, A., Ben Belkacem, K., Straube, M., Jegou, S., Corpechot, C., 348 
Chazouillères, O., Housset, C., Sokol, H., 2020. Fungi participate in the dysbiosis of gut 349 
microbiota in patients with primary sclerosing cholangitis. Gut 69, 92–102. 350 
https://doi.org/10.1136/gutjnl-2018-317791 351 

Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P.C., Xu, J., Gilbert, J.A., 2016. 352 
Geographic patterns of co-occurrence network topological features for soil microbiota at 353 
continental scale in eastern China. The ISME Journal 10, 1891–1901. 354 
https://doi.org/10.1038/ismej.2015.261 355 

Matsuzaki, R., Gunnigle, E., Geissen, V., Clarke, G., Nagpal, J., Cryan, J.F., 2023. Pesticide 356 
exposure and the microbiota-gut-brain axis. The ISME Journal. 357 
https://doi.org/10.1038/s41396-023-01450-9 358 

McFrederick, Q.S., Mueller, U.G., James, R.R., 2014. Interactions between fungi and bacteria 359 
influence microbial community structure in the Megachile rotundata larval gut. Proceedings 360 
of the Royal Society B: Biological Sciences 281, 20132653. 361 
https://doi.org/10.1098/rspb.2013.2653 362 

McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis 363 
and Graphics of Microbiome Census Data. PLoS ONE 8, e61217. 364 
https://doi.org/10.1371/journal.pone.0061217 365 

Moran, N.A., Ochman, H., Hammer, T.J., 2019. Evolutionary and Ecological Consequences of 366 
Gut Microbial Communities. Annual Review of Ecology, Evolution, and Systematics 50, 367 
451–475. https://doi.org/10.1146/annurev-ecolsys-110617-062453 368 

Motta, E., Raymann, K., Moran, N.A., 2018. Glyphosate perturbs the gut microbiota of honey 369 
bees. Proceedings of the National Academy of Sciences 115, 10305–10310. 370 
https://doi.org/10.1073/pnas.1803880115 371 

Motta, E.V.S., Moran, N.A., 2020. Impact of Glyphosate on the Honey Bee Gut Microbiota: 372 
Effects of Intensity, Duration, and Timing of Exposure. mSystems 5. 373 
https://doi.org/10.1128/mSystems.00268-20 374 



16 
 

Motta, E.V.S., Powell, J.E., Moran, N.A., 2022. Glyphosate induces immune dysregulation in 375 
honey bees. Animal Microbiome 4, 16. https://doi.org/10.1186/s42523-022-00165-0 376 

Motta, E.V.S., Raymann, K., Moran, N.A., 2018. Glyphosate perturbs the gut microbiota of 377 
honey bees. Proceedings of the National Academy of Sciences of the United States of 378 
America 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115 379 

Oksanen, J., O’Hara, R.B., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, P., 380 
2022. vegan: Community Ecology Package. R package version 2.6-4. [WWW Document]. 381 
URL https://cran.r-project.org/package=vegan 382 

Peschel, S., Müller, C.L., von Mutius, E., Boulesteix, A.-L., Depner, M., 2021. NetCoMi: 383 
network construction and comparison for microbiome data in R. Briefings in Bioinformatics 384 
22. https://doi.org/10.1093/bib/bbaa290 385 

Qi, S., Al Naggar, Y., Li, J., Liu, Z., Xue, X., Wu, L., El-Seedi, H.R., Wang, K., 2022. Acaricide 386 
flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium 387 
Gilliamella apicola through microbe-host metabolic interactions. Chemosphere 307, 136030. 388 
https://doi.org/10.1016/j.chemosphere.2022.136030 389 

R Core Team, 2020. R: a language and environment for statistical computing. 390 

Rouzé, R., Moné, A., Delbac, F., Belzunces, L., Blot, N., 2019. The Honeybee Gut Microbiota Is 391 
Altered after Chronic Exposure to Different Families of Insecticides and Infection by 392 
Nosema ceranae. Microbes and Environments 34, 226–233. 393 
https://doi.org/10.1264/jsme2.ME18169 394 

Schloerke, B., Cre, D.C., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., Toomet, 395 
O., Crowley, J., Hofmann, H., Wickham, H., 2021. GGally: Extension to “ggplot2.” 396 

Singavarapu, B., Du, J., Beugnon, R., Cesarz, S., Eisenhauer, N., Xue, K., Wang, Y., Bruelheide, 397 
H., Wubet, T., 2023. Functional Potential of Soil Microbial Communities and Their 398 
Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiology 399 
Spectrum 11. https://doi.org/10.1128/spectrum.04578-22 400 

Tauber, J.P., Nguyen, V., Lopez, D., Evans, J.D., 2019. Effects of a Resident Yeast from the 401 
Honeybee Gut on Immunity, Microbiota, and Nosema Disease. Insects 10, 296. 402 
https://doi.org/10.3390/insects10090296 403 

Wang, K., Chen, H., Fan, R.-L., Lin, Z.-G., Niu, Q.-S., Wang, Z., Ji, T., 2022. Effect of 404 
carbendazim on honey bee health: Assessment of survival, pollen consumption, and gut 405 
microbiome composition. Ecotoxicology and Environmental Safety 239, 113648. 406 
https://doi.org/10.1016/j.ecoenv.2022.113648 407 

Wickham, hadley, 2016. ggplot2:Elegant Graphics for Data Analysis, Use R! Springer 408 
International Publishing, Cham. https://doi.org/10.1007/978-3-319-24277-4 409 

Zheng, H., Powell, J.E., Steele, M.I., Dietrich, C., Moran, N.A., 2017. Honeybee gut microbiota 410 
promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of 411 



17 
 

the National Academy of Sciences 114, 4775–4780. 412 
https://doi.org/10.1073/pnas.1701819114 413 

Zheng, H., Steele, M.I., Leonard, S.P., Motta, E.V.S., Moran, N.A., 2018. Honey bees as models 414 
for gut microbiota research. Lab animal 47, 317–325. https://doi.org/10.1038/s41684-018-415 
0173-x 416 

  417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 



18 
 

List of tables 442 

 443 

Table 1. Pairwise comparison of fungal and bacterial cross-kingdom network parameters across 444 
treatment groups. Analysis output is summarized in three categories of (A) control versus all 445 
treatments of insecticides (FPF, Sulf), fungicide (Azoxy), and their combinations (FPF+Azoxy and 446 
Sulf+Azoxy), (B) between insecticides and fungicides, and (C) between double treatments and 447 
single treatments. In bold are network indices that were significant across treatments with BH 448 
adjusted p values. 449 

 450 

 451 

 452 

Treatment 
P value adj. 

 Degree Betweenness 
centrality Closeness Closeness 

centrality 
Eigenvector 
centrality Transitivity 

A. Control versus all treatments 

Control vs.  

FPF < 0.001 1 < 0.001 < 0.001 < 0.001 < 0.001 

Sulf < 0.001 0.092 0.67 < 0.001 0.012 0.005 

Azoxy 0.001 0.21 0.14 < 0.001 < 0.001 0.62 

FPF_Azoxy 0.013 1 < 0.001 < 0.001 < 0.001 0.75 

Sulf_Azoxy < 0.001 0.55 < 0.001 < 0.001 < 0.001 0.095 

B. Insecticide & fungicide 

FPF vs.                   Sulf 0.24 0.1 0.006 0.001 < 0.001 0.41 

FPF vs.                   Azoxy 0.01 0.21 < 0.001 < 0.001 < 0.001 0.002 

Sulf vs.                   Azoxy < 0.001 0.55 0.13 < 0.001 0.002 0.04 

C. Interaction between double and single treatments 

FPF_Azoxy vs. 
FPF 0.001 1 0.3 0.005 < 0.001 

 
< 0.001 

 

Azoxy 0.44 0.21 < 0.001 < 0.001 0.003 0.53 

Sulf_Azoxy vs. 
Sulf 0.011 0.072 < 0.001 0.22 < 0.001 0.3 

Azoxy 0.18 0.1 < 0.001 < 0.001 < 0.001 0.3 
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 456 

Figure 1. Experimental design showing treatments groups (3 cages per treatment) and timing of 457 
microbiome establishment, pesticide treatments and sampling of bees for microbiome analysis 458 
(D_0 as control, D_05 and D_10). Dimethoate was used as a reference toxic substance to validate 459 
exposure to pesticides (Al Naggar et al. 2022).  460 

 461 
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 474 

Figure 2.  Comparison of the relationship of co-existing fungal and bacterial communities in the 475 
honey bee gut microbiome within the treatment groups using mantel test and linear regression 476 
model fitting. Each point represents the dissimilarity distance between pairs of 27 samples (9 477 
individuals and 3 time points per treatment since the control time zero is used uniformly as initial 478 
community in all treatments) resulting in 351 pairwise comparison based on fungal or bacterial 479 
communities. Both mantel test and linear model fitting revealed a significant positive dissimilarity 480 
correlation between the two communities only in the control samples (Mantel test: r = 0.23, p = 481 
0.03; linear model fitting: R2

adj = 0.05,   P < 0.001). 482 
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 490 

Figure 3. Cross-kingdom co-occurrence network of bacterial and fungal communities in the honey 491 
bee gut microbiome across treatments. Node size refers to the betweenness centrality value. The 492 
networks are dominated by fungal (blue) members with noticeable bacterial (red) presence.  493 
Insecticide and/or fungicide exposure altered cross-kingdom network parameters (see table 1 for 494 
statistical details). Abbreviations: a % of modularity, b ratio of bacterial to fungal nodes, c % of 495 
positive edges, and d % of negative edges. 496 
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 505 

Figure 4. Comparison of cross-kingdom network centrality indices of bacterial and fungal 506 
communities in the honey bee gut microbiome across treatments. (a)  % of nodes, (b) % of hubs 507 
relative to the number of taxa, (c) degree centrality, (d) closeness centrality, (e) eigenvector 508 
centrality, and (f) closeness.  Pesticide and/or fungicide exposure significantly altered cross-509 
kingdom network characteristics compared to control (see table 1 for statistical details).  510 
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