This is the accepted manuscript version of the contribution published as:

Al Naggar, Y., Wubet, T. (2024):

Chronic exposure to pesticides disrupts the bacterial and fungal co-existence and the cross-kingdom network characteristics of honey bee gut microbiome *Sci. Total Environ.* **906**, art. 167530

The publisher's version is available at:

https://doi.org/10.1016/j.scitotenv.2023.167530

2 Chronic exposure to pesticides disrupts the bacterial and fungal co-existence and the crosskingdom network characteristics of honey bee gut microbiome 3 Yahya Al Naggar^{1,2}*, Tesfaye Wubet^{1,3} 4 ¹ Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, 5 Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany 6 ² Zoology Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt. 7 ³ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 8 9 04103 Leipzig, Germany. 10 11 *Corresponding: 12 Yahya Al Naggar (<u>yehia.elnagar@science.tanta.edu.eg</u>) 13 14 15

1

Short communication

Abstract

16

17

18

19

20 21

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Gut microbiome communities have a significant impact on bee health and disease and have been shown to be shaped by a variety of factors, including exposure to pesticides and inhive chemicals. However, it is unknown whether pesticide exposure affects the coexistence and cross-kingdom network parameters of bee gut microbiome communities because microbes may compete in the gut environment under different stressors. Therefore, we conducted additional analysis of the microbiome data from our previous study in which we discovered that exposure to two novel insecticides flupyradifurone (FPF) and sulfoxaflor (Sulf) or/and a fungicide, azoxystrobin (Azoxy) caused dysbiosis of bee gut microbiota that was associated with an increase in the relative abundance of opportunistic pathogens such as Serratia marcescens. We investigated for the first time the potential cross-kingdom fungal-bacterial interactions using co-occurrence pattern correlation and network analysis. We discovered that exposure to FPF or Sulf alone or in combination with Azoxy fungicide influenced the co-existence patterns of fungal and bacterial communities. Significant differences in degree centrality, closeness centrality, and eigenvector centrality distribution indices were also found in single and double-treatment groups compared to controls. The effects of FPF and Sulf alone on cross-kingdom parameters (bacterial to fungal node ratio, degree of centrality, closeness centrality, and eigenvector centrality) were distinct, but this was reversed when they were combined with Azoxy fungicide. The fungal and bacterial hub taxa identified differed, with only a few shared hubs across treatments, suggesting microbial crosskingdom networks may be disrupted differently under different stressors. Our findings add to our understanding of pesticide effects on the bee gut microbiome and bee health in general, while also emphasizing the importance of cross-kingdom network analysis in future microbiome research.

Keywords: Gut microbiota, microbes' coexistence, pesticides, dysbiosis, interkingdom network analysis, honey bees.

1. Introduction

The western honey bee, *Apis mellifera*, has a gut microbial community that is relatively stable and is thought to improve host health and defend against parasites and pathogens (Dosch et al., 2021; Huang et al., 2023; Kwong and Moran, 2016; Moran et al., 2019; Zheng et al., 2018). Many studies, however, have shown that pesticides and in-hive chemicals used in apiculture can disrupt the honey bee gut microbiome, putting host bee health at risk (Blot et al., 2019; Dai et al., 2018; Hotchkiss et al., 2022; Kakumanu et al., 2016; E. Motta et al., 2018; Motta et al., 2022; Qi et al., 2022). However, the majority of these studies focused on the effects of pesticides on the bacterial communities of the microbiome, despite the fact that the bee microbiome includes members from many more kingdoms (archaea, fungi, protozoa, and viruses) (Engel et al., 2016). For example, until June 2023, only three studies looked at the effects of pesticides on both fungal and bacterial communities, compared to 22 studies that only looked at bacterial communities (personal literature survey, supplementary fig. S1). The relative and absolute abundances of the members of these microbial communities, as well as their interactions, will determine the microbiome's overall contribution to host health.

Previous research found that a decrease in bacterial richness in the gut of solitary bee larvae *Megachile rotundata* after antifungal treatment, implying that changes in the fungal community caused changes in the bacterial community (McFrederick et al., 2014). Moreover, introducing *Wickerhamomyces anomalus* yeast to bees with a well-developed microbiota was immunomodulatory and had an effect on the overall microbial community (Tauber et al., 2019). Therefore, it is crucial to investigate how microbes coexist and interact under different stressors, as well as the effects on the host, including whether they are affected by dysbiosis in other microbiome members. This is because microbes may compete in the gut environment under

different stressors, with some directly or indirectly inhibiting the growth of others (McFrederick et al., 2014).

Cross-kingdom network analysis aided in the identification of hub or keystone non-bacterial species in the microbiome that can influence community stability and connectivity (Kim et al., 2020; Lee et al., 2022; Lemoinne et al., 2020). Although it has many unresolved intrinsic and technical limitations (Faust and Raes, 2012), it is still the only exploratory data analysis technique that allows researchers to infer microbial interactions from sequence data, particularly cross-kingdom interactions. For instance, the network parameters provide key insights into the associations between taxa and the influence of some taxa on particular modules or the whole community (Peschel et al., 2021; Singavarapu et al., 2023). The current state of research assumes a simplified "competition vs. cooperation" framework in the microbiome between the bacterial and fungal kingdoms. As a result, it is critical to uncover potential pesticide effects on cross-kingdom networks to determine how pesticide exposure affects hub or keystone bacterial and non-bacterial species (Lee et al., 2022).

Previously, we discovered that chronic exposure to field realistic concentrations of two new agrochemicals, sulfoxaflor (Sulf) and flupyradifurone (FPF), alone or in combination with azoxystrobin (Azoxy), had a significant impact on the composition of the honey bee microbial community (bacteria and fungi). Fungicide, insecticides, and fungicide-insecticides combinations all had varying effects on the relative abundance of the top ten genera of the bee gut microbiota. Moreover, dysbiosis of the gut microbiota has been linked to an increase in the relative abundance of opportunistic pathogens like *Serratia marcescens* (Al Naggar et al., 2022). However, it is unknown whether exposure to these pesticides affects the coexistence and cross-kingdom network

parameters of bacterial and fungal communities of the bee gut microbiome and its implication to the bee health in bee microbiome.

To fill this knowledge gap, we conducted additional analysis of the microbiome data from our prior study (Al Naggar et al., 2022) to ascertain the impact of these novel insecticides (FPF and Sulf) or/and Azoxy fungicide on the honey bee gut microbial community coexistence and cross kingdom co-occurrence network characteristics. We hypothesized that pesticide exposure, either individually or in combination, would affect the coexistence and interkingdom network parameters of fungal and bacterial communities in the bee microbiome.

2. Materials and methods

2.1 Honey bees

The experimental design was presented in detail in (Al Naggar et al., 2022). Briefly, newly emerged bees were fed the gut homogenate of inhive (nurse) bees diluted 3:8 with sterile 1:1 sucrose-water solution. This mixture was then given to experimental bees housed in metal cages via bulk feeding 24 h as described in detail in our previous work. Then the tube was removed and a new one containing 1:1 sucrose water- solution was provided for 4 days for microbiome establishment, following (Dosch et al., 2021). This method of developing the gut microbiota was chosen because it results in bees with gut communities like those found in natural bee colonies (Kwong et al., 2014; Zheng et al., 2017b).

Sublethal and field-relevant concentrations of FPF (4.30 μ g/g) or Sulf (46.97 ng/g) found in nectar were given chronically *ad libitum* to bees via sugar water for 10 days, while 3 % of the LD₅₀ of Azoxy (38.18 μ g bee⁻¹) was used. At day zero of pesticide exposure, one bee from each of the 18 cages was collected (total 18 bees) and considered a reference sample to document the initial or background gut microbiota. Cages were then assigned to 6 treatments with three cages per

treatment and 30 bees per cage: control, FPF, Sulf, Azoxy, FPF+Azoxy, and Sulf+Azoxy as illustrated in **Fig. 1**. At 5 and 10 days after exposure, subsamples of 3 bees per cage (9 bees per treatment) were collected for microbiome analysis. Then the gut region, including the midgut/ventriculus, the ileum, and the rectum, was dissected out of each bee under sterile conditions and stored at - 80 °C till genomic DNA extraction.

2.2. Sequence data and statistical analysis

The DNA extraction, amplicon library preparation, sequencing and bioinformatic analysis procedures were reported earlier (Al Naggar et al., 2022). We used the same sequence data deposited in the National Center for Biotechnology Information Sequence Read Archive (SRA) under BioProject ID PRJNA839609. The respective metadata, ASV matrices, taxonomic tables, representative sequences and phylogenetic trees were imported into R using the phyloseq package (McMurdie and Holmes, 2013). For this study the fungal and bacterial datasets were rarefied to 1042 and 13204 reads per sample, respectively, to get all the treatments and replicates. In total 108 individuals per treatment per time (9 individual x 6 treatments x 2 time points) and 9 time zero controls resulting in 117 individuals were used for analysis.

The data consistency on the fungal and bacterial beta diversity was tested using Permanova and Principal Coordinate Analysis (PCoA) based ordinations using the Bray-Curtis distance with the functions adonis2, ordinate and plot-ordination implemented in phyloseq. The pattern of coexistence of the fungal and bacterial communities in the bee gut across treatments was tested using mantel correlation test between the fungal and bacterial community Bray-Curtis distance matrices using the vegan package (Oksanen et al., 2022). Linear regression model was fitted, and the relationship was statistically tested and plotted using the stat_poly_line and stat_poly_eq functions of the ggpmisc extension of ggplot2 (Wickham, 2016). Pairwise comparison between treatments

was done using pairwise Wilcoxon signed-rank tests followed by BH multiple-testing correction using the rstatix package (Kassambara, 2023).

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Bacterial and fungal cross-kingdom co-occurrence networks were constructed for each of the 6 treatments (Control, FPF, Sulf, Azoxy, FPF+Azoxy, Sulf+Azoxy) using the function multi.spiec.easi of SpiecEasi package (Kurtz et al., 2015). SpiecEasi controls the spurious cooccurrences by controlling for the lack of independence in normalized count data, which accounts for the high number of edges in the network-based analysis of amplicon data sets. In addition, it estimates interactions through sparse inverse covariance selection of a transformed compositional data set than correlation. Networks were estimated by the Meinshausen and Bühlmann graph inference method. The nlambda and lambda.min.ratio values were optimized to get a network stability value close to 0.05 and network assessment was done over the nlambda values for every 50 cross-validations. Networks were then plotted using the ggnet2 function of GGally package (Schloerke et al., 2021). Network structural and topological properties, including edges, centrality indices, and modularity were calculated using the igraph package (Csardi, Gabor, 2006). Modularity and modules (elementary components of any biological network, and their identification and characterization give more information about the network's local interaction patterns and their contribution to the overall structure, connectivity, and function of the network) (Layeghifard et al., 2017) that are considered to be subcommunities in each network were determined based on a hierarchical agglomeration algorithm with modularity optimization using the cluster_fast_greedy function. Differences in the distribution of six network centrality measures (Dai et al., 2019; Deng et al., 2012) including node degree (number of links with other taxa also used to identify community hub taxa), betweenness (centrality based on a measure of a taxon's influence in the network), closeness (a measure of a taxon's closeness to all other members), closeness centrality (measures node efficiency in terms of connection to other nodes), eigenvector centrality (a measure of a taxon's linkage to others accounting for how connected the others are), and transitivity or clustering coefficient (a measure of the tendency of the nodes to cluster together) between treatments microbial networks were tested with pairwise Wilcoxon signed-rank tests followed by BH multiple-testing correction using the rstatix package (Kassambara, 2023). All statistical analyses were performed using R (R Core Team, 2020).

3. Results

3.1 Effects on beta diversity

The effects of pesticides treatment on the microbial community composition of honey bee guts are consistent with our previous study, even though we increased the sample size and decreased the per sample read coverage. The only difference was that no significant interactive effect (treatment x time) on bacterial community composition was found using permutational multivariate analysis of variance (PERMANOVA), which was also marginally significant with p = 0.045 in the previous dataset.

3.2 Effects on the coexistence pattern of bee gut microbiota

The co-existence patterns of the fungal and bacterial communities in the honey bee gut were tested across the treatment groups using mantel test which revealed a significant correlation between the two communities only in the control samples (r = 0.231, p = 0.031). Consistently linear regression model analysis of the two distance matrices also showed a substantial relationship only for the control samples, implying that pesticide exposure disrupts this positive relationship (**Fig. 2**).

3.2 Effects on cross-kingdom network characteristics

Cross-kingdom bacterial and fungal community network analysis and visualization also revealed a significant impact of pesticides exposure on the co-occurrence network patterns as compared to control communities. The cross-kingdom network of FPF and Sulf, for example, has a higher percentage of modularity (76-79 vs. 69), a 1.7-fold decrease in the ratio of fungal to bacterial nodes (26-27% vs. 46%), a higher percentage of positive edges (91.3 vs. 84.8), and a lower percentage of negative edges (8.7 vs. 15.2) compared to control (**Fig. 3**). Azoxy's cross-kingdom network was relatively similar to the control. However, the double treatments FPF + Azoxy and Sulf +Azoxy affected these cross-kingdom network relationships differently compared to both control and single treatments (**Fig. 3**).

In order to evaluate the underlying network community organization as well as the significance of the community members, we tested the distribution of six crucial network centrality indices. We found significant differences (P < 0.05) in the distribution's indices of degree, closeness, and eigenvector centrality in single and double treatment groups compared to control (**Table 1**). The network transitivity was significantly different (P < 0.05) in all treated groups compared to controls except in the azoxy alone or combined with FPF treated groups. There were no significant differences in network betweenness centrality (P > 0.05) between treated and non-treated (control) groups (**Table 1**).

When we compared the network centrality indices of double treatments and single treatments, we discovered a significant difference (p < 0.05) in both closeness centrality and eigenvector centrality of the double treatment 'FPF plus Azoxy' compared to both FPF insecticide and Azoxy fungicide individually (**Table 1**). While we found a significant difference (p < 0.05) in both closeness and eigenvector centrality of the double treatment 'Sulf plus Azoxy' compared to both Sulf insecticide and Azoxy fungicide individually (**Table 1**). We discovered that the number

of fungal nodes is greater than the number of bacterial nodes; however, the percentage of bacterial hubs (i...e the most connected OTUs, according to their degree) relative to the number of taxa was greater than the percentage of fungal hubs, and pesticide exposure altered the percentages of hubs in treated groups differently than in control groups (**Fig. 4 a, b**). Surprisingly, the identified fungal and bacterial hub taxa were distinct, with only a few hubs shared across treatments (**Supplementary file S1**).

An interesting trend can also be seen in (**Fig. 4 a, c, d, e**), where we observed a decrease in the ratio of bacterial to fungal nodes, as well as the degree of centrality and closeness centrality while increasing eigenvector centrality in both the FPF and Sulf cross-kingdom networks when compared to the control. However, in cross-kingdom networks of the double treatments, this trend was reversed, indicating the impact of the fungicide Azoxy, as Azoxy alone showed a similar pattern to the control. Furthermore, the cross-kingdom centrality closeness index was significantly lower (p < 0.05) in FPF alone or in combination with Azoxy, as well as in Sulf+Azoxy treated groups compared to controls (**Fig. 4 f**).

4. Discussion

Pesticides can disrupt gut microbes by either directly affecting microbe growth or by causing a decline in host health to the point where the host can no longer properly regulate its gut microbiota (Hotchkiss et al., 2022). It is, however, critical to investigate how microbes coexist and interact in the bee gut under various stressors, as well as the consequences to the host health.

In this study, we investigated for the first time the potential of cross-kingdom fungal-bacterial co-occurrence network analysis to unravel the impact of pesticide exposure on the co-existence of fungi and bacteria in the bee gut, a method first developed for the soil microbiome (Barberán et al., 2012) and later used for the plant-microbiome (Cardinale et al., 2015; Chen et al.,

2018). We found that exposure to two novel insecticides, FPF or Sulf alone or in combination with Azoxy fungicide impacted the co-existence patterns of the fungal and bacterial communities as well as their cross-kingdom network parameters. These results emphasize the detrimental effects of these pesticides and may help to explain the increase in the relative abundance of opportunistic pathogens, such as *Serratia marcescens*, that we previously identified due to dysbiosis of the gut microbiota after exposure to these pesticides (Al Naggar et al., 2022).

High values of degree centrality and betweenness centrality, respectively, may indicate stronger relationships among taxa and a strong influence of some taxa on bridging or communicating between different parts of the network (Ma et al., 2016). In our study, in both the FPF and Sulf cross-kingdom networks, the degree of centrality and closeness centrality decreased while eigenvector centrality increased. This trend, however, was reversed in cross-kingdom networks of the double treatments, indicating the impact of the fungicide Azoxy, as Azoxy alone showed a similar pattern to control. These findings imply that different agrochemicals (insecticides, vs. fungicides) either alone or in combination had different effects on microbial communities cross-kingdom network (Matsuzaki et al., 2023). Previous research also revealed that the effect of pesticides on honey bee gut microbiota is pesticide dependent. For instance, glyphosate herbicide, as well as neurotoxic insecticides such as coumaphos, fipronil, thiamethoxam, and imidacloprid, have been shown to disrupt honey bee gut microbiota (Motta et al., 2018; Motta and Moran, 2020; Rouzé et al., 2019), whereas carbendazim fungicide does not (Wang et al., 2022).

The hub taxa are more ecologically significant than other microbes because their removal would have an impact on the overall community assemblage (Faust and Raes, 2012). The hub microbes can have a significant impact on the microbial community by suppressing or inducing the development of other populations. Even though the number of fungal nodes in the cross-kingdom networks was greater than that of bacteria in the current study, the percentage of bacterial

hubs relative to the number of taxa was greater than that of fungi, and pesticides exposure altered the percentages of hubs in treated groups differently than in control groups. Furthermore, the fungal and bacterial hub taxa identified were distinct, with only a few hub taxa were shared across treatments, suggesting that different agrochemicals had different effects on microbial community's cross-kingdom network connectivity and centrality. These effects may be attributed to the fact that fungi and bacteria coexist and interact both physically and chemically, exhibiting both antagonism and cooperation in a mixed bacterial-fungal complex habitat (Frey-Klett et al., 2011). As a result, under various stressors, the bee gut microbiome cross-kingdom network patterns may be disrupted differently, resulting in a lack of similarity between microbiome hubs (Hernandez et al., 2021).

5. Conclusion

The insecticides FPF or Sulf, alone or in combination with the fungicide Azoxy, disturbed the coexistence patterns of fungal and bacterial communities as well as their cross-kingdom network characteristics, which is consistent with and clarifies our prior findings (Al Naggar et al., 2022). Our research is the first, to our knowledge, to demonstrate how pesticide exposure disrupts cross-kingdom bacterial-fungal relationships in honey bee gut microbiota. In addition, it emphasizes the importance of studying the coexistence of different gut microbiota as well as cross-kingdom network analysis in future bee gut microbiome research to improve our understanding of the effects of pesticide exposure on the reorganization of the bee gut microbiome and its implications for bee health.

6. Acknowledgements

This study was financially supported by the Helmholtz visiting researcher grant funded by Helmholtz Information & Data Science Academy (HIDA) the to YA.

7. Supplementary material

- 270 **Supplementary file S1**: Interkingdom network analysis results for each treatment and summary of
- 271 hub taxa identified.

269

274

- Figure S1. Literature review of the number of studies that investigated the effects of pesticides on
- the gut microbiota of bees between 2003 and 2023.

8. References

- 275 Al Naggar, Y., Singavarapu, B., Paxton, R.J., Wubet, T., 2022. Bees under interactive stressors:
- the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin
- disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens.
- Science of The Total Environment 849, 157941.
- 279 https://doi.org/10.1016/j.scitotenv.2022.157941
- Barberán, A., Bates, S.T., Casamayor, E.O., Fierer, N., 2012. Using network analysis to explore
- co-occurrence patterns in soil microbial communities. The ISME Journal 6, 343–351.
- 282 https://doi.org/10.1038/ismej.2011.119
- Blot, N., Veillat, L., Rouzé, R., Delatte, H., 2019. Glyphosate, but not its metabolite AMPA, alters
- the honeybee gut microbiota. PLOS ONE 14, e0215466.
- 285 https://doi.org/10.1371/journal.pone.0215466
- Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J., Berg, G., 2015. Bacterial networks and
- co-occurrence relationships in the lettuce root microbiota. Environmental Microbiology 17,
- 288 239–252. https://doi.org/10.1111/1462-2920.12686
- Chen, Y., Sun, R., Sun, T., Liang, Y., Jiang, Y., Sun, B., 2018. Organic amendments shift the
- 290 phosphorus-correlated microbial co-occurrence pattern in the peanut rhizosphere network
- during long-term fertilization regimes. Applied Soil Ecology 124, 229–239.
- 292 https://doi.org/10.1016/j.apsoil.2017.11.023
- 293 Csardi, Gabor, and T.N., 2006. The igraph software package for complex network research.
- InterJournal, complex systems 1695, 1–9.
- 295 Dai, P., Yan, Z., Ma, S., Yang, Y., Wang, Q., Hou, C., Wu, Y., Liu, Y., Diao, Q., 2018. The
- 296 Herbicide Glyphosate Negatively Affects Midgut Bacterial Communities and Survival of
- Honey Bee during Larvae Reared in Vitro. Journal of Agricultural and Food Chemistry 66,
- 298 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212
- 299 Dai, W., Chen, J., Xiong, J., 2019. Concept of microbial gatekeepers: Positive guys? Applied
- 300 Microbiology and Biotechnology 103, 633–641. https://doi.org/10.1007/s00253-018-9522-3

- Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network analyses. BMC Bioinformatics 13, 113. https://doi.org/10.1186/1471-2105-13-113
- 303 Dosch, C., Manigk, A., Streicher, T., Tehel, A., Paxton, R.J., Tragust, S., 2021. The Gut
- Microbiota Can Provide Viral Tolerance in the Honey Bee. Microorganisms 9, 871.
- https://doi.org/10.3390/microorganisms9040871
- Engel, P., Kwong, W.K., McFrederick, Q., Anderson, K.E., Barribeau, S.M., Chandler, J.A.,
- Cornman, R.S., Dainat, J., de Miranda, J.R., Doublet, V., Emery, O., Evans, J.D., Farinelli,
- L., Flenniken, M.L., Granberg, F., Grasis, J.A., Gauthier, L., Hayer, J., Koch, H., Kocher, S.,
- Martinson, V.G., Moran, N., Munoz-Torres, M., Newton, I., Paxton, R.J., Powell, E., Sadd,
- B.M., Schmid-Hempel, P., Schmid-Hempel, R., Song, S.J., Schwarz, R.S., VanEngelsdorp,
- D., Dainat, B., 2016. The Bee Microbiome: Impact on Bee Health and Model for Evolution
- and Ecology of Host-Microbe Interactions. mBio 7. https://doi.org/10.1128/mBio.02164-15
- Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews
- 314 Microbiology 10, 538–550. https://doi.org/10.1038/nrmicro2832
- Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., Sarniguet, A., 2011. Bacterial-
- Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food
- Microbiologists. Microbiology and Molecular Biology Reviews 75, 583–609.
- 318 https://doi.org/10.1128/MMBR.00020-11
- Hernandez, D.J., David, A.S., Menges, E.S., Searcy, C.A., Afkhami, M.E., 2021. Environmental
- stress destabilizes microbial networks. The ISME Journal 15, 1722–1734.
- 321 https://doi.org/10.1038/s41396-020-00882-x
- Hotchkiss, M.Z., Poulain, A.J., Forrest, J.R.K., 2022. Pesticide-induced disturbances of bee gut
- microbiotas. FEMS Microbiology Reviews. https://doi.org/10.1093/femsre/fuab056
- Huang, Q., Lariviere, P.J., Powell, J.E., Moran, N.A., 2023. Engineered gut symbiont inhibits
- microsporidian parasite and improves honey bee survival. Proceedings of the National
- 326 Academy of Sciences 120. https://doi.org/10.1073/pnas.2220922120
- Kakumanu, M.L., Reeves, A.M., Anderson, T.D., Rodrigues, R.R., Williams, M.A., 2016. Honey
- Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Frontiers in Microbiology
- 329 7. https://doi.org/10.3389/fmicb.2016.01255
- 330 Kassambara, A., 2023. rstatix: Pipe-Friendly Framework for Basic Statistical Tests.
- Kim, H., Lee, K.K., Jeon, J., Harris, W.A., Lee, Y.-H., 2020. Domestication of Oryza species eco-
- evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome 8, 20.
- https://doi.org/10.1186/s40168-020-00805-0
- Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., Bonneau, R.A., 2015.
- 335 Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLOS
- Computational Biology 11, e1004226. https://doi.org/10.1371/journal.pcbi.1004226

- Kwong, W.K., Engel, P., Koch, H., Moran, N.A., 2014. Genomics and host specialization of
- honey bee and bumble bee gut symbionts. Proceedings of the National Academy of Sciences
- 339 111, 11509–11514. https://doi.org/10.1073/pnas.1405838111
- Kwong, W.K., Moran, N.A., 2016. Gut microbial communities of social bees. Nature reviews.
- 341 Microbiology 14, 374–84. https://doi.org/10.1038/nrmicro.2016.43
- Layeghifard, M., Hwang, D.M., Guttman, D.S., 2017. Disentangling Interactions in the
- 343 Microbiome: A Network Perspective. Trends Microbiol 25, 217–228.
- 344 https://doi.org/10.1016/j.tim.2016.11.008
- Lee, K.K., Kim, H., Lee, Y.-H., 2022. Cross-kingdom co-occurrence networks in the plant
- microbiome: Importance and ecological interpretations. Frontiers in Microbiology 13.
- 347 https://doi.org/10.3389/fmicb.2022.953300
- Lemoinne, S., Kemgang, A., Ben Belkacem, K., Straube, M., Jegou, S., Corpechot, C.,
- Chazouillères, O., Housset, C., Sokol, H., 2020. Fungi participate in the dysbiosis of gut
- microbiota in patients with primary sclerosing cholangitis. Gut 69, 92–102.
- 351 https://doi.org/10.1136/gutjnl-2018-317791
- 352 Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P.C., Xu, J., Gilbert, J.A., 2016.
- Geographic patterns of co-occurrence network topological features for soil microbiota at
- continental scale in eastern China. The ISME Journal 10, 1891–1901.
- 355 https://doi.org/10.1038/ismej.2015.261
- Matsuzaki, R., Gunnigle, E., Geissen, V., Clarke, G., Nagpal, J., Cryan, J.F., 2023. Pesticide
- exposure and the microbiota-gut-brain axis. The ISME Journal.
- 358 https://doi.org/10.1038/s41396-023-01450-9
- McFrederick, Q.S., Mueller, U.G., James, R.R., 2014. Interactions between fungi and bacteria
- influence microbial community structure in the Megachile rotundata larval gut. Proceedings
- of the Royal Society B: Biological Sciences 281, 20132653.
- 362 https://doi.org/10.1098/rspb.2013.2653
- McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis
- and Graphics of Microbiome Census Data. PLoS ONE 8, e61217.
- 365 https://doi.org/10.1371/journal.pone.0061217
- Moran, N.A., Ochman, H., Hammer, T.J., 2019. Evolutionary and Ecological Consequences of
- Gut Microbial Communities. Annual Review of Ecology, Evolution, and Systematics 50,
- 368 451–475. https://doi.org/10.1146/annurev-ecolsys-110617-062453
- Motta, E., Raymann, K., Moran, N.A., 2018. Glyphosate perturbs the gut microbiota of honey
- bees. Proceedings of the National Academy of Sciences 115, 10305–10310.
- 371 https://doi.org/10.1073/pnas.1803880115
- Motta, E.V.S., Moran, N.A., 2020. Impact of Glyphosate on the Honey Bee Gut Microbiota:
- Effects of Intensity, Duration, and Timing of Exposure. mSystems 5.
- 374 https://doi.org/10.1128/mSystems.00268-20

- Motta, E.V.S., Powell, J.E., Moran, N.A., 2022. Glyphosate induces immune dysregulation in
- honey bees. Animal Microbiome 4, 16. https://doi.org/10.1186/s42523-022-00165-0
- Motta, E.V.S., Raymann, K., Moran, N.A., 2018. Glyphosate perturbs the gut microbiota of
- honey bees. Proceedings of the National Academy of Sciences of the United States of
- 379 America 115, 10305–10310. https://doi.org/10.1073/pnas.1803880115
- Oksanen, J., O'Hara, R.B., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, P.,
- 381 2022. vegan: Community Ecology Package. R package version 2.6-4. [WWW Document].
- 382 URL https://cran.r-project.org/package=vegan
- Peschel, S., Müller, C.L., von Mutius, E., Boulesteix, A.-L., Depner, M., 2021. NetCoMi:
- network construction and comparison for microbiome data in R. Briefings in Bioinformatics
- 385 22. https://doi.org/10.1093/bib/bbaa290
- 386 Qi, S., Al Naggar, Y., Li, J., Liu, Z., Xue, X., Wu, L., El-Seedi, H.R., Wang, K., 2022. Acaricide
- flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium
- Gilliamella apicola through microbe-host metabolic interactions. Chemosphere 307, 136030.
- 389 https://doi.org/10.1016/j.chemosphere.2022.136030
- R Core Team, 2020. R: a language and environment for statistical computing.
- Rouzé, R., Moné, A., Delbac, F., Belzunces, L., Blot, N., 2019. The Honeybee Gut Microbiota Is
- 392 Altered after Chronic Exposure to Different Families of Insecticides and Infection by
- Nosema ceranae. Microbes and Environments 34, 226–233.
- 394 https://doi.org/10.1264/jsme2.ME18169
- 395 Schloerke, B., Cre, D.C., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., Toomet,
- O., Crowley, J., Hofmann, H., Wickham, H., 2021. GGally: Extension to "ggplot2."
- 397 Singavarapu, B., Du, J., Beugnon, R., Cesarz, S., Eisenhauer, N., Xue, K., Wang, Y., Bruelheide,
- 398 H., Wubet, T., 2023. Functional Potential of Soil Microbial Communities and Their
- 399 Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiology
- 400 Spectrum 11. https://doi.org/10.1128/spectrum.04578-22
- Tauber, J.P., Nguyen, V., Lopez, D., Evans, J.D., 2019. Effects of a Resident Yeast from the
- Honeybee Gut on Immunity, Microbiota, and Nosema Disease. Insects 10, 296.
- 403 https://doi.org/10.3390/insects10090296
- 404 Wang, K., Chen, H., Fan, R.-L., Lin, Z.-G., Niu, Q.-S., Wang, Z., Ji, T., 2022. Effect of
- 405 carbendazim on honey bee health: Assessment of survival, pollen consumption, and gut
- microbiome composition. Ecotoxicology and Environmental Safety 239, 113648.
- 407 https://doi.org/10.1016/j.ecoenv.2022.113648
- 408 Wickham, hadley, 2016. ggplot2:Elegant Graphics for Data Analysis, Use R! Springer
- 409 International Publishing, Cham. https://doi.org/10.1007/978-3-319-24277-4
- Zheng, H., Powell, J.E., Steele, M.I., Dietrich, C., Moran, N.A., 2017. Honeybee gut microbiota
- promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of

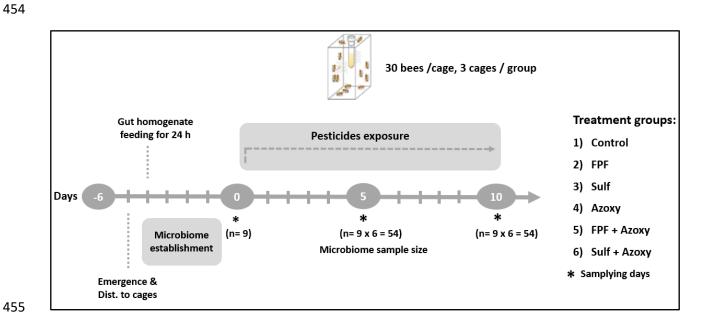
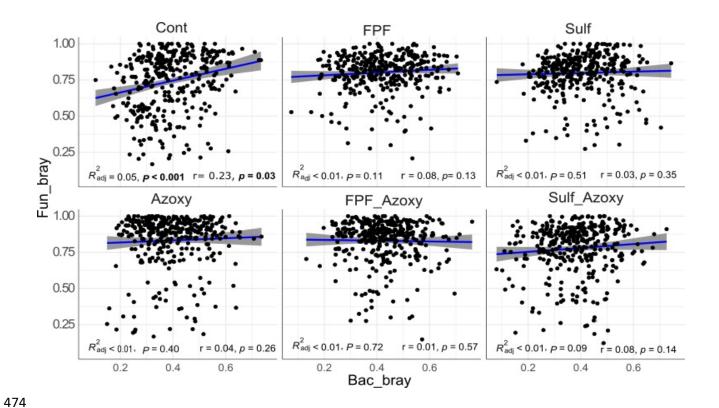
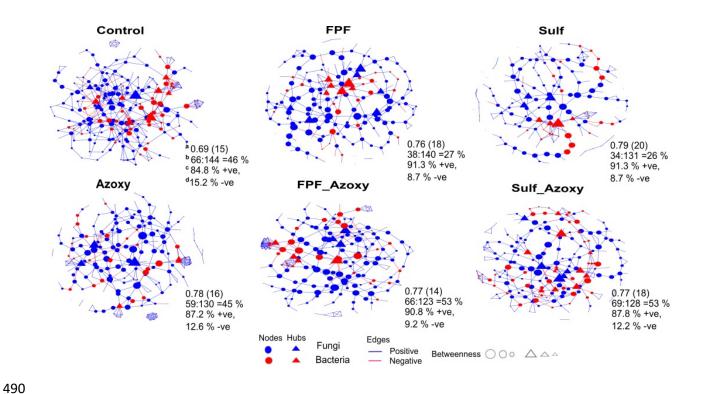
the National Academy of Sciences 114, 4775–4780. https://doi.org/10.1073/pnas.1701819114 Zheng, H., Steele, M.I., Leonard, S.P., Motta, E.V.S., Moran, N.A., 2018. Honey bees as models for gut microbiota research. Lab animal 47, 317-325. https://doi.org/10.1038/s41684-018-0173-x

List of tables

Table 1. Pairwise comparison of fungal and bacterial cross-kingdom network parameters across treatment groups. Analysis output is summarized in three categories of (\mathbf{A}) control versus all treatments of insecticides (FPF, Sulf), fungicide (Azoxy), and their combinations (FPF+Azoxy and Sulf+Azoxy), (\mathbf{B}) between insecticides and fungicides, and (\mathbf{C}) between double treatments and single treatments. In bold are network indices that were significant across treatments with BH adjusted p values.

		P value adj.					
Treatment		Degree	Betweenness centrality	Closeness	Closeness centrality	Eigenvector centrality	Transitivity
A. Control versu	ıs all treatment	ts					
Control vs.	FPF	< 0.001	1	< 0.001	< 0.001	< 0.001	< 0.001
	Sulf	< 0.001	0.092	0.67	< 0.001	0.012	0.005
	Azoxy	0.001	0.21	0.14	< 0.001	< 0.001	0.62
	FPF_Azoxy	0.013	1	< 0.001	< 0.001	< 0.001	0.75
	Sulf_Azoxy	< 0.001	0.55	< 0.001	< 0.001	< 0.001	0.095
B. Insecticide &	fungicide						
FPF vs.	Sulf	0.24	0.1	0.006	0.001	< 0.001	0.41
FPF vs.	Azoxy	0.01	0.21	< 0.001	< 0.001	< 0.001	0.002
Sulf vs.	Azoxy	< 0.001	0.55	0.13	< 0.001	0.002	0.04
C. Interaction b	etween double	and single t	reatments				
FPF_Azoxy vs.	FPF	0.001	1	0.3	0.005	< 0.001	< 0.001
	Azoxy	0.44	0.21	< 0.001	< 0.001	0.003	0.53
Sulf_Azoxy vs.	Sulf	0.011	0.072	< 0.001	0.22	< 0.001	0.3
	Azoxy	0.18	0.1	< 0.001	< 0.001	< 0.001	0.3

List of figures

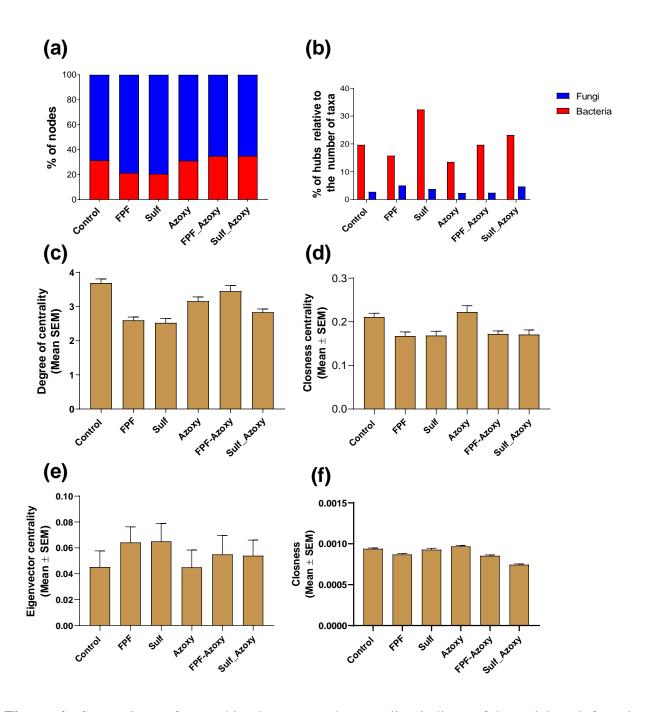

Figure 1. Experimental design showing treatments groups (3 cages per treatment) and timing of microbiome establishment, pesticide treatments and sampling of bees for microbiome analysis (D_0 as control, D_05 and D_10). Dimethoate was used as a reference toxic substance to validate exposure to pesticides (Al Naggar et al. 2022).

Figure 2. Comparison of the relationship of co-existing fungal and bacterial communities in the honey bee gut microbiome within the treatment groups using mantel test and linear regression model fitting. Each point represents the dissimilarity distance between pairs of 27 samples (9 individuals and 3 time points per treatment since the control time zero is used uniformly as initial community in all treatments) resulting in 351 pairwise comparison based on fungal or bacterial communities. Both mantel test and linear model fitting revealed a significant positive dissimilarity correlation between the two communities only in the control samples (Mantel test: r = 0.23, p = 0.03; linear model fitting: $R^2_{adj} = 0.05$, P < 0.001).

Figure 3. Cross-kingdom co-occurrence network of bacterial and fungal communities in the honey bee gut microbiome across treatments. Node size refers to the betweenness centrality value. The networks are dominated by fungal (blue) members with noticeable bacterial (red) presence. Insecticide and/or fungicide exposure altered cross-kingdom network parameters (**see table 1 for statistical details**). Abbreviations: ^a % of modularity, ^b ratio of bacterial to fungal nodes, ^c % of positive edges, and ^d % of negative edges.

Figure 4. Comparison of cross-kingdom network centrality indices of bacterial and fungal communities in the honey bee gut microbiome across treatments. (a) % of nodes, (b) % of hubs relative to the number of taxa, (c) degree centrality, (d) closeness centrality, (e) eigenvector centrality, and (f) closeness. Pesticide and/or fungicide exposure significantly altered cross-kingdom network characteristics compared to control (see table 1 for statistical details).