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Abstract: Determining the threshold at which meteorological drought triggers
hydrological drought is critical for early warning and proper mitigation of drought.
However, drought trigger thresholds are difficult to determine owing to the
nonlinearity between meteorological and hydrological drought, and their dynamics
have not been explored. To this end, we introduce a precipitation-driven drought
trigger threshold framework. This framework considers the multiscale characteristics
of cumulative precipitation anomalies and incorporates the drought severity index of
terrestrial water storage anomalies to characterize hydrological drought. The dynamics
of trigger thresholds over time and the main drivers of these variations are further
explored over China. The results show that hydrological drought is more sensitive to
meteorological drought in south China, with some regions showing weak or negative
correlations mainly determined by the differences between climate change and human
activities. The risk of drought outbreak in the central, northeastern and southern
regions of China is high, with trigger thresholds showing a dynamic decreasing trend
over time (corresponding to lower cumulative precipitation anomalies), indicating
weakened resistance to meteorological drought. Rising temperature is the main factor
affecting dynamic changes in the trigger threshold. The drought trigger threshold
framework proposed in this study is also applicable for assessments in other regions
around the world. This study provides valuable insights and new approaches for
understanding the mechanisms of hydrological drought formation. Furthermore, these
results are expected to severe as a scientific basis for government departments to

reduce water supply stress on human and natural systems and to develop adaptive
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management strategies.
Key words: GRACE; cumulative precipitation anomaly; drought; trigger threshold
1 Introduction

The considerable inter-annual fluctuations in precipitation owing to changes in
East Asian monsoon climate, combined with sensitive ecosystems and intensive
human activities, have resulted in frequent drought events in China (Li et al., 2012).
Drought begins during periods of precipitation deficit and subsequently spreads
through the terrestrial hydrological system (Van Loon et al., 2012; Herrera-Estrada et
al., 2017; Miao et al., 2022). Owing to the effects of climate change, water scarcity
has become one of the most pressing issues in China (Zhang et al., 2014). Therefore,
predicting the drought occurrence probability and corresponding precipitation deficit
state in advance would be extremely beneficial for water resource management. This
will improve early drought monitoring and warning and play a critical role in assisting
policymakers and governmental agencies to develop adaptive management strategies.

Drought is defined in different ways, and therefore, drought cannot be
characterized by a single index since existing drought indicators are associated with
specific types of droughts (Svoboda et al., 2002; Azmi et al., 2016). More importantly,
most existing indicators do not consider human water use and/or local water storage
(Lloyd-Hughes, 2014), and thus ignore the impact of human activities on drought. For
example, rainfall in northwest India increased from 2002 to 2015 and soil moisture
was relatively stable. However, severe droughts still occurred owing to inadequate

water storage resulting from groundwater extraction for irrigation (Sinha et al., 2017).
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Although these indicators can be constructed by coupling more climate-human water-
related variables (e.g., drought caused by anthropogenic factors such as urbanization,
surface water and groundwater overdraft) to multivariate indices to capture drought,
this remains a considerable challenge.

Drought is a complex phenomenon involving a wide range of processes spanning
the atmosphere, hydrosphere, lithosphere and biosphere; most notably, it is influenced
by the lower-than-historical-average level of terrestrial water storage (TWS) (Pokhrel
et al., 2021). Global terrestrial water storage anomalies (TWSA) have been monitored
by the Gravity Recovery and Climate Experiment (GRACE) mission with an
unprecedented accuracy since 2002 (Li et al., 2021). TWSA refers to anomalies in
water storage of Earth’s land area in the vertical direction, including anomalies in ice
and snow, surface water, soil water and groundwater. Hence, the TWSA can reflect
the combined effects of climate change and human activities on watershed droughts
(Famiglietti and Rodell, 2013; Long et al., 2014). For instance, many studies (Zhao et
al., 2017; Sinha et al., 2019; Cui et al., 2021) have used TWSA to capture the process
of drought and combined it with traditional drought indices to compensate for the lack
of drought characterization by a single index, providing crucial insights for
understanding the impact of drought on hydrological systems.

To the best of our knowledge, there have been relatively few studies involving
drought thresholds, with most of these studies utilizing copula functions (Liu et al.,
2013; Wu et al., 2021; Guo et al., 2023). This is because copula functions can be used

to construct joint distribution functions for multiple variables, providing the ability to
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calculate conditional probabilities under different drought scenarios. For example,
Guo (2020) explored the meteorological drought thresholds that trigger various levels
of hydrological drought in the Weihe River basin based on the coupled standardized
precipitation index (SPI) and standardized runoff index (SRI). However, their study
only used a 1-month SPI and SRI match, ignoring the more severe hydrological
droughts caused by long-duration precipitation deficits, which are especially common
in major drought events that have occurred in the past, such as the droughts in
California (Prugh et al., 2018), Australia (King et al., 2020), and southwest China (Li
et al., 2021). Han (2021a) proposed a model to establish a threshold between
meteorological and groundwater drought in the Xijiang River Basin. These studies
have uncovered new insights and improved our understanding of drought thresholds.
However, uncertainties exist in the density estimation of certain parameters used to fit
the marginal distributions.

Copula functions have also been used to assess changes in food and vegetation
under drought stress. Leng and Jim (2019) applied a probabilistic modelling
framework constructed using copula functions to study global food production losses
under drought stress. Fang et al. (2019) used copula functions to assess the
spatiotemporal patterns of vegetation vulnerability in the Loess Plateau under multiple
drought scenarios. While these studies have provided valuable insights into the
potential impacts of droughts, they are based on traditional standardized drought
indices (e.g., SPI and SPEI), which may not be directly linked to precipitation records

(Santos et al., 2013), especially in data-scarce regions. This is because the calculation
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of standardized indices requires long-term precipitation data (Vicente-Serrano et al.,
2010). The construction of standardized indices also often requires the fitting of
specific  distribution functions, and may require data on temperature,
evapotranspiration, soil moisture and other parameters, in addition to precipitation
data. This poses significant challenges for the implementation of drought early
warning and prevention measures at local levels. Conversely, compared with the
abstract thresholds typically associated with standardized wvalues, thresholds
corresponding to precipitation can be directly related to different sectors or regions.
This also provides key scientific guidance for governments to coordinate
adaptation/mitigation strategies among different sectors/regions. More crucially, the
forementioned studies have failed to account for the fact that the thresholds are not
fixed. Rather, trigger thresholds are subject to dynamic changes, because climate
change influences the hydrological cycle and complicates the link between
precipitation and TWS. Furthermore, the drivers of these differences are still unclear.
This study takes into account the multi-scale features of the cumulative
precipitation anomalies (CPA), employs the drought severity index of terrestrial water
storage anomalies (TWSA-DSI) to characterize hydrological drought, and presents a
novel precipitation-driven drought trigger threshold model. The primary objectives of
this study are to (1) reveal the threshold and dynamic changes in precipitation
triggered drought; and (2) explore the main factors affecting the threshold. The results
of this study will not only help monitor and predict droughts more accurately, but are

also expected to complement direct evidence of intensified water cycles.
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2 Data and methods
2.1 Study area

China's terrain is high in the west and low in the east, with mountains, plateaus
and hills covering approximately 67% of its land area, and basins and plains covering
approximately 33% of its land area (Jin et al., 2021). China spans a wide range of
latitudes and longitudes, with considerable variations in the combinations of
temperature and precipitation, creating a wide variety of climates. The eastern part of
China has a monsoon climate, the northwestern part has a temperate continental arid
climate, and the Tibetan Plateau has an alpine climate. China is characterized by a
monsoon climate with warm rainy summers and dry cold winters. Although the
variety in climate types in China is favorable for agricultural production, extreme
climate events, such as droughts, floods, cold waves, and typhoons, have considerable
impacts on the country. Based on the classification of Chinese watershed systems, we
considered nine major river basins (Fig. 1), namely the Songliao River Basin ( 1), Hai
River Basin ( II), Huai River Basin (I}, Southeast River Basin (IV), Pearl River Basin
(V), Yellow River Basin (V]), Yangtze River Basin (VI), Southwestern River Basin (VI

and Inland River Basin (IX).

Fig. 1 Location map of the study area.

2.2 Datasets

2.2.1 GRACE data
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The TWSA were obtained from the GRACE RL06 mascon product of the
University of Texas Center for Space Research (CSR) for the periods January 2004-
July 2017, and May 2018-December 2019 with a spatial resolution of 0.25° (obtained
from http://www2.csr.utexas.edu/grace/RL0O6.html). Regarding the approximately
one-year interval between the GRACE and GRACE-Follow-On for the observation of
TWSA, many scholars have conducted reconstruction and interpolation (Sun et al.,
2019; Sun et al., 2020; Mo et al., 2021). To better match with CSR products, here we
use the data from Zhong et al (2020). Besides, we use the mascon products from the
National Aeronautics and Space Administration Goddard Space Flight Center (GSFC)
and the Jet Propulsion Laboratory (JPL). The interpolated data was obtained
separately using the reconstructed data from Li et al (2021).

2.2.2 Hydrometeorological data

Gridded precipitation and air temperature data were obtained from the China
Meteorological Data Service Center (http://data.cma.cn). In this dataset, gridded
monthly precipitation data from 1999-2019 was generated by a thin plate spline
spatial interpolation of precipitation observations from 2,472 weather stations, and the
spatial resolution is 0.5° (Hong et al., 2005). As no data are available for Taiwan, the
study focuses on mainland China. Moreover, the nearest neighbor method was used to
resample precipitation data into 0.25° grid for better comparison with CSR products.
The evaporation flux from soil used version 2.1/Noah land surface model products
from the Global Land Data Assimilation System (GLDAS) with 0.25° spatial

resolution and monthly temporal resolution (http://disc.sci.gsfc.nasa.gov). The vapor
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pressure deficit (VPD) was derived from the TerraClimate dataset and has the same
spatial and temporal resolutions as other products
(http://www.climatologylab.org/terraclimate.html).
2.2.3 Vegetation data

The normalized vegetation index (NDVI) can effectively reflect the vegetation
parameters such as vegetation coverage, growth status, biomass and net primary
productivity (Fensholt et al., 2012). In this study, the 2003-2019 NDVI dataset from
the Moderate Resolution Imaging Spectroradiometer (MODIS) of NASA's MOD13C2
product was selected. Its spatial resolution is 0.05° and its temporal resolution is
month (https://modis.gsfc.nasa.gov/data/)., and it was resampled to 0.25° resolution in
this study.
2.2.4 Population and economic data

Population data for China were obtained from WorldPop on the annual scale
with a spatial resolution of lkm (https://www.worldpop.org/). For comparison with
other data, the 1km population data were counted to a 0.25° grid. The Gross Domestic
Product (GDP) data are derived from the global-scale, high-precision products of
Chen et al (2022). This product is calculated from nighttime lights data using a series
of methods, such as Particle Swarm Optimization-Backpropagation (PSO-BP)
algorithm.
3 Methods
3.1 Cumulative precipitation anomalies

Compared with SPI, CPA can provide the most direct reference for early warning

10
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of meteorological and risk management (Van den Broeke et al., 2009; Coelho et al.,
2016). In order to describe the precipitation deficit corresponding to hydrological
drought, the cumulative precipitation deficit series with climatological significance at

different time scales were established:
CPA =Y (P-P,) (1)
i=1

where P, is the precipitation in period t; and Fmrepresents the average precipitation
of the cumulative months in the same period.
3.2 Drought severity index of terrestrial water storage anomaly

TWSA-DSI was defined as the standardized anomalies of TWSA values, as
follows:

TWSA — DSI;; = @ )
where i is year ranging from 2003 to 2019; j is month ranging from January to
December; TWSA and o; are the mean and standard deviation of TWSA in month j,
respectively (Zhao et al., 2017).

3.3 Population-GDP index
Population-GDP index (PGI) is an index constructed based on the exposure
characteristics emphasized by Intergovernmental Panel on Climate Change (IPCC)
and the United Nations International Strategy for Disaster Reduction and fully
considering the factors of population and economic development (Field et al., 2012).
PGI;" — (1 / 2)1H(9+P0P£QX/POP/I”) +(1 / 2)1n(9+GDP£2x/GDE1"') (3)

where POP" and GDP" are the population and GDP values corresponding to pixelm

in year n, respectively; POP” and GDP. are the maximum values of population and

max max

11
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GDP in China at year m on the metric scale, respectively
3.4 Probabilistic framework for trigger threshold

Copula functions (Eq. 4) provide the flexibility to represent a multivariate joint
distribution, which is not limited by the marginal distribution of random variables or
the type of joint distribution function, thus avoiding assumptions about linearity or
underlying probability distributions (Nelsen, 2007). In this study, the CPA at the best
scale (the CPA values at 1-24 month scales were compared separately) matched by the
DSI in each grid was identified using Spearman maximum correlation coefficient
(p<0.05). Parametric distributions have limited efficiency because of the uncertainties
in parameter estimation, and are invalid for random variables less than zero (Peter D,
1985). The kernel distribution (Eq. 5) was thus employed to fit them to the marginal
distribution, and then the copula function was used to construct the joint probability

distribution between CPA (x) and TWSA-DSI (y).
Fyy(X,Y) = C[Fx(X), Fy(Y)] “4)

where Fy(X) and Fy(Y) are the marginal distributions of x and y, respectively. C is
the cumulative distribution function of copula.
For any real values of x, the probability density function of the kernel density

estimator's formula was given by:

ful) = =30, K2 (5)
where x;, x,, ... x, are random samples from an unknown distribution, n is the
sample size, K is the kernel smoothing function, and h represents the bandwidth
(Wang et al., 2021).

There are five commonly used bivariate copula functions in current practice,
12
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denoted as Clayton, Gumbel, Frank, t, and Gaussian. Among these, the Frank, Clayton
and Gumbel copulas are Archimedes-type copulas, which have been widely used in
the analysis of extreme hydrological events (Santhosh and Srinivas, 2013; Sadegh et
al., 2017). Different copulas have different tail dependences: the Clayton and Gumbel
copulas have lower and upper tail dependences, respectively, whereas the Frank
copula has no tail dependence (Guo et al., 2021). For the drought scenario, we
focused more on the probability that the TWSA-DSI decreases as the CPA decreases
(lower tail dependence).

Fig. 2 depicts the comparison between the observed combination of CPA and
TWSA-DSI and the simulation of random variables using the Clayton copula function.
The consistency pattern of the simulated and empirical copula shows that the
proposed model performs well in modelling the dependence between CPA and
TWSA-DSI. Besides, Fig. 2 shows that Clayton copula has lower tail dependence,
which is the concern of this study. The percentiles were used in this study to define
the different levels of CPA and TWSA-DSI, with values in the 40™-30%, 30%-20%,
20M-10" and, <10™ percentile ranges corresponding to mild, moderate, severe, and
extreme levels of drought. The conditional probabilities of occurrence of different
levels of drought (Y < y) under scenarios with different levels of precipitation deficit

(x, < X < x4) can be expressed as follows:

P(x,<X<x41,Y<y)

PY<ylx, <X<xp) = P ey <X <r)

(6)
Further, for a given level of drought, the probability of drought occurrence will

theoretically converge to 1 as the precipitation anomaly continues to exhibit a deficit.

13
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In the probabilistic framework represented in Fig. 3, the percentile of CPA is
iteratively adjusted from the 50™ to the 1* percentile, signifying a progressive rise in
precipitation deficit. This iterative process enables the estimation of the conditional
probability associated with each iteration, thereby indicating possible scenarios
leading to hydrological drought under the corresponding conditional probability. The
configuration of the conditional probabilities can be flexible and variable depending
on the requirements of the decision maker and the local climatic conditions. The
conditional probability was fixed at 0.5 in this study, indicating that if the conditional
probability was equal to or greater than 0.5, there would be a 50% chance that the
CPA state at that percentile would lead to a hydrological drought. Consequently, the
corresponding CPA value at that level was identified as the threshold for triggering
drought conditions. Conversely, if the conditional probability remained below 0.5 as
the CPA was progressively increased to the 1% percentile, it was presumed that there
was no trigger threshold associated with that particular pixel. Moreover, based on the
Clayton copula, the conditional probability density distribution (PDF) of fyx(y|x) was
derived as follows:

Jrx [ 0) =l Fy (X), F, (V)] £, (¥) (7)
where c is the copula, f;(y) is the PDF of TWSA-DSI. Once we choose a certain CPA
conditional PDF from Eq. 6, the probability of TWSA-DSI (Y) dropping below a

particular threshold (y) is given by the area under the curve fyx(y|x).

Fig. 2 The comparison between the observed combination of CPA and TWSA-DSI

14



308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

and the simulation of random variables using the Clayton copula function. The rs and
re are the correlation coefficient of simulations and observations, respectively. Note:

«“#%>” represents significance level of 0.01.

Fig. 3 Precipitation-driven drought trigger threshold framework.

3.5 The random forest method

The random forest (RF) method introduces the Bagging idea, randomly and
independently extracts the sub-sample set, and independently constructs the decision
tree for calculation (Quinlan, 1986; Breiman, 2011). When constructing the decision
tree, each node randomly selects the feature subset, from which the optimal feature is
selected for splitting (Cai et la., 2019). These make the model have better prediction
ability, good tolerance to noise and outliers, and avoid overfitting to some extent. In
this study, RF was used to explore the relative contribution of each factor to the
trigger threshold and identify the main driving factors. The number of decision trees
and the number of leaf nodes in the subtrees were 100 and 2 respectively.
4 Results
4.1 Dependence of TWSA-DSI on CPA

Considering that TWSA-DSI is an integrated characterization of the drought
signal, it may contain both short-term and long-term scales of response to
precipitation. To select the best response time, the Spearman correlation coefficients

15
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between CPA and TWSA-DSI were calculated on 1-24 month scales, and the scale
corresponding to the largest correlation in each pixel was identified. Fig. 4a
demonstrates that the correlation between CPA and TWSA-DSI ranged from -0.25 to
0.89, with approximately 81% of the pixels passing the 95% significance test. It is
worth noting that the correlation tends to be higher in humid and subhumid areas with
abundant precipitation, e.g., the Pearl River Basin, Southeast River Basin and
Songhua River Basin. In contrast, the correlation tends to be lower in arid and semi-
arid areas, e.g., inland river basins and the central part of the Yellow River Basin.
Typically, the TWSA is directly affected by precipitation and shows higher
consistency in areas with abundant precipitation. However, TWSA is also influenced
by glacial snowmelt, evapotranspiration and human activities (Scanlon et al., 2018; Li
et al., 2018). Many studies (Feng et al., 2016; Jin et al., 2018; Zhao et al., 2021) have
shown that since the implementation of the ecological restoration project in 1999, the
rapid increase in vegetation cover in the Loess Plateau is likely to be one of the main
factors leading to the decline in TWSA, while precipitation shows a slight upward
trend during this period (Han et al., 2021b). The central part of the Yellow River Basin
and the Hai River Basin are affected by groundwater overdraft and exhibit a long-term
deficit of water reserves, thus showing a negative correlation. In addition, the negative
correlation exhibited in the Southwestern River Basin (VI) is mainly related to the
reduction in glacial snowmelt.

The significant positive correlation between TWSA-DSI and CPA in this study is
the premise of constructing copula function. The pixels with positive correlation

16
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coefficients at the 95% significance level were selected and further matched to the
corresponding optimal scale, i.e., response time (Fig. 4b). The response time of
TWSA-DSI increases gradually from humid to arid areas. This was because TWSA
includes surface water (reservoir storage and lake), soil water and groundwater
components, and there exist significant differences in the weight of these components
in different regions. For instance, in humid areas, surface water and soil water show a
greater proportion of TWSA as well as a shorter response time to precipitation, while
in the arid and semi-arid areas, soil water and groundwater show a greater proportion

and a longer response time to precipitation.

Fig. 4 Correlation between drought and precipitation (a) and its response time (b). The
white pixels in b indicate the failure to pass the test for significant (p<0.05) positive

correlation.

4.2 Probability of triggering drought under various CPA scenarios

Given the complexity and randomness of drought risk, we provide
comprehensive estimates of different combinations of droughts that trigger each of the
four classes of hydrological drought under corresponding CPA scenarios (Fig. 5). The
risk of drought in central, southeast, and northeast China was clearly observed to be
high, especially in the Pearl River Basin and the Songhua River Basin, which are
areas at high risk of extreme drought. This is consistent with the five distinct drought
centers in China during the recent 50 years, including the northeast region, Huang
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Huai Hai region (eastern part of Northwest China and North China), Yangtze River
Basin, South China and Southwest China (Ma et al., 2018; Yu and Zhai, 2021). For a
certain level of drought (along each column), the probability of causing the same
degree of drought and the area affected gradually increased as the CPA percentile
gradient decreased. Similarly, under a certain level of CPA stress (along each row), the
probability and area of drought tended to decrease as drought events progressed from
mild to extreme. These significant spatial differences were not only consistent with
actual conditions, but also provided direct evidence for identifying areas prone to
drought.

Notably, humid areas with high amounts of precipitation tend to exhibit a higher
risk of drought than arid and semi-arid areas with low amounts of precipitation and
dry climates. Precipitation in China mainly occurs during June-September due to
obvious geographical differences in precipitation distribution and the influence of the
warm and humid monsoon. Although the annual precipitation in arid and semi-arid
areas is lower than that in humid areas, the intra-annual variability in precipitation is
lower than that in humid areas. In contrast, the greater dependence of TWSA on
precipitation in humid areas further suggested that the persistent deficit of

precipitation was the main factor leading to drought.

Fig. 5 Probability of triggering different levels (mild, moderate, severe and extreme)
of drought under different percentile precipitation scenarios. The different CPA and
TWSA-DSI scenarios are represented by the X and Y in the panel.
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4.3 Trigger thresholds corresponding to different levels of drought

Prior knowledge of what level of CPA is likely to trigger what level of drought
facilitates better prediction and early warning of drought occurrences. Fig. 6 shows
the CPA corresponding to different levels of drought. The color within each pixel
indicates the CPA corresponding to the occurrence of that level of drought. When
equal to or below this value, there is at least a 0.5 probability of triggering the
occurrence of drought. A darker color in the pixel indicates a higher trigger threshold,
1.e., a higher CPA is required. Furthermore, comparison with Fig. 4b reveals that the
pixels of the trigger threshold were significantly reduced as the drought level
increased. Despite coupling two indices of optimal scale, the conditional probability
of these pixels may not reach 0.5 when precipitation is not the primary control.
Moreover, with increasing drought levels, the required CPA is lower (lower limit is
the 1% percentile), and there may be no corresponding trigger thresholds. It is further
shown that there are factors other than precipitation that influence drought occurrence.
The CPA exhibits higher values in the southern region of China under all scenarios,
while the response time in the northwest is comparatively longer. However, the CPA
in the northwest may not reach the same magnitude as the 1-month deficit observed in
the south. This discrepancy can be attributed to significant variations in average
annual precipitation among different climatic zones.

To clearly compare the resistance of TWS to precipitation deficits between pixels,
Fig. 7 shows the percentile differences in CPA corresponding to mild drought. The
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high value areas are concentrated in the northeastern, central and southern regions,
indicating that these regions are less resistant, and more prone to drought. In the
trigger thresholds of mild grade drought, the percentage of CPA pixels in mild,
moderate, severe, and extreme grades are 0.3%, 30.1%, 38.3%, and 31.3%,
respectively. This shows that the severe grade is the main grade of CPA that induces
drought in China. Furthermore, for extreme hydrological droughts, close to 100% of
like elements are required to achieve extreme levels of CPA, which means that
extreme CPA scenarios require even more attention and action from the relevant
authorities. This also indicates that if we can estimate and ascertain the required the
CPA based on response time, we can proactively forecast and understand the risk

probability of potential drought events of different severity levels.

Fig. 6 CPA corresponding to different levels of drought trigger thresholds. The white

pixels in the panel indicate no threshold, and the same applies to subsequent figures.

Fig. 7 CPA percentiles corresponding to different levels of drought trigger thresholds.

4.4 Dynamic evolution of trigger thresholds

To better analyze the dynamic evolution characteristics of triggering thresholds
under changing environmental conditions, the time series data was divided into 11, 9,
and 7 sub-sequences using sliding windows of 7, 9, and 11 years, respectively, with a
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sliding step of 1 year. Next, each subsequence was brought into the threshold
framework, and threshold results in the same pixel in all periods were filtered, and the
trend of thresholds was analyzed using the Sen’s slope and the Mann-Kendall trend
test. As the level of meteorological drought increased, the number of pixels filtered at
the same position was evidently reduced. To more comprehensively capture the
dynamic evolution of trigger thresholds at the national scale, only the results of mild
drought are shown herein. Fig. 8 shows the trend of CPA changes corresponding to
triggering mild drought at the pixel scale. Under the sliding windows of 11, 9, and 7
years, 70%, 68%, and 69% of the pixels showed a decreasing trend, respectively,
indicating that the cumulative precipitation deficit corresponding to the triggering
threshold was decreasing. This further suggested that the resilience of drought to
meteorological stress was decreasing. At the basin scale, the Pearl River Basin and the
lower reaches of the Yangtze River Basin exhibited a significant (p<0.05) downward
trend. Related studies (Sun et al., 2012; Chen et al., 2015) have shown that the
frequency of droughts in southern China has increased significantly since the
beginning of the 21st century, and the increase in seasonal drought events has been
particularly pronounced. Huang et al. (2018) found that the southeastern part of the
Yangtze River Basin has exhibited drought conditions since 2000. Therefore, our
study characterizes in detail the spatio-temporal dynamic evolution characteristics of
the trigger threshold, which further indicates that drought risk management in these

regions faces considerable challenges.
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Fig. 8 Spatial trends in thresholds corresponding to mild drought under sliding
windows of 11 (a), 9 (b), and 7 years (c), with black markers indicating significance at

the 0.05 level. Histograms in panels show statistical proportions.

4.5 Primary factors affecting dynamic changes in trigger thresholds

The dynamic changes in the trigger threshold reflect the integrated response of
regional water resource systems to meteorological drought stress under environmental
change. To investigate the controls of propagation thresholds, the same sliding
window was used for air temperature (T), evaporation flux from soil (ES), NDVI,
VPD, and PGI, and the contributions of the driving factors were identified using
random forest regression. Considering the variable magnitudes and large spatial
heterogeneity of the controlling factors, differences between the mean value of each
factor and the trigger thresholds are discussed here. Considering that the factors used
in the analysis of driving forces were derived from different datasets and there may
have been severe collinearity among them, we used the Variance Inflation Factor (VIF)
to diagnose the severity of multicollinearity among the factors. A VIF value of 10 is
commonly used as an empirical threshold to assess the severity of multicollinearity
among predictor variables, with values greater than 10 indicating severe
multicollinearity (Stine, 1995). There was no covariance among the factors, except
that the VIF of PGI and T approached 10 (Fig. S1). The GDP data used in this study
were derived from nighttime light data (Chen et al., 2022), which were known to be
influenced by temperature changes. In particular, from the perspective of China's
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electricity demand structure, an increase in both cooling and warming days would
significantly increase electricity consumption in urban and rural residential areas
(Yang, 2019). Meanwhile, to ensure the reliability of the methodology, the model
prediction results for each time period were evaluated using Nash-Sutcliffe efficiency
(NSE) and correlation coefficient (r).

Changes in the relative importance scores of various factors under different
sliding windows show similar trends. However, over the whole period, temperature
emerged as the most important factor influencing the dynamic changes in the trigger
threshold (Fig. 9). During periods of precipitation deficit, the TWS may be further
depleted due to a lack of replenishment, and changes in high temperatures may
exacerbate water consumption, resulting in a lower trigger threshold and an increase
in the occurrence of drought events. For example, during the late 20" century and the
beginning of the 21%" century, the southern states of the United States of America
experienced a pronounced warming trend, which was attributed to synchronous
changes in water vapor pressure and relative humidity. The intensification of
temperature changes is predicted to result in more frequent extreme events in the
future (Chiang et al, 2018). Further direct evidence suggests that while
meteorological drought was the main driving factor for the hot-dry events in the 1930s,
the primary driving factor in recent decades has become the observed warming trend
(Alizadeh et al., 2020). Dry soils contribute to temperature rise, heat advection and
atmospheric boundary layer deepening. The latter, in turn, increases evaporation
demand, further drying the soil and raising temperatures. This drying and warming
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cycle suppresses cloud formation, inhibits local convective precipitation, and
exacerbates drought conditions (Schumacher et al., 2019). Moreover, climate
warming has been shown to exacerbate the duration and intensity of droughts in China,
meaning that more water may be lost, reducing the water available for groundwater
recharge (Chen et al., 2015; Gu et al., 2020; Jiang et al., 2022). As soil water and
groundwater are the main important components of the TWS, the intensification of
climate change indirectly affects the dynamics of the trigger threshold while

accelerating water cycle processes.

Fig. 9 Relative importance of various factors on triggering thresholds under sliding
windows of 11 (a), 9 (b), and 7 years (c). Note: PGI, VPD, T, ES, NDVI, r and NSE
represent population-GDP index, vapor pressure deficit, air temperature, evaporation
flux from soil, normalized vegetation index, correlation coefficient and Nash-Sutcliffe

efficiency respectively.

5 Discussion
5.1 Validation of other results from other GRACE products

We used GSFC and JPL products to further assess the robustness of the results.
The spatial correlations of GSFC and JPL with CPA show similar changes (Fig. S2a,
b), and are highly consistent with the results from CSR. Compared to the correlations,
the response times of the three products to CPA were slightly different (Fig. S2c, d),
and these differences may be related to the calculation methods used for each product
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(Long et al., 2017; Chen et al., 2021). We further entered the GSFC and JPL products
into the probabilistic framework and calculated the corresponding CPA changes
leading to the mild and extreme drought scenarios (Fig. S3). Both scenarios showed a
spatially effective distribution of pixels and chromaticity changes that were consistent
with the CSR product. In addition, we resampled the threshold results to a resolution
of 0.25° for a more direct comparison with the CSR results (Fig. 10). We found that
the absolute changes primarily ranged between -10 mm and 50 mm (Fig. 10a, b, ¢, d:
94%, 93%, 84%, 80% respectively). The main differences in precipitation were
concentrated in the wetter southern regions and were significantly larger for extreme
droughts than for mild droughts (Fig. 10c, d). This is indeed the case, as extreme
levels of CPA are required to trigger extreme droughts. These differences may also be
influenced by the correlation between CPA and TWSA-DSI, as well as the fitting
process of the joint distribution function within the threshold framework.

We assessed the reliability of the CSR results from a dynamic perspective. Fig.
11 shows the changes in the sliding threshold of the GSFC and JPL products under
mild drought scenarios on an 11-year scale. Among them, significant increasing trends
are observed in the southern part of the Songliao River Basin and the Huaihe River
Basin, whereas significant decreasing trends are observed in the Pear]l River Basin and
the eastern part of the Yangtze River Basin, with the majority of pixels showing a
decrease in the trigger threshold (69.6% for GSFC and 70.5% for JPL). This suggests
that drought resistance to meteorological stress is decreasing. These results are
consistent with those of the CSR. Additionally, despite accounting for the differences
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in spatial resolutions between the products, the percentage changes at different
intervals compared to Fig. 8a also indicate the reliability of the dynamic threshold
results from the CSR. Overall, the high degree of consistency between the static and
dynamic perspectives of the GSFC and JPL results with the CSR not only confirms
the reliability of the findings in this study, but also demonstrates the applicability of

the proposed probability framework.

Fig. 10 Threshold changes in the GSFC and JPL products for triggering mild drought,
and their absolute differences from CSR products. Histograms in panels show

statistical proportions.

Fig. 11 Trends in thresholds for triggering mild drought for GSFC and JPL products

under an 11-year sliding window.

5.2 Merits and limitations of the probability framework

We further performed a detailed analyses of the changes in the conditional
probability of occurrence of mild, moderate, severe and extreme hydrological
droughts under different meteorological stress conditions, based on the pixels in Fig. 2.
Under the same CPA conditions, the conditional probabilities decreased sequentially
as the drought class increased. The conditional probability increased significantly with
increasing CPA stress (decreasing percentile), especially for the mild hydrological
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drought class, which eventually converged to almost 1 (Fig. 12). Moreover, the
variation in the curves of different levels of drought between each pixel not only
reflects differences in the resistance of terrestrial water storage system to precipitation
deficit, but also proves the reliability of the probabilistic framework. Theoretically,
precipitation deficit is a factor that directly leads to drought. The choice of 0.5 as the
conditional probability was based on the consideration of the weak sensitivity of TWS
to precipitation due to climate change and underlying surface factors, as shown in Fig.
4a for the northern and northwestern regions of China. The intensification of human
activities such as groundwater overexploitation (Asoka et al., 2017), interregional
water transfer (Long et al., 2020) and greenhouse gas emissions (Yuan et al., 2019)
has significantly affected the regional water balance. It should be noted that the
limited period for which GRACE data are available may restrict the number of actual
hydrological drought events characterized. Consequently, the probability assessment
may be overestimated. However, the given conditional probability in the framework is
variable, and it depends mainly on the interdependence between the input variables.
This flexibility in probability estimation enables the framework to be readily adapted
to diverse regions, thus broadening its applicability.

However, this study has certain limitations. Firstly, we chose the Clayton copula
model to describe the dependence structure between the CPA and TWSA-DSI, and the
inherent uncertainty of this model propagates and affects the risk estimation of
drought triggered under precipitation deficits (Leng and Hall, 2019). Secondly, the
framework proposed in this study considers the CPA as the only conditional variable,
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without taking into account other factors that may influence drought, such as
temperature, evaporation, and human activities. Despite the ability of copula functions
to model the dependence between variables in three or even higher dimensions (e.g.,
vine copula), bivariate copula functions still have several advantages over trivariate
copula functions in terms of computational efficiency, parameter estimation, and
visualization (Nelsen, 2007; Cherubini et al., 2011). The choice of copula function
should be based on a comprehensive consideration of the specific problem and
characteristics of the data. If the observed sequences for univariate and multivariate
models are not long enough, they may not provide sufficient constraints on the model
parameters, especially for high-dimensional models (Sadegh et al., 2017). This also
explains why this study focused on the pixels that showed a significant positive
correlation between CPA and TWSA-DSIL

In addition, we further explored the conditional probability changes in the five
aforementioned copula functions to assess their sensitivity. For each drought level, the
conditional probability changes in all copula functions exhibited similarities,
increasing as the CPA stress intensified and eventually approaching 1 (Fig. 13). In
contrast, as drought levels and CPA stress intensified, the conditional probability
changes of the Clayton copula became more pronounced. In fact, the drought
situations of interest in this study required copula models that are more sensitive to
the lower tail than the upper tail. This further confirms the accuracy and necessity of
selecting the Clayton copula model for the proposed probability framework.

In general, the drought conditions represented by the TWSA-DSI encompass the
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combined signals of climate change and human activities, which represents an
advantage over traditional single-type droughts. In addition, precipitation, as an input
to the water balance, is typically the most direct and critical factor influencing the
TWS. In this study, the use of the CPA as the only conditional variable takes into
account the close relationship between precipitation and drought conditions. Moreover,
the probabilistic framework can directly provide estimates of the precipitation deficit
that triggers different levels of drought, which can significantly reduce data costs and
facilitate detailed assessment of different combinations between the variables. These
findings and approaches provide valuable insights and new avenues for a

comprehensive understanding of drought formation mechanisms.

Fig. 12 Varying conditional probability of different CPA levels triggering different
droughts in the four pixels, with the black dashed line indicating the set conditional

probability.

Fig. 13 The CPA based on different copula functions triggers changes in the
conditional probability of different levels of drought, with the black dashed line

indicating the set conditional probability.

6. Conclusion

Currently, few studies have focused on drought trigger thresholds, especially in
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the context of human and climate change exacerbating drought while increasing
uncertainty in induced drought. A precipitation-driven drought trigger threshold
framework is proposed herein, which considers the multiscale characteristics of CPA
and uses TWSA-DSI to characterize the hydrological drought. This study first
identified the response time of drought to precipitation at each pixel to determine the
CPA for the optimal scale of input. A probabilistic framework was then constructed
using a copula function and conditional probabilities with various combinations of
scenarios to derive probability assessments for triggering different levels of drought at
a given CPA level. Thus, the precipitation thresholds corresponding to the triggering
of different levels of drought could also be inferred from the given conditional
probabilities. Furthermore, the dynamics of the trigger thresholds over time and the
main drivers of these differences were explored.

This study found that the response time of drought to precipitation in China
demonstrated significant spatial heterogeneity, with the differences mainly determined
by the components of the TWS. Overall, CPA is closely related to TWSA-DSI, with
weak or negative relationships in some places driven mostly by climate change and
human activities. High-risk zones are identified based on the probability of a drought
outbreak, and these locations typically have low trigger thresholds that dynamically
decline over time, exacerbating the risk of drought. Moreover, changes in the water
cycle due to climate change indirectly affect the dynamics of the thresholds. The
method proposed in this study is helpful for understanding precipitation conditions to
predict drought, and provides insight for better drought monitoring and management.
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The framework is universal and can be applied to different regions. However, a
limitation of this framework is that it requires identification or preprocessing of the
connections between input variables in a given region/basin before it can be applied,
and these are neither difficult nor unusual.
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List of Figure Captions

Fig. 1 Location map of the study area.

Fig. 2 The comparison between the observed combination of CPA and TWSA-DSI
and the simulation of random variables using the Clayton copula function. The rs and
re are the correlation coefficient of simulations and observations, respectively. Note:

“** represents significance level of 0.01.

Fig. 3 Precipitation-driven drought trigger threshold framework.

Fig. 4 Correlation between drought and precipitation (a) and its response time (b). The
white pixels in (b) indicate the failure to pass the test for significant (p<0.05) positive

correlation.
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Fig. 5 Probability of triggering different levels (mild, moderate, severe and extreme)
of drought under different percentile precipitation scenarios. The different CPA and

TWSA-DSI scenarios are represented by the X and Y in the panel.

Fig. 6 CPA corresponding to different levels of drought trigger thresholds. The white

pixels in the panel indicate no threshold, and the same applies to subsequent figures.

Fig. 7 CPA percentiles corresponding to different levels of drought trigger thresholds.

Fig. 8 Spatial trends in thresholds corresponding to mild drought under sliding
windows of 11 (a), 9 (b), and 7 years (c), with black markers indicating significance at

the 0.05 level. Histograms in panels show statistical proportions.

Fig. 9 Relative importance of various factors on triggering thresholds under sliding
windows of 11 (a), 9 (b), and 7 years (c). Note: PGI, VPD, T, ES, NDVI, r and NSE
represent population-GDP index, vapor pressure deficit, air temperature, evaporation
flux from soil, normalized vegetation index, correlation coefficient and Nash-Sutcliffe

efficiency respectively.

Fig. 10 Threshold changes in the GSFC and JPL products for triggering mild drought,
and their absolute differences from CSR products. Histograms in panels show
statistical proportions.
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Fig. 11 Trends in thresholds for triggering mild drought for GSFC and JPL products

under an 11-year sliding window.

Fig. 12 Varying conditional probability of different CPA levels triggering different
droughts in the four pixels, with the black dashed line indicating the set conditional

probability.

Fig. 13 The CPA based on different copula functions triggers changes in the
conditional probability of different levels of drought, with the black dashed line

indicating the set conditional probability.

Fig. S1 Boxplot of the VIF variation between factors on sliding scale over 11 (a), 9 (b)

and 7 years (c).

Fig. S2 Correlation of TWSA-DSI with CPA based on GSFZ and JPL products and

their response time variation.

Fig. S3 Changes in CPA corresponding to triggered mild and extreme drought based

on GSFZ and JPL products, respectively. White pixels in the panel indicate no

threshold.
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Fig. 1 Location map of the study area.
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Fig. 2 The comparison between the observed combination of CPA and TWSA-DSI and the
simulation of random variables using the Clayton copula function. The s and r. are the correlation

coefficient of simulations and observations, respectively. Note: “**” represents significance level
of 0.01.
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Fig. 3 Precipitation-driven drought trigger threshold framework.
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Fig. 4 Correlation between drought and precipitation (a) and its response time (b). The white

pixels in (b) indicate the failure to pass the test for significant (p<0.05) positive correlation.
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Fig. 5 Probability of triggering different levels (mild, moderate, severe and extreme) of drought
given different percentile precipitation scenarios. The different CPA and TWSA-DSI scenarios are

represented by X, Y in the panel.
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Fig. 6 The CPA corresponding to different levels of drought trigger thresholds. The white pixels in

the panel indicate no threshold, and the same applies to subsequent figures.
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Fig. 8 Spatial trends in thresholds corresponding to mild drought under sliding windows of 11 (a),
9 (b), and 7 years (c), with black markers indicating significance at the 0.05 level. Histograms in

panels show statistical proportions.
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Fig. 10 Threshold changes in the GFSZ and JPL products for triggering mild drought, and their

absolute differences from CSR products. Histograms in panels show statistical proportions.
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Fig. 11 Trends in thresholds for triggering mild drought for GFSZ and JPL products under an 11-

year sliding window.
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Fig. 12 Varying conditional probability of different CPA levels triggering different droughts in the

four pixels, with the black dashed line indicating the set conditional probability.
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Fig. 13 The CPA based on different copula functions triggers changes in the conditional probability of different levels of drought, with the black dashed line indicating
the set conditional probability
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Fig. S2 Correlation of TWSA-DSI with CPA based on GSFZ and JPL products and their response

time variation.
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Fig. S3 Changes in CPA corresponding to triggered mild and extreme drought based on GSFZ and
JPL products, respectively. White pixels in the panel indicate no threshold.



