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Abstract: Determining the threshold at which meteorological drought triggers 43 

hydrological drought is critical for early warning and proper mitigation of drought. 44 

However, drought trigger thresholds are difficult to determine owing to the 45 

nonlinearity between meteorological and hydrological drought, and their dynamics 46 

have not been explored. To this end, we introduce a precipitation-driven drought 47 

trigger threshold framework. This framework considers the multiscale characteristics 48 

of cumulative precipitation anomalies and incorporates the drought severity index of 49 

terrestrial water storage anomalies to characterize hydrological drought. The dynamics 50 

of trigger thresholds over time and the main drivers of these variations are further 51 

explored over China. The results show that hydrological drought is more sensitive to 52 

meteorological drought in south China, with some regions showing weak or negative 53 

correlations mainly determined by the differences between climate change and human 54 

activities. The risk of drought outbreak in the central, northeastern and southern 55 

regions of China is high, with trigger thresholds showing a dynamic decreasing trend 56 

over time (corresponding to lower cumulative precipitation anomalies), indicating 57 

weakened resistance to meteorological drought. Rising temperature is the main factor 58 

affecting dynamic changes in the trigger threshold. The drought trigger threshold 59 

framework proposed in this study is also applicable for assessments in other regions 60 

around the world. This study provides valuable insights and new approaches for 61 

understanding the mechanisms of hydrological drought formation. Furthermore, these 62 

results are expected to severe as a scientific basis for government departments to 63 

reduce water supply stress on human and natural systems and to develop adaptive 64 
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management strategies. 65 

Key words: GRACE; cumulative precipitation anomaly; drought; trigger threshold 66 

1 Introduction 67 

The considerable inter-annual fluctuations in precipitation owing to changes in 68 

East Asian monsoon climate, combined with sensitive ecosystems and intensive 69 

human activities, have resulted in frequent drought events in China (Li et al., 2012). 70 

Drought begins during periods of precipitation deficit and subsequently spreads 71 

through the terrestrial hydrological system (Van Loon et al., 2012; Herrera-Estrada et 72 

al., 2017; Miao et al., 2022). Owing to the effects of climate change, water scarcity 73 

has become one of the most pressing issues in China (Zhang et al., 2014). Therefore, 74 

predicting the drought occurrence probability and corresponding precipitation deficit 75 

state in advance would be extremely beneficial for water resource management. This 76 

will improve early drought monitoring and warning and play a critical role in assisting 77 

policymakers and governmental agencies to develop adaptive management strategies. 78 

Drought is defined in different ways, and therefore, drought cannot be 79 

characterized by a single index since existing drought indicators are associated with 80 

specific types of droughts (Svoboda et al., 2002; Azmi et al., 2016). More importantly, 81 

most existing indicators do not consider human water use and/or local water storage 82 

(Lloyd-Hughes, 2014), and thus ignore the impact of human activities on drought. For 83 

example, rainfall in northwest India increased from 2002 to 2015 and soil moisture 84 

was relatively stable. However, severe droughts still occurred owing to inadequate 85 

water storage resulting from groundwater extraction for irrigation (Sinha et al., 2017). 86 
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Although these indicators can be constructed by coupling more climate-human water-87 

related variables (e.g., drought caused by anthropogenic factors such as urbanization, 88 

surface water and groundwater overdraft) to multivariate indices to capture drought, 89 

this remains a considerable challenge. 90 

Drought is a complex phenomenon involving a wide range of processes spanning 91 

the atmosphere, hydrosphere, lithosphere and biosphere; most notably, it is influenced 92 

by the lower-than-historical-average level of terrestrial water storage (TWS) (Pokhrel 93 

et al., 2021). Global terrestrial water storage anomalies (TWSA) have been monitored 94 

by the Gravity Recovery and Climate Experiment (GRACE) mission with an 95 

unprecedented accuracy since 2002 (Li et al., 2021). TWSA refers to anomalies in 96 

water storage of Earth’s land area in the vertical direction, including anomalies in ice 97 

and snow, surface water, soil water and groundwater. Hence, the TWSA can reflect 98 

the combined effects of climate change and human activities on watershed droughts 99 

(Famiglietti and Rodell, 2013; Long et al., 2014). For instance, many studies (Zhao et 100 

al., 2017; Sinha et al., 2019; Cui et al., 2021) have used TWSA to capture the process 101 

of drought and combined it with traditional drought indices to compensate for the lack 102 

of drought characterization by a single index, providing crucial insights for 103 

understanding the impact of drought on hydrological systems.  104 

To the best of our knowledge, there have been relatively few studies involving 105 

drought thresholds, with most of these studies utilizing copula functions (Liu et al., 106 

2013; Wu et al., 2021; Guo et al., 2023). This is because copula functions can be used 107 

to construct joint distribution functions for multiple variables, providing the ability to 108 
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calculate conditional probabilities under different drought scenarios. For example, 109 

Guo (2020) explored the meteorological drought thresholds that trigger various levels 110 

of hydrological drought in the Weihe River basin based on the coupled standardized 111 

precipitation index (SPI) and standardized runoff index (SRI). However, their study 112 

only used a 1-month SPI and SRI match, ignoring the more severe hydrological 113 

droughts caused by long-duration precipitation deficits, which are especially common 114 

in major drought events that have occurred in the past, such as the droughts in 115 

California (Prugh et al., 2018), Australia (King et al., 2020), and southwest China (Li 116 

et al., 2021). Han (2021a) proposed a model to establish a threshold between 117 

meteorological and groundwater drought in the Xijiang River Basin. These studies 118 

have uncovered new insights and improved our understanding of drought thresholds. 119 

However, uncertainties exist in the density estimation of certain parameters used to fit 120 

the marginal distributions. 121 

Copula functions have also been used to assess changes in food and vegetation 122 

under drought stress. Leng and Jim (2019) applied a probabilistic modelling 123 

framework constructed using copula functions to study global food production losses 124 

under drought stress. Fang et al. (2019) used copula functions to assess the 125 

spatiotemporal patterns of vegetation vulnerability in the Loess Plateau under multiple 126 

drought scenarios. While these studies have provided valuable insights into the 127 

potential impacts of droughts, they are based on traditional standardized drought 128 

indices (e.g., SPI and SPEI), which may not be directly linked to precipitation records 129 

(Santos et al., 2013), especially in data-scarce regions. This is because the calculation 130 
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of standardized indices requires long-term precipitation data (Vicente-Serrano et al., 131 

2010). The construction of standardized indices also often requires the fitting of 132 

specific distribution functions, and may require data on temperature, 133 

evapotranspiration, soil moisture and other parameters, in addition to precipitation 134 

data. This poses significant challenges for the implementation of drought early 135 

warning and prevention measures at local levels. Conversely, compared with the 136 

abstract thresholds typically associated with standardized values, thresholds 137 

corresponding to precipitation can be directly related to different sectors or regions. 138 

This also provides key scientific guidance for governments to coordinate 139 

adaptation/mitigation strategies among different sectors/regions. More crucially, the 140 

forementioned studies have failed to account for the fact that the thresholds are not 141 

fixed. Rather, trigger thresholds are subject to dynamic changes, because climate 142 

change influences the hydrological cycle and complicates the link between 143 

precipitation and TWS. Furthermore, the drivers of these differences are still unclear. 144 

This study takes into account the multi-scale features of the cumulative 145 

precipitation anomalies (CPA), employs the drought severity index of terrestrial water 146 

storage anomalies (TWSA-DSI) to characterize hydrological drought, and presents a 147 

novel precipitation-driven drought trigger threshold model. The primary objectives of 148 

this study are to (1) reveal the threshold and dynamic changes in precipitation 149 

triggered drought; and (2) explore the main factors affecting the threshold. The results 150 

of this study will not only help monitor and predict droughts more accurately, but are 151 

also expected to complement direct evidence of intensified water cycles. 152 
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2 Data and methods 153 

2.1 Study area 154 

China's terrain is high in the west and low in the east, with mountains, plateaus 155 

and hills covering approximately 67% of its land area, and basins and plains covering 156 

approximately 33% of its land area (Jin et al., 2021). China spans a wide range of 157 

latitudes and longitudes, with considerable variations in the combinations of 158 

temperature and precipitation, creating a wide variety of climates. The eastern part of 159 

China has a monsoon climate, the northwestern part has a temperate continental arid 160 

climate, and the Tibetan Plateau has an alpine climate. China is characterized by a 161 

monsoon climate with warm rainy summers and dry cold winters. Although the 162 

variety in climate types in China is favorable for agricultural production, extreme 163 

climate events, such as droughts, floods, cold waves, and typhoons, have considerable 164 

impacts on the country. Based on the classification of Chinese watershed systems, we 165 

considered nine major river basins (Fig. 1), namely the Songliao River Basin (Ⅰ), Hai 166 

River Basin (Ⅱ), Huai River Basin (Ⅲ), Southeast River Basin (Ⅳ), Pearl River Basin 167 

(Ⅴ), Yellow River Basin (Ⅵ), Yangtze River Basin (Ⅶ), Southwestern River Basin (Ⅷ) 168 

and Inland River Basin (Ⅸ). 169 

------------------------------------------------- 170 

Fig. 1 Location map of the study area. 171 

------------------------------------------------- 172 

2.2 Datasets 173 

2.2.1 GRACE data 174 
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The TWSA were obtained from the GRACE RL06 mascon product of the 175 

University of Texas Center for Space Research (CSR) for the periods January 2004-176 

July 2017, and May 2018-December 2019 with a spatial resolution of 0.25° (obtained 177 

from http://www2.csr.utexas.edu/grace/RL06.html). Regarding the approximately 178 

one-year interval between the GRACE and GRACE-Follow-On for the observation of 179 

TWSA, many scholars have conducted reconstruction and interpolation (Sun et al., 180 

2019; Sun et al., 2020; Mo et al., 2021). To better match with CSR products, here we 181 

use the data from Zhong et al (2020). Besides, we use the mascon products from the 182 

National Aeronautics and Space Administration Goddard Space Flight Center (GSFC) 183 

and the Jet Propulsion Laboratory (JPL). The interpolated data was obtained 184 

separately using the reconstructed data from Li et al (2021). 185 

2.2.2 Hydrometeorological data 186 

Gridded precipitation and air temperature data were obtained from the China 187 

Meteorological Data Service Center (http://data.cma.cn). In this dataset, gridded 188 

monthly precipitation data from 1999-2019 was generated by a thin plate spline 189 

spatial interpolation of precipitation observations from 2,472 weather stations, and the 190 

spatial resolution is 0.5° (Hong et al., 2005). As no data are available for Taiwan, the 191 

study focuses on mainland China. Moreover, the nearest neighbor method was used to 192 

resample precipitation data into 0.25° grid for better comparison with CSR products. 193 

The evaporation flux from soil used version 2.1/Noah land surface model products 194 

from the Global Land Data Assimilation System (GLDAS) with 0.25° spatial 195 

resolution and monthly temporal resolution (http://disc.sci.gsfc.nasa.gov). The vapor 196 
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pressure deficit (VPD) was derived from the TerraClimate dataset and has the same 197 

spatial and temporal resolutions as other products 198 

(http://www.climatologylab.org/terraclimate.html). 199 

2.2.3 Vegetation data 200 

The normalized vegetation index (NDVI) can effectively reflect the vegetation 201 

parameters such as vegetation coverage, growth status, biomass and net primary 202 

productivity (Fensholt et al., 2012). In this study, the 2003-2019 NDVI dataset from 203 

the Moderate Resolution Imaging Spectroradiometer (MODIS) of NASA's MOD13C2 204 

product was selected. Its spatial resolution is 0.05° and its temporal resolution is 205 

month (https://modis.gsfc.nasa.gov/data/)., and it was resampled to 0.25° resolution in 206 

this study. 207 

2.2.4 Population and economic data 208 

Population data for China were obtained from WorldPop on the annual scale 209 

with a spatial resolution of 1km (https://www.worldpop.org/). For comparison with 210 

other data, the 1km population data were counted to a 0.25° grid. The Gross Domestic 211 

Product (GDP) data are derived from the global-scale, high-precision products of 212 

Chen et al (2022). This product is calculated from nighttime lights data using a series 213 

of methods, such as Particle Swarm Optimization-Backpropagation (PSO-BP) 214 

algorithm. 215 

3 Methods 216 

3.1 Cumulative precipitation anomalies 217 

Compared with SPI, CPA can provide the most direct reference for early warning 218 
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of meteorological and risk management (Van den Broeke et al., 2009; Coelho et al., 219 

2016). In order to describe the precipitation deficit corresponding to hydrological 220 

drought, the cumulative precipitation deficit series with climatological significance at 221 

different time scales were established:  222 

    
1

( )
t

t t m
i

CPA P P


                                         (1) 223 

where  𝑃𝑡 is the precipitation in period 𝑡; and mP represents the average precipitation 224 

of the cumulative months in the same period. 225 

3.2 Drought severity index of terrestrial water storage anomaly  226 

TWSA-DSI was defined as the standardized anomalies of TWSA values, as 227 

follows: 228 

                      𝑇𝑊𝑆𝐴 − 𝐷𝑆𝐼𝑖,𝑗 = 𝑇𝑊𝑆𝐴𝑖,𝑗−𝑇𝑊𝑆𝐴𝑗

𝜎𝑗
                                    (2) 229 

where 𝑖  is year ranging from 2003 to 2019;  𝑗  is month ranging from January to 230 

December; TWSA  and 𝜎𝑗 are the mean and standard deviation of TWSA in month 𝑗, 231 

respectively (Zhao et al., 2017).  232 

3.3 Population-GDP index  233 

Population-GDP index (PGI) is an index constructed based on the exposure 234 

characteristics emphasized by Intergovernmental Panel on Climate Change (IPCC) 235 

and the United Nations International Strategy for Disaster Reduction and fully 236 

considering the factors of population and economic development (Field et al., 2012). 237 

max maxln(9+ / ) ln(9+ / )(1/ 2) (1/ 2)
m m m m

n nPOP POP GDP GDPm
nPGI                     (3) 238 

where m
nPOP and m

nGDP  are the population and GDP values corresponding to pixelm239 

in year n , respectively; max
mPOP and max

mGDP are the maximum values of population and 240 
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GDP in China at year m on the metric scale, respectively 241 

3.4 Probabilistic framework for trigger threshold 242 

Copula functions (Eq. 4) provide the flexibility to represent a multivariate joint 243 

distribution, which is not limited by the marginal distribution of random variables or 244 

the type of joint distribution function, thus avoiding assumptions about linearity or 245 

underlying probability distributions (Nelsen, 2007). In this study, the CPA at the best 246 

scale (the CPA values at 1-24 month scales were compared separately) matched by the 247 

DSI in each grid was identified using Spearman maximum correlation coefficient 248 

(p<0.05). Parametric distributions have limited efficiency because of the uncertainties 249 

in parameter estimation, and are invalid for random variables less than zero (Peter D, 250 

1985). The kernel distribution (Eq. 5) was thus employed to fit them to the marginal 251 

distribution, and then the copula function was used to construct the joint probability 252 

distribution between CPA (𝑥) and TWSA-DSI (𝑦).  253 

                         𝐹𝑋𝑌(𝑋, 𝑌) = 𝐶[𝐹𝑋(𝑋), 𝐹𝑌(𝑌)]                                            (4) 254 

where 𝐹𝑋(𝑋) and 𝐹𝑌(𝑌) are the marginal distributions of 𝑥 and 𝑦, respectively. 𝐶  is 255 

the cumulative distribution function of copula. 256 

For any real values of 𝑥, the probability density function of the kernel density 257 

estimator's formula was given by: 258 

                     𝑓ℎ̂(𝑥) = 1
𝑛ℎ

∑ 𝐾(𝑥−𝑥𝑖
ℎ

)𝑛
𝑖=1                                          (5) 259 

where 𝑥1 , 𝑥2 , … 𝑥𝑛  are random samples from an unknown distribution,  𝑛  is the 260 

sample size, 𝐾  is the kernel smoothing function, and ℎ  represents the bandwidth 261 

(Wang et al., 2021). 262 

There are five commonly used bivariate copula functions in current practice, 263 
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denoted as Clayton, Gumbel, Frank, t, and Gaussian. Among these, the Frank, Clayton 264 

and Gumbel copulas are Archimedes-type copulas, which have been widely used in 265 

the analysis of extreme hydrological events (Santhosh and Srinivas, 2013; Sadegh et 266 

al., 2017). Different copulas have different tail dependences: the Clayton and Gumbel 267 

copulas have lower and upper tail dependences, respectively, whereas the Frank 268 

copula has no tail dependence (Guo et al., 2021). For the drought scenario, we 269 

focused more on the probability that the TWSA-DSI decreases as the CPA decreases 270 

(lower tail dependence).  271 

 Fig. 2 depicts the comparison between the observed combination of CPA and 272 

TWSA-DSI and the simulation of random variables using the Clayton copula function. 273 

The consistency pattern of the simulated and empirical copula shows that the 274 

proposed model performs well in modelling the dependence between CPA and 275 

TWSA-DSI. Besides, Fig. 2 shows that Clayton copula has lower tail dependence, 276 

which is the concern of this study. The percentiles were used in this study to define 277 

the different levels of CPA and TWSA-DSI, with values in the 40th-30th, 30th-20th, 278 

20th-10th and, ≤10th percentile ranges corresponding to mild, moderate, severe, and 279 

extreme levels of drought. The conditional probabilities of occurrence of different 280 

levels of drought (𝑌 ≤ 𝑦) under scenarios with different levels of precipitation deficit 281 

(𝑥2 < 𝑋 ≤ 𝑥1) can be expressed as follows: 282 

                   𝑃(𝑌 ≤ 𝑦|𝑥2 < 𝑋 ≤ 𝑥1) = 𝑃(𝑥2<𝑋≤𝑥1,𝑌≤𝑦)
𝑃(𝑥2<𝑋≤𝑥1)                                 (6) 283 

Further, for a given level of drought, the probability of drought occurrence will 284 

theoretically converge to 1 as the precipitation anomaly continues to exhibit a deficit. 285 
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In the probabilistic framework represented in Fig. 3, the percentile of CPA is 286 

iteratively adjusted from the 50th to the 1st percentile, signifying a progressive rise in 287 

precipitation deficit. This iterative process enables the estimation of the conditional 288 

probability associated with each iteration, thereby indicating possible scenarios 289 

leading to hydrological drought under the corresponding conditional probability. The 290 

configuration of the conditional probabilities can be flexible and variable depending 291 

on the requirements of the decision maker and the local climatic conditions. The 292 

conditional probability was fixed at 0.5 in this study, indicating that if the conditional 293 

probability was equal to or greater than 0.5, there would be a 50% chance that the 294 

CPA state at that percentile would lead to a hydrological drought. Consequently, the 295 

corresponding CPA value at that level was identified as the threshold for triggering 296 

drought conditions. Conversely, if the conditional probability remained below 0.5 as 297 

the CPA was progressively increased to the 1st percentile, it was presumed that there 298 

was no trigger threshold associated with that particular pixel. Moreover, based on the 299 

Clayton copula, the conditional probability density distribution (PDF) of 𝑓𝑌|𝑋(𝑦|𝑥) was 300 

derived as follows: 301 

            | ( | ) [ ( ), ( )] ( )Y X X Y Yf y x c F X F Y f y                                    (7) 302 

where 𝑐 is the copula, 𝑓𝑌(𝑦) is the PDF of TWSA-DSI. Once we choose a certain CPA 303 

conditional PDF from Eq. 6, the probability of TWSA-DSI (𝑌) dropping below a 304 

particular threshold (𝑦) is given by the area under the curve 𝑓𝑌|𝑋(𝑦|𝑥). 305 

------------------------------------------------- 306 

 Fig. 2 The comparison between the observed combination of CPA and TWSA-DSI 307 
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and the simulation of random variables using the Clayton copula function. The rs and 308 

re are the correlation coefficient of simulations and observations, respectively. Note: 309 

“**” represents significance level of 0.01. 310 

------------------------------------------------- 311 

------------------------------------------------- 312 

Fig. 3 Precipitation-driven drought trigger threshold framework. 313 

------------------------------------------------- 314 

3.5 The random forest method 315 

The random forest (RF) method introduces the Bagging idea, randomly and 316 

independently extracts the sub-sample set, and independently constructs the decision 317 

tree for calculation (Quinlan, 1986; Breiman, 2011). When constructing the decision 318 

tree, each node randomly selects the feature subset, from which the optimal feature is 319 

selected for splitting (Cai et la., 2019). These make the model have better prediction 320 

ability, good tolerance to noise and outliers, and avoid overfitting to some extent. In 321 

this study, RF was used to explore the relative contribution of each factor to the 322 

trigger threshold and identify the main driving factors. The number of decision trees 323 

and the number of leaf nodes in the subtrees were 100 and 2 respectively. 324 

4 Results 325 

4.1 Dependence of TWSA-DSI on CPA 326 

Considering that TWSA-DSI is an integrated characterization of the drought 327 

signal, it may contain both short-term and long-term scales of response to 328 

precipitation. To select the best response time, the Spearman correlation coefficients 329 
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between CPA and TWSA-DSI were calculated on 1-24 month scales, and the scale 330 

corresponding to the largest correlation in each pixel was identified. Fig. 4a 331 

demonstrates that the correlation between CPA and TWSA-DSI ranged from -0.25 to 332 

0.89, with approximately 81% of the pixels passing the 95% significance test. It is 333 

worth noting that the correlation tends to be higher in humid and subhumid areas with 334 

abundant precipitation, e.g., the Pearl River Basin, Southeast River Basin and 335 

Songhua River Basin. In contrast, the correlation tends to be lower in arid and semi-336 

arid areas, e.g., inland river basins and the central part of the Yellow River Basin. 337 

Typically, the TWSA is directly affected by precipitation and shows higher 338 

consistency in areas with abundant precipitation. However, TWSA is also influenced 339 

by glacial snowmelt, evapotranspiration and human activities (Scanlon et al., 2018; Li 340 

et al., 2018). Many studies (Feng et al., 2016; Jin et al., 2018; Zhao et al., 2021) have 341 

shown that since the implementation of the ecological restoration project in 1999, the 342 

rapid increase in vegetation cover in the Loess Plateau is likely to be one of the main 343 

factors leading to the decline in TWSA, while precipitation shows a slight upward 344 

trend during this period (Han et al., 2021b). The central part of the Yellow River Basin 345 

and the Hai River Basin are affected by groundwater overdraft and exhibit a long-term 346 

deficit of water reserves, thus showing a negative correlation. In addition, the negative 347 

correlation exhibited in the Southwestern River Basin (Ⅷ) is mainly related to the 348 

reduction in glacial snowmelt.  349 

The significant positive correlation between TWSA-DSI and CPA in this study is 350 

the premise of constructing copula function. The pixels with positive correlation 351 
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coefficients at the 95% significance level were selected and further matched to the 352 

corresponding optimal scale, i.e., response time (Fig. 4b). The response time of 353 

TWSA-DSI increases gradually from humid to arid areas. This was because TWSA 354 

includes surface water (reservoir storage and lake), soil water and groundwater 355 

components, and there exist significant differences in the weight of these components 356 

in different regions. For instance, in humid areas, surface water and soil water show a 357 

greater proportion of TWSA as well as a shorter response time to precipitation, while 358 

in the arid and semi-arid areas, soil water and groundwater show a greater proportion 359 

and a longer response time to precipitation. 360 

------------------------------------------------- 361 

Fig. 4 Correlation between drought and precipitation (a) and its response time (b). The 362 

white pixels in b indicate the failure to pass the test for significant (p<0.05) positive 363 

correlation. 364 

------------------------------------------------- 365 

4.2 Probability of triggering drought under various CPA scenarios 366 

Given the complexity and randomness of drought risk, we provide 367 

comprehensive estimates of different combinations of droughts that trigger each of the 368 

four classes of hydrological drought under corresponding CPA scenarios (Fig. 5). The 369 

risk of drought in central, southeast, and northeast China was clearly observed to be 370 

high, especially in the Pearl River Basin and the Songhua River Basin, which are 371 

areas at high risk of extreme drought. This is consistent with the five distinct drought 372 

centers in China during the recent 50 years, including the northeast region, Huang 373 
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Huai Hai region (eastern part of Northwest China and North China), Yangtze River 374 

Basin, South China and Southwest China (Ma et al., 2018; Yu and Zhai, 2021). For a 375 

certain level of drought (along each column), the probability of causing the same 376 

degree of drought and the area affected gradually increased as the CPA percentile 377 

gradient decreased. Similarly, under a certain level of CPA stress (along each row), the 378 

probability and area of drought tended to decrease as drought events progressed from 379 

mild to extreme. These significant spatial differences were not only consistent with 380 

actual conditions, but also provided direct evidence for identifying areas prone to 381 

drought. 382 

Notably, humid areas with high amounts of precipitation tend to exhibit a higher 383 

risk of drought than arid and semi-arid areas with low amounts of precipitation and 384 

dry climates. Precipitation in China mainly occurs during June-September due to 385 

obvious geographical differences in precipitation distribution and the influence of the 386 

warm and humid monsoon. Although the annual precipitation in arid and semi-arid 387 

areas is lower than that in humid areas, the intra-annual variability in precipitation is 388 

lower than that in humid areas. In contrast, the greater dependence of TWSA on 389 

precipitation in humid areas further suggested that the persistent deficit of 390 

precipitation was the main factor leading to drought.  391 

------------------------------------------------- 392 

Fig. 5 Probability of triggering different levels (mild, moderate, severe and extreme) 393 

of drought under different percentile precipitation scenarios. The different CPA and 394 

TWSA-DSI scenarios are represented by the X and Y in the panel. 395 
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------------------------------------------------- 396 

4.3 Trigger thresholds corresponding to different levels of drought 397 

Prior knowledge of what level of CPA is likely to trigger what level of drought 398 

facilitates better prediction and early warning of drought occurrences. Fig. 6 shows 399 

the CPA corresponding to different levels of drought. The color within each pixel 400 

indicates the CPA corresponding to the occurrence of that level of drought. When 401 

equal to or below this value, there is at least a 0.5 probability of triggering the 402 

occurrence of drought. A darker color in the pixel indicates a higher trigger threshold, 403 

i.e., a higher CPA is required. Furthermore, comparison with Fig. 4b reveals that the 404 

pixels of the trigger threshold were significantly reduced as the drought level 405 

increased. Despite coupling two indices of optimal scale, the conditional probability 406 

of these pixels may not reach 0.5 when precipitation is not the primary control. 407 

Moreover, with increasing drought levels, the required CPA is lower (lower limit is 408 

the 1st percentile), and there may be no corresponding trigger thresholds. It is further 409 

shown that there are factors other than precipitation that influence drought occurrence. 410 

The CPA exhibits higher values in the southern region of China under all scenarios, 411 

while the response time in the northwest is comparatively longer. However, the CPA 412 

in the northwest may not reach the same magnitude as the 1-month deficit observed in 413 

the south. This discrepancy can be attributed to significant variations in average 414 

annual precipitation among different climatic zones. 415 

To clearly compare the resistance of TWS to precipitation deficits between pixels, 416 

Fig. 7 shows the percentile differences in CPA corresponding to mild drought. The 417 
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high value areas are concentrated in the northeastern, central and southern regions, 418 

indicating that these regions are less resistant, and more prone to drought. In the 419 

trigger thresholds of mild grade drought, the percentage of CPA pixels in mild, 420 

moderate, severe, and extreme grades are 0.3%, 30.1%, 38.3%, and 31.3%, 421 

respectively. This shows that the severe grade is the main grade of CPA that induces 422 

drought in China. Furthermore, for extreme hydrological droughts, close to 100% of 423 

like elements are required to achieve extreme levels of CPA, which means that 424 

extreme CPA scenarios require even more attention and action from the relevant 425 

authorities. This also indicates that if we can estimate and ascertain the required the 426 

CPA based on response time, we can proactively forecast and understand the risk 427 

probability of potential drought events of different severity levels.  428 

------------------------------------------------- 429 

Fig. 6 CPA corresponding to different levels of drought trigger thresholds.  The white 430 

pixels in the panel indicate no threshold, and the same applies to subsequent figures. 431 

------------------------------------------------- 432 

------------------------------------------------- 433 

Fig. 7 CPA percentiles corresponding to different levels of drought trigger thresholds. 434 

------------------------------------------------- 435 

4.4 Dynamic evolution of trigger thresholds 436 

To better analyze the dynamic evolution characteristics of triggering thresholds 437 

under changing environmental conditions, the time series data was divided into 11, 9, 438 

and 7 sub-sequences using sliding windows of 7, 9, and 11 years, respectively, with a 439 
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sliding step of 1 year. Next, each subsequence was brought into the threshold 440 

framework, and threshold results in the same pixel in all periods were filtered, and the 441 

trend of thresholds was analyzed using the Sen’s slope and the Mann-Kendall trend 442 

test. As the level of meteorological drought increased, the number of pixels filtered at 443 

the same position was evidently reduced. To more comprehensively capture the 444 

dynamic evolution of trigger thresholds at the national scale, only the results of mild 445 

drought are shown herein. Fig. 8 shows the trend of CPA changes corresponding to 446 

triggering mild drought at the pixel scale. Under the sliding windows of 11, 9, and 7 447 

years, 70%, 68%, and 69% of the pixels showed a decreasing trend, respectively, 448 

indicating that the cumulative precipitation deficit corresponding to the triggering 449 

threshold was decreasing. This further suggested that the resilience of drought to 450 

meteorological stress was decreasing. At the basin scale, the Pearl River Basin and the 451 

lower reaches of the Yangtze River Basin exhibited a significant (p<0.05) downward 452 

trend. Related studies (Sun et al., 2012; Chen et al., 2015) have shown that the 453 

frequency of droughts in southern China has increased significantly since the 454 

beginning of the 21st century, and the increase in seasonal drought events has been 455 

particularly pronounced. Huang et al. (2018) found that the southeastern part of the 456 

Yangtze River Basin has exhibited drought conditions since 2000. Therefore, our 457 

study characterizes in detail the spatio-temporal dynamic evolution characteristics of 458 

the trigger threshold, which further indicates that drought risk management in these 459 

regions faces considerable challenges. 460 

------------------------------------------------- 461 
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Fig. 8 Spatial trends in thresholds corresponding to mild drought under sliding 462 

windows of 11 (a), 9 (b), and 7 years (c), with black markers indicating significance at 463 

the 0.05 level. Histograms in panels show statistical proportions. 464 

------------------------------------------------- 465 

4.5 Primary factors affecting dynamic changes in trigger thresholds 466 

The dynamic changes in the trigger threshold reflect the integrated response of 467 

regional water resource systems to meteorological drought stress under environmental 468 

change. To investigate the controls of propagation thresholds, the same sliding 469 

window was used for air temperature (T), evaporation flux from soil (ES), NDVI, 470 

VPD, and PGI, and the contributions of the driving factors were identified using 471 

random forest regression. Considering the variable magnitudes and large spatial 472 

heterogeneity of the controlling factors, differences between the mean value of each 473 

factor and the trigger thresholds are discussed here. Considering that the factors used 474 

in the analysis of driving forces were derived from different datasets and there may 475 

have been severe collinearity among them, we used the Variance Inflation Factor (VIF) 476 

to diagnose the severity of multicollinearity among the factors. A VIF value of 10 is 477 

commonly used as an empirical threshold to assess the severity of multicollinearity 478 

among predictor variables, with values greater than 10 indicating severe 479 

multicollinearity (Stine, 1995). There was no covariance among the factors, except 480 

that the VIF of PGI and T approached 10 (Fig. S1). The GDP data used in this study 481 

were derived from nighttime light data (Chen et al., 2022), which were known to be 482 

influenced by temperature changes. In particular, from the perspective of China's 483 
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electricity demand structure, an increase in both cooling and warming days would 484 

significantly increase electricity consumption in urban and rural residential areas 485 

(Yang, 2019). Meanwhile, to ensure the reliability of the methodology, the model 486 

prediction results for each time period were evaluated using Nash-Sutcliffe efficiency 487 

(NSE) and correlation coefficient (r). 488 

Changes in the relative importance scores of various factors under different 489 

sliding windows show similar trends. However, over the whole period, temperature 490 

emerged as the most important factor influencing the dynamic changes in the trigger 491 

threshold (Fig. 9). During periods of precipitation deficit, the TWS may be further 492 

depleted due to a lack of replenishment, and changes in high temperatures may 493 

exacerbate water consumption, resulting in a lower trigger threshold and an increase 494 

in the occurrence of drought events. For example, during the late 20th century and the 495 

beginning of the 21st century, the southern states of the United States of America 496 

experienced a pronounced warming trend, which was attributed to synchronous 497 

changes in water vapor pressure and relative humidity. The intensification of 498 

temperature changes is predicted to result in more frequent extreme events in the 499 

future (Chiang et al., 2018). Further direct evidence suggests that while 500 

meteorological drought was the main driving factor for the hot-dry events in the 1930s, 501 

the primary driving factor in recent decades has become the observed warming trend 502 

(Alizadeh et al., 2020). Dry soils contribute to temperature rise, heat advection and 503 

atmospheric boundary layer deepening. The latter, in turn, increases evaporation 504 

demand, further drying the soil and raising temperatures. This drying and warming 505 
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cycle suppresses cloud formation, inhibits local convective precipitation, and 506 

exacerbates drought conditions (Schumacher et al., 2019). Moreover, climate 507 

warming has been shown to exacerbate the duration and intensity of droughts in China, 508 

meaning that more water may be lost, reducing the water available for groundwater 509 

recharge (Chen et al., 2015; Gu et al., 2020; Jiang et al., 2022). As soil water and 510 

groundwater are the main important components of the TWS, the intensification of 511 

climate change indirectly affects the dynamics of the trigger threshold while 512 

accelerating water cycle processes. 513 

------------------------------------------------- 514 

Fig. 9 Relative importance of various factors on triggering thresholds under sliding 515 

windows of 11 (a), 9 (b), and 7 years (c). Note: PGI, VPD, T, ES, NDVI, r and NSE 516 

represent population-GDP index, vapor pressure deficit, air temperature, evaporation 517 

flux from soil, normalized vegetation index, correlation coefficient and Nash-Sutcliffe 518 

efficiency respectively. 519 

------------------------------------------------- 520 

5 Discussion 521 

5.1 Validation of other results from other GRACE products 522 

We used GSFC and JPL products to further assess the robustness of the results. 523 

The spatial correlations of GSFC and JPL with CPA show similar changes (Fig. S2a, 524 

b), and are highly consistent with the results from CSR. Compared to the correlations, 525 

the response times of the three products to CPA were slightly different (Fig. S2c, d), 526 

and these differences may be related to the calculation methods used for each product 527 
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(Long et al., 2017; Chen et al., 2021). We further entered the GSFC and JPL products 528 

into the probabilistic framework and calculated the corresponding CPA changes 529 

leading to the mild and extreme drought scenarios (Fig. S3). Both scenarios showed a 530 

spatially effective distribution of pixels and chromaticity changes that were consistent 531 

with the CSR product. In addition, we resampled the threshold results to a resolution 532 

of 0.25° for a more direct comparison with the CSR results (Fig. 10). We found that 533 

the absolute changes primarily ranged between -10 mm and 50 mm (Fig. 10a, b, c, d: 534 

94%, 93%, 84%, 80% respectively). The main differences in precipitation were 535 

concentrated in the wetter southern regions and were significantly larger for extreme 536 

droughts than for mild droughts (Fig. 10c, d). This is indeed the case, as extreme 537 

levels of CPA are required to trigger extreme droughts. These differences may also be 538 

influenced by the correlation between CPA and TWSA-DSI, as well as the fitting 539 

process of the joint distribution function within the threshold framework. 540 

We assessed the reliability of the CSR results from a dynamic perspective. Fig. 541 

11 shows the changes in the sliding threshold of the GSFC and JPL products under 542 

mild drought scenarios on an 11-year scale. Among them, significant increasing trends 543 

are observed in the southern part of the Songliao River Basin and the Huaihe River 544 

Basin, whereas significant decreasing trends are observed in the Pearl River Basin and 545 

the eastern part of the Yangtze River Basin, with the majority of pixels showing a 546 

decrease in the trigger threshold (69.6% for GSFC and 70.5% for JPL). This suggests 547 

that drought resistance to meteorological stress is decreasing. These results are 548 

consistent with those of the CSR. Additionally, despite accounting for the differences 549 
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in spatial resolutions between the products, the percentage changes at different 550 

intervals compared to Fig. 8a also indicate the reliability of the dynamic threshold 551 

results from the CSR. Overall, the high degree of consistency between the static and 552 

dynamic perspectives of the GSFC and JPL results with the CSR not only confirms 553 

the reliability of the findings in this study, but also demonstrates the applicability of 554 

the proposed probability framework. 555 

------------------------------------------------- 556 

Fig. 10 Threshold changes in the GSFC and JPL products for triggering mild drought, 557 

and their absolute differences from CSR products. Histograms in panels show 558 

statistical proportions. 559 

------------------------------------------------- 560 

------------------------------------------------- 561 

Fig. 11 Trends in thresholds for triggering mild drought for GSFC and JPL products 562 

under an 11-year sliding window. 563 

------------------------------------------------- 564 

5.2 Merits and limitations of the probability framework 565 

We further performed a detailed analyses of the changes in the conditional 566 

probability of occurrence of mild, moderate, severe and extreme hydrological 567 

droughts under different meteorological stress conditions, based on the pixels in Fig. 2. 568 

Under the same CPA conditions, the conditional probabilities decreased sequentially 569 

as the drought class increased. The conditional probability increased significantly with 570 

increasing CPA stress (decreasing percentile), especially for the mild hydrological 571 
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drought class, which eventually converged to almost 1 (Fig. 12). Moreover, the 572 

variation in the curves of different levels of drought between each pixel not only 573 

reflects differences in the resistance of terrestrial water storage system to precipitation 574 

deficit, but also proves the reliability of the probabilistic framework. Theoretically, 575 

precipitation deficit is a factor that directly leads to drought. The choice of 0.5 as the 576 

conditional probability was based on the consideration of the weak sensitivity of TWS 577 

to precipitation due to climate change and underlying surface factors, as shown in Fig. 578 

4a for the northern and northwestern regions of China. The intensification of human 579 

activities such as groundwater overexploitation (Asoka et al., 2017), interregional 580 

water transfer (Long et al., 2020) and greenhouse gas emissions (Yuan et al., 2019) 581 

has significantly affected the regional water balance. It should be noted that the 582 

limited period for which GRACE data are available may restrict the number of actual 583 

hydrological drought events characterized. Consequently, the probability assessment 584 

may be overestimated. However, the given conditional probability in the framework is 585 

variable, and it depends mainly on the interdependence between the input variables. 586 

This flexibility in probability estimation enables the framework to be readily adapted 587 

to diverse regions, thus broadening its applicability. 588 

However, this study has certain limitations. Firstly, we chose the Clayton copula 589 

model to describe the dependence structure between the CPA and TWSA-DSI, and the 590 

inherent uncertainty of this model propagates and affects the risk estimation of 591 

drought triggered under precipitation deficits (Leng and Hall, 2019). Secondly, the 592 

framework proposed in this study considers the CPA as the only conditional variable, 593 
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without taking into account other factors that may influence drought, such as 594 

temperature, evaporation, and human activities. Despite the ability of copula functions 595 

to model the dependence between variables in three or even higher dimensions (e.g., 596 

vine copula), bivariate copula functions still have several advantages over trivariate 597 

copula functions in terms of computational efficiency, parameter estimation, and 598 

visualization (Nelsen, 2007; Cherubini et al., 2011). The choice of copula function 599 

should be based on a comprehensive consideration of the specific problem and 600 

characteristics of the data. If the observed sequences for univariate and multivariate 601 

models are not long enough, they may not provide sufficient constraints on the model 602 

parameters, especially for high-dimensional models (Sadegh et al., 2017). This also 603 

explains why this study focused on the pixels that showed a significant positive 604 

correlation between CPA and TWSA-DSI. 605 

In addition, we further explored the conditional probability changes in the five 606 

aforementioned copula functions to assess their sensitivity. For each drought level, the 607 

conditional probability changes in all copula functions exhibited similarities, 608 

increasing as the CPA stress intensified and eventually approaching 1 (Fig. 13). In 609 

contrast, as drought levels and CPA stress intensified, the conditional probability 610 

changes of the Clayton copula became more pronounced. In fact, the drought 611 

situations of interest in this study required copula models that are more sensitive to 612 

the lower tail than the upper tail. This further confirms the accuracy and necessity of 613 

selecting the Clayton copula model for the proposed probability framework. 614 

In general, the drought conditions represented by the TWSA-DSI encompass the 615 
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combined signals of climate change and human activities, which represents an 616 

advantage over traditional single-type droughts. In addition, precipitation, as an input 617 

to the water balance, is typically the most direct and critical factor influencing the 618 

TWS. In this study, the use of the CPA as the only conditional variable takes into 619 

account the close relationship between precipitation and drought conditions. Moreover, 620 

the probabilistic framework can directly provide estimates of the precipitation deficit 621 

that triggers different levels of drought, which can significantly reduce data costs and 622 

facilitate detailed assessment of different combinations between the variables. These 623 

findings and approaches provide valuable insights and new avenues for a 624 

comprehensive understanding of drought formation mechanisms. 625 

------------------------------------------------- 626 

Fig. 12 Varying conditional probability of different CPA levels triggering different 627 

droughts in the four pixels, with the black dashed line indicating the set conditional 628 

probability. 629 

------------------------------------------------- 630 

------------------------------------------------- 631 

Fig. 13 The CPA based on different copula functions triggers changes in the 632 

conditional probability of different levels of drought, with the black dashed line 633 

indicating the set conditional probability. 634 

------------------------------------------------- 635 

6. Conclusion 636 

Currently, few studies have focused on drought trigger thresholds, especially in 637 
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the context of human and climate change exacerbating drought while increasing 638 

uncertainty in induced drought. A precipitation-driven drought trigger threshold 639 

framework is proposed herein, which considers the multiscale characteristics of CPA 640 

and uses TWSA-DSI to characterize the hydrological drought. This study first 641 

identified the response time of drought to precipitation at each pixel to determine the 642 

CPA for the optimal scale of input. A probabilistic framework was then constructed 643 

using a copula function and conditional probabilities with various combinations of 644 

scenarios to derive probability assessments for triggering different levels of drought at 645 

a given CPA level. Thus, the precipitation thresholds corresponding to the triggering 646 

of different levels of drought could also be inferred from the given conditional 647 

probabilities. Furthermore, the dynamics of the trigger thresholds over time and the 648 

main drivers of these differences were explored.  649 

This study found that the response time of drought to precipitation in China 650 

demonstrated significant spatial heterogeneity, with the differences mainly determined 651 

by the components of the TWS. Overall, CPA is closely related to TWSA-DSI, with 652 

weak or negative relationships in some places driven mostly by climate change and 653 

human activities. High-risk zones are identified based on the probability of a drought 654 

outbreak, and these locations typically have low trigger thresholds that dynamically 655 

decline over time, exacerbating the risk of drought. Moreover, changes in the water 656 

cycle due to climate change indirectly affect the dynamics of the thresholds. The 657 

method proposed in this study is helpful for understanding precipitation conditions to 658 

predict drought, and provides insight for better drought monitoring and management. 659 
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The framework is universal and can be applied to different regions. However, a 660 

limitation of this framework is that it requires identification or preprocessing of the 661 

connections between input variables in a given region/basin before it can be applied, 662 

and these are neither difficult nor unusual. 663 
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Fig. 1 Location map of the study area. 

 

 
Fig. 2 The comparison between the observed combination of CPA and TWSA-DSI and the 

simulation of random variables using the Clayton copula function. The rs and re are the correlation 

coefficient of simulations and observations, respectively. Note: “**” represents significance level 

of 0.01. 
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Fig. 3 Precipitation-driven drought trigger threshold framework. 

 

 

 
Fig. 4 Correlation between drought and precipitation (a) and its response time (b). The white 

pixels in (b) indicate the failure to pass the test for significant (p<0.05) positive correlation. 



 
Fig. 5 Probability of triggering different levels (mild, moderate, severe and extreme) of drought 

given different percentile precipitation scenarios. The different CPA and TWSA-DSI scenarios are 

represented by X, Y in the panel. 

 

 



 

Fig. 6 The CPA corresponding to different levels of drought trigger thresholds. The white pixels in 

the panel indicate no threshold, and the same applies to subsequent figures. 

 

 
Fig. 7 The CPA percentile corresponding to different levels of drought trigger thresholds. 



 
Fig. 8 Spatial trends in thresholds corresponding to mild drought under sliding windows of 11 (a), 

9 (b), and 7 years (c), with black markers indicating significance at the 0.05 level. Histograms in 

panels show statistical proportions. 

 

 

 

 



 

Fig. 9 The relative importance of various factors on triggering thresholds under sliding windows of 

11 (a), 9 (b), and 7 years (c). Note: PGI, VPD, T, ES, NDVI, r and NSE represent population-GDP 

index, vapor pressure deficit, air temperature, evaporation flux from soil, normalized vegetation 

index, correlation coefficient and Nash-Sutcliffe efficiency respectively. 

 

Fig. 10 Threshold changes in the GFSZ and JPL products for triggering mild drought, and their 

absolute differences from CSR products. Histograms in panels show statistical proportions. 



 

Fig. 11 Trends in thresholds for triggering mild drought for GFSZ and JPL products under an 11-

year sliding window. 

 

 

Fig. 12 Varying conditional probability of different CPA levels triggering different droughts in the 

four pixels, with the black dashed line indicating the set conditional probability. 

 



 

Fig. 13 The CPA based on different copula functions triggers changes in the conditional probability of different levels of drought, with the black dashed line indicating 

the set conditional probability



Supplementary materials 

 

Fig. S1 Boxplot of the VIF variation between factors on sliding scale over 11 (a), 9 (b) and 7 years 

(c). 



 

Fig. S2 Correlation of TWSA-DSI with CPA based on GSFZ and JPL products and their response 

time variation. 

 

 

 

Fig. S3 Changes in CPA corresponding to triggered mild and extreme drought based on GSFZ and 

JPL products, respectively. White pixels in the panel indicate no threshold. 

 

 


