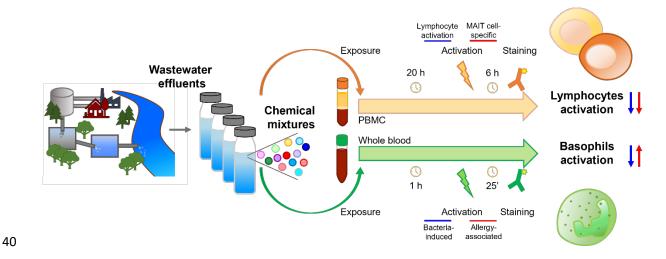
This is the accepted manuscript version of the contribution published as:


Maddalon, A., **Pierzchalski, A.**, Krause, J.L., **Bauer, M.**, **Finckh, S.**, **Brack, W.**, **Zenclussen, A.C.**, Marinovich, M., Corsini, E., **Krauss, M.**, **Herberth, G.** (2024): Impact of chemical mixtures from wastewater treatment plant effluents on human immune cell activation: An effect-based analysis *Sci. Total Environ.* **906**, art. 167495

The publisher's version is available at:

https://doi.org/10.1016/j.scitotenv.2023.167495

IMPACT OF CHEMICAL MIXTURES FROM WASTEWATER TREATMENT PLANT EFFLUENTS ON HUMAN IMMUNE CELL ACTIVATION: AN EFFECT-**BASED ANALYSIS** Ambra Maddalon¹, Arkadiusz Pierzchalski², Jannike Lea Krause³, Mario Bauer², Saskia Finckh⁴, Werner Brack^{4,5}, Ana C Zenclussen^{2,6}, Marina Marinovich¹, Emanuela Corsini¹, Martin Krauss⁴, Gunda Herberth#² ¹Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy ²Department of Environmental Immunology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany ³Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research (DRFZ), Centre-a Leibniz Institute, Berlin, Germany ⁴Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany ⁵Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany ⁶Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Germany #Corresponding author: Gunda Herberth, Permoserstraße 15, 04318 Leipzig; phone: +49 341 235 1547; email: gunda.herberth@ufz.de

Graphical abstract

42 Abstract

Background: Humans are exposed to many different chemicals on a daily basis, mostly as 43 chemical mixtures, usually from food, consumer products and the environment. Wastewater 44 treatment plant effluent contains mixtures of chemicals that have been discarded or excreted by 45 humans and not removed by water treatment. These effluents contribute directly to water 46 pollution, they are used in agriculture and may affect human health. The possible effect of such 47 chemical mixtures on the immune system has not been characterized. 48 **Objective:** The aim of this study was to investigate the effect of extracts obtained from four 49 European wastewater treatment plant effluents on human primary immune cell activation. 50 51 **Methods:** Immune cells were exposed to the effluent extracts and modulation of cell activation was performed by multi-parameter flow cytometry. Messenger-RNA (mRNA) expression of 52 genes related to immune system and hormone receptors was measured by RT-PCR. 53 54 **Results:** The exposure of immune cells to these extracts, containing 339 detected chemicals, significantly reduced the activation of human lymphocytes, mainly affecting T helper and 55 mucosal-associated invariant T cells. In addition, basophil activation was also altered upon 56 mixture exposure. Concerning mRNA expression, we observed that 12 transcripts were down-57 regulated by at least one extract while 11 were up-regulated. Correlation analyses between the 58 59 analyzed immune parameters and the concentration of chemicals in the WWTP extracts, highlighted the most immunomodulatory chemicals. 60 Discussion: Our results suggest that the mixture of chemicals present in the effluents of 61 62 wastewater treatment plants could be considered as immunosuppressive, due to their ability to interfere with the activation of immune cells, a process of utmost importance for the 63 functionality of the immune system. The combined approach of immune effect-based analysis 64 and chemical content analysis used in our study provides a useful tool for investigating the 65 effect of environmental mixtures on the human immune response. 66

68

Keywords:

- 69 Chemical mixtures; wastewater treatment plant; immunotoxicity; lymphocytes; MAIT cells;
- 70 effect-based analysis

71

72 **Abbreviations:**¹

73

¹Abbreviations:

B: blank

BAT: basophil activation test

BpC: bacteria per cell DN: double negative E: effluent (E1-E4) EC: European community

EDCs: endocrine disrupting chemicals

FC: fold change

fMLP: N-formylmethionyl-leucyl-phenylalanine IMDM: Iscove's modified Dulbecco's medium LVSPE: large-volume solid phase extraction MAIT: mucosal-associated invariant T

NA: not applicable NK: natural killer

PBMC: peripheral blood mononuclear cell

PBS: phosphate buffered saline REF: relative enrichment factor

RT: room temperature SD: standard deviation

t-SNE: t-distributed stochastic neighbor embedding

WWTP: wastewater treatment plants

1. Introduction

74

106

75 The entire ecosystem and humans are constantly exposed to mixtures of potentially hazardous substances. More than 350'000 known chemicals have been registered in 2020 in the global 76 market (Wang et al., 2020). 77 78 Although contaminating chemicals are usually present in low concentrations, their effects could be enhanced in mixtures. Many chemicals, including urban runoff chemicals, biocides and 79 pesticides, personal care products, pharmaceuticals, and cleaning agents can pass the 80 wastewater treatment plants (WWTP) and reach the water cycle as mixture of micropollutants 81 with typical concentrations in the ng/L to µg/L range (Bourdat-Deschamps et al., 2014; Robles-82 Molina et al., 2014; Gorga et al., 2013; Ribeiro et al., 2015; Kümmerer, 2009). To date, these 83 micropollutants are among the major contributors to aquatic pollution (Lee et al., 2022; Neale 84 et al., 2020; Gago-Ferrero et al., 2020; Loos et al., 2013; Daughton, 2009). Even at such low 85 concentrations, these compounds individually or as mixtures, may pose a toxic risk to aquatic 86 life (Malaj et al., 2014), particularly due to the presence of pharmaceuticals (Yao et al., 2021; 87 88 Wang et al., 2019; Giebułtowicz et al., 2018; Balakrishna et al., 2017; Ramos et al., 2016; Liu et al., 2015; Sim et al., 2010, Zhou et al., 2010; Kosonen and Kronberg, 2009; Daughton and 89 Ternes, 1999). In addition to aquatic organisms, the chemical mixtures present in these effluents 90 may also pose a risk to humans, due to treated wastewater reuse (Mukherjee & Chauhan, 2023). 91 Currently, wastewater and treated wastewater irrigation is increasing to combat the depletion 92 93 of freshwater resources and the water stress caused by climate change (Wu, 2020; Mishra et al., 2023; Dickin et al., 2016). This means that the general public could also be exposed, for 94 example, by consuming food grown in contaminated areas or by bathing in contaminated 95 recreational waters (Aftab et al., 2023; Khalid et al., 2018). Many publications show the 96 chemical contamination of crops after irrigation with wastewater and treated wastewater, 97 leading to contamination of the food chain (Othman et al., 2021; Xiaoqin Wu et al., 2014; 98 Riemenschneider et al., 2016). For example, Xiaoqin et al. measured the levels of 19 commonly 99 occurring pharmaceutical and personal care products in 8 vegetables irrigated with treated 100 wastewater under field conditions showing a high detection frequency for caffeine, 101 meprobamate, primidone, DEET, carbamazepine, dilantin, naproxen, and triclosan (Xiaoqin 102 Wu et al., 2014). Malchi and colleagues (2014) estimated the health risk associated with 103 consumption of wastewater-irrigated root vegetables by using the threshold of toxicological 104 105 concern (TTC) approach. The data showed that the TTC value of for example lamotrigine can

be reached for a child at a daily consumption of half a carrot (~60 g) (Malchi et al., 2014). The

use of untreated and treated wastewater to irrigate crops is common practice in arid and semiarid regions, and climate change will expand these regions and the reuse of wastewater. As a result, and also because of globalization, it is likely that larger parts of the population will become dependent on potentially contaminated food. Thus, there is an urgent need for analysis of the impact of the chemical mix present in wastewater and sewage treatment plants on human health, especially at the level of the immune system, where alterations are at the root of the development of many diseases. To date, only few studies have investigated the effects of chemical mixtures on humans (reviewed in Bopp et al., 2016; Kumari and Kumar, 2020; Mustafa et al., 2023). The most commonly used approach is to analyze the interaction with nuclear receptors such as aryl hydrocarbon, estrogen, androgen or glucocorticoid receptors (Vinggaard et al., 2021), but complex cellular test systems are missing in humans. Endocrine disruption has been identified as a major effect in waste and surface water (Brion et al., 2019; Carvalho et al., 2019; Gómez et al., 2021; Kase et al., 2018; Leusch et al., 2018; Kunz et al., 2017; Wernersson et al., 2015). It is known that the endocrine and the immune system are closely linked (Wensveen et al., 2019; Greives et al., 2017) and that hormones can lead to the activation or suppression of immune cells. This can then trigger a tissue/organ and organism response. Furthermore, both innate and adaptive immune cells express hormone receptors (Buskiewicz et al., 2016) and can be directly targeted by chemicals. Endocrine-mediated changes in the immune system and immunomodulation by single chemicals have already been demonstrated (Maddalon et al., 2022a; Maddalon et al., 2022b; Krause et al., 2022; Adegoke et al., 2021; Rogers et al., 2013), but the effects of complex chemical mixtures on the immune system have rarely been investigated (Bulka et al., 2021; Warner et al., 2021; Bonefeld et al., 2017; Thompson et al., 2015). The few data available suggest an immunotoxic effect of chemical mixtures (O'Dell et al., 2021; Maddalon et al., 2023), but the studies are limited to a small number of chemicals tested. It is important to study the effect of chemical mixtures on the immune system because increased activation of the immune system can lead to autoimmune diseases or allergies, while decreased activation (e.g. immunosuppression) can increase the risk of infection or neoplasia, both of which pose a risk to human health (Rijkers et al., 2021). Our present investigation, building on studies by Finckh and colleagues (2022a; 2022b), integrates the characterization of four European WWTP effluent samples into an immuneeffect-based analysis. We investigate the effect of chemical mixtures present in WWTP effluents on the activation of human immune cells, namely T helper (CD4⁺), cytotoxic T

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

(CD8⁺), mucosal-associated invariant T (MAIT), natural killer (NK), NKT cells, B cells, and basophils. These cells cover both the innate and the adaptive immune response. With this study, we want to point out the need to test the putative health effects, particularly at the level of immune cells, of treated wastewater prior to its reuse in order to identify chemicals of concern, and to improve the quality of wastewater treatment.

2. Methods

2.1. Preparation of WWTP effluent extracts

From a set of 56 European WWTP effluent samples (Finckh et al., 2022a; 2022b), four of them were selected based on the overall chemical burden (e.g. including EDCs) and *in vitro* PPARγ and aryl hydrocarbon receptor responses previously obtained on SH-SY5Y cell line (Lee et al., 2022). WWTP effluents were sampled in four different European countries between summer 2018 and spring 2019 as specified in Table 1. Sampling, extraction and storage of the WWTP effluents has been previously described by Finckh et al. (2022b). In brief, WWTP effluents were extracted on site using a large-volume solid phase extraction (LVSPE) device with a polymer sorbent (Macherey-Nagle HR-X). For the preparation of blank samples, 1 L of liquid chromatography mass spectrometry grade water was extracted by LVSPE in the laboratory, transported during sampling and processed along with the sample cartridges. After elution, the extracts were dissolved in methanol at a relative enrichment factor (REF) of 1000 and stored at -20 °C until further analysis. The concentrations of the chemicals detected by LC-HRMS screening in the four WWTP extracts are shown in Supplementary File 1 (reprinted from Finckh et al., 2022b). For simplicity reasons, from now we name the WWTP effluent sample extracts "WWTP extracts".

nitrogen. The extracts were resuspended in the same volume of culture medium (IMDM or BAT buffer – explained below) to obtain the enrichment factor of 1000 compared to the original

Prior to cellular treatment, WWTP extracts were thawed, and methanol was evaporated under

WWTP extracts. Several dilutions were tested (REF 25, 12.5, and 6.25).

2.2. Peripheral blood mononuclear cells (PBMCs) treatment with WWTP extracts

The study was approved by the Ethics Committees of the University of Leipzig (#079-15-09032015). Buffy coat blood from five pseudonymous healthy male donors was obtained from

the blood bank at the University of Leipzig, after written informed consent. Only male donors 171 were selected to avoid intra-cycle differences among women. PBMCs were isolated by density 172 gradient centrifugation, using Ficoll-Paque Plus (Cytiva Sweden AB, Uppsala, Sweden) and 173 PBMCs were stored at -150 °C in FCS/10% DMSO until use. For experiments, PBMCs were 174 thawed and suspended in cell culture medium, IMDM (Iscove's modified Dulbecco's medium -175 Gibco, Thermo Fisher Scientific, Waltham, US), supplemented with 10% fetal bovine serum 176 (Sigma-Aldrich, St. Louis, US), 1X Penicillin-Streptomycin (Gibco, Thermo Fisher Scientific, 177 Waltham, US), and 50 μM β-mercaptoethanol (Sigma-Aldrich, St. Louis, US). PBMCs were 178 seeded at 1x10⁶ cells/well in 96-well U-bottom microplates (Greiner Bio-One, Frickenhausen, 179 Germany) and rested for at least 2 hours at 37 °C in a 5% CO₂ incubator before treatment. 180 PBMCs were exposed to WWTP extracts at final REF of 6.25, 12.5, and 25. Initial experiments 181 proved that a final REF of 25 did not exhibit cytotoxicity on stimulated PBMCs (Supplementary 182 Figure 1A), and concurrently to each experiment, cell viability was assessed for each exposure 183 condition. As control for the WWTP extracts one column elution sample (B – EU203) was used 184 as blank at a REF of 25. After 20 h exposure at 37 °C and 5% CO₂, PBMCs were stimulated 185 with anti-CD3 and anti-CD28 antibodies (anti-CD3/CD28) or with Escherichia coli K12 (E. 186 coli K12) for 6 hours, as better explained in the next paragraphs. Negative controls were 187 included, namely PBMCs stimulated with anti-CD28 alone and with IMDM only, respectively. 188 Stimulation with anti-CD28 allows to evaluate unspecific activation levels. None of the donors 189 showed unspecific activation, therefore all donors were considered suitable for the analyses. 190

2.2.1. Lymphocytes activation

191

201

Lymphocytes activation was induced by activating CD3 and CD28 molecules expressed on 192 lymphocytes. Soluble anti-CD3 (clone: OKT3; 0.5 ng/mL) and anti-CD28 (clone: CD28.2; 0.5 193 µg/mL) (BioLegend, San Diego, US) antibodies were added to PBMCs previously exposed to 194 195 WWTP extracts and incubated for 6 hours at 37 °C and 5% CO₂. The optimal concentrations of anti-CD3 and anti-CD28 were previously determined, and the expression of the activation 196 markers induced by anti-CD3/CD28 stimulation are reported in Supplementary material (Suppl. 197 Fig. 2 for CD4⁺ and CD8⁺, Suppl. Fig. 3 for MAIT and NKT cells, and Suppl. Fig. 4 for B, NK, 198 and double negative – DN cells). To block cytokine secretion, Brefeldin A (10 µg/mL; Sigma-199 Aldrich, St. Louis, US) was added for the last 4 h of incubation. 200

2.2.2. MAIT cells specific activation

To specifically activate the MAIT cells, a T cell subtype reacting to bacterial metabolites, an activation with bacteria was used. The bacterial strain *Escherichia coli* K12 MG1655 was cultivated as previously described (Krause et al., 2022) and stored at -80 °C until use. Following 20 hours of exposure to WWTP extracts, PBMCs were stimulated with 10 BpC (bacteria per cell) of *E. coli* K12 for 6 hours at 37 °C in a 5% CO₂ incubator, and for the final 4 hours of incubation, Brefeldin A (10 μg/mL) was added (Suppl. Fig. 5 shows the degree of MAIT cell activation).

209

210

202

203

204

205

206

207

208

2.3. Flow cytometrical analysis of PBMCs

Following stimulation, PBMCs were transferred to V-bottom 96-well microplates (Thermo 211 Fisher Scientific Waltham, US). Dead cells were excluded by staining with fixable viability 212 dye-Zombie NIRTM (BioLegend) for 15 minutes at RT. Staining for surface markers (CD3, 213 CD4, CD8, CD19, CD56, CD161, and TCRVα7.2, Suppl. Table S1) was performed for 20 214 minutes at RT. After staining and washing, PBMCs were fixed using FACSTM Lysing Solution 215 (BD Biosciences, San Jose, US) for 10 minutes, and permeabilized with FACSTM 216 217 Permeabilizing Solution 2 (BD Biosciences, San Jose, US) for further 10 minutes. Finally, cells were stained for intracellular markers (CD69, CD71, CD134, CD137, TNF-α, and IFN-γ, 218 Suppl. Table S1) for 20 minutes at RT. The cytometric analysis was performed using the flow 219 cytometer Cytek Aurora (Cytek Biosciences, California, US). A minimum of 100,000 viable T 220 221 cells (NIR-CD3+) were acquired per sample, then lymphocytes were identified among total PBMCs using FSC-A and SSC-A. The gating strategies for lymphocytes and MAIT cells are 222 reported in Suppl. Fig. 6. Briefly, lymphocytes were detected, following stimulation with anti-223 CD3/CD28, as follows: regarding CD3+cells, T helper cells were gated as CD3+CD56-CD161-224 TCRVα7.2-CD4+, cytotoxic T cells were gated as CD3+CD56-CD161-TCRVα7.2-CD8+, double 225 226 negative (DN) were gated as CD3⁺CD56⁻CD161⁻TCRVα7.2⁻CD4⁻CD8⁻, NKT cells as CD3⁺CD56⁺, and MAIT cells as CD3⁺CD56⁻CD161⁺TCRVα7.2⁺; for CD3⁻ cells, instead, B 227 cells were gated as CD3⁻CD4⁻CD19⁺, and NK cells as CD3⁻CD4⁻CD56⁺ (Suppl. Fig. 6A). 228 Regarding the specific activation of MAIT cells, with E. coli K12, MAIT cells were gated as 229 CD3⁺CD8⁺CD161⁺TCRVα7.2⁺ (Suppl. Fig. 6B). The expression of activation markers and 230 intracellular pro-inflammatory cytokines within these lymphocyte populations were analyzed 231 individually for TNF-α, IFN-γ, CD69, CD71, CD134, CD137, and the double expression of 232 TNF-α and CD69 were expressed as % of positive cells for CD4⁺, CD8⁺, NKT, MAIT, CD4⁻ 233 CD8⁻, NK, and B cells. Only the activation markers responding to the stimulus in the certain 234

immune cell populations are shown. Data analysis was performed using FCS Express 7 (De

Novo Software).

2.3.1 t-SNE analysis of stimulated PBMCs

Following conventional flow cytometrical analysis, an in-depth analysis for high dimensional data using t-distributed stochastic neighbor embedding (t-SNE) transformation tool (FCS Express 7, De Novo Software) was performed on gated CD4⁺ cells following anti-CD3/CD28 stimulation and on gated MAIT cells following *E. coli* K12 stimulation. These cells were chosen because the effect of WWTP extracts on them was most pronounced. As representative effect, the highest tested concentration of every WWTP extract at REF of 25, together with the blank were selected for each donor. For the t-SNE analysis, the samples were merged and gated as for conventional analysis – Suppl. Fig. 6A and 6B. Briefly, 50,000 total events for CD4⁺ cells and of 200,000 for MAIT cells were selected. The down-sampling was selected as interval, with iteration number: 500, perplexity: 50, and approximation: 0.5. Furthermore, the opt-SNE and the estimation for unsampled events were chosen to generate 2D t-SNE maps. The single treatment conditions (5 per donor) and the group conditions (B, E1, E2, E3, E4) were gated through the use of sample ID. Clusters of cells based on the expression level of the activation markers and of the cytokines were manually created, and the % of gated cells in each cluster was further analyzed.

2.4. Basophils activation

To activate basophils, following exposure to WWTP extracts, whole blood was stimulated in two different ways, to elicit both innate and adaptive response. Heparin-blood from eight male healthy pseudonymous volunteers was obtained from the blood bank at the University of Leipzig, after written informed consent (#079-15-09032015). For basophil activation, more blood samples were used than for lymphocyte activation experiments to provide more robust data due to the high variability in human basophil counts and reactivity. 100 µL of blood were transferred into flow cytometrical 5 mL polystyrene round-bottom tube (Falcon, Corning, New York, US) and exposed to the four WWTP extracts at a REF of 25 or to the blank that were previously resuspended in BAT buffer (MgCa PBS buffer supplemented together with IL-3; 2 ng/mL – Sigma-Aldrich, St. Louis, US). In parallel, as a negative control, blood was exposed to BAT buffer. Again, cell viability was assessed concurrently with each experiment, (Suppl. Fig. 1B). After 1 h incubation at 37 °C in a 5% CO₂ incubator, the basophils contained in the

whole blood were activated by the addition of anti-FcεR1α antibody (0.1 µg/mL, BioLegend) 267 or N-formylmethionyl-leucyl-phenylalanine (fMLP, 0.05 µM, Sigma-Aldrich, St. Louis, US). 268 Cells were stained with antibodies anti-CCR3 and anti-CD63 (Suppl. Table S2) for 25 minutes 269 at 37 °C in a 5% CO₂ incubator. After 25 minutes, the reaction was stopped by adding EDTA 270 3.8% (Gibco, Thermo Fisher Scientific, Waltham, US), and erythrocytes were lysed by 271 incubating the cells in erythrocytes lysis buffer (NH₄Cl - Sigma-Aldrich, NaCO3 - KMF 272 Laborchemie, Lohmar, Germany, EDTA - Thermo Fisher Scientific) for 10 minutes at RT 273 (twice). To discriminate between live and dead cells, cells were stained with fixable viability 274 dye-eFluorTM 506 (eBioscience) for 20 minutes at 4 °C. Cells were fixed in paraformaldehyde 275 1% (Sigma-Aldrich) and analyzed on a FACS CantoTM II instrument (BD Biosciences, San 276 Jose, US). Leukocytes were identified using scatter properties FSC-A and SSC-A, basophils 277 were identified as CCR3+ cells. The level of basophil activation was analyzed in CCR3+ 278 population as % CD63⁺ cells and subdivided in CD63 high and low (the gating strategy is shown 279 in Suppl. Fig. 7A). The basophil activation levels are reported in Suppl. Fig. 7B. Data were then 280 analyzed using FCS Express 7 software. 281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

2.5. Gene expression analysis (mRNA)

PBMCs were plated at a concentration of 1x10⁶ cells/well in IMDM and exposed to WWTP extracts at a REF of 25 or to the blank for 20 hours at 37 °C in a 5% CO2 incubator. In order to specifically target the activation of MAIT cells, which were highly affected by WWTP extracts exposure, PBMCs were then stimulated with E. coli K12 (10 BpC) for 6 hours at 37°C and 5% CO₂. After the treatment, PBMCs were transferred to 1.5 mL microfuge tubes and centrifuged. PBMCs were suspended in 300 µL Trizol (Invitrogen, Waltham, US) and maintained at -80 °C prior to RNA extraction. Total RNA was extracted according to manufacturer's instructions (Invitrogen). cDNA synthesis was carried out with 200 ng of RNA by using 5U RevertAidTM H Minus Reverse Transcriptase (Fisher Scientific, Schwerte, Germany). Intron-spanning primers were designed and UPL probes were selected by the Universal Probe Library Assay Design Center. A number of 40 genes of interest and 3 reference genes (Suppl. Table S3 and S4) were pre-amplified in 12 cycles and quantitative PCR was performed on a 96x96 Dynamic array with BioMarkTM HD System (Fluidigm, München, Germany). The cycling program consisted of 95°C for 5 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. PCR was performed with FastStart Universal Probe Master Mix (Roche, Mannheim, Germany). The analyzed genes were chosen according to their involvement in the immune system, in particular on MAIT cells activation and functionality. Furthermore, some hormonal receptors were chosen.

2.6. Correlation between chemical composition and immune endpoints

The correlation between chemical concentrations of WWTP extracts and relative immune endpoints (lymphocytes activation, gene expression, and basophils activation) was evaluated using Kendall correlation method for non-normal distributed samples using the Corrr package in R and corrplot for P-value extraction. Correlation coefficients were visualized using the heatmap.3 function. Details are presented in Suppl. File 2.

2.7. Statistical analysis

Flow cytometric data were shown as fold change (FC) relative to the blank control. Statistical analysis was performed using GraphPad Prism (version 9.4.0). Data were reported as mean of 5 donors regarding lymphocytes and as mean \pm standard deviation (SD) of 8 donors for basophils. Gene expression data were normalized to the average of the three reference genes and then to the minimum of the expression of each gene. FC was calculated on the blank. Normal distribution was assessed using the Shapiro-Wilk test. To calculate differences between treatments, one-way ANOVA, followed by Dunnett's multiple comparison test for several enrichment factors or ratio paired t-test for one enrichment factor were calculated. Unpaired t-test with Welch's correction was performed for gene expression analysis. Differences were considered statistically significant at p \leq 0.05.

3. Results

3.1. WWTP extracts reduce the activation of lymphocytes upon anti-CD3/CD28 stimulation

PBMCs were exposed to increasing REF of WWTP extracts and then stimulated with anti-CD3/CD28 to induce the activation of CD4⁺, CD8⁺, NKT, MAIT, and CD4⁻CD8⁻ (DN) cells. The stimulus can also induce CD3⁻ lymphocytes activation indirectly, through the activation of T cells. In this case, we refer to B and NK cells. None of the WWTP extract concentrations used had an effect on cell viability (Suppl. Fig. 1). WWTP extracts reduced the activation of different T cell populations (Figure 1). In particular, the activation of CD4⁺ (Fig. 1A), MAIT

cells (Fig. 1C), and CD8+ cells activation was decreased (Fig. 1B), whereas no concentration-330 dependent effect could be observed for NKT cells (Fig. 1D). This indicates in general a 331 reduction of cells activation by all WWTP extracts, except E1 (REF 12.5) which was able to 332 increase the expression level of TNF-α and TNF-α-CD69 in CD8⁺ and NKT cells. WWTP 333 extracts E2, E3, and E4 reduced T cell activation already at the lowest concentration (REF 334 6.25), therefore potentially reducing T cell activation without enrichment, at the real 335 concentration found in the effluent. In contrast, WWTP extract E1 at the lowest REF mostly 336 affected MAIT cells and to a lower extent CD4+ cells. Finally, all WWTP extracts reduced T 337 cells activation, with a clear concentration-dependent response. 338

Regarding the other CD3⁺ subpopulation, CD4⁻CD8⁻ cells, which resemble with high probability $\gamma\delta$ T cells (Ribot et al., 2021), WWTP effluents also decreased the activation of these cells, mainly acting on CD137 (Suppl. Fig. 8C). Instead, regarding CD3⁻ lymphocytes, they also induced a decrease in NK and B cells activation (Suppl. Fig. 8A and B) already at the lowest concentration, indicating that the immunomodulating effect of the WWTP extracts was not exclusive on T cells.

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

As CD4⁺ and MAIT cell activation was strongly affected by exposure to the chemical mixtures in the analyzed WWTP extracts, a detailed t-SNE analysis was performed for these cell populations (Fig. 2 and 4). Regarding CD4⁺ cells, 17 clusters of activated cells were identified in the map containing the merged donor and treatment conditions (Fig. 2B). The colors and the % of cells in these clusters are shown in the table of Fig. 2B. Note, that due to low cell numbers in some clusters and overlap, not all colors are visible in the 2D t-SNE map. All of these activated CD4⁺ subpopulations were decreased by the exposure to WWTP extracts (REF 25), with a stronger effect from E1 to E4, as shown in the corresponding heat map (Fig. 2C) and exemplary 2D t-SNE maps for the expression of CD134 and CD137 (Fig. 2A). The maps for TNF-α, CD69, and CD71 expression are presented in Suppl. Fig. 9. More in depth, two highly affected cell populations were identified, and they are highlighted in red and blue dotted ovals in Fig. 2B. The most targeted population (red circle) includes mainly cells represented in cluster 2 of TNF-α, cluster 2 of CD134 and cluster 4 of CD137. The blue dotted population consists mainly of cells shown as cluster 1 TNF-α, cluster 1 CD134 and cluster 1 CD137. Cluster 1 of CD69 and of CD71 present some cells in both highly targeted populations, marked with violet circles in Fig. 2C. From Fig. 2C it can be seen that the two highly affected cell populations consisted of cells that were positive for the majority of activation markers. Thus, the selected

WWTP extracts have a preferential effect on highly activated cells, and not on cells expressing only few activation markers.

3.2. WWTP extracts reduce the activation of MAIT cells upon E. coli K12 stimulation

- Since we observed that MAIT cells were one of the most targeted immune cell populations, PBMCs were stimulated with *E. coli* K12 to further investigate the effect of WWTP extracts specifically on the activation of these cells. MAIT cells are T cells involved in the first defense to bacteria (Legoux et al., 2020). They have been found to be susceptible to several chemicals, such as bisphenols and perfluorinated substances (Krause et al., 2022; Maddalon et al., 2023). With the stimulation of MAIT cells by *E. coli*, the immunosuppressive effect of WWTP extracts was even more pronounced (Fig. 3B). For E3 and E4, the inhibitory effects were observed already at the lowest concentration, whereas WWTP extracts E1 and E2 exhibited inhibitory effects on MAIT cell activation at REF of 12.5 (Fig. 3A). Again, a clear dose-dependent immunosuppression was observed for all WWTP extracts.
- MAIT cells were also further analyzed using t-SNE dimensionality reduction (Fig. 4A), as they were among the cells mainly affected by WWTP extracts exposure, as were CD4 $^+$ cells. Different clusters of activated MAIT cells were identified (Fig. 4B), all of which were decreased by WWTP extract (REF 25) exposure (Fig. 4C). In parallel, the percentage of low activated and inactive cells (grey, Fig. 4A and purple and violet in Fig. 4B) was highly increased after treatment with WWTP extracts (Fig. 4C). Notably, TNF- α cluster 2, IFN- γ cluster 1 and CD69 cluster 1 were composed of the same cells (Fig. 4B, red dotted circle) and represent highly activated MAIT cells expressing all three activation markers. Thus, these cells represent the most affected population, showing the highest immunosuppressive effect upon exposure to WWTP extract. The second active population is represented by cluster 1 TNF- α + and cluster 2 CD69 $^+$ (Fig. 4B, green dotted oval) and represents the second population of MAIT cells whose activation was highly reduced.

3.3 Transcript analysis of PBMCs activation upon E. coli K12 stimulation

Since MAIT cells were among the most severely suppressed immune cells, we investigated the effects of WWTP extracts at a REF of 25 on MAIT cell mRNA expression using the specific stimulation of PBMCs with *E. coli*. Among the 40 genes analyzed, the mRNA expression of 23

of them was statistically significantly modulated by at least one WWTP extract (Fig. 5). The expression of the remaining genes is presented as fold change to blank in Suppl. Table S5.

Most significant changes were observed in the down-regulated genes (Fig. 5A) upon the treatment with E4, followed by E2. Notably, the expression of several cytokine transcripts, namely *IFNG*, *IL17F*, *IL22*, *TNFSF15*, cytokine receptors (*IL21R* and *IL23R*), and several typical transcription factors, such as *FOXP3* and *TBX21*, was reduced by WWTP extracts exposure. Furthermore, the expression of MAIT cell-specific transcripts, including *GZMB*, *ICOS*, *IKZF2*, and *PRF1*, was also down-regulated. These data suggest a preferred action against MAIT cell subsets especially releasing IFN-γ and IL-17. On the other hand, the upregulation of genes induced by WWTP extracts was less pronounced (Fig. 5B). In particular, a slightly higher expression of certain cytokines (*IL6*, *IL10*, and *IL17A*), receptors (*CXCR4*, *CXCR6*), and other immune-related proteins (*CCL20*, *ZBTB16*, and *NFKBIA*) was observed. Furthermore, a higher expression of hormone receptors, namely *AHR*, *PPARA*, and *PPARG* was observed, mainly after treatment with E2 and E4, suggesting that these WWTP extracts could contain chemical mixtures and concentrations able to interfere with these receptors.

3.4 WWTP extracts modulated the activation of basophils

As all four WWTP extracts showed immunosuppressive effects on all lymphocyte subpopulations analyzed, we next assessed their immunotoxic potential to interfere with the activation of basophils, an immune cell type involved in allergic reactions (Suppl. Fig. 10). Whole blood was stimulated with anti-FcεR1α, which targets the IgE receptor, or with fMLP, a bacterial component capable of attracting and activating basophils. All WWTP extracts reduced basophil activation induced by fMLP (Suppl. Fig. 10A). We observed that fMLP-induced activation was significantly reduced in the CD63⁺ high basophil population (Suppl. Fig. 10C). This was also reflected in the total CD63⁺ population, which includes the CD63⁺ high and low populations. Unlike what we observed with the lymphocytes, here the reduction was of the same magnitude for all four WWTP extracts. Conversely, with anti-FcεR1α stimulation, differences of magnitude were observed in the CD63⁺ high population. In this case, the four WWTP extracts differentially increased the percentage of activated cells, although only E4 reached significance (Suppl. Fig. 10B). Notably, a reduction in anti-FcεR1α-induced activation was observed after treatment with E1 extract in the CD63⁺ low and CD63⁺ total

basophil populations. In conclusion, the different trends in modulation by WWTP extracts that we observed seem to be related to the mode of activation of these cells.

426

427

424

425

3.5. Correlation between identified chemicals and immune endpoints

- Of 578 chemicals analyzed by LC-HRMS screening, 339 chemicals were identified in at least one of the four WWTP extracts E1, E2, E3 and E4 (Finckh et al., 2022a; 2022b). Concentrations
- of the detected chemicals are shown in the appendix (Suppl. File 1). The different categories of
- chemicals found in the analyzed WWTP extracts are reported in Suppl. Table S6.
- In order to identify which chemicals were most implicated in the adverse immune effects caused
- by WWTP extracts, correlation analyses were performed with chemical concentrations and
- immune endpoints (Fig. 6, Suppl. Fig. 11 and 12). The analyzed immune endpoints were:
- lymphocyte activation (activation markers TNF-α, CD69, CD71, CD134, and CD137 for all
- lymphocyte subpopulations and TNF- α , IFN- γ , and CD69 for MAIT cells), gene expression (40
- genes) and basophil activation (high, low and total). The correlation coefficients between
- lymphocyte activation and chemical concentrations are shown (Fig. 6). The names of chemicals
- assigned to the color bares are better visualized in Suppl. Fig. 16.
- Regarding lymphocyte activation, two third of correlations with chemical concentrations were
- negative (toward -1, blue), meaning that higher chemical concentrations associate with reduced
- 442 lymphocyte activation. Chemicals clustering to the strongest negative correlation (dark blue
- bar, also see Suppl. Fig. 16A) include 13 pharmaceuticals, namely three carbamazepine
- 444 metabolites (2-hydroxycarbamazepine, 10,11-dihydro-10,11-dihydroxycarbamazepine and
- 445 10,11-dihydro-10-hydroxycarbamazepine), amitriptyline, azithromycin, efavirenz, loperamide,
- metoprolol acid, mycophenolic acid, propranolol, raloxifene, ranitidine, and ropinirole; 4
- pesticides, namely 2,4-dichlorobenzoic acid, fenoxycarb, isoxaben, and thiamethoxam; 1 EDC:
- 448 clobetasol propionate, and 12 chemicals belonging to other categories, like industrial chemicals
- 449 mainly, namely 1,3-diphenylguanidine, 2(4-morpholinyl)benzothiazole, 4-
- 450 hydroxybenzotriazole, benzothiazole, harmine, icaridin, N-cyclohexyl-2-benzothiazole-amine,
- 451 octyl-methoxycinnamate, perfluoroheptanoic acid, perfluorooctanesulfonic acid, p-
- 452 toluenesulfonamide, and tri-isobutylphosphate. The chemical concentrations positively
- 453 correlated with lymphocyte activation (dark red bar, also see Suppl. Fig. 16B) were 9
- 454 pharmaceuticals (4-aminoantipyrine, amantadine, capecitabine, glimepiride, melperon,
- 455 metoprolol, N-acetyl-4-aminoantipyrine, sulfamethazine, and telmisartan), 9 pesticides

- 456 (bendiocarb, cyproconazole, desethylterbutylazine, flufenacet, prochloraz BTS40348,
- 457 spiroxamine, tebuconazole, thiacloprid, and diacloprid amide), 4 EDCs (17-beta-estradiol,
- 458 hydrocortisone, medroxyprogesterone acetate, and megestrol-17-acetate), and 4 other
- 459 chemicals (2-benzothiazolesulfonic acid, 4-hydroxy-1-(2-hydroxyethyl)-2,2,6,6-
- 460 tetramethylpiperidine, harman, and theophyllin). However, in vitro, the observed effects of STP
- extracts were in almost all cases a downregulation of lymphocyte activation. This suggests that
- although individual chemicals were positively correlated with lymphocyte activation, in the
- 463 mixture the effect was a downregulatory one, overwhelmed by the negatively correlated
- 464 chemicals.
- The correlation between chemical concentrations and gene expression is presented in Suppl.
- 466 Fig. 11. The gene expression was measured in PBMCs treated with WWTP extracts and
- stimulated with E. coli K12 to specifically activate MAIT cells. The list of chemicals present
- in each color group is reported in Suppl. Fig. 17.
- Cluster analyses revealed that individual chemicals strongly negatively correlating with half of
- 470 the analyzed transcripts were positively correlated to the other half of the analyzed transcripts
- 471 (dark blue bar, also see Suppl. Fig. 17A). In particular these chemicals comprised 30
- 472 pharmaceuticals (e.g. amitriptyline, azithromycin, bezafibrate, bisoprolol, bosentan,
- carbamazepine, carbamazepine metabolites, valsartan), 23 pesticides (e.g. 2,4-dichlorobenzoic
- acid, 2-amido-3,5,6-trichloro-4-cyanobenzenesulfonic acid, bromochlorophen, chlorothalonil-
- 475 4-hydroxy, chlorotoluron, dichlorprop, dimetachlor ESA, simazine, thiabendazole), 10 EDCs
- 476 (17-α-estradiol, 1H-benzotriazole, 2-phenylphenol, 3,4,5-trichlorophenol, 4-androstene-3,17-
- dione, clobetasol propionate, desonide, ethylparaben, medroxyprogesterone, and triclosan) and
- 478 19 chemicals belonging to other categories (e.g. 1,3-diphenylguanidine, 2(4-
- 479 morpholinyl)benzothiazole, 2-(methylthio)benzothiazole, 4-hydroxybenzotriazole, 7-
- diethylamino-4-methylcoumarin, benzothiazole). The main transcripts involved in the negative
- correlations were IFNG, GZMB, IL22, IKZF2, IL21R (down-regulated mRNAs, Fig. 5A).
- Positively correlated genes were mainly *CCL20*, *ZBTB16*, and *PPARG* (up-regulated mRNAs,
- 483 Fig. 5B), evidencing a positive association between higher chemical concentration and higher
- 484 mRNA expression.
- Chemicals that were positively correlated with gene expression (dark red bar, also see Suppl.
- 486 Fig. 17B) included 16 pharmaceuticals (e.g.4-aminoantipyrine, amantadine, capecitabine,
- 487 glimepiride, indometacin, melperon, metoprolol, sulfamethazine), 12 pesticides (bendiocarb,

cyproconazole, desethylterbutylazine, fenpropimorph, spiroxamine, terbuthylazine), 9 EDCs (e.g. 17α-hydroxyprogesterone, 17-β-estradiol, 4-chlorophenol, androsterone, medroxyprogesterone acetate, megestrol-17-acetate), and 8 other chemicals (e.g. 5-chlorobenzotriazole, 7-amino-4-methylcoumarin, acridine, caffeine, cyclohexylamine, isophorone diamine, theophyllin). Contrary to the chemicals in the dark blue bar, these chemicals positively correlated with e IFNG, GZMB, IL22, IKZF2, IL21R, and negatively with CCL20, ZBTB16, and PPARG.

Regarding the correlation between chemicals and basophil activation, fewer significant correlations have been observed compared to lymphocytes (Suppl. Fig. 12). The list of chemicals present in each color group is reported in Suppl. Fig. 18.

It was visible that mostly the activation of basophils via anti-Fc ϵ R1 α was associated to modulation by chemicals. The main chemicals that resulted in positive correlations (red bar, also see Suppl Fig. 18B), were similar to those that were negatively correlated with both lymphocyte activation and mRNA expression. The main chemicals being negatively correlated to basophils activated by anti-Fc ϵ R1 α (blue bar, also see Suppl. Fig. 18A) were similar to the ones that positively correlated to lymphocyte activation and mRNA expression. Thus, it seems that the same chemicals differently modulate the activation of certain immune cell populations.

3.5.1 Prioritized chemicals for immunomodulation

A high similarity was observed between the chemicals that correlated highly with lymphocyte activation, basophil activation and modulation of mRNA expression (Figure 17A and B).

A total of 50 chemicals strongly correlated with all the three altered immune endpoints: 29 of them negatively correlated with lymphocyte activation and gene expression and positively with basophil activation; whereas 21 chemicals positively correlated with lymphocyte activation and gene expression and negatively with basophil activation. The chemicals associated with inhibitory effects on the immune endpoints (Fig. 7A), which were considered as prioritised chemicals due to the high consistency in the three correlation analyses, are listed in Suppl. Table S5 (together with use or mechanism of action). The categories of these chemicals are reported in Fig. 7C. The 29 high concern chemicals highly correlated with the inhibitory effects on lymphocyte and basophil activation are mainly pharmaceuticals, and within them there are neuroactive (6), cardiovascular (2), antibiotics (2), antiviral (1), endocrine (1), and antihistamine (1). There is also one corticosteroid in the EDC class, 4 pesticides and 11

chemicals in other categories, mainly industrial chemicals such as perfluorinated compounds and rubber additives.

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

520

521

4. Discussion

A large number of chemicals have been quantified in treated effluent samples from wastewater treatment plants before discharge into rivers across European countries (Finckh et al., 2022a; 2022b). The four WWTP extracts used in the present study, differed in chemical composition and concentration (Suppl. File 1). The immunoassays were used to assess the putative adverse effects of these effluents on the human immune system, namely the modulation of the activation of different lymphocyte subpopulations, the modulation of basophil activation and finally the effect on the expression of different genes on lymphocytes, in particular MAIT cells.

Lymphocyte and basophil activation was differently affected by WWTP extracts. With regard to lymphocytes, our analysis showed differences between the four effluent extracts, and established a potency ranking for inhibition from E1 (the lowest in terms of potency) to E4 (the most potent). The WWTP extracts exerted their immune inhibitory effects already at the lowest REF tested (6.26 x), so it is highly likely that similar effects could be obtained at the real concentrations (1 x) present in the effluent. The main in vitro effects, e.g. inhibition of TNF- α and IFN-γ production or expression of the activation markers CD134 and CD137 were observed on CD4⁺ and MAIT cells. The latter were found to be more susceptible when highly activated following the stimulation with E. coli, a specific stimulus for these cells. WWTP extracts were also able to downregulate some transcripts indicative of MAIT cells functionality, such as GZMB, ICOS, PRF1, and IKZF2, highlighting an inhibitory effect on MAIT cells. MAIT cells represent a bridge between the innate and adaptive immunity, acting mainly against microbial agents (Ioannidis et al., 2020). Therefore, a suppression of the activation of MAIT cells could represent a basis for an increased susceptibility to infections (Rudak et al., 2018; Hinks and Zhang, 2020). Other genes that we observed to be downregulated in our study are regularly involved in Th1 and Th17 responses, namely IFNG, TNFSF15, TBX21, IL17F, IL22, IL21R and IL23R. On the other hand, transcripts typical of the Th2 pathway, such as IL6, IL10 and CXCR4, were upregulated. Lymphocytes can behave differently, based on the release of cytokines (Chiba et al., 2018). Thus, a modulation of immune responses for example towards Th2, may lead to the development of allergic diseases (Romagnani, 2004; Licona-Limón et al., 2013).

Overall, the lymphocyte activation test represents a promising effect-based analysis of mixtures of chemicals, since it allows the visualization of the effect on a wide range of immune cells and enables to distinguish the potency of the mixtures. Together with the assessment of lymphocyte functionality, also the evaluation of certain mRNAs is helpful to estimate the immunomodulatory capacity and also to observe differences between the different WWTP extracts. They have been previously associated to endocrine disruption, with sample E4 showing the highest activity on glucocorticoid and progesterone receptors (Finckh et al., 2022a). Interestingly, in our experiments on lymphocytes, E4 was able to up-regulate the expression of other hormone receptors, namely *AHR*, *PPARA*, and *PPARG*, more than the other WWTP extracts. Indeed, in E4 there are some EDCs higher concentrated than in the other WWTP extracts, like 4-androstene-3,17-dione, benzophenone-3, canrenone, ethylparaben, methylparaben, and medroxyprogesterone, which exhibited activity via one or more hormone receptors, like *AHR*, *PPAR*, and *PPARG* (Ford, 2013; Piccinni et al., 2019; Gouukon et al., 2020; Shin et al., 2020; Cha et al., 2021).

 In terms of basophil activation, our study revealed less potent effects of WWTP extracts on cell activation, compared to lymphocytes. Basophils are cells of the innate immune system that are programmed for rapid response to foreign agents (Chirumbolo et al., 2018). Therefore, contrary to lymphocytes, only a short pre-incubation time with the WWTP extracts was indicated. We observed that in this case too, the modulatory effect was exerted on the more highly activated population of basophils. Stimulation of these cells with fMLP mimics bacterial invasion and the ability to respond to it appears to be reduced by pre-incubation with these chemical mixtures. In contrast, the activation of these cells was increased by WWTP extracts followed by stimulation with anti-Fc ϵ R1 α , which mimics an allergic immune response. Thus, in both cases, the effect of WWTP extracts appears to be detrimental to the function of these cells.

The effect-based analysis proposed here, together with the chemical characterization, allowed the prioritization of chemicals of high concern in terms of immunomodulation. The chemical mixtures that were highly correlated with immune endpoints included both: chemicals directly involved in immune responses, such as antihistamines, and chemicals with other modes of action, such as antibiotics, neuroactive, endocrine or cardiovascular drugs, as well as pesticides and industrial chemicals. As these chemicals belong to widely used categories, their involvement in the immune system should be investigated in detail in future studies. Within pharmaceuticals, there are drugs acting on the immune system, like clobetasol propionate, mycophenolic acid and ranitidine, but there are also others acting on nervous system, endocrine

system, and microbiota. Due to the strict interconnection between these organs and immunity, also these pharmaceutical agents could easily affect the immune system (Zefferino et al., 2021; Petra et al., 2015). Of the prioritized chemicals, amitriptyline, azithromycin, efavirenz, loperamide and ropinirole have already been associated to immunomodulation and mainly immunosuppression, supporting our results (Heaton et al., 2022; Isozaki et al., 2022; Juárez et al., 2018; Johnson et al., 2016; Lin et al., 2016). Furthermore, also cardiovascular pharmaceuticals, like beta-blockers, have been previously linked to immunomodulation (Shaw et al., 2009; Maisel et al., 1991). The cardiovascular pharmaceuticals on our prioritization list, metoprolol acid and propranolol, have not been evaluated by now for their immunological effects. From the category of pesticides, for example for fenoxycarb, which is also considered to be an EDC, it has been shown that it is able to alter the immunity of the gut (Attarianfar et al., 2023). For the other pesticides in the prioritization list, no or few information are present in literature. Regarding industrial chemicals, it is widely known that perfluorinated compounds can affect the immune system (EFSA CONTAM Panel, 2020). In our study perfluoroheptanoic acid and perfluorooctanesulfonic acid were highly associated with immunomodulation, supporting published data showing the interference with the two perfluorinated compounds with immune development and immune phenotyping (Torres et al., 2021; Maddalon et al., 2023; Weatherly et al., 2023). Furthermore, rubber additives such as benzothiazoles or widely used UV-filters (e.g. octyl-methoxycinnamate) we found, are also able to influence the immune response (Ferraris et al., 2020; Khan et al., 2016). Thus, there is a body of published data in support of the chemicals of immunological concern identified in our study. Certainly, several other chemicals contribute to the observed adverse immune effects, such as chemicals that were similarly concentrated in the different WWTP extracts, and were therefore not highlighted in the correlations, as well as other chemicals that were not detected. The characterization of the WWTP extracts revealed the concentrations of 339 chemicals, but even more chemicals are likely to be present. Therefore, mixture effects are expected that exceed the effects of the individual mixture components (Escher et al., 2020). Compounds exhibiting similar modes of action typically act according to concentration addition (Kumari and Kumar, 2020; Altenburger et al., 2020; Kortenkamp, 2014), whereas, chemicals with different mode of actions usually act according to the independent action model (Kortenkamp, 2014). Contribution of single compounds to mixture toxicity can be observed at very low concentrations, even below detection limits (Kortenkamp and Faust, 2018). Therefore, the ultimate immunosuppressive effect observed may be due to the action of individual chemical entities, but also to the synergism and antagonism between them. The characterization of the chemical content and

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

concentration of different agents is an important step in identifying the causal factors leading to adverse health effects in humans (Escher et al., 2017). To date, a risk assessment approach for chemical mixtures is lacking (Liew and Guo, 2022), especially in terms of immunomodulation. For this reason, we propose a combinatorial method that combines effectbased and chemical-based analysis to fill the gap in the risk assessment of mixtures. WWTP extracts are a mixture of chemicals that reflect human activities and also environmental impacts, representing so-called "real life mixtures". Their effects are relevant to the ecosystem and are becoming increasingly relevant to humans due to climate change and the need to conserve fresh water. Undoubtedly, the earth's limited water resources will lead to a global trend towards the use of reclaimed water, for example in agriculture, but the safe use of reclaimed water for human health is still in its infancy. Here, we developed specific in vitro assays to unravel the effect of chemical mixtures present in four European effluents of WWTP on the human immune response. We have demonstrated the ability of wastewater treatment plant effluents to adversely affect immune cell activation in vitro, which could potentially lead to adverse health outcomes, as dysregulated immune responses underlie many diseases, including infections, cancer, autoimmunity and other chronic inflammatory diseases.

5. Conclusions

In this study, we combined chemical characterization of WWTP extracts with effect-based methods, namely immunoassays together with gene expression analysis, in order to provide information on the immunomodulatory effects of the chemical mixtures in European WWTP effluents. We found several chemicals that were highly correlated with reduced immune activation, indicating that these substances may be chemicals of very high concern that should be further investigated and monitored. More broadly, we believe that our approach can contribute to the hazard identification of WWTP effluents that are highly contaminated with chemicals of concern for immunotoxicity. Our data also highlight the need for action to improve wastewater treatment to reduce the risk to the environment and human health from reuse of this water.

Funding

This work was carried out in the framework of the European Partnership for the Assessment of Risks from Chemicals (PARC) and has received funding from the European Union's Horizon Europe research and innovation program under Grant Agreement No 101057014. Views and

651	opinions expressed are however those of the author(s) only and do not necessarily reflect those
652	of the European Union or the Health and Digital Executive Agency. Neither the European
653	Union nor the granting authority can be held responsible for them.
654	
655	Acknowledgments
656	36 th cycle PhD program "Scienze farmacologiche biomolecolari, sperimentali e cliniche" —
657	Università degli Studi di Milano. Finally, we would like to thank all people involved in the
658	sampling and the laboratory work, especially Jörg Ahlheim and Margit Petre.
659	
660	Author contributions
661	A. Maddalon: investigation, methodology, writing - original draft preparation; A.
662	Pierzchalski: supervision, methodology, reviewing; JLK: software, reviewing; M. Bauer
663	methodology, reviewing; S. Finckh: reviewing; WB: reviewing; A. C. Zenclussen: reviewing,
664	resources; M. Marinovich: reviewing; E. Corsini: reviewing; M. Krauss: reviewing; G.
665	Herberth : conceptualization, data curation, supervision, writing - review & editing.
666	Declaration of competing interest
667	The authors declare that they have no known competing financial interests or personal
668	relationships that could have appeared to influence the work reported in this paper.
669	Declaration of Generative AI and AI-assisted technologies in the writing process
670	No generative AI or AI-assisted technologies have been used for the writing of this
671	manuscript.
672	Data availability
673	Data will be made available on request.
674	Supplementary data
675	Appendix A.
676	Supplementary Figures (1-18), Supplementary Tables (S1-S7).
677	Appendix B.

- 678 Supplementary File 1 (Table 1)
- 679 Appendix C.
- 680 Supplementary File 2 (Tables 1-2)

References

- Adegoke, E. O., Rahman, M. S., Park, Y. J., Kim, Y. J., & Pang, M. G. Endocrine-Disrupting
 Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression.
 International journal of molecular sciences. 2021;22(8), 3939.

 https://doi.org/10.3390/ijms22083939
- Aftab, K., Iqbal, S., Khan, M. R., Busquets, R., Noreen, R., Ahmad, N., Kazimi, S. G. T., Karami, A. M., Al Suliman, N. M. S., & Ouladsmane, M. Wastewater-Irrigated Vegetables Are a Significant Source of Heavy Metal Contaminants: Toxicity and Health Risks. Molecules (Basel, Switzerland). 2023;28(3), 1371. https://doi.org/10.3390/molecules28031371
 - Altenburger, R., Backhaus, T., Boedeker, W., Faust, M., Scholze, M., & Grimme, L. H. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environmental Toxicology and Chemistry: An International Journal. 2020;19(9), 2341-2347. https://doi.org/10.1002/etc.5620190926
 - Attarianfar, M., Mikani, A., & Mehrabadi, M. The endocrine disruptor, fenoxycarb modulates gut immunity and gut bacteria titer in the cotton bollworm, Helicoverpa armigera. Comparative biochemistry and physiology. Toxicology & pharmacology: CBP. 2023;264, 109507. https://doi.org/10.1016/j.cbpc.2022.109507
 - Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Guruge, K. S., & Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicology and environmental safety. 2017;137, 113–120. https://doi.org/10.1016/j.ecoenv.2016.11.014
 - Bonefeld, C. M., Geisler, C., Gimenéz-Arnau, E., Lepoittevin, J. P., Uter, W., & Johansen, J. D. Immunological, chemical and clinical aspects of exposure to mixtures of contact allergens. Contact dermatitis. 2017;77(3), 133–142. https://doi.org/10.1111/cod.12847
 - Bopp, K.S., Kienzler, A., van der Linden, S., Lamon, L., Paini, A., Parissis, N., Richarz, A.N., Triebe, J., Worth, A. Review of case studies on the human and environmental risk assessment of chemical mixtures. EUR 27968. Luxembourg (Luxembourg): Publications Office of the European Union. 2016;JRC102111 https://doi.org/10.2788/272583.
 - Bourdat-Deschamps, M., Leang, S., Bernet, N., Daudin, J. J., & Nélieu, S. Multi-residue analysis of pharmaceuticals in aqueous environmental samples by online solid-phase extraction-ultra-high-performance liquid chromatography-tandem mass spectrometry: optimisation and matrix effects reduction by quick, easy, cheap, effective, rugged and safe extraction. Journal of chromatography. A. 2014;1349, 11–23. https://doi.org/10.1016/j.chroma.2014.05.006
- Brack, W., Ait-Aissa, S., Burgess, R. M., Busch, W., Creusot, N., Di Paolo, C., Escher, B. I.,
 Mark Hewitt, L., Hilscherova, K., Hollender, J., Hollert, H., Jonker, W., Kool, J.,
 Lamoree, M., Muschket, M., Neumann, S., Rostkowski, P., Ruttkies, C., Schollee, J.,
 Schymanski, E. L., ... Krauss, M. Effect-directed analysis supporting monitoring of

- aquatic environments—An in-depth overview. The Science of the total environment. 2016;544, 1073–1118. https://doi.org/10.1016/j.scitotenv.2015.11.102
- Brion, F., De Gussem, V., Buchinger, S., Hollert, H., Carere, M., Porcher, J. M., Piccini, B., Féray, C., Dulio, V., Könemann, S., Simon, E., Werner, I., Kase, R., & Aït-Aïssa, S. Monitoring estrogenic activities of waste and surface waters using a novel in vivo zebrafish embryonic (EASZY) assay: Comparison with in vitro cell-based assays and determination of effect-based trigger values. Environment international. 2019;130, 104896. https://doi.org/10.1016/j.envint.2019.06.006

- Bulka, C. M., Avula, V., & Fry, R. C. Associations of exposure to perfluoroalkyl substances individually and in mixtures with persistent infections: Recent findings from NHANES 1999-2016. Environmental pollution (Barking, Essex: 1987). 2021;275, 116619. https://doi.org/10.1016/j.envpol.2021.116619
- Buskiewicz, I. A., Huber, S. A., & Fairweather, D.. Sex hormone receptor expression in the immune system. In Sex differences in physiology. 2016 (pp. 45-60). Academic Press.
- Carvalho, R. N., Niegowska, M., Cortes, L. G., & Lettieri, T. Testing comparability of existing and innovative bioassays for water quality assessment. EUR 29505 EN. Publications Office of the European Union; Luxembourg: 2019. https://doi.org/10.2760/565375
- Cha, J., Hong, S., Lee, J., Gwak, J., Kim, M., Kim, T., Hur, J., Giesy, J. P., & Khim, J. S. Novel polar AhR-active chemicals detected in sediments of an industrial area using effect-directed analysis based on in vitro bioassays with full-scan high resolution mass spectrometric screening. The Science of the total environment. 2021;779, 146566. https://doi.org/10.1016/j.scitotenv.2021.146566
- Chiba, A., Murayama, G., & Miyake, S. Mucosal-Associated Invariant T Cells in Autoimmune Diseases. Frontiers in immunology. 2018;9, 1333. https://doi.org/10.3389/fimmu.2018.01333
- Chirumbolo, S., Bjørklund, G., Sboarina, A., & Vella, A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Human vaccines & immunotherapeutics. 2018;14(4), 815–831. https://doi.org/10.1080/21645515.2017.1417711
- Daughton, C. G., & Ternes, T. A. Pharmaceuticals and personal care products in the environment: agents of subtle change?. Environmental health perspectives. 1999;107 Suppl 6(Suppl 6), 907–938. https://doi.org/10.1289/ehp.99107s6907
- Dickin, S. K., Schuster-Wallace, C. J., Qadir, M., & Pizzacalla, K. A Review of Health Risks and Pathways for Exposure to Wastewater Use in Agriculture. Environmental health perspectives. 2016;124(7), 900–909. https://doi.org/10.1289/ehp.1509995
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel), Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., del Mazo, J., ... & Schwerdtle, T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal. 2020;18(9), e06223. https://doi.org/10.2903/j.efsa.2020.6223
- Escher, B., Braun, G., & Zarfl, C. Exploring the Concepts of Concentration Addition and Independent Action Using a Linear Low-Effect Mixture Model. Environmental toxicology and chemistry. 2020;39(12), 2552–2559. https://doi.org/10.1002/etc.4868
- Escher, B. I., Hackermüller, J., Polte, T., Scholz, S., Aigner, A., Altenburger, R., Böhme, A., Bopp, S. K., Brack, W., Busch, W., Chadeau-Hyam, M., Covaci, A., Eisenträger, A., Galligan, J. J., Garcia-Reyero, N., Hartung, T., Hein, M., Herberth, G., Jahnke, A., Kleinjans, J., ... Wambaugh, J. F. From the exposome to mechanistic understanding of chemical-induced adverse effects. Environment international. 2017;99, 97–106. https://doi.org/10.1016/j.envint.2016.11.029
- Ferraris, F. K., Garcia, E. B., Chaves, A. D. S., de Brito, T. M., Doro, L. H., Félix da Silva, N.
 M., Alves, A. S., Pádua, T. A., Henriques, M. D. G. M. O., Cardoso Machado, T. S., &

- Amendoeira, F. C. Exposure to the UV Filter Octyl Methoxy Cinnamate in the Postnatal Period Induces Thyroid Dysregulation and Perturbs the Immune System of Mice. Frontiers in endocrinology. 2020;10, 943. https://doi.org/10.3389/fendo.2019.00943
- Finckh, S., Buchinger, S., Escher, B. I., Hollert, H., König, M., Krauss, M., Leekitratanapisan, W., Schiwy, S., Schlichting, R., Shuliakevich, A., & Brack, W. Endocrine disrupting chemicals entering European rivers: Occurrence and adverse mixture effects in treated wastewater. Environment international. 2022a;170, 107608. https://doi.org/10.1016/j.envint.2022.107608

- Finckh, S.; Beckers, L.M.; Busch, W.; Carmona, E.; Dulio, V.; Kramer, L.; Krauss, M.; Posthuma, L.; Schulze, T.; Slootweg, J.; Von der Ohe, P.C.; Brack, W. A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents. Environ Int. 2022b;164:107234. https://doi.org/10.1016/j.envint.2022.107234
- Ford J. H. Reduced quality and accelerated follicle loss with female reproductive aging does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?. Journal of biomedical science. 2013;20(1), 93. https://doi.org/10.1186/1423-0127-20-93
- Gago-Ferrero, P., Bletsou, A. A., Damalas, D. E., Aalizadeh, R., Alygizakis, N. A., Singer, H. P., Hollender, J., & Thomaidis, N. S. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. Journal of hazardous materials. 2020;387, 121712. https://doi.org/10.1016/j.jhazmat.2019.121712
- Giebułtowicz, J., Tyski, S., Wolinowska, R., Grzybowska, W., Zaręba, T., Drobniewska, A., Wroczyński, P., & Nałęcz-Jawecki, G. Occurrence of antimicrobial agents, drugresistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Environmental science and pollution research international. 2018;25(6), 5788–5807. https://doi.org/10.1007/s11356-017-0861-x
- Gómez, L., Niegowska, M., Navarro, A., Amendola, L., Arukwe, A., Ait-Aissa, S., Balzamo, S., Barreca, S., Belkin, S., Bittner, M., Blaha, L., Buchinger, S., Busetto, M., Carere, M., Colzani, L., Dellavedova, P., Denslow, N., Escher, B. I., Hogstrand, C., Khan, E. A., ... Lettieri, T. Estrogenicity of chemical mixtures revealed by a panel of bioassays. The Science of the total environment 2021;785, 147284. https://doi.org/10.1016/j.scitotenv.2021.147284
- Gorga, M., Petrovic, M., & Barceló, D. Multi-residue analytical method for the determination of endocrine disruptors and related compounds in river and waste water using dual column liquid chromatography switching system coupled to mass spectrometry. Journal of chromatography. A. 2013;1295, 57–66. https://doi.org/10.1016/j.chroma.2013.04.028
- Gouukon, Y., Yasuda, M. T., Yasukawa, H., & Terasaki, M. Occurrence and AhR activity of brominated parabens in the Kitakami River, North Japan. Chemosphere. 2020;249, 126152. https://doi.org/10.1016/j.chemosphere.2020.126152
- Greives, T. J., Dochtermann, N. A., & Stewart, E. C. Estimating heritable genetic contributions to innate immune and endocrine phenotypic correlations: A need to explore repeatability. Hormones and behavior 2017;88, 106–111. https://doi.org/10.1016/j.yhbeh.2016.11.015
- Heaton, B. J., Jensen, R. L., Line, J., David, C. A. W., Brain, D. E., Chadwick, A. E., & Liptrott,
 N. J. Exposure of human immune cells, to the antiretrovirals efavirenz and lopinavir,
 leads to lower glucose uptake and altered bioenergetic cell profiles through interactions
 with SLC2A1. Biomedicine & pharmacotherapy. 2022;150, 112999.
 https://doi.org/10.1016/j.biopha.2022.112999

- Hinks, T. S. C., & Zhang, X. W. MAIT Cell Activation and Functions. Frontiers in immunology. 2020;11, 1014. https://doi.org/10.3389/fimmu.2020.01014
- Hulsen, T., de Vlieg, J., & Alkema, W. BioVenn a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC genomics. 2008;9, 488. https://doi.org/10.1186/1471-2164-9-488
- Ioannidis, M., Cerundolo, V., & Salio, M. The Immune Modulating Properties of Mucosal-Associated Invariant T Cells. Frontiers in immunology. 2020;11, 1556. https://doi.org/10.3389/fimmu.2020.01556

- Isozaki, Y., Sato, T., Takagi, R., Ito, K., Usui, M., Kawano, M., & Matsushita, S. Ropinirole inhibits inflammatory cytokine production in gingival epithelial cells and suppresses alveolar bone loss in an experimental rat model of periodontitis. Experimental and therapeutic medicine. 2022;25(2), 78. https://doi.org/10.3892/etm.2022.11777
- Johnson, B. L., 3rd, Rice, T. C., Xia, B. T., Boone, K. I., Green, E. A., Gulbins, E., & Caldwell, C. C. Amitriptyline Usage Exacerbates the Immune Suppression Following Burn Injury. Shock (Augusta, Ga.). 2016;46(5), 541–548. https://doi.org/10.1097/SHK.0000000000000048
- Juárez, E., Ruiz, A., Cortez, O., Sada, E., & Torres, M. Antimicrobial and immunomodulatory activity induced by loperamide in mycobacterial infections. International immunopharmacology. 2018;65, 29–36. https://doi.org/10.1016/j.intimp.2018.09.013
- Kase, R., Javurkova, B., Simon, E., Swart, K., Buchinger, S., Könemann, S., ... & Werner, I. Screening and risk management solutions for steroidal estrogens in surface and wastewater. TrAC Trends in Analytical Chemistry. 2018;102, 343-358. https://doi.org/10.1016/j.trac.2018.02.013
- Khalid, S., Shahid, M., Natasha, Bibi, I., Sarwar, T., Shah, A. H., & Niazi, N. K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. International journal of environmental research and public health. 2018;15(5), 895. https://doi.org/10.3390/ijerph15050895
- Khan, K. M., Mesaik, M. A., Abdalla, O. M., Rahim, F., Soomro, S., Halim, S. A., Mustafa, G., Ambreen, N., Khalid, A. S., Taha, M., Perveen, S., Alam, M. T., Hameed, A., Ul-Haq, Z., Ullah, H., Rehman, Z. U., Siddiqui, R. A., & Voelter, W. The immunomodulation potential of the synthetic derivatives of benzothiazoles: Implications in immune system disorders through in vitro and in silico studies. Bioorganic chemistry. 2016;64, 21–28. https://doi.org/10.1016/j.bioorg.2015.11.004
- Kortenkamp, A., & Faust, M. Regulate to reduce chemical mixture risk. Science (New York, N.Y.). 2018;361(6399), 224–226. https://doi.org/10.1126/science.aat9219
- Kortenkamp A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Current opinion in pharmacology. 2014;19, 105–111. https://doi.org/10.1016/j.coph.2014.08.006
- Kosonen, J., & Kronberg, L. The occurrence of antihistamines in sewage waters and in recipient rivers. Environmental science and pollution research international. 2009;16(5), 555–564. https://doi.org/10.1007/s11356-009-0144-2
- Krause, J. L., Engelmann, B., Nunes da Rocha, U., Pierzchalski, A., Chang, H. D., Zenclussen, A. C., von Bergen, M., Rolle-Kampczyk, U., & Herberth, G. MAIT cell activation is reduced by direct and microbiota-mediated exposure to bisphenols. Environment international. 2022;158, 106985. https://doi.org/10.1016/j.envint.2021.106985
- Kumari, M., & Kumar, A. Identification of component-based approach for prediction of joint chemical mixture toxicity risk assessment with respect to human health: A critical review. Food and chemical toxicology: an international journal published for the British

- 870 Industrial Biological Research Association. 2020;143, 111458. 871 https://doi.org/10.1016/j.fct.2020.111458
- Kümmerer, K. The presence of pharmaceuticals in the environment due to human use--present knowledge and future challenges. Journal of environmental management. 2009;90(8), 2354–2366. https://doi.org/10.1016/j.jenvman.2009.01.023
- Kunz, P. Y., Simon, E., Creusot, N., Jayasinghe, B. S., Kienle, C., Maletz, S., Schifferli, A.,
 Schönlau, C., Aït-Aïssa, S., Denslow, N. D., Hollert, H., Werner, I., & Vermeirssen, E.
 Effect-based tools for monitoring estrogenic mixtures: Evaluation of five in vitro
 bioassays. Water research. 2017;110, 378–388.
 https://doi.org/10.1016/j.watres.2016.10.062
- Lee, J., Schlichting, R., König, M., Scholz, S., Krauss, M., & Escher, B. I. Monitoring Mixture
 Effects of Neurotoxicants in Surface Water and Wastewater Treatment Plant Effluents
 with Neurite Outgrowth Inhibition in SH-SY5Y Cells. ACS Environmental Au. 2022.
 https://doi.org/10.1021/acsenvironau.2c00026
- Legoux, F., Salou, M., & Lantz, O. MAIT Cell Development and Functions: the Microbial Connection. Immunity. 2020;53(4), 710–723. https://doi.org/10.1016/j.immuni.2020.09.009
- Leusch, F., Neale, P. A., Arnal, C., Aneck-Hahn, N. H., Balaguer, P., Bruchet, A., Escher, B. 887 I., Esperanza, M., Grimaldi, M., Leroy, G., Scheurer, M., Schlichting, R., Schriks, M., 888 & Hebert, A. Analysis of endocrine activity in drinking water, surface water and treated 889 Water 890 wastewater from six countries. research. 2018;139, 891 https://doi.org/10.1016/j.watres.2018.03.056
- Licona-Limón, P., Kim, L. K., Palm, N. W., & Flavell, R. A. TH2, allergy and group 2 innate lymphoid cells. Nature immunology. 2013;14(6), 536–542. https://doi.org/10.1038/ni.2617
- Liew, Z., & Guo, P. Human health effects of chemical mixtures. Science. 2022;375(6582), 720 https://doi.org/10.1126/science.abn9080

898 899

900

901

902

903 904

905

906

907

908

- Lin, S. J., Kuo, M. L., Hsiao, H. S., & Lee, P. T. Azithromycin modulates immune response of human monocyte-derived dendritic cells and CD4+ T cells. International immunopharmacology. 2016;40, 318–326. https://doi.org/10.1016/j.intimp.2016.09.012
- Liu, J., Lu, G., Xie, Z., Zhang, Z., Li, S., & Yan, Z. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. The Science of the total environment. 2015;511, 54–62. https://doi.org/10.1016/j.scitotenv.2014.12.033
- Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R. H., Schwesig, D., & Gawlik, B. M. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water research. 2013;47(17), 6475–6487. https://doi.org/10.1016/j.watres.2013.08.024
- Maddalon, A., Masi, M., Iulini, M., Linciano, P., Galbiati, V., Marinovich, M., Racchi, M., Buoso, E., & Corsini, E. Effects of endocrine active contaminating pesticides on RACK1 expression and immunological consequences in THP-1 cells. Environmental toxicology and pharmacology. 2022a;95, 103971. https://doi.org/10.1016/j.etap.2022.103971
- Maddalon, A., Iulini, M., Galbiati, V., Colosio, C., Mandić-Rajčević, S., & Corsini, E. Direct
 Effects of Glyphosate on In Vitro T Helper Cell Differentiation and Cytokine
 Production. Frontiers in immunology. 2022b;13, 854837.
 https://doi.org/10.3389/fimmu.2022.854837

- Maddalon, A., Pierzchalski, A., Kretschmer, T., Bauer, M., Zenclussen, A. C., Marinovich, M.,
 Corsini, E., & Herberth, G. Mixtures of per- and poly-fluoroalkyl substances (PFAS)
 reduce the in vitro activation of human T cells and basophils. Chemosphere. 2023;336,
 139204. https://doi.org/10.1016/j.chemosphere.2023.139204
- Maisel, A. S., Murray, D., Lotz, M., Rearden, A., Irwin, M., & Michel, M. C. Propranolol treatment affects parameters of human immunity. Immunopharmacology. 1991;22(3), 157–164. https://doi.org/10.1016/0162-3109(91)90040-6
- Malaj, E., von der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack,
 W., & Schäfer, R. B. Organic chemicals jeopardize the health of freshwater ecosystems
 on the continental scale. Proceedings of the National Academy of Sciences of the United
 States of America. 2014;111(26), 9549–9554.
 https://doi.org/10.1073/pnas.1321082111
- 931 Malchi, T., Maor, Y., Tadmor, G., Shenker, M., & Chefetz, B. Irrigation of root vegetables with 932 treated wastewater: evaluating uptake of pharmaceuticals and the associated human 933 health risks. Environmental science & technology. 2014;48(16), 9325–9333. 934 https://doi.org/10.1021/es5017894
- 935 Mishra, S., Kumar, R., & Kumar, M. Use of Treated Sewage or wastewater as an Irrigation
 936 Water for Agricultural Purposes-Environmental, Health, and Economic Impacts. Total
 937 Environment Research Themes. 2023;100051.
 938 https://doi.org/10.1016/j.totert.2023.100051
- 939 Mukherjee, S., & Chauhan, N. Assessment and monitoring of human health risk during 940 wastewater reuse. Antimicrobial Resistance in Wastewater and Human Health. 941 2023;255-270. https://doi.org/10.1016/B978-0-323-96124-0.00003-9
- Mustafa, E., Valente, M.J., Vinggaard, A.M. Complex chemical mixtures: Approaches for assessing adverse human health effects. Current Opinion in Toxicology. 2023; Volume 34,100404, https://doi.org/10.1016/j.cotox.2023.100404
- Neale, P. A., O'Brien, J. W., Glauch, L., König, M., Krauss, M., Mueller, J. F., Tscharke, B., & Escher, B. I. Wastewater treatment efficacy evaluated with in vitro bioassays. Water research X. 2020;9, 100072. https://doi.org/10.1016/j.wroa.2020.100072

949

950

- O'Dell, C. T., Boule, L. A., Robert, J., Georas, S. N., Eliseeva, S., & Lawrence, B. P. Exposure to a mixture of 23 chemicals associated with unconventional oil and gas operations alters immune response to challenge in adult mice. Journal of immunotoxicology. 2021;18(1), 105–117. https://doi.org/10.1080/1547691X.2021.1965677
- Othman, Y. A., Al-Assaf, A., Tadros, M. J., & Albalawneh, A. Heavy metals and microbes accumulation in soil and food crops irrigated with wastewater and the potential human health risk: A metadata analysis. Water. 2021;13(23), 3405. https://doi.org/10.3390/w13233405
- Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., & Theoharides, T. C.
 Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With
 Suspected Immune Dysregulation. Clinical therapeutics. 2015;37(5), 984–995.
 https://doi.org/10.1016/j.clinthera.2015.04.002
- Piccinni, M. P., Lombardelli, L., Logiodice, F., Kullolli, O., Maggi, E., & Barkley, M. S.
 Medroxyprogesterone Acetate Decreases Th1, Th17, and Increases Th22 Responses via
 AHR Signaling Which Could Affect Susceptibility to Infections and Inflammatory
 Disease. Frontiers in immunology. 2019;10, 642.
 https://doi.org/10.3389/fimmu.2019.00642
- Ramos, S., Homem, V., Alves, A., & Santos, L. A review of organic UV-filters in wastewater treatment plants. Environment international. 2016;86, 24–44. https://doi.org/10.1016/j.envint.2015.10.004

- Ribeiro, A. R., Pedrosa, M., Moreira, N. F. F., Pereira, M. F. R., & Silva, A. M. T. 968 969 Environmental friendly method for urban wastewater monitoring of micropollutants defined in the Directive 2013/39/EU and Decision 2015/495/EU. Journal of 970 chromatography. 2015;1418, 140–149. 971 A. https://doi.org/10.1016/j.chroma.2015.09.057 972
- Ribot, J. C., Lopes, N., & Silva-Santos, B. γδ T cells in tissue physiology and surveillance. 973 Nature reviews. Immunology. 2021;21(4), 221–232. https://doi.org/10.1038/s41577-974 020-00452-4 975
 - Riemenschneider, C., Al-Raggad, M., Moeder, M., Seiwert, B., Salameh, E., & Reemtsma, T. Pharmaceuticals, Their Metabolites, and Other Polar Pollutants in Field-Grown Vegetables Irrigated with Treated Municipal Wastewater, Journal of agricultural and food chemistry. 2016;64(29), 5784–5792. https://doi.org/10.1021/acs.jafc.6b01696
 - Rijkers, G. T., Riccardi, C., & Kroese, F. G. M. Editorial: Defects in Regulation: How, Where and When the Immune System Can Go Wrong. Frontiers in immunology. 2021;12, 746418. https://doi.org/10.3389/fimmu.2021.746418
 - Robles-Molina, J., Lara-Ortega, F. J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry. Journal of chromatography. A. 2014;1350, 30–43. https://doi.org/10.1016/j.chroma.2014.05.003
 - Rogers, J. A., Metz, L., & Yong, V. W. Review: Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Molecular immunology. 2013;53(4), 421–430. https://doi.org/10.1016/j.molimm.2012.09.013
 - Romagnani S. Immunologic influences on allergy and the TH1/TH2 balance. The Journal of allergy and clinical immunology. 2004;113(3), 395–400. https://doi.org/10.1016/j.jaci.2003.11.025
 - Rudak, P. T., Choi, J., & Haeryfar, S. M. M. MAIT cell-mediated cytotoxicity: Roles in host defense and therapeutic potentials in infectious diseases and cancer. Journal of leukocyte biology. 2018;104(3), 473–486. https://doi.org/10.1002/JLB.4RI0118-023R
 - Shaw, S. M., Coppinger, T., Waywell, C., Dunne, L., Archer, L. D., Critchley, W. R., Yonan, N., Fildes, J. E., & Williams, S. G. The effect of beta-blockers on the adaptive immune system in chronic heart failure. Cardiovascular therapeutics. 2009;27(3), 181–186. https://doi.org/10.1111/j.1755-5922.2009.00089.x
 - Shin, J. C., Lee, E., An, S., Jin, S. H., Ha, J., Choi, W. J., & Noh, M. Benzophenone-3 and benzophenone-8 exhibit obesogenic activity via peroxisome proliferator-activated Toxicology receptor pathway. in vitro. 2020;67, 104886. https://doi.org/10.1016/j.tiv.2020.104886
- Sim, W. J., Lee, J. W., & Oh, J. E. Occurrence and fate of pharmaceuticals in wastewater 1005 treatment plants and rivers in Korea. Environmental pollution (Barking, Essex: 1987). 1006 2010;158(5), 1938–1947. https://doi.org/10.1016/j.envpol.2009.10.036 1007
- Thompson, P. A., Khatami, M., Baglole, C. J., Sun, J., Harris, S. A., Moon, E. Y., Al-Mulla, 1008 F., Al-Temaimi, R., Brown, D. G., Colacci, A., Mondello, C., Raju, J., Ryan, E. P., 1009 Woodrick, J., Scovassi, A. I., Singh, N., Vaccari, M., Roy, R., Forte, S., Memeo, L., ... 1010 1011 Bisson, W. H. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;36 Suppl 1, S232–S253. https://doi.org/10.1093/carcin/bgv038 1012
- Torres, L., Redko, A., Limper, C., Imbiakha, B., Chang, S., & August, A. Effect of 1013 Perfluorooctanesulfonic acid (PFOS) on immune cell development and function in 1014 **Immunology** letters. 2021;233, 31–41. 1015
- https://doi.org/10.1016/j.imlet.2021.03.006 1016

977

978

979

980

981

982

983

984

985 986

987

988 989

990

991 992

993

994

995

996

997

998

999

1000

1001

1002

1003

- Vinggaard, A. M., Bonefeld-Jørgensen, E. C., Jensen, T. K., Fernandez, M. F., Rosenmai, A. K., Taxvig, C., Rodriguez-Carrillo, A., Wielsøe, M., Long, M., Olea, N., Antignac, J. P., Hamers, T., & Lamoree, M. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. Environment international. 2021;146, 106191. https://doi.org/10.1016/j.envint.2020.106191
- Wang, Z., Walker, G. W., Muir, D., & Nagatani-Yoshida, K. Toward a Global Understanding
 of Chemical Pollution: A First Comprehensive Analysis of National and Regional
 Chemical Inventories. Environmental science & technology 2020;54(5), 2575–2584.
 https://doi.org/10.1021/acs.est.9b06379
- Wang, Y., Liu, Y., Lu, S., Liu, X., Meng, Y., Zhang, G., Zhang, Y., Wang, W., & Guo, X.
 Occurrence and ecological risk of pharmaceutical and personal care products in surface
 water of the Dongting Lake, China-during rainstorm period. Environmental science and
 pollution research international. 2019;26(28), 28796–28807.
 https://doi.org/10.1007/s11356-019-06047-4

- Warner, G. R., Meling, D. D., De La Torre, K. M., Wang, K., & Flaws, J. A. Environmentally relevant mixtures of phthalates and phthalate metabolites differentially alter the cell cycle and apoptosis in mouse neonatal ovaries. Biology of reproduction. 2021;104(4), 806–817. https://doi.org/10.1093/biolre/ioab010
- Weatherly, L. M., Shane, H. L., Lukomska, E., Baur, R., & Anderson, S. E. Systemic toxicity induced by topical application of perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) in a murine model. Food and chemical toxicology. 2023;171, 113515. https://doi.org/10.1016/j.fct.2022.113515
- Wensveen, F. M., Šestan, M., Turk Wensveen, T., & Polić, B. 'Beauty and the bea'st' in infection: How immune-endocrine interactions regulate systemic metabolism in the context of infection. European journal of immunology. 2019;49(7), 982–995. https://doi.org/10.1002/eji.201847895
- Wernersson, A. S., Carere, M., Maggi, C., Tusil, P., Soldan, P., James, A., ... & Kase, R. The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe. 2015;27(1), 1-11. https://doi.org/10.1186/s12302-015-0039-4
- Wu, B. Human health hazards of wastewater. In High-risk pollutants in wastewater (pp. 125-139). Elsevier. 2020. https://doi.org/10.1016/B978-0-12-816448-8.00006-X
 - Wu, X., Conkle, J. L., Ernst, F., & Gan, J. Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environmental science & technology. 2014;48(19), 11286–11293. https://doi.org/10.1021/es502868k
 - Yao, L., Chen, Z. Y., Dou, W. Y., Yao, Z. K., Duan, X. C., Chen, Z. F., Zhang, L. J., Nong, Y. J., Zhao, J. L., & Ying, G. G. Occurrence, removal and mass loads of antiviral drugs in seven wastewater treatment plants with various treatment processes. Water research. 2021;207, 117803. https://doi.org/10.1016/j.watres.2021.117803
- 2021;207, 117803. https://doi.org/10.1016/j.watres.2021.117803
 Zefferino, R., Di Gioia, S., & Conese, M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain and behavior. 2021;11(2), e01960. https://doi.org/10.1002/brb3.1960
- Zhou, H., Wu, C., Huang, X., Gao, M., Wen, X., Tsuno, H., & Tanaka, H. Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China. Water environment research: a research publication of the Water Environment Federation. 2010;82(11), 2239–2248. https://doi.org/10.2175/106143010x12681059116653

Figure captions

- Figure 1. Modulation of CD4⁺ (A), CD8⁺ (B), MAIT (C), and NKT cell (D) cell activation. 1069 Expression of TNF-α, CD69, CD71, CD134, and CD137 was measured by flow cytometry after 1070 20 h treatment of PBMCs with WWTP extracts at REF of 6.25, 12.5, 25, followed by 1071 stimulation with anti-CD3/CD28. Only activation markers responding to stimulation in the 1072 certain immune cell populations are shown. Results are presented as FC of anti-CD3/CD28 1073 1074 stimulated blank-treated PBMCs. The color change from white (0) to blue (1.0) to red (1.5) indicates a decrease (from 1.0 to 0), an increase (from 1.0 to 1.5), or no change (1.0) compared 1075 to blank. Data represents the mean of 5 donors. Statistical analysis was performed by one-way 1076 ANOVA, followed by Dunnett's multiple comparison test. Statistical significance: *p≤0.05, 1077 ** $p \le 0.01$, *** $p \le 0.001$, **** $p \le 0.0001$ vs blank. (E) Representative density plots of CD69 1078 1079 expression in CD4⁺ cells treated with blank or WWTP extract E3 at increasing concentrations. 1080 The same presentation for the other T cell populations is shown in Suppl. Fig. 14.
- Figure 2. t-SNE analysis of CD4⁺ cells. Expression of TNF-α, CD69, CD71, CD134, and 1081 CD137 was measured by flow cytometry after 20 h treatment of PBMCs with WWTP extracts 1082 at REF of 6.25, 12.5, 25, followed by stimulation with anti-CD3/CD28. Only data for CD4+ 1083 cells and REF 25 are shown. (A) Representative 2D t-SNE maps, representing the merged 1084 treatment and donor condition, for the expression of CD134 and CD137 showing the blank (B) 1085 and the WWTP extract (E1-E4)-treatments. CD4⁺ population was detected using t-SNE 1086 transformation tool, and cell activation was visualized by setting a threshold level of 1000 for 1087 CD134 (pink) and of 2000 for CD137 (yellow). (B) 2D t-SNE map of all CD4⁺ merged events 1088 showing, based on the expression levels of all activation markers and manually gated, the 17 1089 1090 clusters of activated cells (active clusters) and 1 inactive cluster. The red and blue dotted oval represent the highly targeted populations. The table presents the gate color, name and % of 1091 gated cells. Due to low cell numbers in some clusters and overlap, not all colors are visible in 1092 1093 the 2D t-SNE map. (C) Heatmap with the data obtained from the % of gated cells of each donor and treatment condition. Results are expressed as FC calculated on blank-treated PBMCs anti-1094 CD3/CD28 stimulated (1.0, blue). The color changes from white (0) to blue (1.0) to red (2.5) 1095 indicates a reduction (from 1.0 to 0), an increase (from 1.0 to 2.5), or no change (1.0) compared 1096 to blank. Violet dotted clusters belong to both red and blue dotted ovals. Data represents the 1097 mean of 5 donors. Statistical analysis was performed by paired t-test. Statistical significance: 1098 1099 * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, **** $p \le 0.0001$ vs blank.
- 1100 Figure 3. Modulation of MAIT cell activation (A). Expression of TNF-α, CD69, CD71, CD134, and CD137 was measured by flow cytometry after 20 h treatment of PBMCs with 1101 WWTP extracts at REF of 6.25, 12.5, 25, followed by stimulation with E. coli K12. Only 1102 1103 activation markers responding to stimulation in this immune cell population are shown. Results are presented as FC of E. Coli K12 stimulated blank-treated PBMCs. The color change from 1104 white (0) to blue (1.0) to red (1.5) indicates a decrease (from 1.0 to 0), an increase (from 1.0 to 1105 1106 1.5), or no change (1.0) compared to blank. Data represents the mean of 5 donors. Statistical analysis was performed by one-way ANOVA, followed by Dunnett's multiple comparison test. 1107 Statistical significance: $*p \le 0.05$, $**p \le 0.01$, $***p \le 0.001$, $****p \le 0.0001$ vs blank. (B) 1108 Representative density plots of CD69-TNF- α -co-expression in MAIT cells. 1109
- Figure 4. t-SNE analysis of MAIT cells. Expression of TNF-α, CD69, CD71, CD134, and CD137 was measured by flow cytometry after 20 h treatment of PBMCs with WWTP extracts at REF of 6.25, 12.5, 25, followed by stimulation with *E. coli* K12. Only data for MAIT cells and REF 25 are shown. (A) Representative 2D t-SNE maps, representing the merged treatment

1114 and donor condition, for the expression of CD69 showing the blank (B) and the WWTP extracts (E1-E4)-treatments. MAIT cell population was detected using t-SNE transformation tool, and 1115 cell activation was visualized by setting a threshold level of 5000 for CD69 (blue). (B) 2D t-1116 SNE map of all MAIT cell merged events showing, based on the expression levels of all 1117 activation markers and manually gated, 7 clusters of activated cells (active clusters) 1 low active 1118 and 1 inactive cluster. The red and green dotted oval represent the highly targeted populations. 1119 The table presents the gate color, name and % of gated cells. Due to low cell numbers in some 1120 clusters and overlap, not all colors are visible in the 2D t-SNE map. (C) Heatmap with the data 1121 obtained from the % of gated cells of each donor and treatment condition. Results are expressed 1122 1123 as FC calculated on blank-treated PBMCs E. coli K12 stimulated (1.0, blue). The color changes from white (0) to blue (1.0) to red (2.5) indicates a reduction (from 1.0 to 0), an increase (from 1124 1.0 to 2.5), or no change (1.0) compared to blank. Violet dotted clusters belong to both red and 1125 blue dotted ovals. Data represents the mean of 5 donors. Statistical analysis was performed by 1126 paired t-test. Statistical significance: * $p \le 0.05$, ** $p \le 0.01$, **** $p \le 0.001$, **** $p \le 0.0001$ vs blank. 1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 5. Modulation of mRNA expression in *E. coli***-stimulated PBMCs**. PBMCs were treated (20h) with WWTP extracts at REF 25, followed by stimulation with *E. coli* K12 to specifically stimulate the MAIT cells. Data are presented as FC calculated on *E. coli* K12-stimulated blank-treated PBMCs (1.0, dotted line). The presentation is divided in transcripts that were statistically significantly down-regulated by at least one WWTP extract (A) and those statistically significantly up-regulated by at least one WWTP extract (B). Data represents the median of 5 donors (black line within each violin). Statistical analysis was performed following Welch's t-test. Statistical significance: with *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 *vs* blank.

Figure 6. Correlation between chemicals and immune cell activation. The heat map shows the correlation coefficients between the concentration of WWTP extract chemicals and the % of activated immune cells, and the hierarchical clustering of similarly affected immune cells (horizontal) and similarly affected WWTP extract chemicals (vertical). Expression of TNF-α, CD69, CD71, CD134, and CD137 was measured by flow cytometry after 20 h treatment of PBMCs with WWTP extracts at REF of 6.25, 12.5, 25, followed by stimulation with anti-CD3/CD28 or *E. coli* K12. Data of the % of activated CD4+, CD8+, MAIT, NKT, NK, B and CD4+CD8- cells at REF 25 are shown. Color code: negative correlation (blue) to positive correlation (red). The color bars were used to group chemicals based on similar correlation coefficients with immune cell activation. The list of chemicals present in each color group is reported in Suppl. Fig. 16. The Kendall correlation coefficients and the p values are reported in Suppl. File 2.

Figure 7. Venn diagrams showing the relationships between the three sets: lymphocyte activation (blue), basophil activation (red), and gene expression (yellow). The most highly correlated chemicals, highlighted from the heatmap with the highest correlation coefficients (dark blue and red bars for Fig. 6, suppl. Fig. 11 and 12), were evaluated. (A) The amount of chemicals negatively correlated with lymphocyte activation and gene expression (dark blue bars in Suppl. Fig. 16A and 17A) and positively correlated with basophil activation (red bars in Suppl. Fig. 18B) are shown. (B) The amount of chemicals positively correlated with lymphocyte activation and gene expression (dark red bars in Suppl. Fig. 16B and 17B) and negatively correlated with basophil activation (blue bars in Suppl. Fig. 18A) are shown. The diagrams using BioVenn (Hulsen et al.. 2008 were created https://www.biovenn.nl/index.php). Pie charts of the chemical categories of the chemicals resulting from the three correlation analyses. Categories of the common chemicals resulting from Fig. 7A (C) and from Fig. 17B (D), with their percentage.