
This is the preprint of the contribution published as: 
 
Guo, F., Schlink, U., Wu, W., Hu, D., Sun, J. (2023): 
A new framework quantifying the effect of morphological features on urban temperatures 
Sust. Cities Soc. 99 , art. 104923 
 
 
The publisher’s version is available at: 
 
https://doi.org/10.1016/j.scs.2023.104923 
 
 
 
 
 
 

https://doi.org/10.1016/j.scs.2023.104923




1. New framework to quantify the heating/cooling effect of urban morphology; 

2. Tree height contributes mostly to LST, but varied over cities and seasons; 

3. BCR, BH and SDR are the dominant building factors to variations of LST; 

4. Human activities significantly affect the heating/cooling effect of buildings; 

Highlights



1 
 

A new framework quantifying the effect of morphological features 

on urban temperatures 

Fengxiang Guo 1, *, Uwe Schlink 1, Wanben Wu 2, Die Hu 3, and Jiayue Sun 4 

1 Department of Urban and Environmental Sociology, UFZ – Helmholtz Centre for 

Environmental Research, Leipzig 04318, Germany; fengxiang.guo@ufz.de; 

uwe.schlink@ufz.de;  

2 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, 

National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, 

and Shanghai Institute of EcoChongming (SIEC), Fudan University, Shanghai, China; 

wbwu19@fudan.edu.cn 

3 Sino-French Institute for Earth System Science, College of Urban and Environmental 

Sciences, Peking University, Beijing, China; hudie@radi.ac.cn 

4 Chang Guang Satellite Technology Co., Ltd., Changchun 130000, China; 

sjy17@mails.jlu.edu.cn 

*Corresponding author 

 

Title Page (with Author Details)



1 
 

Abstract 

Urban morphology varies within and among cities. Previous literature well discussed how 

2D/3D morphology affects land surface temperature (LST) from physical form, scale and time. 

However, they focused on ranking the contributions. How quantifying the heating/cooling 

efficiency and conducting multi-cities comparisons is challenging. This study proposed a new 

framework to process this issue by integrating cities, scales, and seasons. Among 24 cities close 

to China's Eastern Seaboard, building coverage ratio (BCR), building height (BH), surface 

developed ratio (SDR), and tree height (TH) were dominant contributors to LST over seasons. 

Among them, TH had the highest cooling efficiency, although it varied from cities. For every 1m 

increase, LST decreased about 0.3℃ in northern cities during summer and tiny during winter, while 

LST decreased about 0.2℃ in southern cities during both summer and winter. Economic activities 

significantly affected the heating/cooling efficiency of dominant building features. High economic 

levels and population aggregation cause a significant increase in the heating effect of BCR, but a 

decrease in the cooling effect of BH and SDR, which collectively leads to a warmer environment. 

According to the results, this study offered several recommendations for better local adaptation 

strategies of urban transformation, with a focus on heat management. 

Keywords: building features, heating/cooling efficiency, land surface temperature, random forest, 

tree height   
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1.  Introduction 

In the century of growing urbanization, with the urban regions expanding by over 20% and 

urban population increasing by over 30% since 1985, urban morphology constantly transformed 

and updated in China (Peng et al., 2016; Guo et al., 2022). Building and neighboring environment 

influence the arrangement of land use and land covers, which can alter the absorption and re-

radiation of solar energy, ultimately affecting the urban heat environment (Huang and Wang, 2019; 

Liu et al., 2021). Moreover, the spatial layouts of buildings are also connected to the level of human 

activity. A higher building density and volumetric ratio indicate a higher population density and 

intense land resource development, which in turn causes more energy consumption and artificial 

heat release (Oke et al., 2017; Song et al., 2020). One well-documented environmental risk is the 

urban heat island (UHI), which may cause the continuous increase of energy consumption for 

cooling, environmental pollution and extreme heat events (Zhao et al, 2014; Stewart and Oke, 

2012; IPCC, 2022). It has been reported that a 1°C increase of apparent temperature may lead to a 

3.12% increase in daily mortality in Mediterranean cities, also a much higher effect in Korea 

(6.73%-16.3% in six cities) for a similar time period (Baccini et al., 2008). In 2020, the extreme 

urban heat wave resulted in almost 2500 deaths in England (He et al., 2021).  

Land Surface Temperatures (LST) retrieved from remote sensing images offers advantages in 

terms of coverage, spatial resolution, and cost-effectiveness, making it a more valuable tool for 

studying the impact of various morphological features on the urban temperature than in-situ 

observations (Huang and Wang, 2019; Hu et al., 2022). With access of 3D city models, more and 

more researches are focusing on the influence of buildings on the spatial distribution of urban heat 

(Berger et al., 2017; Wu et al., 2022). A common approach in these researches is the use of both 

linear correlation coefficients and nonlinear regression methods. Correlation coefficient is applied 
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for qualifying the relationship between building characteristics and LST, which may be positive 

or negative. However, in complex urban environments, this relationship is not straightforward. 

Random Forest (RF) is often used due to its high interpretability and higher prediction accuracy, 

as noted by Logan et al. (2020) and Li et al. (2021). RF allows for an assessment of the relative 

importance of building features for the LST. However, this relative metric does not effectively 

quantify specific temperature changes and makes comparisons among cities more challenging. 

Partial dependence plots demonstrate the relationship between the target response and a selected 

set of input features, while controlling for the values of all other input features (Li et al., 2021; Li 

and Hu, 2022; Gao et al., 2023). In these cases, partial dependence plots can effectively replace 

the role of correlation coefficients and provide insight into the temperature changes caused by 

various morphological features, enabling further comparisons among cities.  

Three fundamental elements of urban morphology (physical form, resolution and time) have 

been well considered when identifying the influence on LST. Physical form refers to the key 

physical components that structure and shape the city, including land use, street patterns, buildings, 

and open spaces (Moudon, 1997; Guo et al., 2022). This study focuses on buildings and their open 

spaces. Buildings within cities vary in terms of function, population density, and urban planning. 

An increasing body of literature has identified the relationships between urban morphology and 

LST under different scenarios (Berger et al., 2017; Huang and Wang, 2019; Li and Hu, 2022). The 

results indicated that both 2D and 3D morphological features (e.g., building coverage, building 

height, and sky view factor), have a combined effect on LST. However, spatial configuration 

characteristics are often overlooked. The compactness and irregular arrangement of buildings 

significantly affect urban ventilation and alter radiation balance patterns and sunshine conditions. 

Guo et al. (2021) proposed a series of metrics for measuring urban building characteristics from 
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the perspectives of composition and configuration, and tested their performance in 77 cities in 

Europe and China (Guo et al., 2022). Besides buildings, the tree height (TH) is another factor that 

is considered. In general, taller trees can provide more shade and evapotranspiration, which can 

affect LST (Wu et al., 2022; Yu et al., 2020). However, specific details of the cooling effect remain 

unknown and further research is needed to fully understand this relationship. 

Another aspect is that the physical form varies among cities due to various climate features, 

economic development, and local architecture culture (Guo et al., 2022; Wu et al., 2022). Changing 

the experimental setup in traditional studies (depending on specific cases at the city or regional 

scales), Song et al. (2020) quantified the effects of building density on land surface temperature 

(K) across 21 cities in China using Landsat 8 imagine. The results suggested a more significant 

influence of building density on LST in areas with dry climates compared to humid climates. 

Moreover, Wu et al. (2022) investigated the seasonal relationship between 2D/3D urban 

morphology and the urban thermal environment in 62 representative large cities across four major 

climate zones in China. They found significant differences (p < 0.05) of seasonal surface regional 

heat island intensity among climate zones, and the summer LST in cities with humid subtropical 

climate exceeds approximately 2 °C than the other climate types. Multi-city studies are is important 

for finding a locally adapted urban temperature mitigation strategy. However, current research 

does not sufficiently consider the comparison of the influence of urban morphology on LST across 

multiple cities, particularly the differences of their heating/cooling effects. 

The spatial resolution determines the recognizable urban forms, which reflects the plan unit 

that knead various urban morphological features together for urban planning, and four levels are 

commonly defined: building/lot, street/block, city, and region (Moudon, 1997; Gauthier and 

Gilliland, 2006). Grid-based moving window or circle-based sampling methods are widely used 
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for constructing data pairs of urban morphology and LST (Wu et al., 2019; Li and Hu, 2022). 

Under different window sizes, associations between building features and LST may vary. Research 

by Lu et al. (2021), Huang and Wang (2019), and Li and Hu (2022) found that the building 

coverage ratio was the most significant contributor to variations in LST when the window size was 

over 120 m, but at a size of 60 m, building height became the most important factor (Li and Hu, 

2022). These findings suggest a scale-dependent association between urban morphology and urban 

heat. At smaller scales, building features, such as building height, can play a significant role by 

providing shade to the surrounding environment. However, at larger scales, the vertical fluctuation 

tends to become more relevant, and factors such as building coverage ratio, building spacing, and 

openness become more important as they affect heat accumulation, ventilation, and the surface 

energy balance. For that reason, the influence of urban morphology on urban temperatures cannot 

be fully understood through a single scale analysis and multi-scale studies are required to gain a 

comprehensive understanding of the relationships and to better guide urban planning (Wu et al., 

2019; Lu et al., 2021; Li and Hu, 2022). 

Moreover, relationships between morphology and urban temperatures change with season (Lu 

et al., 2021; Li et al., 2021). The solar radiation varies largely over seasons, causing a periodical 

variation of LST and various thermal mitigation demands of cities, particularly those in the climate 

zone with hot summer and cold winter (Ewing and Rong, 2008; Guo et al., 2021). During summer, 

high temperatures in densely built urban landscapes can exacerbate the effects of urban heat waves 

and pose a threat to the health of city dwellers. People, particularly the elderly over 65 are more 

susceptible to heat-related illnesses such as heatstroke, dehydration, and even death, when exposed 

to high temperatures for a prolonged time (WMO, 2022; Gao et al., 2023). During winter, cold 

winds remove lots of heat from cities. During this time, protection measures might support the 
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accumulation of heat and reduce the consumption of energy required to heat the building (Ewing 

and Rong, 2008). Recent studies on the seasonal influence of urban morphology on LST have a 

weakness: they mostly rely on LST retrieved from a single remote sensing image, which at best 

represents only one season. LST is a momentary expression of how the urban landscape affects 

local surface microclimate; it is easily affected by local weather and atmospheric conditions. 

Google Earth Engine (GEE) is a platform for geospatial analysis that provides access to over 900 

curated datasets and high-performance computing resources for processing them (Gorelick et al., 

2017), which offers an efficient tool to generate monthly or annual average LST. 

In this study, our goal is to gain a deeper understanding of how urban morphology affects LST 

in built environments, and a new framework is proposed to quantify the specific temperature 

changes caused by various urban morphological features through integrating the cities, scales, and 

seasons. The main objectives of this study are to: 1) identify the dominant urban morphological 

features that affect LST; 2) extract specific temperature changes through a nonlinear complex 

regression model; 3) evaluate the heating or cooling efficiency of various morphological features 

and their potential factors. We expected to uncover the regularities and specificities, and to provide 

targeted and locally adapted suggestions for a management of the urban thermal conditions to 

support future urban transformations. 

2. Study area and Data 

2.1. Study area 

China is currently the second-largest economy in the world, with an estimated land area of 9.6 

million km2 and a population of 1.4 billion as of 2019. Since the 1980s, rapid economic 

development and explosive urban population growth have caused significant variations in urban 

morphology, including horizontal sprawl, vertical growth, and the transition from traditional to 
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modern architecture. These changes provide an ideal platform for studying how urban morphology 

affects the urban heat environment on a large scale. However, the economic development level 

and spatial distribution of populations are uneven, that the majority of the population and economic 

development is concentrated to the east, and the south having more frequent economic activities 

and higher levels of urbanization than the northern region (Gao et al., 2017; Song et al., 2020). We 

selected 24 cities that are provincial capitals or local economic centers close to China's Eastern 

Seaboard, with urban populations over 5 million and gross domestic product (GDP) over 50 billion. 

These cities are distributed across three climate zones: cold region, hot-summer cold-winter region, 

and hot-summer warm-winter region (Fig. 1). 

 

Figure 1. Location of selected cities in China mainland, and spatial distribution of climate zones. 

Af: tropical-rainforest; Am: tropical-monsoon; Aw: tropical-savannah; Bwk: arid-desert-cold; Bsh: 
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arid-steppe-hot; Bsk: arid- steppe-cold; Cwa: temperate-dry-winter-hot summer; Cwb: temperate-

dry winter-warm summer; Cwc: temperate-dry winter-cold summer; Cfa: temperate-no dry 

season-hot summer; Cfb: temperate-no dry season-warm summer; Cfc: temperate-no dry season-

cold summer; Dsb: cold-dry summer-warm summer; Dsc: cold-dry summer-cold summer; Dwa: 

cold-dry winter-hot summer; Dwb: cold-dry winter-warm summer; Dwc: cold-dry winter-cold 

summer; Dfa: cold-no dry season-hot summer; Dfb: cold-no dry season-warm summer; Dfc: cold-

no dry season-cold summer; Dfd: cold-no dry season-very cold winter; ET: polar-tundra; EF: 

polar-frost (Beck et al., 2018). 

2.2. Data 

From the Landsat 8 satellite data the LST is retrieved at a spatial resolution of 30 m, and using 

atmosphere correction methods the accuracy is around 1K (Berger et al., 2017; Guo et al., 2021). 

For selected cities, the map of summer LST (SLST) was generated by averaging the LST from 

June 1 to September 1 during the period 2018-2020 on the GEE platform. The dates used for 

generating winter LST (WLST) were from December 1 to March 1 for the same period. 

The building height data is gathered from Baidu China Co., Ltd, with an overall accuracy of 

86.78% (Guo et al., 2022; Wu et al., 2022). The tree height data, from the Global Forest Cover 

Change dataset, has a spatial resolution of 30 m and good accuracy, with an RMSE of 6.6 m and 

a MAE of 4.45 m (Sexton et al., 2013; Wu et al., 2022). 

To identify potential factors affecting the heating or cooling efficiency of each morphological 

feature in each city, economic data, including GDP and urban population (POP), were downloaded 

from the National Bureau of Statistics of China. Additionally, climate features, including mean air 

temperature (MAT) and mean humidity (MH), were downloaded from the China Meteorological 

Administration. Latitude (LAT) and longitude (LON) were also considered as geographic factors. 
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3. Methods 

Data processing comprises five main steps: 1) calculate 23 selected building metrics and tree 

height for all cities and scales (section 3.1); 2) generate SLST and WLST using Landsat 8 

OLI/TIRS remote sensing images on GEE platform; 3) obtain the relative importance of each 

morphological feature on LST using random forest over cities, scales, and seasons, and then select 

the dominant building features which belonging to IM1 (see section 3.2.1); 4) extract the specific 

temperature changes from the partial dependence plots, and further calculate the heating or cooling 

efficiency of each dominant feature (section 3.2.2); 5) calculate the correlation between the heating 

or cooling efficiency and their potential factors. Detailed information was shown in Fig. 2. 

 

Figure 2. Flow chart of the implementation and analyzing methods. 
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This study is focused on the built environment, and to avoid the influence of large vegetation 

and water bodies on the statistical results, only those areas with an impervious surface proportion 

greater than 0.7 were included to generate data pairs of urban morphology and LST. These areas, 

referred to as 'windows' in this study, were chosen to ensure that the data reflected the 

characteristics of urban building layouts. For various scales (ranging from 45 m to 480 m), we 

recalculated the morphological metrics without spatial aggregation. This approach allowed us to 

account for the high heterogeneity of urban building layouts and to avoid the influence of the 

modifiable unit areal problem on the statistical results (Ye and Rogerson, 2022). 

3.1. Building metrics 

This study utilized the software LPA3D, developed by Guo et al. (2022), to extract building 

features within cities. LPA3D provides over 45 metrics related to the spatial composition and 

configuration in 3D space. These metrics are based on patch mosaic and surface gradient models, 

similar to the definitions used in FRAGSTATS, and are applicable to raster data. Once categorized, 

boundaries of patches were defined (Kedron et al., 2019). An enclosed building area is taken as a 

patch, and the class refers to the mixture of different patches with the same or similar height 

(Kedron et al., 2019; Guo et al., 2021).  The built landscapes were divided into 5 classes based on 

the spatial heterogeneity of building height, namely low buildings (below 10 m), sub-low-rise 

buildings (10 m – 20 m), middle-rise buildings (20 m – 30 m), sub-high-rise buildings (30 m – 100 

m), and high-rise buildings (over 100 m). In the study at hand, 23 building metrics (= 18 + 5 ×

PLAND ) were chosen, aiming to measure the diversity, complexity, compactness and 

fragmentation of the built landscape (Table 1).   
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Table 1. Metrics for measuring urban building features; additionally tree height (TH) was included. 

Metrics Abb. Type Measure of the … 

Building coverage ratio BCR Composition-2D building coverage degree in a window. 

Edge density ED Composition-2D building segmented by the boundary. 

Euclidean nearest-

neighbor Mean 

Distance 

ENN Composition-2D isolation degree of each buildings class, and 

can be taken as indicator for measuring the 

road width and building spacing. 

Patch density PD Composition-2D evenness and building number of urban 

building pattern. 

Mean building height BH Composition-3D mean height of urban buildings. 

Surface area SA Composition-3D surface fluctuation compared with plane area 

Mean Volume index VOL Composition-3D mean volume of urban buildings. 

Building surface slope  SSL Composition-3D integral slope of building surface, which is the 

sum of surface fluctuation at adjacent building 

pixels. 

Surface developed ratio SDR Composition-3D deviation of building surface to projected plane 

Standard deviation of 

height 

SQ Composition-3D undulation of the urban buildings surface. 

Percentage of patch 

type 

PLAN

D 

Composition-3D proportion of each buildings class in the urban 

building pattern, including low-rise (LB), sub-

low-rise (SLB), middle-rise (MB), sub-high-

rise (SHB) and high-rise buildings (HB). 

Landscape shape index LSI Configuration deviation between patch shape and regular 

circle or square with same area. 

Building Shade metrics CNI Configuration effect of buildings forming ventilation paths, 

defined by the ratio between building height 

and building spacing (ENN).  

Largest patch index  LPI Configuration largest space occupation of single building. 

Landscape division 

index 

LDI Configuration aggregation degree of buildings. LDI = 0 when 

the landscape consists of single patch 

Landscape fractal 

dimension index 

LFI Configuration irregularity and complexity of urban buildings 

landscape shape. 

Shannon’s diversity 

index  

SHDI Configuration diversity of urban buildings landscape. 

Cohesion index  COI Configuration connectivity and aggregation of the urban 

building pattern. 

Proximity index PROX Configuration proximity, defined by the ratio between 

building height and square of building spacing 

(ENN). 
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3.2. Random forest 

The random forest (RF) method is a bagging ensemble learning approach for classification or 

regression by constructing a multitude of decision trees during training (Belgiu and Drăguţ, 2016; 

Logan et al., 2020). Each decision tree is created with a different, randomly chosen subset of both 

the training data and the features at every node. For regression, RF can handle high dimensional 

feature sets well and generate an internal unbiased estimate of generation error, with better 

prediction accuracy than traditional linear regression analysis (Hutengs and Vohland, 2016; Guo 

et al., 2022). Compared with deep learning methods, known as 'black box', RF has the advantage 

of higher readability and interpretation. Additionally, random decision forests correct for decision 

trees' tendency to overfit their training set by averaging a large number of decorrelated individual 

trees (Hutengs and Vohland, 2016). In this study, the 24 urban morphological features were taken 

as independent variables to predict the LST across cities, scales, and seasons. 70% of the data was 

used as training set, and the remaining data was used to test the regression accuracy, as suggested 

by the coefficient of determination (R2). 

3.2.1. Evaluation of Relative importance 

RF has the ability to rank the relative importance of variables in a regression, which can be 

applied to judge the sensitivity of morphological features to LST (Hutengs and Vohland, 2016). 

Variables with high importance are drivers of target response and their values have a significant 

influence on LST. The relative importance can be calculated using mean decrease accuracy (MDA) 

methods, which is based on the decrease in accuracy that occurs when a particular variable is not 

used in a tree for splitting the data (Han et al., 2016; Gao et al., 2023). This method considers the 

error rate of a tree or forest with and without the variable, and evaluate the contribution of 
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influencing factors by using the Shapley additive explanations (SHAP) value. The SHAP value of 

each variable (𝑓) is the average decrease in accuracy over all the trees in the forest.  

 
𝑆𝐻𝐴𝑃𝑓 = ∑

|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
[𝐿𝑆�̂�(𝑆 ∪ {𝑓}) − 𝐿𝑆�̂�(𝑆)]

𝑆∈𝑁{𝑚}

 (1) 

where 𝑁 is the set of all features for the training dataset with dimension 𝑀, 𝑆 is the permutation 

subset of 𝑁 with dimension |𝑆|, 𝐿𝑆�̂�(𝑆 ∪ {𝑓}) − 𝐿𝑆�̂�(𝑆) is the difference of predicted value with 

and without feature 𝑓  using feature set 𝑆 . Higher SHAP value means larger importance and 

contribution to LST. Through comparing SHAP values, we can calculate the relative importance 

(𝐼𝑀𝑓,𝑐,𝑠,𝑡) of each morphological feature (𝑓) over different cities (𝑐), scales (𝑠) and seasons (𝑡). 

Based on the descending order of relative importance among the variables, five importance levels 

are defined: IM1 (variables ranked 1 – 5), IM2 (variables ranked 6 – 10), IM3 (variables ranked 

11 – 15), IM4 (variables ranked 16 – 20), and IM5 (variables ranked 21 – 24).  

3.2.2. Definition of heating or cooling efficiency 

The relative importance is an indicator that reflects only the contribution of various features 

to the variations of LST. It cannot quantify the specific amount of temperature change caused by 

each feature. The partial dependence plot (PDP) is a useful tool for addressing this issue as it 

illustrates the dependence between LST and a target feature by marginalizing the impacts from 

other features (Gao et al., 2023). The PDP can be calculated as follows: 

 
𝐿𝑆𝑇�̂�(𝑥𝑓) =

1

𝑛
∑ 𝐿𝑆�̂�[(𝑥𝑓 , 𝑥𝑐

(𝑖)
)]

𝑛

𝑖=1

 (2) 

where 𝑥𝑓 is the feature to be plotted against the target (𝐿𝑆�̂�) to show the relationships; 𝑥𝑐 are the 

other features; 𝑛  is the number of samples in the dataset. Fig. 3 shows an example of PDP 

illustrating how building height affects SLST in Beijing using window sizes of 120 m and 300 m, 
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respectively. In result building height is negatively related to SLST, with a temperature decreases 

of ∆𝑇 = 0.3℃ at the scale 120 m and that of ∆𝑇 = 0.1℃  at the scale 300 m.  

 

Figure 3. PDP of the relationship between building height (BH) and SLST in Beijing with window 

sizes of 120 m and 300 m.  

In addition, LST tends to stabilize when building height increases to 73 m at the scale 120 m, 

but LST becomes stable already at 30 m for the 300 m window size. Assessing the effective and 

monotonous temperature change (∆𝑇) of LST depending on the morphological feature in its 

effectiveness range (∆𝐸), we determine the heating or cooling efficiency as: 

 𝐻𝐶𝐸𝑓,𝑐,𝑠,𝑡 = ∆𝑇𝑓,𝑐,𝑠,𝑡/∆𝐸𝑓,𝑐,𝑠,𝑡 (3) 

𝐻𝐶𝐸 > 0 indicates the heating efficiency that represents a positive association between LST 

and the morphological feature. Conversely, 𝐻𝐶𝐸 < 0 indicates the cooling efficiency having a 

negative relationship between the feature and LST. Considering that features with lower 
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importance are less sensitive to LST, we applied a filter to extract and only chose with a relative 

importance of IM1 to calculate the 𝐻𝐶𝐸𝑓,𝑐,𝑠,𝑡. These metrics are taken as dominant features (𝑑𝑓).  

4. Results 

The accuracy of the predicted SLST and WLST remained consistently high across different 

window sizes, with the lowest R2 (0.77 and 0.76) observed at a window size of 45 m. As the 

window size increased, the mean R2 value tended to increase for both SLST and WLST (Fig. 4), 

indicating that the selected morphological features exhibited sensitivity to variations in LST during 

both summer and winter.  

 

Figure 4. R2 of predicted LST in terms of window size during summer (a) and winter (b). Each 

box represents the R2 for all cities at specific scale, and the red line indicates the median value. 

4.1. Dominant morphological features affecting SLST and WLST over cities and scales 

Appendix A1 and A2 displayed the relative importance of each morphological feature among 

scales during summer and winter, respectively. Based on the median value of each box, tree height 

(TH) had the highest contribution to the variations of LST for most cities, especially during 

summer, with a relative importance ranking first (Appendix A1). During winter, there was greater 

fluctuation in relative importance values among cities for each scale, but the median values still 
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belong to IM1 across scales (Appendix A2). Among building features, building coverage ratio 

(BCR), building height (BH), and surface developed ratio (SDR) showed higher importance on 

both SLST and WLST, as suggested by the median values of relative importance. However, the 

results do not allow for distinguishing their positive or negative association with LST, and are 

unable to extract specific temperature changes. 

4.2. Heating or cooling effect of dominant morphological features 

After scale averaging of ∆𝑇𝑑𝑓,𝑠,𝑐,𝑡, positive values were observed for BCR across cities and 

seasons, indicating a significant heating effect of building coverage (Fig. 5). As BCR increased, 

SLST increased by approximately 0.8 ℃, with a greater increase observed in northern cities such 

as Beijing, Tianjin, and Jinan than in southern cities such as Xiamen, Shenzhen, and Sanya (Fig. 

5). The increases in WLST due to BCR were generally less than 0.4 ℃ across cities, which is much 

lower than those observed during the summer. BH, SDR and TH were negatively related to both 

SLST and WLST, which indicates a cooling effect of these urban morphological features. Similar 

to the relative importance, the cooling effect of TH was much stronger than for the others. The 

decrease in SLST was greater than that in WLST for each city. During the summer, the greatest 

cooling effect caused by TH was a decrease of 5.3 ℃ observed in Shanghai, with no significant 

differences in the cooling degree among cities in the north and south. During winter, there were 

noticeable regional differences in the cooling degree. In the north, there was no apparent influence 

of TH on WLST, but in the southern cities, the temperature decreased significantly. BH and SDR 

had a similar cooling effect during both summer and winter, resulting in an average temperature 

decrease of around 0.5 ℃ across cities. 
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Figure 5. Temperature changes of SLST (a) and WLST (b) caused by the dominant morphological 

features. Positive (negative) values indicate heating (cooling) effects. The horizontal axis 

represents the city, ordered from left to right in their geographic location from north to south.  

Significant seasonal differences were observed in the heating efficiency of building coverage 

ratio (BCR) and cooling efficiency of tree height (TH), with stronger effects during summer than 

winter, while the cooling efficiency of building height (BH) and surface developed ratio (SDR) 

exhibited an opposite trend (Fig. 6). Specifically, during summer, the heating efficiency of BCR 

varied across regions, with a higher increase in LST of over 1 ℃ observed in the northern cities 

compared to around 0.8 ℃ in the southern cities for every unit increase in BCR. This indicates a 

much more significant influence of BCR in the north. Moreover, the heating efficiency of BCR 

decreased significantly from summer to winter, with the largest effects observed in Shanghai. 

Regarding TH, during summer, SLST decreased by over 0.3 ℃ for 1 m increase in TH in the 

northern cities, but the effects almost disappeared during winter. In contrast, for the southern cities, 

the cooling efficiency of TH remained relatively stable during both seasons, with LST decreasing 

by 0.2 ℃ for 1 m increase in TH. Similarly, the cooling efficiency of BH exhibited seasonal 

differences, with a tendency to increase from summer to winter, but it varied among cities. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 

 

Figure 6. Heating efficiency of building coverage ratio (BCR, top left) and cooling efficiencies of 

building height (BH), surface developed ratio (SDR), and tree height (TH) in summer and winter. 

4.3. Potential factors affecting the efficiency of heating or cooling 

The building features influencing LST, including the heating efficiency of BCR as well as the 

cooling efficiency of BH and SDR, are correlated to economic factors (Table 2). During summer, 

the Gross Domestic Product (GDP) and urban population (POP) are positively correlated with the 

heating efficiency of BCR (0.56 and 0.63, respectively), but negatively related to the cooling 

efficiency of BH (-0.47) and SDR (-0.56). These relationships contribute to a warmer urban 

environment, especially in larger cities with higher economic levels and greater urban populations. 

A similar pattern was observed during winter, although with lower correlation coefficients. 

Furthermore, as expected, the heating efficiency of BCR during summer is negatively related to 
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mean air temperature (MAT) and mean humidity (MH), with correlation coefficient -0.42 and -

0.47, respectively. The cooling efficiency of trees is significantly influenced by latitude (LAT), 

but the associations are opposite during summer (0.39) and winter (-0.69). This is due to the 

significant seasonal variations of the cooling efficiency of TH in the northern cities, but relatively 

stable variations in the southern cities. 

Table 2. Correlation coefficients between heating or cooling efficiency and their influencing 

factors during summer and winter. Red circle means a significant positive correlation, while green 

circle means a significant negative correlation under the significance level 0.05. 

 

5. Discussions and conclusions 

This study proposed a new framework for quantifying the specific temperature changes caused 

by various morphological features, by integrating cities, scales, and seasons. The applied partial 

dependence plot (PDP) can not only quantify the positive or negative association between 

independent morphological features and LST, but also provide a useful tool to extract the 

maximum heating or cooling effect of each feature. These results indicated that the PDP can 

effectively replace the Pearson correlation analysis and fill the gap that traditional relative 

importance cannot bridge in linking urban morphology to temperature and making comparisons 

among different cities.  
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5.1 Influencing mechanisms of dominant morphological features on LST 

Building coverage ratio, building height, surface developed ratio, and tree height were found 

to contribute the most to the variations of LST at different scales, which is consistent with previous 

research (Li et al., 2021; Li and Hu, 2022). The specific heating or cooling efficiency of each 

feature differs, which can be explained based on the theory of urban energy balance. When 

horizontal heat advection is not considered, the energy absorbed from solar radiation and the 

anthropogenic heat are balanced through heating the surrounding air temperature and through heat 

storage and evapotranspiration (Oke, 1988).  

 The building coverage ratio is positively related to LST. A densely built landscape can reduce 

surface reflections, leading to an increase in net solar radiation and corresponding sensible 

heat flux, which continuously heats the surrounding environment (Chun and Guldmann, 

2014). Additionally, a high building coverage allows for less open space, which may weaken 

urban ventilation, cause heat accumulation, and further increase the heating effect.  

 Building height and surface fluctuations are negatively related to LST. High buildings 

generate more building shades, which helps to shield downward shortwave radiation and 

create a local cooling effect. In China, high buildings are usually surrounded by wider roads 

(Guo et al., 2021). Although these roads are covered by asphalt and cement with high specific 

heat capacity, their heat storage is relatively less during satellite observation time (around 

11:00 am in China), and the wider roads create a better ventilation path for heat removal.  

 The cooling effect of trees was found to be much stronger than that of building height and 

fluctuation. The effects of tree height on LST may be twofold. Firstly, denser nearby 

vegetation provides cooling by blocking direct solar radiation, and higher trees with dense 

foliage can create more shade. Secondly, the higher albedo of vegetation leads to more 
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reflected solar radiation. Additionally, evapotranspiration contributes significantly to cooling 

the surrounding area, particularly during the summer. 

5.2 Seasonal variations of the heating or cooling effect of dominant morphological features 

The heating or cooling efficiency differs across cities and seasons. For building coverage ratio, 

the heating effect during summer is much higher than that during winter because the solar radiation 

is stronger during summer. This leads to an increase in net solar radiation, generating more sensible 

heat flux based on energy balance, which together create a warmer environment than the same 

morphology condition during winter. Similar seasonal differences are also observed by tree height, 

but the differences in the northern cities are much more significant than those in the south. In the 

northern cities, the dominant vegetation type is deciduous broad-leafed forest (Fig. 7), therefore 

the latent heat flux and shade are weaker due to less solar radiation, bare trees, and frozen water 

during winter, resulting in a lower cooling effect. In the southern cities with warm winters, the 

larger leaves of evergreen broad-leafed forest and tropical rainforests result in less decrease in the 

albedo and shade of the southern vegetation than that of the northern part, maintaining a relatively 

stable cooling effect. 
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Figure 7. Spatial distribution of vegetation types in China mainland. 

The cooling efficiency of building height and surface fluctuation during winter was stronger 

than that during summer, which is opposite to the trend for building coverage ratio and tree height. 

During summer, the stronger solar radiation generates more sensible heat flux, which warms the 

surroundings even under building shade, resulting in weaker cooling efficiency. During winter, 

weaker solar radiation results in less sensible heat flux to warm the surroundings, and more urban 

heat is carried away due to cold winds. Additionally, the lower solar elevation angle leads to larger 
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and longer building shade area, further enhancing the cooling effect. These factors together lead 

to a stronger cooling efficiency, particularly around high-rise buildings in the north.  

5.3 Potential factors affecting heating or cooling and suggestions for urban planning 

Higher economic levels and greater population concentrations lead to an increase in the 

heating efficiency of building coverage ratio, and a decrease in the cooling efficiency of building 

height and surface fluctuation. Concentrated economic activities and urban populations are 

associated with more energy consumption, traffic congestion, and greenhouse gas emissions, 

which can lead to an increase in anthropogenic heat (Stewart and Oke, 2012). Against the backdrop 

of global warming, cities are increasingly vulnerable to extreme weather events such as flooding 

and heatwaves (WMO, 2022), and the impact of urban morphology on seasonal LST is closely 

linked to economic development. In this context, there is an urgent need for efficient and feasible 

policies for local adaptation to environmental risks, particularly those related to heat management 

(IPCC, 2022). Given that the compound effects of solar radiation and anthropogenic heat on LST 

differ between cities and seasons, we propose the following recommendations: 

 Measures to increase the albedo. Increasing urban green vegetation with large leaf cover 

and high height could potentially be applied to urban temperature mitigation, particularly 

during summer in the north. For commercial and industrial areas, new materials with green 

roofs could be considered to reflect incoming solar radiation and accelerate heat dissipation. 

Traditional residential regions could also consider adding more vegetation cover to buildings 

and walls, which could not only alter local urban temperature but also make communities 

more environmentally friendly and livable. Moreover, the vernacular architecture and roads 

are composed of materials with green bricks, grey tiles, and wood, which can both retain 

traditional architecture characteristics and yield lower temperature due to higher albedo.  
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 Optimization of urban building layouts. The community is the basic unit of activity for 

urban dwellers in China, with large communities consisting of up to hundreds of buildings 

and small communities consisting of just a few buildings. The spatial layout of buildings is 

important for both old and new communities. Dense buildings not only contribute to higher 

LST during the summer but also affect the amount of sunlight during the winter. For old 

communities, planned demolition may be necessary to create more regular and open building 

patterns. The resulting open space and diverse patterns can be used for more green space, 

improving the local urban heat environment and water cycle through evapotranspiration.  

 Optimization of urban ventilation paths should be considered, considering the wind-

blocking effect of high-density buildings. The overall design of the block should reserve 

ventilation gaps to maximize the introduction of external airflow into the interior of the block. 

An open building layout also helps to create as much ventilation space as possible, which 

can be useful for mitigating temperature during summer. In order to avoid excessive heat 

dissipation during winter, one possible solution is that the buildings in northern cities could 

be designed perpendicular to the direction of prevailing winds, avoiding the formation of 

strong wind zones. 

5.4 Limitations and further application 

The conclusions of this study still require further experimentation, because, firstly, the 

selected cities in this study are mostly located along the east shore, where the latitude significantly 

influences climate features. To obtain a more precise conclusion, more influencing factors and 

cities should be chosen, considering the estimated land area of 9.6 million km2. Secondly, this 

study only considered the seasonal influence and failed to consider the diurnal influence of urban 

morphology on the urban heat environment. As the intensity of incoming solar radiation varies 
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throughout the day, the impacts of urban morphology on the urban thermal environment change 

within a 24-hour cycle (Wang et al., 2023). However, most of the satellites for retrieving LST are 

polar-orbiting satellites that have a fixed earth observation time. The ECOsystem Spaceborne 

Thermal Radiometer Experiment on Space Station (ECOSTRESS), which provides 

atmospherically corrected LST products with a spatial resolution of 70 m and a recycling period 

of 3-5 days, can help address this issue (Fisher et al., 2020). In contrast to polar satellites, the 

International Space Station can generate LST products at different times of the day with an overall 

accuracy of 1K (Fisher et al., 2020). In the future, our focus will be on studying how the influence 

of urban morphology on LST changes within the diurnal cycle across cities and scales.  

The framework proposed in this study may provide one possible solution for further evaluation 

of the regional and global influence of urbanization on climate change. In fast-developing 

countries such as China, India, and Brazil, urbanization has a significant impact on urban 

morphology, but quantifying the specific influence on urban temperature remains challenging for 

researchers. The key issue is how to generate accurate 3D building models, including building 

footprints and height information. Bing Maps has detected over 900 million buildings around the 

world and released the dataset online (https://github.com/microsoft/GlobalMLBuildingFootprints). 

The development of high-resolution remote sensing technology has provided reliable data sources 

on built forms, which offer a variety of products on building heights to the public at national, 

continental, and global scales (Frantz et al., 2021; Esch et al., 2022; Wu et al., 2023). Together 

with our methods, these data sources allow for large-scale comparisons of temperature changes 

among regions, and are conducive to seeking efficient urban adaptation strategies for long-term 

environmental changes.  

Appendix  
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Figure A1. Changes of relative importance for each morphological feature among scales during 

summer. Each box means the relative importance set for all cities at a specific scale, and the red 

line in the box represents the median value. The dotted line is the dividing line between IM1 and 

IM2. 
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Figure A2. Changes of relative importance for each morphological feature among scales during 

winter. Each box means the relative importance set for all cities at a specific scale, and the red line 

in the box represents the median value. The dotted line is the dividing line between IM1 and IM2.  
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