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Abstract

Artificial light at night significantly alters the predictability of the natural light cycles that most animals
use as an essential Zeitgeber for daily activity. Direct light has well-documented local impacts on
activity patterns of diurnal and nocturnal organisms. However, artificial light at night also contributes
to an indirect illumination of the night sky, called skyglow, which is rapidly increasing. The
consequences of this wide-spread form of artificial night light on the behaviour of animals remain
poorly understood, with only a few studies performed under controlled (laboratory) conditions. Using
animal-borne activity loggers, we investigated daily and seasonal flight activity of a free-living
crepuscular bird species in response to nocturnal light conditions at sites differing dramatically in
exposure to skyglow. We find that flight activity of European Nightjars (Caprimulgus europaeus) during
moonless periods of the night is four times higher in Belgium (high skyglow exposure) than in sub-
tropical Africa and two times higher than in Mongolia (near-pristine skies). Moreover, clouds darken
the sky under natural conditions, but skyglow can strongly increase local sky brightness on overcast
nights. As a result, we find that nightjars’ response to cloud cover is reversed between Belgium and
sub-tropical Africa and between Belgium and Mongolia. This supports the hypothesis that cloudy
nights reduce individual flight activity in a pristine environment, but increase it when the sky is
artificially lit. Our study shows that in the absence of direct light pollution, anthropogenic changes in
sky brightness relieve nightjars from visual constraints on being active. Individuals adapt daily activities
to artificial night-sky brightness, allowing them more time to fly than conspecifics living under natural
light cycles. This modification of the nocturnal timescape likely affects behavioural processes of most
crepuscular and nocturnal species, but its implications for population dynamics and interspecific

interactions remain to be investigated.

Keywords: Nightjar, activity-logging, artificial light, time-niche, Anthropocene

This document: currently ~4000 words (excl. references) and 5 color figures
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Introduction

Throughout the evolutionary history of animals, recurring cycles of light and darkness have remained
relatively constant (Kronfeld-Schor et al., 2013; Kyba et al., 2017). As a result, most animals have
evolved to use predictable changes in light conditions as an essential Zeitgeber for timing their daily
activity (Berthold et al., 2003; Kronfeld-Schor et al., 2013) and to manage trade-offs between activities
such as rest, reproduction, predation avoidance and foraging (Griffin et al., 2005; Kotler et al., 2010;

Palmer et al., 2017; Ravache et al., 2020; Roeleke et al., 2018; York et al., 2014).

Since the introduction of electric-powered light sources, approximately 125 years ago, artificial night
lighting has significantly altered the daily variation in light conditions by changing the physical
properties of the twilight- and night environment (Gaston et al., 2013; Gaston and de Miguel, 2022;
Longcore and Rich, 2004). Behavioural studies have given much attention to the effects of direct light
emissions on a wide range of diurnal and nocturnal organisms, demonstrating that isolated or
aggregated light sources that chronically or temporarily infiltrate local nocturnal habitats can alter the
physiology, daily and seasonal activity patterns and life-history traits of individuals in various ways
(Bennie et al., 2018; Rowan, 1925; Sanders et al., 2020; Senzaki et al., 2020; Stone et al., 2009;

Vandersteen et al., 2020).

Artificial light at night also contributes to a diffuse illumination of the night sky, called skyglow. In
contrast to the effects of direct artificial lighting on the environment, the indirect effects via skyglow
remain poorly understood (Kyba et al., 2015). Skyglow arises when upwardly-emitted artificial night
light is scattered back towards Earth by the atmosphere, creating an artificial night-time sky brightness,
which in extreme cases can be comparable to — or even exceed — the illuminance of moonlit nights (up
to about 0.3 lux (Hanel et al., 2018; Kyba et al., 2017, 2015; Torres et al., 2020)). Skyglow obscures
celestial cues, such as the light of stars and the Milky Way (which produce 0.6-0.9 mlux(Hanel et al.,

2018) on the ground) and polarized patterns of moonlight (Kyba et al., 2011).

The sky is artificially brightened by at least 8%, compared to starlight, over approximately 88% of the
European and almost half of the United States’ land area (Falchi et al., 2016; Kyba and Holker, 2013),
and the biological consequences of this environmental change are largely unknown (Garrett et al.,
2020). Behavioural responses of animals to skyglow may differ substantially from those caused by
more local sources of light. Direct lighting often has the effect of attracting or repelling individuals
(Sanders et al., 2018). In contrast, skyglow lights up the entire sky over much larger areas than direct
lighting, can be amplified up to hundred-fold during overcast nights near urbanized areas (Jechow et
al., 2019; Kyba et al., 2011), and extends far into natural habitats tens of kilometres away from light

sources (Garrett et al., 2020; Kyba and Holker, 2013). A few studies, performed under controlled or
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laboratory conditions, demonstrated that skyglow can interrupt orientation behaviour (in African dung
beetle Scarabaeus satyrus Boheman (Foster et al., 2021) and in Sandhoppers Talitrus saltator (Torres
et al., 2020)) and affect sleep patterns and the physiology of diurnal animals (e.g. in Barnacle Geese
Branta leucopsis (van Hasselt et al., 2021) and Eurasian perch Perca fluviatilis (Kupprat et al., 2020)).
Additionally, skyglow has been found to trigger or dampen nocturnal vocalisations in some diurnal bird
species (Dickerson et al., 2022; Skorb et al., 2022) and change the perception of predation risk in the

Eurasian curlew Numenius arquata (Jolkkonen et al., 2023).

We studied the impact of skyglow on the activity of a free-living bird, the Eurasian Nightjar
(Caprimulgus europaeus, hereafter nightjar). Nightjars are medium-sized (~70g), visually-orienting,
crepuscular aerial insectivores that also show nocturnal activity patterns in response to moonlight
(Evens et al., 2020). Because they are adapted to exploit dim light conditions, we hypothesised that
they might also be affected by skyglow. We equipped individuals with multi-sensor data loggers to
study daily and seasonal variation in flight activity. We deployed the loggers at two sites that were not
exposed to direct artificial night lighting, but that differed dramatically in skyglow-exposure (Fig. 1): (1)
breeding sites in Belgium, with a clear sky brightness approximately four to six times brighter than a
pristine starry sky, and (2) a Mongolian breeding site, with a night-time sky that is unaffected by
artificially induced skyglow. After the breeding season, individuals migrated to sub-tropical Africa
(Evens et al., 2017; Lathouwers et al., 2022b) where they spent the winter (November-February) under
presumed near-pristine night-time sky conditions (Fig. 1). By comparing activity patterns during the
breeding and non-breeding season and in areas that differed in the levels of skyglow-exposure, we

investigated the impact of moonlight and skyglow on the individuals’ behaviour.
Methods

We studied nightjars during the breeding season in a study site in Mongolia (48.6° N, 110.8° E; 2018-
2020) and in three Belgian sites (51.1° N, 5.5° E; 2009-2022). The study sites differ dramatically in
skyglow-exposure (Fig. 1; Supplementary Table S1), ranging from a night-time clear-sky brightness
approximately six times brighter than a pristine starry sky (Belgian breeding sites; Fig. 1;
Supplementary Table S1) to sites with a pristine night-time sky brightness (Mongolian breeding site;

Fig. 1; Supplementary Table S1).

We captured all nightjars in their presumed territories during the breeding season using ultra-fine mist
nets (Ecotone, 15 x 3 m) and tape lures, marked each individual with a unique alphanumeric ring and
fitted a data logger dorsally between the wings using a full body harness with a 1 mm wide flat braided
cord to avoid abrasion (Evens et al., 2020). In total, we tagged 78 adult males (Belgium = 49, Mongolia

= 29) with a 1.4 g multi-sensor logger (SOI-GDL3pam; * 2.2% of mean body mass) (Liechti et al., 2018).
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At least one year later, after their long-distance migrations to sub-tropical Africa (Evens et al., 2017;
Lathouwers et al., 2022a), we recovered 15 data loggers containing data of at least one breeding and
one wintering season (Belgium = 10, Mongolia = 2). This resulted in a total return rate of 20%. One
logger deployed in Mongolia recorded activity data during two breeding seasons and one wintering
season. Two loggers deployed in Belgium recorded data during three breeding and two wintering

seasons. Due to technical difficulties, we could not use the data from one logger for analysis.

Location estimates and activity data

The multi-sensor loggers record ambient light intensity (which can be used for geolocation, (Liechti et
al., 2018)), body acceleration in one axis (z-axis), air pressure and air temperature in 5-min intervals
and magnetic field in 4-h intervals. We used body acceleration data to measure flight activity (Evens
et al., 2020) and ambient light intensity to estimate daily positions (longitude, latitude) of each
individual (Lathouwers et al., 2022a) Absolute flight activity is measured as the sum of the absolute
differences in acceleration on the z-axis and a summary variable is stored for each 5-min interval
(Liechti et al., 2018). More specifically, acceleration along the z-axis is recorded every 5 min for 3.2 s
with a frequency of 10 Hz and the summary measure of activity (approximate range = 0 - 65) is
calculated by an on-board algorithm (Liechti et al., 2013). We categorized activity data into two classes,
based on a previously defined threshold of 3.9, which is the (Evens et al., 2020). A 5-min period with
activity equal or above the threshold is considered “active” (e.g., flight and foraging), a 5-min period
with activity below the threshold is considered “inactive” (e.g., resting and roosting). [34] Due to the
little overall activity in the absence of moonlight, we further transformed this binary dataset (active or
inactive) to 15-minute intervals and counted the activity occurrences per interval to model individual

activity patterns in relation to nocturnal darkness and cloud cover (see “statistical analysis”).

Ambient light measurements allowed us to estimate daily positions (longitude and latitude) based on
sunset and sunrise events using the R-package PAMLr (Dhanjal-Adams et al., 2022). During the winter
period (see definition below), we performed a Hill-Ekstrom calibration on the light-intensity
measurements to model the error of sunrise/sunset events caused by shading of the light sensor by
feathers. The location estimates were then refined using an Estelle model (250 iterations) in SGAT
(Lisovski et al., 2019). This model is based on Markov chain Monte Carlo (MCMC) simulations and
provides a probability distribution around each location estimate (two locations per day). The Estelle
model was refined after three runs of 300 iterations with the following priors: (1) the deployment
location of the logger, (2) the estimated sunrise/sunset error, (3) a distribution of probable flight

speeds (relaxed gamma distribution of shape = 2.2 and rate = 0.08) and (4) a spatial probability mask
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excluding stopovers over water. Finally, position estimates (with 97.5% confidence intervals) were

calculated by running the Estelle model for 2000 iterations to ensure convergence.

For the purpose of this study, we only considered flight activity data from the breeding and wintering
season. To determine these two seasons, we combined information from flight activity data and
position estimates, similar to previous studies (Evens et al.,, 2020; Lathouwers et al., 2022a). We
defined the wintering season as the period between the end of autumn migration and the onset of
spring migration. Because nightjars remain at a single site during the entire winter, all position
estimates of each individual during the winter were averaged to one location. We defined the breeding
season as the period between the end of spring and the onset of autumn migration. Because male
nightjars show high site fidelity, we used exact capture and recapture coordinates to determine Belgian

and Mongolian breeding areas.

For each individual, we subdivided daily flight activity data into three groups: daytime (from sunrise
until sunset), twilight (from sunset until nautical dusk; from nautical dawn until sunrise), and night
(from evening nautical twilight until morning nautical twilight). [34]0f all 5-minute intervals (805572,
including 489743 daytime intervals), 31,340 (+4%) were categorized as active, while the remaining
774,232 intervals were categorized as inactive. Of the 275329 nocturnal 5-minute intervals 11,649
(£4%) were categorized as active, and the remaining 263,680 intervals were categorized as inactive. Of
the 36880 dusk intervals and 36812 dawn intervals, respectively 11470 (+ 45%) and 7306 (+ 25%) were

categorized as active .
Environmental data

Exact geographic breeding locations were recorded at the time of deployment of the logger and
wintering locations were estimated from the ambient light data recorded by each logger. For each
breeding and wintering location we extracted clear sky luminance data from the World Atlas of
artificial night sky brightness (Falchi et al., 2016). Clear sky luminance was transformed to light relative
to starlight following the formula: (WA+0.174) / 0.174. WA = world atlas sky luminance, 0.174 = natural
sky luminance value of 0.174 mcd/m? (Falchi et al., 2016).

Data on the timing of day, night, and twilight (i.e., sunset and sunrise) were extracted for the known
breeding sites and estimated wintering sites and for each 5-minute interval using the R-package
“suncalc”. For each individual, data on moon and sun illuminance were extracted at 5-minute intervals

using the R-package “Skylight” (Hufkens, 2022).

Data on total cloud cover were retrieved from the ERA5 reanalysis product(Hersbach et al., 2020) for

the times (hourly resolution) and locations (within a 31 x 31 km grid size) of each individual during the
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overwintering and breeding seasons. Other than cloud cover, we did not consider variation in local
weather conditions for the analysis of flight activity. Not considering local weather leads to additional

noise, and hence may weaken our results, rather than create systematic biases (Penteriani et al., 2010).
Statistical analysis

To discriminate between the influence of nocturnal light and daylight on nightjars’ activity, we
modelled nocturnal and crepuscular flight activity separately using Generalized Linear Mixed Models

(GLMMs) with maximum likelihood using the R package glmmTMB version 0.2.3 (Brooks et al., n.d.).

For nocturnal flight activity, all models contained two sub-models: a model for the conditional mean
and a zero-inflated model. Because only 4% of the nocturnal 5-minute intervals were categorized as
active, the zero-inflated model allows modelling of the probability of excess zeros in the conditional
part of the model. The zero-inflated models contained no predictors other than the overall mean,
except for the nocturnal moonlight models, which also contained individual identity as random
intercept. In a first version of the conditional model, we determined the influence of moonlight on
flight probability (“nocturnal moonlight model”; Supplementary Tables $2-3). The results of this model
suggested different flight probabilities between seasons and breeding locations during moonless parts
of the night. Therefore, we created a second version of the conditional model to formally test for
seasonal and location effects of flight probability during moonless parts of the night (”darkness
model”; Supplementary Tables S4-5). Lastly, we ran a third version of the conditional model to
investigate whether cloud cover explained the observed differences in flight probability between sites
during moonless parts of the night (“cloud cover model”; Supplementary Tables S6-7). Cloud cover
varied from zero (a clear sky) to 100% (a fully overcast sky). Clouds darken the sky under natural
conditions, but skyglow can strongly increase local sky brightness on overcast nights near urban areas

(Jechow et al., 2020, 2019).

The nocturnal moonlight model investigates seasonal flight probability, assumes clear sky conditions,
and contains flight activity (categorical variable: presence or absence) as the dependent variable
(binomial distribution) and an interaction between moon illuminance (continuous variable: log of local
moon illuminance (lux)) and season (categorical variable: summer or winter) as the main predictors.
We ran two nocturnal moonlight models, one for birds caught at their breeding site in Belgium
(Supplementary Table S2) and one for birds caught in Mongolia (Supplementary Table S3). Similarly,
we ran two darkness models to investigate nocturnal flight probability (dependent categorical variable:
activity occurrences per 15-minute interval; Poisson distribution) in the absence of moonlight, also
assuming clear sky conditions. The first model tests for seasonal variation in individuals caught in

Belgium, and contains season as the explanatory variable (Supplementary Table S4). The second model



223
224
225
226
227
228
229
230

231
232
233
234
235

236
237
238
239
240
241
242
243

244

245
246
247
248
249
250
251
252
253
254
255

investigates summer flight activity, and contains origin (categorical variable: Belgium or Mongolia) as
the explanatory variable (Supplementary Table S5). The two cloud cover models contain flight activity
(categorical variable: activity occurrences per 15-minute interval) as the dependent variable (Poisson
distribution). The first model assesses seasonal variation in flight activity for individuals caught in
Belgium, and contains season, total cloud cover (continuous variable: ranging from 0% to 100%) and
their interaction as explanatory variables (Supplementary Table S6). The second model assesses
variation in summer flight activity, and contains origin, total cloud cover and their interaction as

explanatory variables (Supplementary Table S7).

Models for crepuscular flight activity contain flight activity (categorical variable: presence or absence)
as the dependent variable (binomial distribution) and period (categorical variable: dusk or dawn) and
origin (categorical variable: Belgium or Mongolia) as the main predictors. We ran two crepuscular
models, one for the breeding period (Supplementary Table S8) and one for the wintering period

(Supplementary Table S9).

In all models, we included activity of the previous five-minute or 15-minute interval to control for
temporal autocorrelation. In the nocturnal moonlight models and the cloud cover models, we included
individual identity as random intercept and moon illuminance or cloud cover as random slope, to allow
that individuals can vary in their response to variation in the explanatory variable. In the darkness
models and the crepuscular models, we included individual identity as random intercept. Model
specification problems were checked using the R-package “DHARMa”. We used post-hoc Tukey’s
comparisons to test the significance of the difference between pairs of interactions between the main

predictors using the R-package “emmeans”.
Results

Our data show that nightjars are affected by moonlight. In all individuals, nocturnal flight probability
(hereafter activity) increases with increasing moonlight illumination, both during the summer and the
winter (Fig. 2a,b; Supplementary Table S2,3). However, the activity patterns of nightjars in Belgium
deviated from those at other locations. The probability that an individual flew during moonless periods
of the night was four times higher in Belgium than in sub-tropical Africa (49.8% vs. 12.1% flight
probability; Fig. 3a; z = -25.1, p = <0.0001; Supplementary Table S4) and two times higher than in
Mongolia (59.9% vs. 30% flight probability; Fig. 3b; z = -2.76 , p = 0.006; Supplementary Table S5).
Caution is needed with the interpretation of the comparison of flight activity between breeding sites,
because of the low number of Mongolian individuals. However, we assume that the relationship
between flight activity and moon condition should be similar between breeding sites. Thus, our results

suggest that the observed difference between individuals in Belgium and in sub-tropical Africa was not
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only due to the overall higher nocturnal flight activity during the breeding season compared to winter,

but potentially also due to artificial light.

To investigate whether artificial light caused the observed difference in flight activity, we also tested
for an effect of skyglow by comparing the activity of nightjars during moonless periods of the nights in
response to a gradient of cloud cover.[27,47] Our data show that nightjars’ response to cloud cover is
reversed between Belgium and sub-tropical Africa (overall country effect of cloud cover: x2= 4.58, df
=1, p = 0.023 [Supplementary Table S6]; overall slope difference: t = 0.098, p = 0.032 [Fig. 3c]) and
between Belgium and Mongolia (overall country-specific effect of cloud cover: x2=5.16, df =1, p =
0.023 [Supplementary Table S7]; overall slope difference: t = 0.82, p = 0.023 [Fig. 3d]). Supporting the
hypothesis that nightjars’ activity is based on ambient light, the flight activity of nightjars in Belgium
increased with cloud cover (Belgium vs. sub-tropical Africa: slope estimate Belgium + SD = 0.106 + 0.08
[Fig. 3c]; Belgium vs. Mongolia: slope estimate Belgium + SD = 0.301 £ 0.181; [Fig. 3d]). This hypothesis
also predicts that activity on cloudy nights should decrease in areas without skyglow. Increasing cloud
cover was not associated with flight activity in sub-tropical Africa (slope estimate + SD = -0.008 + 0.085
[Fig. 3c]) and was associated with reduced flight activity in Mongolia (slope estimate + SD = -0.521 *

0.305 [Fig. 3d]).

Finally, our flight activity data show that, during the breeding season, nightjars in Belgium flew
approximately 30% less during dusk and dawn compared to individuals in Mongolia (Mongolia vs.
Belgium: z = 0.578, p = 0.002; Fig. 5a; Supplementary Table S8), while this difference in crepuscular
flight activity between individuals from both populations was absent during the winter (Mongolia vs.

Belgium: z = 0.042, p = 0.814; Fig. 5b; Supplementary Table S9).
Discussion

Activity data of nightjars demonstrate that in the absence of direct light, anthropogenic increases in
sky brightness (particularly on cloudy nights) at approximately 5-10 km from urbanized areas relieve
Belgian nightjars from visual constraints on being active. We show that moonlight determines
nightjars’ activity patterns, whereas during moonless and overcast periods skyglow may provide light
conditions similar to the brightness of a moonlit night in areas affected by artificial night lighting (Fig.
4). When this occurs, individuals seem to respond quickly to this anthropogenic night-sky brightness
by becoming more active. Individuals might also anticipate that they have additional time at night for
being active (e.g. for foraging or display) and therefore decrease their flight activity at dusk. During the
breeding season, nightjars in Belgium flew less during dusk and dawn compared to individuals in
Mongolia (Fig. 5a; Supplementary Table S8), while this difference in crepuscular flight activity between

individuals from both populations was absent during the winter (Fig. 5b; Supplementary Table S9).
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Whether the differences in crepuscular flight activity during summer are due to different lighting
conditions, or to other ecological conditions (e.g. differences in food availability, duration of the

breeding season or noise) needs further investigation.

How this modification of nightjars’ nocturnal “time-niche” (Gilbert et al., 2022) affects individual trade-
offs between different behaviours remains unclear. Optimal foraging theory predicts that animals will
adapt nocturnal foraging activity to maximize net energy gain (Pyke et al., 1977), because their food
resources and daily available time are typically limited. Because nightjars are visual predators they
require an illuminated sky to detect the silhouettes of flying insects (Cresswelll and Alexander, 1992).
At night, when prey activity decreases and active flight becomes hazardous, artificial night-sky
brightness may counteract the adverse effects of low prey density by improving prey detectability,
prolonging foraging activity and promoting energy-efficient foraging tactics. As a result, additional
nocturnal foraging would enable individuals more time for other behaviours, such as territorial display,

at dusk and dawn.

To understand the potential benefits or ecological trap-scenarios of rapid responses to artificially night-
sky brightness, we need to better understand how skyglow affects interspecific interactions, such as
predator-prey interactions. Currently, it is unclear how our findings translate to other groups of
nocturnal animals. Many species, including seabirds (Rubolini et al., 2014), owls (San-jose et al., 2019)
, primates (Gursky, 2003) and carnivores (Preston et al., 2019), require the brightness of a moonlit
night to orientate and/or to identify resources (Bachleitner et al., 2007; Grubisic et al., 2019; Moore et
al., 2000; Warrant et al.,, 2004). We expect that such species will profit from artificial night-sky
brightness, if it improves nocturnal visibility of prey, and allows them to increase nocturnal activity,
adopt more efficient foraging tactics or adjust their space use. For example, visually-oriented
carnivores relying on cursorial hunting techniques are more active during moonlit nights (Rasmussen
and MacDonald, 2012), whereas the activity of species relying on ambush strategies is lower (Preston
et al., 2019). Aerial-hawking noctule bats adjust their space use to open fields during moonlit nights to

increase the success of hunting airborne insects (Roeleke et al., 2018).

At the same time, species may get disoriented from skyglow and prey and predators that do not rely
on visual cues may become less active under increased light levels, to avoid being preyed upon
(Haddock et al., 2019) which may then lead to reduced access to food resources (English et al., 2018).
How artificial night-sky brightness affects abundance, orientation behaviour and seasonal polyphenism
of nocturnal insects is largely unknown, yet it has been suggested that the global insect declines have
been partly caused by various forms of light pollution(Bluthgen et al., 2022; Owens et al., 2020)Severe

declines in populations of insectivorous birds, including several species of nightjars, have been
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attributed to this global decline of nocturnal insects (Piano et al., 2020).[58,59]. However, in contrast,
several populations of European Nightjars in Western Europe show recent increases (Eaton et al., 2015;
Van Dijk et al., 2009; Vermeersch et al., 2020), coinciding with both intense conservation efforts to
restore breeding sites and increased skyglow. The latter could potentially benefit the species if it allows
individuals to compensate for the lower prey numbers by increasing their available foraging time at

night.

Using nightjars as a model organism, our study provides the first evidence that skyglow changes daily
activity patterns of animals. Human-induced “lighting up” of former dark parts of the night allows
individuals more time to be active compared to conspecifics living under natural light cycles. The wide
geographic distribution of study sites with an extreme difference in exposure to artificial light at night,
allowed us to investigate between- and within-individual variation in activity in relation to light
conditions. Using loggers with high-resolution GPS- and activity-data is now needed to investigate
spatiotemporal variation in behaviour within the same geographical region for individuals exposed to
different regimes of artificial light at night. Such studies are important, because skyglow is a persistent,
rapidly expanding and underestimated form of sensory pollution that can expand the time-niche of
crepuscular and nocturnal animals (this study), but with still unknown downstream biological

consequences.



351

352

353
354
355
356
357
358

Figures

Radiance 10”° W/cm? * sr

| L0 ; o .
0 0315 3 15 40 .| Belgium

Fig. 1 Skyglow exposure in nightjar breeding and wintering areas. Nocturnal sky luminance during
clear and moonless skies for all breeding areas and sub-tropical wintering areas (Supplementary Table
S1) identified for individuals caught during the breeding season in Belgium (circles with white fill) or in
Mongolia (circles with black fill). Inset = light levels in three study sites in Belgium. Data on clear sky
luminance was extracted from the World Atlas (Falchi et al., 2016). Shown is a radiance map, based on

VIIRS-data, for 2019 from www.lightpollutionmap.info.
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Fig.2 Nightjar flight activity in relation to moonlight. Nocturnal flight probability in relation to moon
illuminance (full-night data, lux).. Flight probability is shown for the breeding season (red = Belgium;
green = Mongolia) and during winter (a-b = blue) for individuals caught at their breeding site in Belgium
(a; N = 12 individuals) or Mongolia (b; N = 3 individuals). Shown are estimates and 95% confidence

intervals based on the models in Supplementary Table S2-3 (a,b).
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individuals caught at their breeding site in Belgium (N = 12 individuals) or Mongolia (N = 3 individuals).
Each panel shows estimates and 95% confidence intervals based on the two darkness models (a, b;

Supplementary Table S4-5) and the two cloud models (c, d; Supplementary Table S6-7).
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