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Abstract 1 

Introduction. Environmental stressors such as particulate matter, noise, and heat can cause 2 

severe health issues. Cyclists and pedestrians in urban areas are exposed to environmental 3 

stressors on their everyday routes through the city. While these stressors have been monitored 4 

by measurement stations in the past, the use of wearable sensors is becoming more popular. 5 

Wearable sensors allow measurements with high spaciotemporal resolution and can be used to 6 

track individuals’ exposure while they are moving. Methods. In a field experiment (final N = 7 

109), we applied Protection Motivation Theory (Rogers, 1975) to test the effects of wearable 8 

sensors and receiving feedback on exposure levels of particulate matter, noise, and heat in the 9 

city of Leipzig in Germany. Participants in the intervention group used the sensors on their 10 

everyday routes through the city for three days while the control group did not use the 11 

sensors. Results. Wearing the sensors and receiving feedback about exposure levels 12 

significantly increased participants perception of particulate matter as a health threat. While 13 

there were no direct effects of the intervention on intentions to choose less polluted routes, 14 

participants with low routing habits were motivated to protect themselves from environmental 15 

stressors after using the sensor. Participants motivation to take part in collective action for a 16 

less polluted city decreased, unless they were highly identified with the group of cyclists. 17 

Conclusions. The experiment shows that wearable sensors and feedback on environmental 18 

stressors can lead to stronger threat perceptions. However, to motivate healthier route choices, 19 

this technology should offer alternative routing suggestions to elevate the user’s capacity to 20 

cope with the health threat.  21 

Keywords: wearable sensor, air pollution, noise, heat, urban, behavior change 22 

  23 
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Wearable sensors increase perceived environmental health threat in cyclists and 24 

pedestrians: A randomized field study 25 

1. Introduction 26 

Environmental stressors are a major problem in urban areas. Despite a drop in particular 27 

matter concentrations in Germany over the past years, the limits recommended by the World 28 

Health Organization are still exceeded regularly (Kessiger et al., 2022; World Health 29 

Organization, 2021). Emissions from fuel-burning cars contribute to high levels of particulate 30 

matter and NO2 (Kessiger et al., 2022). Within the European Union, exposure to particulate 31 

matter has caused 238000 premature deaths in 2020 alone (European Environment Agency, 32 

2022). Poor air quality can lead to lung cancer and various chronic diseases such as 33 

obstructive pulmonary disease, heart disease, and stroke (World Health Organization, 2018). 34 

Another pressing problem in urban areas is noise pollution (Hänninen et al., 2014). Noise 35 

pollution has been found to affect health in multiple ways: it causes not only annoyance, but 36 

can also lead to sleep disturbance, cognitive impairment in children, tinnitus, cardiovascular 37 

diseases, and mental health problems (Petric, 2022; World Health Organization, 2011). Traffic 38 

is one of the major causes of noise related annoyance and sleep-disturbance (World Health 39 

Organization, 2011). Increasingly, heat in urban areas is another problem, that affects health 40 

and wellbeing particularly for vulnerable groups such as older people (Heaviside et al., 2017). 41 

The problem of excessive heat exposure is predicted to further increase due to climate change, 42 

while many cities are ill-equipped to handle heatwaves (Heaviside et al., 2017). We conducted 43 

a study to make these environmental stressors visible to cyclists and pedestrians by providing 44 

them with wearable sensors and feedback about their exposure to particulate matter, noise, 45 

and heat on their everyday routes through the city. We investigated the effects of carrying 46 

wearable sensors and receiving feedback on threat perceptions and participants’ motivation to 47 

change their everyday routes to avoid high pollution levels.   48 
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1.1. Environmental stressors and Protection Behaviour  49 

As climate change is expected to worsen urban environmental conditions, residents 50 

need to adapt (Egerer et al., 2021; Lin et al., 2021) and avoid places and times of high 51 

pollution. Environmental monitoring and feedback about exposure levels can equip people 52 

with useful information for precautionary behaviour. Small-scale wearable sensors are 53 

becoming more common in scientific monitoring and in everyday use (Helbig et al., 2021). 54 

These mobile sensors have great advantages in comparison to stationary measurements, as 55 

they can capture not only pollution levels in one area but allow insights in the cumulated 56 

exposure of individuals as they move through different areas. This high spatial and temporal 57 

resolution allows individualized feedback and may thereby motivate protective behaviour.  58 

Protecting oneself from particulate matter may include changing one’s routes in city 59 

traffic. In the city of Leipzig, where this research was conducted, street traffic is a major cause 60 

of airborne particulate matter, e.g., through whirling up particles, abrasion, and engine 61 

combustion (Stadt Leipzig, 2019). Exposure to car fumes is particularly dangerous for 62 

cyclists, as they are inhaling larger quantities of air than car drivers (Panis et al., 2010). 63 

Hence, avoiding main roads and choosing side-streets with less car traffic or travel times 64 

outside of rush hour can be a way of avoiding air pollution (Ragettli et al., 2013). Similarly, 65 

choosing routes that lead through parks rather than main roads may reduce heat and noise 66 

exposure in comparison to the main roads (Magaritis et al., 2018; Tashakor et al., 2021).  67 

 In the light of the massive health impact of particulate matter, noise, and heat, adapting 68 

travel behaviour is an important precautionary health behaviour. Throughout this paper we 69 

define healthy mobility behaviour in terms of avoiding polluted routes by changing route 70 

trajectories or travel times to avoid rush hour traffic. However, we acknowledge that there are 71 

other important health aspects to mobility, for example choosing active travel (i.e., cycling or 72 

walking) has health benefits in terms of physical activity which outweigh the negative effects 73 
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of exposure to environmental stressors or risk of injury as a cyclist or pedestrian (Mueller et 74 

al., 2015). Further aspects that impact health for active mobility are road safety or the effects 75 

of greenspaces or cycling or walking in a socially and aesthetically pleasing environment on 76 

wellbeing (Glazener et al., 2021; Marquart et al., 2022). However, we focus on avoiding 77 

environmental stressors (particulate matter, noise, and heat) as a personal health behaviour.  78 

Health behaviour is generally defined as a preventative behaviour shown by persons to 79 

protect themselves from future illness (Kasl & Cobb, 1966). One prominent theory to explain 80 

protective behaviours is Protection Motivation Theory (PMT; Rogers, 1975). It differentiates 81 

between threat appraisal and coping appraisal that motivate protective action. Threat appraisal 82 

in PMT is made up of the perceived probability of the negative health outcome (e.g., exposure 83 

to air pollution is likely to have an impact on my health) and the severity of these potential 84 

health effects (e.g., air pollution can have severe effects such as lung cancer). Later versions 85 

include fear as an emotional component of threat appraisal (Maddux & Rogers, 1983). Coping 86 

appraisals must allow a person to see adaptive behaviour as effective (response efficacy) and 87 

feasible (self-efficacy), while behavioural costs of this adaptation (e.g., longer routes to work 88 

when avoiding pollution) inhibit personal protection intentions (Maddux & Rogers, 1983). 89 

Meta-analytic evidence supports the feasibility of the PMT for explaining health behaviours 90 

(Milne et al., 2000).  91 

Adaptation costs for changing one’s everyday routes can be high. They may include 92 

longer travel times, surfaces that are harder to cycle on and even less obvious hurdles such as 93 

less lighting that can be perceived as unsafe (Tan & Smith, 2021). Another important factor in 94 

travel behaviour are habits (Bamberg & Schmidt, 2003). Routing choices are likely to be 95 

habitual for example when people ride their bike to work or another destination they move to 96 

regularly. Habits are characterized by behaviour that is shown repeatedly, formed for goal-97 

directed behaviour, and triggered by specific cues (e.g., deciding to go to the office; 98 



Wearable sensors increase perceived environmental health threat                                           5 

 

Verplanken & Orbell, 2003). A habitual behaviour has become automatic which means that 99 

the behaviour is largely unintentional and often lacks awareness and control (Bargh, 1994; 100 

Verplanken & Orbell, 2003). The repetition and automaticity of habits make these behaviours 101 

particularly resistant to change (Aarts & Dijksterhuis, 2000; Matthies et al., 2006). Travel 102 

behaviour, is likely to be strongly habitualized as most people travel to similar destinations 103 

daily (e.g., to work), but also because this is not a task that takes a lot of mental preparation 104 

and is easy to automatize.  105 

Travel-related behaviours, such as choice of travel mode can also be an expression of 106 

identity (Gössling, 2023; Murtagh et al., 2012). Every person is part of different groups and 107 

categories, with which they can identify to a varying degree (e.g., the group of cyclists). 108 

Group memberships and their emotional significance make up a person’s social identity 109 

(Social Identity Theory; Tajfel & Turner, 1979). Ingroup identification can also drive 110 

collective action in favor of one’s ingroup (van Zomeren et al., 2008). Social identification 111 

with specific groups of transport users (e.g., cyclists) is an important factor in predicting 112 

collective action for transport policies. Previous research has shown that higher identification 113 

with the group of cyclists or the group of pedestrians was associated with collective action 114 

intentions and policy support for a redistribution of street space in favor of active transport 115 

users, while identification with the group of car drivers (but not simply car use) was 116 

associated with protest against such measures redistributing street space (Allert & Reese, 117 

2023).  118 

1.2. Providing information about environmental stressors 119 

Previous studies have shown that participants’ perceptions of e.g., air pollution are not 120 

always in line with the pollution levels measured by sensors (Cori et al., 2020; Marquart et al., 121 

2022; Ueberham et al., 2019). This highlights the necessity to make the pollution levels 122 

visible for people to understand their exposure. To enable this understanding, it is important to 123 
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provide information that is easily understood and relatable and comes from trusted sources 124 

(Riley et a., 2021). The information should also be tailored to individual receivers and tap into 125 

emotions rather than only communicating numbers (Riley et al., 2021). Ideally, feedback on 126 

environmental stressors should include actionable behavior suggestions – while this can be 127 

individual adaptation, the communication can also encourage collective action to improve 128 

pollution levels (e.g., through policy measures; Riley et al., 2021).  129 

Receiving information on air pollution levels as well as the availability of greenspaces 130 

marked in a map influenced walking route choices to avoid busy roads in a lab setting 131 

(Königsdorfer, 2018). While travel time and heavy traffic volume were found to be the most 132 

important aspects of route choices for cyclists, their preferences when choosing between 133 

different route options on a map showed that air pollution levels were also taken into account 134 

and cyclists were more concerned about air pollution if they were provided with information 135 

about its negative health impacts (Anowar et al., 2017). This study found that if a less polluted 136 

alternative route was available, participants were willing to choose this route even if it added 137 

a few minutes of extra travel time (Anowar et al., 2017). While these studies gave information 138 

on pollution levels in a hypothetical setting by providing information in maps, we will focus 139 

on providing information about measured levels of pollution. For example, citizens may be 140 

informed about high levels of air pollution by regional alerts (e.g., via television or radio) to 141 

reduce strenuous outdoor activities as well as behaviors contributing to air pollution (Riley et 142 

al., 2021 for a review). Similarly, the public may be warned from heat waves on a regional 143 

level (Mehiriz et al., 2018; Rabassa et al., 2021).  144 

Another form of information provision can result from wearable sensors, allowing 145 

individualized feedback on a person’s exposure. Studies on noise exposure using small scale 146 

sensors provided feedback on noise levels at work (Trawick et al., 2019), in school (Di Blasio 147 

et al., 2019; Tabuenca et al., 2021), or outdoors (Becker et al., 2013; Marquart et al., 2022). 148 
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Only few studies used wearable sensors to provide participants with information on their 149 

exposure to extreme outdoor temperatures (Nelson et al., 2020; Thompson et al., 2018). 150 

Importantly, most studies providing noise or temperature feedback from wearable sensors 151 

were not conducted in a transportation context. An exception to this the study by Marquart et 152 

al. (2022) combining noise measurements and en-route interviews. This demonstrates that 153 

there is a research gap for providing feedback from wearable noise and temperature sensors 154 

and studying the effects of providing such information. 155 

Other studies used wearable sensors to give feedback about participants’ exposure to 156 

air pollution during their everyday routes (Bales et al., 2019; Haddad & de Nazelle, 2018; 157 

Heydon & Chakraborty, 2020; Marquart et al., 2022; Oltra et al., 2017; Tan & Smith, 2021; 158 

Varaden et al., 2018). En-route interviews while using wearable sensors with cyclists and 159 

pedestrians have shown that greenspaces and water along the daily commuting route, as well 160 

as lively neighbourhoods with many social activities (e.g., cafes, playgrounds) and aesthetic 161 

architecture can greatly improve the commute by bike while perceived pollution levels, and 162 

danger in terms of high car traffic or low lighting reduced wellbeing while cycling (Marquart 163 

et al., 2022). Studies using small scale sensors and providing feedback on air pollution levels 164 

in the realm of transportation showed mixed results in their effectiveness of changing 165 

individuals’ behavior (Becker et al., 2021). Some studies found small-scale adaptations such 166 

as planning to take less polluted routes while cycling or walking (Marquart et al., 2022; Tan & 167 

Smith, 2021) or avoiding pollution by making small changes such as keeping windows closed 168 

when driving on streets with a lot of traffic (Bales et al., 2019). However, in many cases, 169 

wearable sensors did not lead participants to change their routes (Haddad & de Nazelle, 2018; 170 

Heydon & Chakraborty, 2020). Many participants in these studies reported constraints to 171 

behavioural adaptation. As choosing alternative, less polluted routes was often found do to be 172 

too costly (Haddad & de Nazelle, 2018; Heydon & Chakraborty, 2020; Oltra et al., 2017; Tan 173 
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& Smith, 2021). Furthermore, participants also reported that they were already doing their 174 

best to avoid polluted routes (Haddad & de Nazelle, 2018; Marquart et al., 2022).  175 

Nonetheless, many found their participation in these studies interesting and insightful 176 

(Heydon & Chakraborty, 2020; Tan & Smith, 2021; Marquart et al., 2022; Oltra et al., 2017; 177 

Varaden et al., 2018). Some studies found that using air pollution measurement devices led 178 

participants to talk about pollution with friends and family (Bales et al., 2019; Tan & Smith, 179 

2021; Varaden et al., 2018). Participants who could explore their surroundings with a sensor 180 

found that it helped them learn about the different situations in which they were most exposed 181 

to air pollution (Bales et al., 2019). However, it is important to note that only a small 182 

proportion of studies was explicitly focused on using the sensors during commutes to work 183 

(Marquardt et al., 2022), on the way to school (Varaden et al., 2018), or on everyday routes 184 

(Haddad & de Nazelle, 2018). Some studies had participants use the sensor during all 185 

activities including travel, but also in their homes (Bales et al., 2019; Heydon & Chakraborty, 186 

2020; Oltra et al., 2017; Tan & Smith, 2021). This shows the need to conduct studies that are 187 

focused specifically on active mobility and route choices.  188 

Generally, studies using wearable sensors are relatively rare, as the widespread 189 

availability and use of wearable sensors is a rather new development (Helbig et al., 2021). 190 

Most studies have a very limited sample size (Tan & Smith, 2021) or are focused on the 191 

usability of the sensors (Haddad & de Nazelle, 2018). One major limitation of these studies is 192 

that most do not implement experimental designs to test the effects of the sensors on human 193 

behaviour. To study the causal effects of using the sensors and receiving feedback, it is 194 

necessary to run a randomized controlled trial, comparing participants who use the sensors to 195 

a control group. As the dissemination of wearable sensors is increasing, it is important to 196 

study their effects on people’s threat perceptions and their potential to motivate healthy 197 

routing choices.  198 
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1.3. The Current Study 199 

Feedback on personal exposure to environmental stressors (e.g., by using wearable 200 

sensors) has recently gained attention as a tool for health risk communication (Becker et al., 201 

2021; Helbig et al., 2021). Providing information on personal exposure levels is expected to 202 

affect people’s risk perception and may also foster their protection behavior, i.e., behavior 203 

aimed at reducing personal exposure to environmental health risks. However, studies 204 

investigating the effects of exposure feedback from wearable sensors have often applied non-205 

experimental evaluation designs, thus limiting their power for casual inference. The current 206 

study investigated how feedback on personal exposure to three environmental stressors 207 

(particulate matter, noise, and heat) could influence people’s health risk awareness and their 208 

intentions for healthy mobility behavior by utilizing a four-wave experimental research 209 

design. Participants were randomly assigned to one of two groups, an intervention group 210 

(received a measurement kit to record their exposure levels for three days as well as feedback 211 

on their personal exposure) or a control group (received neither a measurement kit nor 212 

feedback) and filled out a total of four questionnaires throughout the study period (3 - 4 213 

months). Building on psychological action models, we tested the effects of the feedback 214 

treatment on respondents’ threat appraisals and protection motivation.  215 

Specifically, we assumed that participants in the intervention group would report 216 

stronger increases in perceived environmental health risks related to particulate matter 217 

(Hypothesis 1a), heat (Hypothesis 1b) and noise (Hypothesis 1c) than respondents in the 218 

control group. We further explored whether participation in the intervention (but not in the 219 

control group) would foster respondents’ action intentions to reduce personal exposure levels, 220 

for example by changing their everyday routes. Additionally, we explored possible 221 

intervention effects on more collective forms of behaviour. Previous research has focused on 222 

individual strategies to limit exposure to environmental health stressors, such as switching to 223 
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less polluted routes when commuting to work (Tan & Smith, 2020; Haddad & de Nazelle, 224 

2018). However, effectively addressing environmental health risks such as exposure to 225 

particulate matter might not only require changes in individual behaviour but also collective 226 

efforts to protect or restore common goods such as clean air. Thus, we investigated within-227 

participant changes in their action intentions to collectively fight against environmental health 228 

risks.  229 

For exploratory analysis, we included a number of additional predictors of the target 230 

behaviour in our questionnaire, such as items on participants’ routing behaviour habits and 231 

coping appraisal (i.e., efficacy beliefs) to protect themselves against personal exposure to 232 

environmental health risks, or their identification with mobility-related social groups (e.g., 233 

self-identification as a cyclist).  234 

2. Methods 235 

2.1. Participants and Procedure 236 

Results of an a priori power analysis using G*Power indicated a required sample size 237 

of N = 128 to detect an intervention effect of moderate effect size (d = 0.5, 80% power, α = 238 

.05) on health risk perception (Faul et al., 2009). Participation was advertised in local news 239 

and over social media and participants received a small gift (tote bag, regional tour guide, and 240 

chocolate).  241 

The study took place in Leipzig, a city in Germany with approximately 600.000 242 

inhabitants (Statistisches Landesamt Sachsen, 2023). Many of the large roads in Leipzig are 243 

accompanied by bicycle lanes, while side streets usually have no specified bike lanes. Besides 244 

the street infrastructure, there are multiple park areas which allow cycling. A green corridor 245 

along a river runs through the city from north to south leading into a forest area.  246 

After signing up on the study website, participants were contacted and allocated to a 247 

week in the study period (July - September 2020). A total of 333 persons signed up through 248 

the website, though approximately one third did not further respond after being contacted. 249 
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Participants were randomly assigned to the intervention or control group and were surveyed at 250 

four points: pretest (before the sensor measurement phase), posttest (after the sensor 251 

measurement phase), after receiving feedback (only intervention group surveyed), follow-up 252 

(approximately two to three months after posttest). Informed consent was given at the 253 

beginning and end of each questionnaire ensuring compliance with ethical standards. The 254 

study procedure was in compliance with laws on privacy rights and approved by the 255 

institutional data protection officer.  256 

After filling out the pretest questionnaire, participants in the intervention group 257 

received the measurement kit and were asked to use it on their everyday routes for three days. 258 

The measurement kit consisted of a particulate matter (PM) sensor (Dylos DC1700) counting 259 

particles of different sizes (PNC – particle number concentration of PM 2.5 and PM10) every 260 

minute. The kit further comprised a gas sensor, as well as a temperature/humidity sensor 261 

(Leo/ateknea sensor). The kit could be carried with a shoulder strap. The kit also included a 262 

Motorola smartphone with a microphone for noise measurements, as well as a GPS and time 263 

log. The smartphone could be strapped to one arm. A more detailed description of the 264 

measurement kit can be found in publications by Ueberham & Schlink (2018) and Ueberham 265 

et al. (2019). The participants received verbal and written instructions (see supplemental 266 

materials) and could further access a video explaining how to use the sensor on the study 267 

website.  268 

After one week, all participants received a second questionnaire (posttest). One week 269 

after this, participants from the intervention group received written feedback with general 270 

information on particulate matter, noise, and heat including health impacts of these stressors. 271 

The feedback consisted of histograms showing the participant’s individual exposure to these 272 

three stressors during the measuring period. The feedback showed cumulative exposure over 273 

the entire measurement period and did not refer to specific routes or days. The feedback 274 

graphs were colour-coded and showed the amount of time in minutes, in which the participant 275 
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measured certain levels of particulate matter, noise, or a certain temperature. The colour 276 

coding was labelled with reference points for noise (silent room – pain threshold) and heat (no 277 

temperature stress – extreme temperature stress) to make the information more relatable. For 278 

particulate matter the feedback was also colour coded. An example feedback report can be 279 

found in the supplemental materials. Immediately after viewing the feedback, they filled out a 280 

third questionnaire. Two to four months after the first measurement, all participants received 281 

the link to a follow-up questionnaire. 282 

2.3. Measures 283 

All of our study variables were assessed at pretest, posttest, after receiving exposure 284 

feedback and at follow-up (or at pretest, posttest and follow-up for the control group) with the 285 

exception of habit, which was only measured in the pretest questionnaire. We registered the 286 

responses to all items on seven-point scales (1 = “not agree at all” to 7 = “strongly agree”). 287 

Each scale was calculated as mean score across the items of this scale (see Table 1).  288 

As the main dependent variables, we measured threat perception regarding particulate 289 

matter, noise, and heat (in summer) with five items respectively. Items for the threat 290 

perception scale measured severity and probability of negative health outcomes as well as 291 

fear. Efficacy beliefs (response efficacy and self-efficacy) as a measure of coping appraisal 292 

were captured with four items each for particulate matter, noise, and heat (in summer). Next, 293 

we measured participants’ personal intention to change their routing behavior to avoid 294 

pollution with twelve items. We then measured collective action intentions using seven items.  295 

As a moderator, we measured habits for travel to work/school/university, for shopping 296 

trips, and in leisure time. For each of these destinations we used nine items from the Self-297 

Report Habit Index (Verplanken & Orbell, 2003). We then took a mean of all 27 items as a 298 
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scale for general routing habit. Identification with cyclists was measured with a single item 299 

(Postmes et al., 2013). Demographic variables were measured at the end of the questionnaire.1 300 

Table 1: Items of the study scales  301 

Threat perception  
each item was answered separately for particulate matter, noise, and heat (in summer) 
Particulate matter, noise, and heat on my daily routes have very negative effects for my health. 
How much do you feel your health is endangered by particulate matter, noise and heat on your daily routes? 
(1 – not endangered at all, 7 – very strongly endangered) 
How likely is it that particulate matter, noise, and heat on your daily routes will affect your health? 
I worry about particulate matter, noise and heat on my daily routes. 
The thought of particulate matter, noise and heat on my daily routes scares me. 
Efficacy beliefs 
each item was answered separately for particulate matter, noise, and heat (in summer) 
There are effective ways to reduce one’s personal exposure to environmental stressors on daily routes. 
Changing the routes’ spacial course can help to reduce exposure to environmental stressors. 
Changing the temporal start of the routes can help to reduce exposure to environmental stressors. 
I can reduce my exposure to environmental stressors in street traffic. 
Individual action intentions 
To reduce my environmental pollution (PM, noise, heat) in the next 4 weeks, I will… 
..avoid roads with high (car) traffic. 
...avoid large street intersections. 
...choose detours where my exposure to environmental stressors is lower. 
...use a map to look for alternative routes for my everyday commutes. 
...use side roads with less traffic. 
...pay attention to noise pollution when choosing a route. 
...pay attention to particulate matter when selecting routes. 
...pay attention to heat when choosing the route. 
...avoid the rush hours. 
...drive/walk detours, even if they take longer. 
...make my trips at different times. 
...change the spatial course of my paths. 
Collective action intentions 
I will talk to my friends and family about environmental stressors in traffic. 
In the next regional election I will vote for people/parties that advocate for less environmental stressors in 
road traffic. 
I am willing to sign petitions calling for greater protection against environmental stressors in Leipzig's road 
traffic. 
I am willing to join others in a demonstration for a bicycle and pedestrian friendly city. 
I am willing to join a group that is committed to a bicycle and pedestrian friendly Leipzig. 
I am willing to join a Facebook group to share ideas on the topic of environmental stressors in urban 
transportation. 
I am willing to follow a social media channel (YouTube, Instagram, Twitter) that provides information on the 
topic of environmental impacts in urban transportation. 
Habit (adapted from Verplanken & Orbell, 2003) 

                                                 
1 Additionally, the questionnaires included measures of participants’ preferred mode of transport for different 

routes, how often the go for walks, their preference for specific aspects of their routes (e.g. speed, low 
traffic), participants’ stage of behavior adaptation to environmental stressors, costs of behavior change and 
non-stressor-specific coping appraisal to change travel times and routes, participants’ willingness to pay for 
an app that provides alternative route suggestions, non-protective coping responses, social norms, 
identification with the city, pedestrians, and car-drivers, derogation of the group of car-drivers, perceived 
responsibility of legislators, moral outrage, general health concerns, perceived control, and preference for 
technology. Lastly, we measured variables regarding the COVID-19 pandemic. The results regarding these 
outcomes will not be discussed here because they are not central to our interpretation. 
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each item was answered separately for travel to work/school/university, shopping trips, and leisure time 
I often drive/walk the same spatial route to... 
I often travel the distance to … at the same time of day. 
I drive/walk the distance to…frequently. 
I drive/walk the distance to…automatically. 
I drive/walk the distance to…without thinking. 
Getting to … belongs to my (daily, weekly, monthly) routine. 
The route to … is typical for me. 
I have been driving/walking the distance to…for a long time.  
I drive/walk the distance to…without having to consciously remember. 
Identification with cyclists (adapted from Postmes et al., 2013) 
I identify with the group of cyclists. 
 302 

3. Results  303 

3.1. Data Preparation 304 

Table 2 shows the number of participants who filled out the questionnaire at each 305 

measurement point. We excluded cases without a second informed consent at the end of the 306 

questionnaire, as well as doublets where a person with the same identifier filled out the same 307 

questionnaire more than once.  308 

Table 2 309 

Number of participants for each measurement point 310 

 Pretest Posttest Feedback Follow-up 
Intervention group 93 85 78 61 

Control group 89 82 - 60 

Total N 182 167 78 121 

 311 

The datasets were merged based on an identifier-code, generated by each participant at the 312 

start of each questionnaire. The identifier was made up of three letters and a digit. 313 

Questionnaires were also matched when only one digit or letter was inconsistent. In these 314 

cases, we made sure, that age and gender in the merged questionnaires were the same and 315 

they were filled out within the same week of participation. Seventy-five respondents did not 316 

provide data at posttest and/or after receiving feedback on exposure and/or at follow-up, 317 

resulting in a final sample of 109 participants (Nintervention = 56, Ncontrol = 53; 59.89% of the 318 



Wearable sensors increase perceived environmental health threat                                           15 

 

pretest sample). The level of dropout did not differ significantly between the intervention 319 

group (37.3%) and the control group (40.4%; χ2(1) = 0.008, p = .927). Furthermore, results of 320 

multiple t-tests showed no significant differences at pretest for all but two of our central study 321 

variables between participants who completed all questionnaires and drop-outs (health risk 322 

perceptions, personal action intentions, efficacy beliefs, routing behavior habits), except for 323 

collective action intentions (Mdrop-outs = 5.15, Mcomplete = 4.68, t(180) = -3.03, p = .003) and 324 

self-identification as cyclist (Mdrop-outs = 6.59 Mcomplete = 6.14, t(180) = -2.52, p = .013). 325 

We conducted between-group comparisons to identify potential differences in our 326 

central study variables at pretest between the intervention and the control group. Results 327 

revealed no significant between-group differences for health risk perceptions, efficacy beliefs 328 

regarding PM and noise, personal action intentions, collective action intentions, routing 329 

behavior habits (all ps > .125), indicating no substantial baseline differences for most of our 330 

central study variables. Results showed that participants in the intervention group reported 331 

higher efficacy beliefs regarding heat (M = 4.31, SD = 1.06) than the control group (M = 3.83, 332 

SD = 0.98; t(107) = 2.36, p = .020). 333 

3.2. Descriptive statistics  334 

Sixty-one participants identified as female and 48 identified as male. Ages ranged from 335 

19 to 67 years (M = 36.33, SD = 9.68). Most participants (72.5 %) had a university degree, 336 

76.1% were employed part time or full-time, 5.5 % were self-employed, 14.7 % were 337 

students, and 3.7% were unemployed or retired. Median household income (measured with 338 

income brackets) was 3,000-3,999€. 6.4 % of the sample had moved to a new house or 339 

apartment within the last six months and 54.1% reported not driving a car, while 11.9% do not 340 

own a car, but drive regularly e.g., using a carsharing service and 33.9% own a car. Regarding 341 

health condition, 6.4 % reported having a respiratory health condition such as asthma and 342 

29.4% reported having allergies. Overall, participants rated their health as good (Mdn = 6.00 343 

on a seven-point scale ranging from 1-very bad to 7-very good). Finally, participants rated 344 
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their initial knowledge about PM, heat and noise pollution as limited to medium (for 345 

particulate matter: Mdn = 3.00; heat: Mdn = 3.00; noise: Mdn = 3.00).  346 

Detailed information on the central study variables, means, standard deviation, scale 347 

reliabilities (Cronbach’s alpha coefficients), and inter-scale correlations for all study variables 348 

are presented in Table 3. Information on the usability of the sensor kit (e.g., rated ease of use 349 

and frequency of use) as well as the participants’ evaluation of the feedback report are given 350 

in appendix A.  351 

Table 3 352 

Means, standard deviation, reliability, and inter-scale correlations of study variables  353 
Time No. Variables M SD α 2. 3. 4. 5. 6. 7. 8. 9. 10. 
Pretest 1. PM health threat 4.32 1.43 .88 .49** .37** .12 .40** .10 -.02 -.10 .17 .05 
 2. Noise health threat 3.66 1.40 .87  .53** .17 .22* .04 -.11 -.01 .11 -.03 
 3. Heat health threat 3.46 1.38 .89   .18 .13 .17 .02 .10 -.02 .05 
 4. Individual intentions 3.36 1.17 .90    .23* .28** .21* .20* -.11 .10 
 5. Collective action 

intentions 4.68 1.05 .73     .21* .16 .06 .17 .20* 

 6. PM efficacy beliefs  4.33 1.08 .58      .64** .42** .14 .13 
 7. Noise efficacy beliefs 4.78 0.91 .46       .43** .06 .14 
 8. Heat efficacy beliefs  4.09 1.05 .60        -.12 .10 
 9. Identification cyclists 6.14 1.31 s         -.12 
 10. Routing habits 5.08 0.79 .90          
Posttest 1. PM health threat 4.39 1.36 .90 .55** .34** .29** .56** .29** .05 -.02 .14  
 2. Noise health threat 3.90 1.32 .88  .56** .33** .33** .15 .02 -.03 .06  
 3. Heat health threat 3.54 1.39 .91   .34** .18* .07 .05 .10 -.06  
 4. Individual intentions 3.57 1.19 .92    .29** .37** .38** .34** -.02  
 5. Collective action 

intentions 4.56 1.20 .82     .22* .09 .07 .32**  

 6. PM efficacy beliefs  4.38 1.04 .71      .68** .40** .25*  
 7. Noise efficacy beliefs 4.86 0.91 .61       .65** .14  
 8. Heat efficacy beliefs  4.23 1.07 .70        .09  
 9. Identification cyclists 6.17 1.33 s          
Feedbacka 1. PM health threat 4.61 1.33 .89 61** .44** .15 .55** .39** -.04 -.20 .17  
 2. Noise health threat 3.94 1.20 .88  .65** .15 .25 .14 -.09 -.15 -.04  
 3. Heat health threat 3.31 1.25 .91   .25 .20 .13 -.14 -.16 -.17  
 4. Individual intentions 3.59 1.26 .93    .13 .36** .40** .36** -.14  
 5. Collective action 

intentions 4.52 1.31 .84     .26 -.01 -.03 .31*  

 6. PM efficacy beliefs  4.51 1.03 .76      .69** .35* .03  
 7. Noise efficacy beliefs 4.92 0.84 .66       .73** -.02  
 8. Heat efficacy beliefs  4.17 0.90 .59        -.21  
 9. Identification cyclists 6.18 1.36 s          
Follow-up 1. PM health threat 4.46 1.33 .88 .58** .40** .28* .49** .17 .06 .06 .14  
 2. Noise health threat 4.01 1.27 .88  .50** .25** .41** -.01 -.07 -.12 .08  
 3. Heat health threat 3.52 1.38 .91   .22* .23* .12 .04 .13 -.01  
 4. Individual intentions 3.46 1.19 .92    .26** .31** .20* .12 .11  
 5. Collective action 

intentions 4.39 1.16 .78     .21* .06 -.09 .27**  

 6. PM efficacy beliefs  4.44 1.07 .73      .62** .20** .27**  
 7. Noise efficacy beliefs 4.81 0.94 .64       .68** .11  
 8. Heat efficacy beliefs  4.22 1.08 .69        .05  
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 9. Identification cyclists 6.20 1.29 s          
Note: * p < .05, ** p < .01; a only intervention group surveyed (N = 56), s = single item, PM = particulate matter 354 
 355 

3.3. Mixed-Model Analysis 356 

Linear mixed-effect models with random intercepts were estimated to assess within-357 

participant changes from pretest to follow-up for our outcome measures, as well as 358 

differences between the intervention group and the control group. Analyses were conducted 359 

applying restricted maximum likelihood estimation (REML) using the GAMLj package 360 

(Gallucci, 2019) in jamovi (The jamovi project, 2022). Separate mixed models were estimated 361 

for each of the outcome measures including time (pretest, posttest, after receiving exposure 362 

feedback, follow-up), group (intervention, control), as well their interaction term. When 363 

adding an additional moderator variable to the analysis, we included time, group, the 364 

moderator variable as well as all of their two-way and three-way interaction terms in the 365 

mixed model. All continuous predictors are mean-centered prior to the calculation of the 366 

interaction terms. Simple slopes were tested at ±1 SD of the mean value. Changes in our 367 

central outcome measures across the four measurement points are presented in Table 4.  368 

Perceptions of environmental health risk. We fitted three mixed models to separately 369 

test how our intervention might affect perceptions of PM, noise and heat health risks. For 370 

perceived PM health risk, results showed the expected interaction effect of time and group, 371 

F(2, 269) = 4.081, p = .018 (see Figure 1). Simple effects analysis revealed a marginally 372 

significant increase in PM health risk perceptions from pretest to posttest and a significant 373 

increase from pretest to exposure feedback for participants in the intervention group (Mpost-pre 374 

= 0.22, t = 1.72, p = .086, dav = 0.15; Mfeedback-pre = 0.49, t = 3.90, p < .001, dav = 0.35; effect 375 

size based on Cumming, 2012), but not in the control group, Mpost-pre = -0.10, t = -0.75, p = 376 

.451, dav = - 0.07. Importantly, participants in the intervention group retained increased levels 377 

of PM health risk perceptions throughout the follow-up period, Mfollow-pre = 0.39, t = 3.08, p = 378 

.002, dav = 0.28, indicating a robust intervention effect. For perceived heat and noise health 379 
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risks, we found no significant interaction effects of time and group, indicating that our 380 

intervention did not affect perceptions of noise and heat health threats (all ps > .133). Our 381 

results thus support Hypothesis 1a, but not Hypotheses 1b and 1c.  382 

 383 

Figure 1  384 

PM health risk perception as a function of time and group 385 

 386 

Individual action intentions to reduce personal exposure to environmental health risks. 387 

For individual action intentions, results showed no significant main effects of time and group 388 

and, more importantly, no significant interaction effect of time and group (all ps > .126). In 389 

other words, our results did not show that participation in the intervention group increased 390 

respondents’ action intentions to protect themselves against environmental health risks. Next, 391 

we explored people’s routing behavior habits as a possible moderator.  392 

We reasoned that our intervention would be more effective for participants with weak 393 

(vs. strong) habits, as individuals with strong habits should be more resistant to changing their 394 

routing behavior (Klöckner & Blöbaum, 2010; Matthies et al., 2006). Results of mixed model 395 

analysis including routing behavior habits as an additional moderator variable showed the 396 

expected three-way interaction effect of time, group and habits, F(2, 264) = 3.67, p = .027 397 

(see Figure 2). Simple effects analysis revealed a significant increase in individual action 398 
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intentions from pretest to posttest for participants with weak routing behavior habits in the 399 

intervention group, Mpost-pre = 0.50, t = 2.62, p = .009, but not in the control group, Mpost-pre = 400 

0.10, t = 0.48, p = .628. However, this initial increase in the intervention group was not stable 401 

throughout the study period as individual action intentions for participants with weak routing 402 

behavior habits in the intervention group were almost identical at pretest and follow-up, 403 

Mfollow-pre = - 0.01, t = - 0.05, p = .964. For participants with strong routing behavior habits, 404 

we found no significant changes in individual action intentions throughout the study period, 405 

neither for participants in the intervention group nor for participants in the control group (all 406 

ps > .131). Taken together, our findings suggest that feedback on personal exposure only 407 

increased individual action intentions for certain parts of the intervention group. Specifically, 408 

we found positive, but short-lived intervention effects for respondents with low (but not high) 409 

routing behavior habits. 410 

Figure 2  411 

Individual action intentions as a function of time, group and routing behavior habits 412 

 413 

Exploratory analysis: Collective action intentions to fight environmental health risks. 414 

Our next analysis explored whether our intervention would affect participants’ intentions to 415 

collectively fight against environmental health risks. We tested competing assumptions about 416 

how participating in the intervention may influence collective action intentions. Specifically, 417 

participation may increase collective action intentions through increased problem awareness 418 
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or risk perception. However, participation may also decrease collective action intentions by 419 

strengthening the salience of personal protection strategies. Results of mixed model analysis 420 

showed a significant decrease in collective action intentions over time, F(3, 269) = 6.33, p < 421 

.001, though there was no significant interaction effect of time and group, F(2,269) = 1.85, p 422 

= .160. To further explore our data, we included identification with the cyclist group at each 423 

measurement point as an additional moderator in the analysis. We reasoned that the negative 424 

trend might differ for participants who have no strong psychological bond with the cyclist 425 

category, as group identification is a well-established predictor of collective action (Fritsche et 426 

al., 2018; van Zomeren et al., 2008). Results showed a three-way interaction effect of time, 427 

group and identification with the cyclist category, F(2, 265) = 5.61, p = .004 (see Figure 3). 428 

Simple effects analysis revealed significant decreases in collective action intentions from 429 

pretest to posttest, from pretest to exposure feedback and from pretest to follow-up for 430 

participants with low identification in the intervention group (Mpost-pre = -0.50, t = -4.52, p < 431 

.001; Mfeedback-pre = -0.47, t = -3.86, p < .001; Mfollow-pre = -0.68, t = -5.90, p < .001), but not in 432 

the control group (all ps > .345). For participants with high levels of identification, no 433 

significant effects were found, neither for participants in the intervention group nor for 434 

participants in the control group (all ps > .173). The current findings thus support the 435 

assumption that our intervention lowered participants’ willingness to collectively engage 436 

against environmental health risks, particularly for participants with low psychological 437 

investment in their cyclist identity. 438 

Figure 3 439 

Collective action intentions as a function of time, group and identification with cyclists 440 
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 441 

Other measures: Efficacy beliefs regarding exposure to environmental health risks. We 442 

also tested for within-participant changes in efficacy beliefs to protect themselves against PM, 443 

noise, and heat. Results indicated no significant intervention effects on efficacy beliefs (all ps 444 

> .231). This is not surprising as our feedback did not include information on how participants 445 

could reduce their exposure levels, such as information on alternative, less polluted routes. 446 

 447 

Table 4 448 

Means and standard deviations (in parantheses) of central outcome variables 449 

 Pretest Posttest Feedback a Follow-up 
DV: Perceived PM health risk  

Intervention group 4.12 (1.46) 4.34 (1.39) 4.61 (1.33) 4.51 (1.30) 

Control group  4.54 (1.37) 4.44 (1.34) n.a. 4.42 (1.37) 

DV: Perceived noise health risk 

Intervention group 3.47 (1.25) 3.70 (1.20) 3.94 (1.20) 3.92 (1.15) 

Control group 3.87 (1.51) 4.10 (1.41) n.a. 4.11 (1.39) 

DV: Perceived heat health risk 

Intervention group 3.41 (1.37) 3.41 (1.36) 3.31 (1.25) 3.57 (1.41) 

Control group 3.51 (1.40) 3.67 (1.43) n.a. 3.46 (1.36) 

DV: Individual action intentions 

Intervention group 3.30 (1.18) 3.60 (1.19) 3.59 (1.25) 3.44 (1.13) 

Control group 3.43 (1.16) 3.53 (1.20) n.a. 3.48 (1.25) 

DV: Collective action intentions 

Intervention group 4.69 (1.11) 4.47 (1.35) 4.52 (1.31) 4.28 (1.28) 

Control group 4.70 (0.98) 4.66 (1.02) n.a. 4.51 (1.02) 

DV: Efficacy beliefs PM 

Intervention group 4.42 (1.02) 4.41 (1.08) 4.51 (1.03) 4.52 (1.06) 
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Control group 4.24 (1.15) 4.35 (1.01) n.a. 4.36 (1.10) 

DV: Efficacy beliefs noise 

 Intervention group 4.91 (0.86) 4.88 (0.94) 4.92 (0.84) 4.86 (0.96) 

 Control group 4.64 (0.96) 4.83 (0.88) n.a. 4.75 (0.91) 

DV: Efficacy beliefs heat 

Intervention group 4.32 (1.05) 4.32 (1.06) 4.17 (0.90) 4.28 (1.05) 

Control group 3.85 (0.99) 4.13 (1.09) n.a. 4.16 (1.11) 
Note: acontrol group not surveyed at feedback  450 

 451 

4. Discussion 452 

Measurements with mobile sensors are becoming more important as low-cost sensors 453 

are increasingly available to the public (e.g., see plumelabs.com) and they are regularly used 454 

in research studies (Helbig et al., 2021). As these sensors are not only used to measure 455 

exposure, but also allow individuals to receive feedback on their exposure levels, it is 456 

important to evaluate the effects of carrying these sensors and receiving feedback. The 457 

measurement kit used in our experiment captured particulate matter, noise and heat and was 458 

relatively easy to use. Participants were generally satisfied with the environmental tracker 459 

device and used it regularly during the study period (see appendix for more details on 460 

usability).  461 

Previous studies provide initial insights in the effects of feedback from wearable 462 

sensors and show mixed results regarding their effectiveness in changing individuals behavior 463 

e.g., to choose less polluted routes (Becker et al., 2021). These studies provide a glimpse into 464 

the potential effects of theses sensors but indicate that the effects of wearable sensors need to 465 

be scrutinized more as previous studies did not use an experimental approach to rigorously 466 

assess their effects. To be able to infer causal effects of carrying sensors and receiving 467 

feedback, we conducted a controlled experiment. In this experimental study, we tested 468 

psychological models of behavior change to predict participants’ threat perceptions and 469 

intentions to change their routing behavior. We used Protection Motivation Theory (PMT, 470 
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Rogers, 1975) to study changes in healthy routing choices. We hypothesized that carrying the 471 

sensors would lead to an increase in threat appraisals for particulate matter, heat, and noise 472 

pollution and explored effects on individual protective action (e.g., choosing less polluted 473 

routes).  474 

The data provided partial support for the hypotheses. The intervention of carrying the 475 

measurement kit had a significant effect on threat appraisals for particulate matter, though no 476 

effects were found for heat and noise pollution. These differences between PM on the one 477 

hand and heat and noise on the other hand can be explained by the fact that the PM exposure 478 

is not perceivable directly and only the feedback of measurements allows for a more realistic 479 

assessment. For this reason, Marquart et al. (2021) proposed a more comprehensive approach 480 

to exposure assessment that includes perceptions as additional dimensions of exposure. 481 

The intervention of carrying the measurement kit and receiving feedback had no direct 482 

effect on intentions for individual self-protecting action. However, exploratory findings 483 

showed a moderation by routing habits. Only participants with low habits regarding their 484 

route choices significantly increased their individual action intentions in response to carrying 485 

the measurement kit. However, this effect was not sustainable and at the follow-up 486 

measurement after 3-4 months their individual action intentions were back to the initial levels. 487 

Participants with strong habits at the pretest measurement point were not significantly 488 

motivated by the intervention to change their everyday routes. This can be attributed to 489 

different factors. Firstly, participants with high habits regarding their routing behavior also 490 

had descriptively higher initial levels of individual action intentions. Hence, the intervention 491 

had less leverage to change these intentions. This finding is similar to previous studies, where 492 

participants reported that change was hardly possible as they were already doing their best to 493 

avoid air pollution in their everyday travel and further improvements appear impossible or too 494 

costly (Haddad & de Nazelle, 2018; Tan & Smith, 2021). Another explanation for this 495 

moderating role of habits is that highly automated habits are resistant to change (Klöckner & 496 
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Blöbaum, 2010; Matthies et al., 2006). So-called de-freezing events can open a window to 497 

make change possible (Verplanken et al., 2018). In the context of routing choices, this could 498 

result from moving one’s place of residence (Ralph & Brown, 2019), a change in the local 499 

infrastructure (e.g., a large construction site that needs to be circumnavigated) or a new job in 500 

a different location (Fujii & Gärling, 2003).  501 

Lastly, we found very interesting effects of the intervention on collective action 502 

intentions. While one may assume that the involvement with the topic of environmental 503 

pollution could motivate participants to show more collective action (i.e., go to 504 

demonstrations, talk to others, sign petitions), we found that there was a decrease in 505 

motivation to show collective action throughout the study period. This may be explained by 506 

the very individualized framing of the study and wearable sensors in a more general sense. 507 

Measuring exposure levels and finding individual ways of adapting to them is a very 508 

individualized approach – much like other health-monitoring applications such as heart rate 509 

measures or step counters, this can be seen in the wider context of self-optimization, or as Tan 510 

& Smith (2020) put it, a way to create “the optimal environment for our optimal selves” (p. 511 

359). This may move the focus away from the broader collective problem of environmental 512 

air and noise pollution and rising temperatures in urban areas. This is important to consider 513 

with the increase in individualized sensor measurements as it is crucial to keep the broader 514 

collective goals in mind – last but not least environmental crisis are a collective problem, that 515 

can only be addressed effectively when individuals see their contributions embedded in the 516 

greater effort of a collective (Fritsche et al., 2018). The finding that participants who were 517 

highly identified with the group of cyclists were not demotivated to participate in collective 518 

action supports this assumption, as identification with a group (particularly one with pro-519 

environmental goals and norms) can motivate pro-environmental action in a collective 520 

(Fritsche et al., 2018).  521 
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We found no effects of the intervention on coping appraisals (i.e., efficacy beliefs). 522 

This is not surprising given that participants were not provided information on steps they 523 

could take to reduce their exposure to environmental stressors. This was also a result in 524 

previous work on feedback on air pollution where many people felt that they had limited 525 

capacity to meet the threat posed by air pollution with adequate actions to reduce their 526 

exposure (Haddad & de Nazelle, 2018; Heydon & Chakraborty, 2020; Marquart, 2022; Oltra 527 

et al., 2017; Tan & Smith, 2021). This resulted in frustration or resignation for some 528 

participants (Heydon & Chakraborty, 2020). Future studies should investigate the effects of 529 

wearable sensors when providing participants with information on how to effectively reduce 530 

their exposure. For example, alternative route suggestions could potentially raise coping 531 

appraisals and thereby raise intentions to change their routing behavior to healthier route 532 

choices. A mobility app providing suggestions for pleasant routes with low pollution levels 533 

was also suggested by citizens in a qualitative focus group study (Marquart, 2022). A 534 

visualization of pollution levels in different areas of the city could also help participants 535 

identify healthier routes. Such a visualization in an immersive virtual reality environment was 536 

created for the data collected in this study and could be used in future applications (Helbig et 537 

al., 2022).  538 

Policymakers could also foster city infrastructure that provides options for cyclists and 539 

pedestrians to bypass locations with high pollution levels. Air pollution can also be reduced 540 

by introducing urban vegetation such as green walls, green roofs, hedges, or trees which 541 

absorb pollutants (Abhijith et al., 2017). However, these measures require careful planning as 542 

trees can inhibit ventilation and trap pollution in street canyons (Abhijith et al., 2017) or emit 543 

allergens (Kumar et al., 2019). Green and blue (water) infrastructure can also reduce noise 544 

pollution via absorption of noise or by creating space for a pleasant noisescape including bird 545 

sound (Yildirim et al., 2022). Beyond a reduction in noise and air pollution, greenspaces such 546 

as parks can have positive effects on physical activity and mental health (Kumar et al., 2019).  547 
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A stronger focus on raising collective efficacy beliefs should also be aimed at in the 548 

future, for example by framing individuals’ measurements as part of a broader project and 549 

highlighting the collective efficacy of the citizen science approach, for example in 550 

communicating needs to policy makers through citizen science projects (Ottinger, 2010). Joint 551 

workshops or coaching events for participants to find solutions to high pollution levels may 552 

also be a way of heightening collective efficacy as well as individual coping appraisals 553 

(Hamann et al., 2021).  554 

4.1. Limitations 555 

The presented study has some limitations that should be taken into account when 556 

interpreting the results. Firstly, the sensors used in the measurement campaign did not give 557 

feedback about current exposure levels directly. Participants were only provided with an 558 

overview of their accumulated exposure levels throughout the measurement phase. 559 

Instantaneous feedback would allow users to connect the information about exposure levels 560 

directly to their current routes. Furthermore, the study highlights the necessity not only to 561 

provide information on possible health threats of environmental stressors, but also to equip 562 

participants with feasible alternatives for them to avoid these high exposure levels. Previous 563 

studies have shown that information provision without possibilities for protective action can 564 

lead to resignation and feelings of powerlessness (Becker et al., 2021; Marquart, 2022). 565 

Alternative route suggestions might help to motivate behavior change in future studies.  566 

 Another limitation of this study is that the feedback on particulate matter may have 567 

been hard to understand as participants had no clear reference of what levels of exposure 568 

should be considered unhealthy. Hence, future studies could aim to make the measurement 569 

results more relatable for example by showing how the exposure to PM relates to the health 570 

impacts of more commonly known risks such as smoking cigarettes (Marquart, 2022; Riley et 571 

al., 2021).  572 
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Another limitation of this research lies in the fact that we could only measure personal 573 

protection intentions, rather than monitoring participant’s actual behavior and whether it 574 

reduced their exposure to environmental stressors. Future studies could target not only 575 

intentions, but also tap into measured behavior changes by looking at GPS tracks and 576 

exposure levels before and after the feedback intervention.  577 

Furthermore, future studies could further investigate the demotivating effect of 578 

individualized feedback on collective action intentions and test ways to avoid this. For 579 

example, framing the collection of data as a joint effort of many participants contributing to a 580 

shared dataset may motivate further collective action. Alternatively, the feedback report could 581 

include suggestions on collective activities to fight pollution (Riley et al., 2021).   582 

 Lastly, as a longitudinal study, there was some dropout and though dropouts did not 583 

differ from those who completed all questionnaires on important variables, we cannot be sure 584 

that the dropout was not selective. Furthermore, we must be aware, that participants willing to 585 

participate in a study that requires some effort such as carrying a sensor kit on their everyday 586 

routes may be different from the general public in that they have a particular interest in the 587 

topic and may be very motivated to avoid environmental stressors. The extent to which study 588 

results can be generalized may also be limited when working with so-called weird (western, 589 

educated, industrialized, richa, and democratic) samples in the behavioral sciences (Henrich et 590 

al., 2010) and volunteered georaphic information (VGI) is mostly produced by privileged 591 

groups (Elwood et al., 2012). This is particularly problematic, given that people with a 592 

socioeconomic disadvantage are exposed to higher levels of air pollution (Fairburn et al., 593 

2019) and noise pollution (Dregner et al., 2019). While the sample in this study was self-594 

selected, future research should aim for a representative sample.  595 

Lastly, a limitation of our study design is that the control group filled out only the pre- 596 

and post- as well as the follow-up questionnaires, while the intervention group also filled out 597 
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a questionnaire after the feedback. While there are practical reasons for this, a fully parallel 598 

use of the questionnaires would have been beneficial. 599 

4.2. Conclusion 600 

Increased proliferation of wearable sensors highlights the necessity to evaluate their 601 

potential for healthy mobility more rigorously. Taken together, the presented findings 602 

highlight the potential of wearable sensors in changing individuals’ perceptions of 603 

environmental stressors and their routing behavior intentions. Our research allows policy 604 

makers to make informed decisions about the design and implementation of interventions 605 

using wearable sensors to foster healthy mobility.  606 
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