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Abstract 
Context Ecological Focus Areas (EFAs) were 
designed as part of the greening strategy of the com-
mon agricultural policy to conserve biodiversity in 
European farmland, prevent soil erosion and improve 
soil quality. Farmers receive economic support if they 
dedicate at least 5% of their arable farmland to any 
type of EFA, which can be selected from a list of 
options drawn up at the European Union level. How-
ever, EFAs have been criticized for failing to achieve 
their environmental goals and being ineffective in 
conserving farmland biodiversity, mainly because 

they are not spatially targeted and because they pro-
mote economic rather than ecological considerations 
in farm management decisions.
Objectives We used a spatially explicit approach to 
assess the influence of farm and field context as well 
as field terrain and soil conditions on the likelihood 
of whether or not a particular EFA type was imple-
mented in a field.
Methods We used a multinomial model approach 
using field-level land use and management data from 
879 farms that complied with the EFA policy in 2019 
in the Mulde River Basin in Saxony, Germany. Geo-
spatial environmental information was used to assess 
which predictor variables (related to farm context, 
field context or field terrain and soil conditions) 
increased the probability of a field being assigned to 
a particular EFA. We tested the hypothesis that pro-
ductive EFAs are more often implemented on fields 
that are more suitable for agricultural production and 
that EFA options that are considered more valuable 
for biodiversity (e.g. non-productive EFAs) are allo-
cated on fields that are less suitable for agricultural 
production.
Results We found that farms embedded in land-
scapes with a low proportion of small woody fea-
tures or nature conservation areas mainly fulfilled the 
EFA policy with productive EFAs (e.g. nitrogen fix-
ing crops). Conversely, farms with a higher propor-
tion of small woody features or nature conservation 
areas were more likely to adopt non-productive EFAs. 
As predicted, large and compact fields with higher 
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soil fertility and lower erosion risk were assigned to 
productive EFAs. Non-productive EFAs were placed 
on small fields in naturally disadvantaged areas. EFA 
options considered particularly beneficial for biodi-
versity, such as fallow land, were allocated far away 
from other semi-natural or nature protection areas.
Conclusions Our results highlight that the lack of 
spatial targeting of EFAs may result in EFA options 
being assigned to areas where their relative con-
tribution to conservation goals is lower (e.g. farms 
with higher shares of protected areas) and absent in 
areas where they are most needed (e.g. high intensity 
farms). To ensure that greening policies actually pro-
mote biodiversity in European agriculture, incentives 
are needed to encourage greater uptake of ecologi-
cally effective measures on intensively used farms. 
These should be coupled with additional measures 
to conserve threatened species with specific habitat 
requirements.

Keywords Farm context · Farmland biodiversity · 
Field context · Greening policy · Multinomial 
regression · Soil conditions · Terrain conditions · 
Spatial allocation

Introduction

To achieve greater environmental sustainability, the 
Common Agricultural Policy (CAP) of the Euro-
pean Union (EU) introduced a direct payment scheme 
(greening) in 2013, aimed at protecting and enhancing 
biodiversity, water, and soils in European farmland 
(European Union 2013; European Commission 2022). 
Mandatory greening practices include: (i) the mainte-
nance of permanent grassland, (ii) the obligation of 
agricultural diversification of farmland (cultivation 
of at least two crops if the arable farmland exceeds 
10 hectares), and (iii) the allocation of at least 5% of 
the arable area to ecological focus areas (EFAs) if the 
arable area of conventional farms exceeds 15 hectares 
(German Federal Environmental Agency 2014; Euro-
pean Commission 2017, 2022). Farmers must comply 
with these requirements to qualify for the greening 
payments, except farms already implementing sus-
tainable farming practices such as organic farming 
(European Commission 2022).The ecological value 
of EFAs varies across EFA types (Cole et  al. 2012; 
Cormont et  al. 2016). While non-productive options 

such as buffer strips, fallow land, and landscape fea-
tures are considered most beneficial for conserving 
biodiversity (Pe’er et al. 2017; Sutter et al. 2018; Tar-
juelo et  al. 2020a, 2020b), less conservation-effec-
tive (namely productive) options, such as planting 
nitrogen-fixing or catch crops, represent more than 
70% of the registered EFAs (Zinngrebe et  al. 2017; 
Nilsson et  al. 2019; Pe’er et  al. 2020). Results from 
interviews with stakeholders, farmers, and agricul-
tural representatives have shown that farmers con-
sider the EFA regulation complicated (Oppermann 
2015; Bonke et  al. 2021). Overall, economic and 
administrative motivations appear to be more impor-
tant than ecological considerations in defining farm 
management practices concerning EFA implementa-
tion (Zinngrebe et al. 2017; Nitsch et al. 2018; Brown 
et al. 2021; Bonke et al. 2021). Nevertheless, farmers’ 
motivations for managing their land include the envi-
ronmental context in which their farm is embedded 
(Brown et  al. 2021; Santos et  al. 2021). Farm man-
agement decisions may also be heavily constrained 
by the farm context (e.g. farm size), the field context 
(e.g. field size), or the field terrain and soil conditions 
(e.g. soil fertility) (Nitsch et al. 2018). Also, the suc-
cess of particular land uses in enhancing biodiversity 
or ecosystem services may highly depend on their 
proximity to and connectivity with other semi-natu-
ral areas (Tscharntke et  al. 2005, 2012). Hence, the 
consideration of a broader set of factors influencing 
farm management practices, including the ecologi-
cal context of the farm, is urgently needed to broaden 
our understanding of how to manage agricultural 
landscapes in more sustainable ways(Tzilivakis et al. 
2016; Singh and Leppanen 2020; Brown et al. 2021).

Farms across the EU differ in their environmen-
tal context according to their geographic location. 
Additionally, various policy tools exist to support the 
CAP greening policy and reach the EU environmen-
tal targets across member states. For instance, farmers 
can receive further economic support for areas con-
sidered challenging to cultivate (European Commis-
sion 2022). In our study region, locations near water 
bodies (SMEKUL 2021a) and within water protection 
(SMEKUL 2021b) or Natura 2000 (European Envi-
ronment Agency 2022) areas have special restric-
tions regarding management practices or nutrient/pest 
control inputs. To account for regional differences, 
member states can select a subset of EFA options 
considered more suitable for their specific context. 
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Furthermore, there is a weighting factor for each type 
of EFA to reflect their ecological benefits and imple-
mentation costs. Weighting factors can range from 
0.3 (e.g. for catch crops) to two (e.g. for hedges) and 
are used to calculate the exact area per farm relevant 
for the policy subsidy payments. In Germany, farmers 
can select among 20 different land use options eligi-
ble as EFA (Zinngrebe et al. 2017; Lakes et al. 2020, 
see Table S1).

In the present study, we used field-level infor-
mation on land use and management from the Inte-
grated Administration and Control System (IACS) 
(SMEKUL 2019), as well as geospatial information 
on small woody features and nature protection areas, 
to assess which structural, terrain and soil conditions 
influence the probability of a field being assigned to 
a specific EFA. Since EFA policies focus on the farm 
level, our predictors included variables reflecting the 
farm context in terms of the diversity of additional 
habitats within the farm boundaries, the relative usa-
bility of a specific field for production, and the ter-
rain and soil conditions of the field compared to the 
other fields of the same farm. Overall, we expected 
that fields whose structural (size, compactness, prox-
imity to other landscape elements) or terrain and soil 
conditions (slope, soil fertility) are below the farm’s 
average are more likely to be assigned to an EFA. 
Additionally, we expected that large farms with a 
smaller proportion of protected areas or small woody 
features, whose fields are predominantly suitable 
for production, would most likely meet the policy 
requirements with productive EFA options. Since 
landscape elements are not easily movable and can be 
used to receive EFA policy payments, we anticipated 
that farms with landscape features within their bound-
aries are likely to register them under the policy. Con-
versely, farms without landscape features within their 
boundaries are more likely to allocate productive 
EFA options than other EFA types.

Materials and methods

Study region

The study area is the Mulde River Basin, located in 
the western part of the federal state of Saxony, Ger-
many (Fig. 1). It covers an area of 5814 km²; the ter-
rain varies from flat to hilly, and the elevation ranges 

between 24 and 1214 m.a.s.l. (Sachsen Staatsbetrieb 
Geobasisinformation und Vermessung 2016). The cli-
mate is predominantly continental, with total annual 
precipitation between 570 and 1260  mm and mean 
annual temperatures between 7.4 and 14.1 °C (DWD 
2020). 38% of the study area is covered by arable 
land, with winter wheat, oilseed rape, winter barley, 
and maize as predominant crops, followed by perma-
nent grassland (mowing pastures and meadows).

Data preparation

Our data included field-level information on land use 
and management of 879 farms (41,936 fields) that 
complied with EFA policy in 2019 (SMEKUL 2019). 
The median number of fields per farm was 25. The 
median farm size was 100 hectares, and the median 
field size was 6 hectares. Farmers could select among 
20 land use types to be registered as EFA (Table S1). 
In our study, a farm consisted of a group of fields reg-
istered in the IACS database (SMEKUL 2019) under 
the same anonymized farm identification number. A 
field consisted of a parcel with uniform land use (a 
certain type of crop or EFA). We grouped our predic-
tor variables into three categories; predictors related 
to the farm context, the field context, or the terrain 
and soil conditions (Table 1).

Farm context predictors

This category included: the farm area (FARM AREA) 
calculated as the area of all fields registered under the 
same anonymized farm identification number, the 
percentage of the farm covered by Natura 2000 areas 
(NATURA), the percentage of the farm covered by 
landscape features registered as EFA (LAND FEAT), 
the percentage of the farm area covered by fields 
near small woody features (i.e. in a buffer of 50  m, 
SWF), the percentage of the farm area designated as 
naturally constrained (ANC), and the percentage of 
the farm area designated as areas of importance for 
drinking water and medicinal spring protection areas 
(WATERPROT) (Table 1).

Field context predictors

We used z transformation to standardize the values of 
each field concerning the farm context. For instance, 
a positive value of the field area means that the 
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respective field is larger than the average field of the 
farm to which it belongs. The field context predictors 
category included: the standard z-score of the area of 
the field (FIELDAREA), the standard z-score of the 
compactness index of the field (COMPACTNESS), 
the standard z-score of the distance of the field to the 

farm centroid (DISTANCE), a binary predictor of the 
presence of a small woody feature in the proximity 
of 50-meter buffer (SWF), information on whether 
the field belonged to an area designated as naturally 
constrained (ANC), and the presence of a water body 
in the proximity of 20-meter buffer (WATERBODY) 

Fig. 1  Depiction of the geographical location of the study area and the distribution of productive, non-productive, and landscape 
features as EFAs used in our analysis. The square in the top right represents an inset of the data
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Table 1  Overview of the explanatory variables used in the regression models grouped by category

Category Variable name Variable description Source

Farm context FARM AREA Total area (in hectares) of fields belonging to 
the same holding

SMEKUL (2019)

NATURA (%) Percentage of farm area covered by areas 
designated in European Union’s Natura 2000 
network of protected areas

European Environment Agency (2022)

LANDFEAT (%) Percentage of farm area covered by landscape 
features registered as EFA

SMEKUL (2019)

SWF (%) Percentage of farm area covered by fields 
nearby (5 m) to a small woody feature

European Environment Agency (2018)

ANC (%) Percentage of farm area covered by areas of 
natural constraints, i.e. considered more dif-
ficult to farm

SMEKUL (2019), European Commission 
(2022)

WATERPROT (%) Percentage of farm area in zones of Saxony’s 
drinking water and medicinal spring protec-
tion areas

SMEKUL 2021b

Field context FIELDAREA Standardized (z-score) value of the field area 
in relation with the mean-field area of their 
respective farm

SMEKUL 2019

COMPACTNESS Standardized (z-score) value of the Richardson 
compactness index calculated as 2 * sqrt (pi * 
field area) /field perimeter

A compact polygon has simple boundaries 
with vertices relatively equidistant from the 
centroid. A circle is the shape of maximum 
compactness.

SMEKUL 2019

DISTANCE Standardized (z-score) value of the distance of 
the centroid of the field to the respective farm 
centroid.

SMEKUL (2019)

SWF Dummy variable describing the presence (1) 
or absence (0) of a small woody feature on a 
50-meter buffer surrounding a field.

European Environment Agency  (2018)

ANC Binary variable describing whether the field is 
in an area classified as naturally constrained 
area (ANC) (1) or not (0).

SMEKUL (2019), European Commission 
(2022)

WATER BODY Binary variable describing the presence (1) or 
absence (0) of a water body (from the water 
network of flowing and standing water of 
Saxony) on a 50-meter buffer surrounding a 
field.

SMEKUL (2021a)
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(Table  1). We selected the 20-meter buffer distance 
of water bodies used by Paulus et  al. (2022), who 
studied the spatial allocation of agri-environmental 
schemes in our study region. The five meters buffer 
represents an intermediate distance that considers the 
effects of field edges on pollinators (Reynolds et  al. 
2022) or natural enemies (Büchi 2002).

Soil and terrain conditions

This category included values of soil fertility 
(SOIL FERTILITY), soil moisture (SOIL MOIS-
TURE), wind (WINDEROSION), and water erosion 
(EROSION(KLSR) extracted from the digital soil map 
at a scale of 1:50,000 from the Saxon State Ministry for 
Energy, Climate Protection, Environment, and Agri-
culture (SMEKUL 2021c) (Table 1). The soil fertility 
index considered the capillarity, risk of waterlogging, 
cation exchange capacity, stone content, and plant-
available water in the root space of the soil (Table S2). 
The soil moisture index was calculated based on param-
eters such as the soil pore system, climate, and terrain 
(Table  S3). The wind erosion indicator described the 
erosion hazard depending on the soil type and long-
term average wind speed (Table S4). The water erosion 
risk considered the soil type, slope length, slope incli-
nation, and regenerative erosivity of the soil (Table S5). 
All predictors were tested for collinearity using pair-
wise correlation analysis. Since no correlations of 

Pearson’s |r| > 0.7 occurred (Dormann et al. 2013), no 
variables were excluded (Fig. S1–3).

Statistical analysis

We used multinomial regression models to evaluate 
the influence of variables related to the farm and field 
context and the field terrain and soil conditions on 
EFA allocation in farmland. Multinomial regression 
is a logistic regression employed to predict the prob-
ability that a case is in a particular category when the 
dependent outcome includes more than two categories. 
Multinomial models break the outcome variable into a 
series of comparisons between pairs of categories, on 
which the probability (odds) of an observation being 
a member of a specific group rather than the reference 
group is calculated. In multinomial models, a logistic 
transformation of the odds (Log (OR)) is the depend-
ent variable. The odds value can range from 0 to infin-
ity and express the likelihood that an observation is a 
member of the reference group rather than a member of 
the group used for comparison. It holds that odds = p/
(1 − p). The odds ratio (OR) estimates the change in the 
odds of membership in the target group for a one-unit 
increase in the predictor and it is calculated by using the 
regression coefficient of the predictor as the exponent: 

log(odds) = logit(p) = log(p∕(1 − p)) = �0 + �1 x1 +…

Table 1  (continued)

Category Variable name Variable description Source

Soil and Ter-
rain condi-
tions

SOIL FERTILITY Standardized (z-score) value of the field soil 
fertility concerning the mean field soil fertil-
ity of the respective farm.

SMEKUL (2021c)

SLOPE Standardized (z-score) value of the field slope 
concerning the mean field slope of the 
respective farm.

SMEKUL (2021c)

SOILMOISTURE Standardized (z-score) value of the field soil 
moisture concerning the mean field soil mois-
ture of the respective farm.

SMEKUL (2021c)

WIND EROSION Standardized (z-score) value of the field wind 
erosion concerning the mean field wind ero-
sion of the respective farm.

SMEKUL (2021c)

EROSION (KLSR) Standardized (z-score) value of the field water 
erosion risk concerning the mean field ero-
sion risk of the respective farm.

SMEKUL (2021c)
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 Where p = the probability that a case is in a particular 
category, β0 is the intercept, and β1, … are the regres-
sion coefficients of  x1.

In order to identify specific responses according to 
the EFA group (e.g. productive, non-productive, land-
scape features) or EFA type (e.g. catch crops, nitro-
gen-fixing crops, etc.), we ran four multinomial mod-
els. All models included the same predictor variables 
(described in Table  1) and had fields dedicated to 
agricultural production (defined as NOEFA) as a ref-
erence value. We used Model 1 to identify differences 
in drivers of EFA allocation according to their pro-
ductive value. Besides the reference value (NOEFA), 

Model 1 included three additional response catego-
ries: (i) productive EFA, (ii) non-productive EFA, 
and (iii) landscape features registered as EFA. We 
used Model 2, Model 3, and Model 4 to identify 
important drivers for specific EFAs (See Figs. S4, 
S5, S6). Model 2 incorporated only productive EFAs 
(c = 6) as the response categories. Model 3 included 
response non-productive EFAs (c = 6), while Model 4 
had EFA landscape features (c = 8) as response cat-
egories. Given that we only considered farms with 
at least one field dedicated to one of our focal EFAs 
(defined by the model), all models differed in the 
number of farms and fields used as input (Table  2). 

Table 2  Description of the model ID, input data (number of 
fields and number of farms), and response categories of the 
four models used in our analysis. Response categories referred 
to the discrete outcomes used in each model. Class frequency 

refers to the number of fields used as data input for the discrete 
outcomes on each model. NOEFA refers to fields used for agri-
cultural production

Model ID Number of fields Number of 
farms

Response categories Class frequency

Model 1
(EFA group)

41,936 879 Non-Productive EFA 2808
Productive EFA 2440
Landscape Features 2328
NOEFA (as reference category) 34,360

Model 2
(Productive EFAs)

34,737 618 Catch crop 1812
Nitrogen fixing 531
Undersown 59
Afforestation 27
Short rotation plantation 9
Cup plant mix 2
NOEFA (as reference category) 32,297

Model 3
(Non-productive EFAs)

29,782 530 Fallow land 1203
Buffer strips (AL) 1065
Bee pastures (annual) 267
Strips at the forest edge 199
Bee pastures (perennial) 43
Buffer strips (GL) 31
NOEFA (as reference category) 26,974

Model 4
(Landscape features registered 

as EFA)

16,577 268 Hedges 933
Row of trees 809
Field trees 439
Field borders 101
Wetlands 21
Rock and stone bars, natural petrified 

surface
18

Single trees 4
Natural stone or dry stone wall 3
NOEFA (as reference category) 14,249
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All data analysis and data processing was conducted 
in R version 4.0.5 (R Core Team 2021) using the 
packages nnet (Fox and Weisberg 2019), car (Fox and 
Weisberg 2019), caret (Kuhn 2008), dplyr (Wickham 
et al. 2019), raster (Hijmans and van Etten 2012), sf 
(Pebesma 2018), and terra (Hijmans 2023). Details 
of the code can be found in the GitHub repository 
related to this manuscript (https:// github. com/ vivi- 
alarc on/ EFAal locat ionin farml and. git).

Results

7% of all fields were allocated with a productive EFA, 
6% with a non-productive EFA, and 5% to landscape 
features registered as EFA. Among productive EFAs, 
catch crops, and nitrogen-fixing were the most com-
monly adopted options. Fallow land and buffer strips 
were the most frequently allocated non-productive 
EFAs, and hedges and rows of trees were often regis-
tered as landscape features. Farms covered with a low 
percentage of Natura 2000 (NATURA), landscape 
features registered as EFA (LAND FEAT), small 
woody features (SWF), or water protection areas 
(WATER PROT) mostly allocated productive EFAs 
(Fig. 2). Conversely, farms with higher values on the 
same variables were more prone to allocate non-pro-
ductive EFAs or landscape features.

Small and linear fields (FIELD AREA, COM-
PACTNESS) had higher probabilities of being allo-
cated with non-productive EFAs or landscape fea-
tures (Fig.  2). Non-productive EFAs and landscape 
features were allocated further away from small 
woody features (SWF) or water bodies (WATER 
BODY), but they were frequently present in fields 
designated as naturally constrained for agricultural 
production (ANC). Conversely, large and rounded 
fields were most prone to be assigned with productive 
EFAs. Contrary to our expectations, EFA fields were 
not allocated in fields with low soil fertility (SOIL 
FERTILITY). Nevertheless, both productive and non-
productive EFAs were allocated in fields with lower 
risks of water erosion (EROSION (KLSR)).

Among productive options, catch crops and nitro-
gen-fixing crops responded differently to the same 
variables (Table  3, Fig. S4). While nitrogen crops 
were frequently allocated on small farms (FARM 
AREA) with a lower percentage of landscape features 
(LAND FEAT), small woody features (SWF) and 

water protection areas (WATER PROT), catch crops 
were allocated in farms with higher values of Natura 
2000 (NATURA), landscape features (LAND FEAT 
(%)), and water protection areas (WATER PROT) 
(Table  3, Fig. S4). Catch crops were frequently 
assigned to large and rounded fields (FIELD AREA, 
COMPACTNESS) in naturally constrained (ANC) 
areas. Fallow land was more likely to be allocated in 
farms with lower values of NATURA, LAND FEAT, 
and WATER PROT), and in small and linearly shaped 
fields (Table  3, Fig. S5). Conversely, buffer strips 
were most often established on farms with higher 
values of NATURA, LAND FEAT, SWF or WATER 
PROT. Hedges and rows of trees were most abundant 
in farms with low percentages of SWF and ANC, but 
within these farms, to fields located in ANC areas 
(Table  3, Fig. S6). Most variables related to terrain 
and soil conditions had non-significant effects for the 
majority of EFA types, with the exception of slope 
and erosion KLSR.

Discussion

In this study, we used a spatially-explicit approach to 
analyze how the farm context, the field context, and 
the terrain and soil conditions influenced the alloca-
tion of EFAs in farmland. We demonstrated that the 
farm and the field contexts, rather than the terrain 
and soil conditions, are decisive for the assignment 
of a particular EFA type to a particular field. In our 
study region, EFA types known to benefit biodiver-
sity, such as fallow land, buffer strips, and landscape 
features (Martin et al. 2019; Pe’er et al. 2022), were 
used on farms already embedded in contexts with a 
higher cover of nature conservation and non-crop 
habitats (Fig. 2). In contrast, productive EFAs such as 
catch crops or nitrogen-fixing crops were often found 
on farms where cropland dominated (Fig.  2). These 
results have important implications for conserving 
farmland biodiversity. Considering that the effective-
ness of conservation measures in agricultural areas is 
highest in landscapes with intermediate levels of land 
use heterogeneity (“intermediate landscape-complex-
ity hypothesis”, Tscharntke et al. 2012), the potential 
of EFAs to contribute to biodiversity conservation in 
farmland can be strongly moderated by their spatial 
distribution (Sutter et al. 2018; Concepción and Díaz 
2019; Concepción et al. 2020).

https://github.com/vivi-alarcon/EFAallocationinfarmland.git
https://github.com/vivi-alarcon/EFAallocationinfarmland.git
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EFAs on farms embedded in complex landscapes 
may contribute little to restoring existing biodi-
versity on this land. On the other hand, EFAs on 
farms embedded in simplified landscapes may also 

contribute little to restoring the biodiversity that 
has already been lost in these areas. The allocation 
of EFAs in an intensively used area, however, has 
the potential to increase landscape complexity, for 

Fig. 2  Model coefficients (logarithm of odd ratio) of the mul-
tinomial regression used to evaluate the drivers of EFA allo-
cation according to the EFA group (model 1). Explanatory 
variables are grouped into three categories (farm context, field 
context, soil and terrain conditions). Colored circles indicate 
p-values lower than or equal to 0.05. Farm context indicators 
(except farm area) reflected the percentage of farm area cov-
ered by: Natura 2000 designated area (NATURA (%)), land-
scape features registered as EFA (LAND FEAT (%)), small 

woody features (SWF (%)), naturally constrained areas (ANC 
(%)) or water protection areas (WATER PROT (%)). SWF indi-
cates the presence (1) or absence (0) of a small woody feature 
in a buffer of 50  m around the field. ANC indicates whether 
the field is in a naturally constrained area. WATER BODY 
indicates the presence (1) or absence (0) of a water body in a 
buffer of 50  m around the field. EROSION (KLSR) refers to 
the water erosion risk
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instance by increasing crop diversity or the number 
of non-crop elements within farm boundaries (Con-
cepción et  al. 2012). Nevertheless, EFAs should not 
be used as the only tool to conserve biodiversity in 
farmlands, as their benefits for threatened or special-
ist species depend highly on their ecological quality 
(Herzog et  al. 2017; Pfiffner et  al. 2018). Further, 
many EFAs only benefit farmland generalist species 
(Kleijn et al. 2006; Aviron et al. 2007, 2009) and need 
to be complemented with additional nature protection 
efforts or improved and tailored agri-environmen-
tal schemes in order to protect and enhance a wider 
range of biodiversity (Aviron et al. 2009).

Farm area in our study region was a determin-
ing factor only for a subset of the EFA options 
(Table  3). Fallow land and nitrogen-fixing crops 
were most often adopted by small farms, while 
hedges were most frequently used by larger farms 
(Table 3). Large farms with a higher cover of land-
scape features in their boundaries used these ele-
ments to fulfill the policy requirements. Interest-
ingly, farms that did not fulfill their EFA quota 
with landscape elements tended to allocate produc-
tive instead of non-productive EFA (Fig. 2). These 
results support previous findings on the prevalence 

of economic rather than ecological considerations 
on farmers’ decisions on greening policy allocation 
(Zinngrebe et al. 2017). Productive EFAs (e.g. catch 
crops and nitrogen-fixing crops) are mainly targeted 
to reduce soil erosion and facilitate nutrient uptake 
(Cerdà et al. 2022; Quintarelli et al. 2022) and may 
help to facilitate crop production in the same field 
on the following year (Brown et al. 2021; Wittstock 
et  al. 2022). On the other hand, the placement of 
non-productive EFAs and landscape features is not 
spatially flexible and may appear disadvantageous 
from the farmer’s point of view, given that working 
with large machinery may be more difficult if indi-
vidual trees or hedges are present at the field bound-
aries. While productive EFA options were com-
monly assigned to large, rounded fields with lower 
soil erosion hazard, non-productive EFAs were 
allocated in small, linear fields in areas considered 
disadvantaged for crop production (Fig. 2). A simi-
lar pattern was found by Paulus et  al. (2022) for 
Agri-environmental schemes allocation in our study 
region. Paulus et al. (2022) demonstrated that Agri-
environmental schemes are more often allocated in 
areas with low potential for agricultural intensifica-
tion, supporting the notion that the lack of careful 

Table 3  Effect direction of the two most frequently adopted 
EFA of each category. The plus symbol (+) indicates signifi-
cant positive effects, the minus symbol (−) indicates negative 

significant effects and ns indicates non-significant effects at the 
significance level of ≤ 0.05

Nitrogen 
Fixing

Catch crop Fallow land Buffer strips Hedges Rows of trees

Farm
context
Field
context

FARM AREA − ns − ns + ns
NATURA (%) + + − + + ns
LAND FEAT (%) − + − + + +
SWF (%) − ns ns + − −
ANC (%) ns + − − − −
WATER PROT (%) − + − + − +
FIELD AREA − + − − − −
COMPACTNESS ns + − − − −
DISTANCE + − + ns − ns
SWF ns ns − − − ns
ANC + ns ns + + +
WATER BODY ns + ns + − −

Soil and terrain
conditions

SOIL FERTILITY ns + ns ns ns ns
SLOPE − − + − ns −
SOIL MOISTURE ns + ns ns + ns
WIND EROSION ns ns ns − + ns
EROSION (KLSR) − − − ns ns +
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spatial targeting of agricultural policies may dimin-
ish their ecological contribution.

Conclusions

Farmers’ economic considerations play an essential 
role in deciding which type of EFA to choose (e.g. 
productive versus non-productive) and where to 
place it (e.g. large and rounded fields versus small, 
linear, and less fertile fields). Our results demon-
strate that the farm and the field context have a sig-
nificant impact on the spatial distribution of green-
ing measures within the farm boundaries. These 
findings are especially important for possible future 
spatial targeting of conservation and nature protec-
tion measures (including eco-schemes) on farmland. 
This relates to several measures that are spatially 
flexible, such as fallow land and buffer strips—
options that are widely recognized in expert-based 
assessments as highly valuable for biodiversity and 
ecosystem services (Pe’er et  al. 2017; Traba and 
Morales 2019).
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