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Abstract: Agricultural drought posing a significant threat to agricultural production is subject 21 

to the complex influence of ocean, terrestrial and meteorological multi-factors. Nevertheless, 22 

which factor dominating the dynamics of agricultural drought characteristics and their 23 

dynamic impact remain equivocal. To address this knowledge gap, we used ERA5 soil 24 

moisture to calculate the standardized soil moisture index (SSI) to characterize agricultural 25 

drought. The extreme gradient boosting model was then adopted to fully examine the 26 

influence of ocean, terrestrial and meteorological multi-factors on agricultural drought 27 

characteristics and their dynamics in China. Meanwhile, the shapley additive explanation 28 

values were introduced to quantify the contribution of multiple drivers to drought 29 

characteristics. Our analysis reveals that the drought frequency, severity and duration in China 30 

ranged from 5-70, 2.15-35.02 and 1.76-31.20, respectively. Drought duration is increasing and 31 

drought intensity is intensifying in southeast, north and northwest China. In addition, potential 32 

evapotranspiration is the most significant driver of drought characteristics at the basin scale. 33 

Regarding the dynamic evolution of drought characteristics, the percentages of raster points 34 

for drought duration and severity with evapotranspiration as the dominant factor are 30.7% 35 

and 32.7%, and the percentages with precipitation are 35.3% and 35.0%, respectively. 36 

Precipitation in northern regions has a positive effect on decreasing drought characteristics, 37 

whilst in southern regions, evapotranspiration dominates the dynamics in drought 38 

characteristics due to increasing vegetation transpiration. Moreover, the drought severity is 39 

exacerbated by the Atlantic Multidecadal Oscillation in the Yangtze and Pearl River basins, 40 

while the contribution of the North Atlantic Oscillation to the drought duration evolution is 41 

increasing in the Yangtze River basin. Generally, this study sheds new insights into 42 
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agricultural drought evolution and driving mechanism, which are beneficial for agricultural 43 

drought early warning and mitigation.  44 

Keywords: Agricultural drought; Drought events; Drought dynamics; Driving Factors; China 45 

1. Introduction 46 

Drought, a natural disaster caused by water scarcity, is becoming more frequent, severe, 47 

and prolonged in many parts of the world due to climate change (Felsche and Ludwig, 2021; 48 

Li et al., 2022c; Wu et al., 2021a; Xu et al., 2015). Agricultural drought is a phenomenon in 49 

which insufficient rainfall or surface water supply leads to continuous decline in soil moisture, 50 

inhibits crop production and reduces grain yield (Crow et al., 2012; Li et al., 2022b). As an 51 

important component of the regional water cycle, soil moisture is the main source of water for 52 

vegetation growth, and it is also a sensitive indicator for evaluating the development of 53 

agricultural drought, which is of great significance to the monitoring of agricultural drought 54 

(Somorowska, 2022; Wu et al., 2021b). In historical period, frequent droughts severely 55 

constrain socio-economic development, and threaten agricultural production and ecosystem 56 

security (Feng et al., 2021; Guo et al., 2023; Liu et al., 2020a; Ma et al., 2015). On the one 57 

hand, persistent soil moisture deficit can affect crop growth and lead to lower crop yields (Wei 58 

et al., 2019). For example, the annual average drought-related grain loss in China from 2000 59 

to 2020 reached 25.719 billion kg (Ministry of Water Resources, 2023), and the cumulative 60 

global grain production losses from 1983 to 2009 amounted to 166 billion U.S. dollars (Kim 61 

et al., 2019). On the other hand, soil moisture deficit can prolong drought recovery time and 62 

exacerbate the impact of drought on terrestrial ecosystems (Yao et al., 2023). In particular, 63 

from July to August in 2013, a two-month drought reduced the carbon sequestration in 64 
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southern China by 101.54 Tg C, accounting for 39-53% of the annual net carbon sink of 65 

China's land ecosystem (Yuan et al., 2016). In 2010, southwest China experienced a severe 66 

spring drought, which reduced regional annual GPP by about 65 Tg C (Li et al., 2019; Zhang 67 

et al., 2012). Moreover, drought-induced water stress was the main cause for the reduction of 68 

terrestrial carbon sinks in northern China, and the study showed that the maximum reduction 69 

of GPP in the region was 0.09 Pg C yr-1 in 1999-2011 compared to 1982-1998 (Yuan et al., 70 

2014). Therefore, exploring the dynamic evolution of agricultural drought characteristics and 71 

the driving patterns is crucial for determining future development directions and adopting 72 

drought mitigation measures to cope with climate change. 73 

In recent years, many studies have investigated the drivers of drought and their impacts 74 

(Deng et al., 2021; Ma et al., 2020; Qiu et al., 2017). For example, Deng et al. (2021) used a 75 

stepwise regression approach to identify the drivers of drought and showed that precipitation 76 

causes an extremely severe deficit in terrestrial water storage in the Huang-Huai-Hai Plain. In 77 

addition, precipitation deficits have been proven to be a major cause of multi-year agricultural 78 

droughts in California, and warming will also exacerbate the likelihood of extreme droughts 79 

(Luo et al., 2017; Williams et al., 2015).The global sensitivity of SOBOL was used to assess 80 

the sensitivity of precipitation and potential evapotranspiration to the frequency of drought 81 

events, and it was found that the drought events frequency dominated by potential 82 

evapotranspiration decreases from southeast to northwest in China (Ma et al., 2020). In 83 

addition, Zhang et al. (2018) evaluated the effects of climate change and human activities on 84 

hydrological drought events based on different hydrological models. The results found that 85 

the dominant factor of hydrological drought severity was precipitation, followed by potential 86 



4 

evapotranspiration and human activities in the middle reaches of the Yangtze River. Moreover, 87 

it is worth noting that climate extremes have been shown to be related to circulation factors in 88 

China and globally. It was found that agricultural drought represented by soil moisture was 89 

influenced by the El Niño-Southern Oscillation (ENSO) (Zhang et al., 2021b), and the 90 

influence of the North Atlantic Oscillation (NAO) on dry-heat complex events was mainly 91 

concentrated in northwest, northeast and east China (Wu et al., 2021c). These studies lay the 92 

groundwork for understanding the driving mechanisms of agricultural drought. However, 93 

previous studies focused on the relationship between agricultural drought and meteorological 94 

factors or circulation factors, while the analysis of the drivers of agricultural drought 95 

characteristics considering multiple factors (marine, terrestrial and meteorology) is quite 96 

limited. Due to the uncertainty of climate change caused by global warming, which factor 97 

dominates the agricultural drought dynamics and the dynamic impact of driving factors on 98 

drought characteristics are still open questions. 99 

Recently, the application of machine learning methods to drought monitoring, prediction, 100 

and attribution has gained increasing recognition. Current studies using machine learning 101 

methods to assess drought in China focused on developing a comprehensive agricultural 102 

drought index for agricultural drought monitoring (Cheng et al., 2023; Liu et al., 2020b), 103 

building disaster vulnerability models to assess the potential impact of crop disaster risk (Li et 104 

al., 2021), constructing drought prediction models (Felsche and Ludwig, 2021; Li et al., 2020), 105 

and analyzing the drivers of agricultural drought-affected area and drought-suffering area 106 

(Deng et al., 2022). In general, previous studies have explored the application of machine 107 

learning to agricultural drought and provided valuable insights for drought impact. However, 108 
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few studies have applied machine learning to the identification of the drivers of the 109 

agricultural drought characteristics dynamics in raster data from drought event perspective. In 110 

the context of global warming, the dynamic response of agricultural drought characteristics 111 

caused by soil moisture stress to multiple factors is not revealed. Furthermore, how different 112 

factors affect the spatial pattern of agricultural drought characteristics dynamics is also a 113 

question that needs to be explored. Studying the changes in drivers affecting agricultural 114 

drought characteristics can help policy makers to adopt drought mitigation measures to reduce 115 

the adverse effects of drought. Recent studies found that tree-based machine learning models, 116 

such as extreme gradient boosting (XGB), are popular non-parametric models for attribution 117 

analysis (Ebrahimi-Khusfi et al., 2022; Felsche and Ludwig, 2021; Li et al., 2022a; Lundberg 118 

et al., 2020). To better explore the mechanisms of agricultural drought evolution and 119 

investigate the influencing factors and their relative contributions of drought, we used the 120 

XGB algorithm to identify the response of different factors to drought characteristics. On this 121 

basis, the contribution of individual factors to drought characteristics was determined by 122 

calculating shapley additive explanation (SHAP) values (Lundberg and Lee, 2017), which can 123 

improve the interpretability of the XGB model and increase our knowledge of the 124 

contribution of variables. Therefore, we applied an interpretable machine learning framework 125 

to identify the potential mechanisms affecting the dynamics of drought characteristics. In 126 

summary, the main objectives of this study are: 1) to identify regional drought characteristics 127 

in China; 2) to assess the main factors of basin-scale drought characteristics; 3) to determine 128 

the contribution of influencing factors to the dynamic evolution of drought characteristics and 129 

their dynamic impacts.  130 
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2. Study area and data  131 

2.1. Study area 132 

China has a vast territory and many rivers. The terrain is high in the west and low in the 133 

east, with a terraced topographic distribution. In addition, the spatiotemporal distribution of 134 

precipitation is uneven. Precipitation is mostly concentrated in the summer and autumn, while 135 

precipitation decreases from the southeast coast to the northwest inland spatially. According to 136 

the Institute of Geographical Sciences and Resources of the Chinese Academy of Sciences, 137 

the basins are divided into the following nine basin areas (Fig.1), including Songhua and 138 

Liaohe River Basin (R1), Haihe River Basin (R2), Huaihe River Basin (R3), Yellow River 139 

Basin (R4), Yangtze River Basin (R5), Pearl River Basin (R6), Southeast Basin (R7), 140 

Southwest Basin (R8) and Continental Basin (R9). The hydrological characteristics of the 141 

basins are shown in Table 1. 142 

----------------------------------------------------- 143 

Place Figure 1 here. 144 

----------------------------------------------------- 145 

----------------------------------------------------- 146 

Place Table 1 here. 147 

----------------------------------------------------- 148 

2.2. Data 149 

Monthly soil moisture (SM) data for 1980-2021 is obtained from the ERA5 reanalysis 150 

dataset provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) 151 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=152 

form). Monthly precipitation (P), temperature (T), and vapor pressure (VAP) are obtained 153 

from the Climatic Research Unit (CRU) at CRU TS v.4.06 154 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
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(https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/), and VPD is calculated from T and VAP. 155 

Monthly actual evapotranspiration (E), potential evapotranspiration (Ep) and transpiration (Et) 156 

are available at the Global Land Evaporation Amsterdam Model (GLEAM v3.6a, 157 

https://www.gleam.eu/). LAI data is obtained from ERA5. The DEM data and soil texture data 158 

from the Resource and Environment Science and Data Center are used in the study 159 

(https://www.resdc.cn/Default.aspx). The Circulation factor used in this study come from the 160 

Physical Sciences Laboratory (https://www.psl.noaa.gov/data/climateindices/list/). Finally, the 161 

SM, E, Ep and Et datasets are resampled to 0.5◦ × 0.5◦ spatial resolution using the mean 162 

aggregation method. 163 

3. Methods 164 

3.1. Drought index calculation and drought event identification 165 

3.1.1. Standardized soil moisture index 166 

Based on the ERA5 soil moisture data from 1980-2021, the standardized soil moisture 167 

index (SSI) was calculated. The SSI was calculated with reference to the calculation of the 168 

standardized precipitation index (SPI) (McKee et al., 1993). First, appropriate distribution 169 

functions were selected to fit the soil moisture sequence of each raster in China. Six 170 

commonly used probability density functions were selected to fit the soil moisture series, 171 

which were gamma distribution, exponential distribution, weibull distribution, generalized 172 

extreme value distribution, log-normal distribution and normal distribution. By 173 

Kolmogorov-Smirnov test (K-S test) and root mean square error (RMSE), the distribution 174 

function that best conforms to the empirical cumulative distribution probability function curve 175 

was selected as the optimal distribution function for each raster. Then, the SSI was obtained 176 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/
https://www.psl.noaa.gov/data/climateindices/list/
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by normalizing the cumulative probability of the optimal distribution function. However, at 177 

some raster points, the above parametric distribution functions may not be suitable. Therefore, 178 

for these raster points, the Gringorten plotting position algorithm was used to calculate the 179 

marginal probability of soil moisture to obtain a nonparametric normalized index instead of 180 

the empirical probability distribution (Farahmand and AghaKouchak, 2015; Gringorten, 181 

1963). 182 

3.1.2. Drought event identification 183 

The run theory is a method to extract drought events by setting relevant thresholds based 184 

on the characteristics of drought index on the time sequence (Yevjevich, 1967). Since a large 185 

number of mild droughts in the sample may have an impact on the statistical features (Fleig et 186 

al., 2006). Based on this, for the calculated SSI series, we used three-threshold optimized run 187 

theory to identify agricultural drought events in China, and then drought events were 188 

eliminated and merged to obtain drought characteristics (drought frequency, drought duration 189 

and drought severity) (He et al., 2016; Shen et al., 2016; Shi et al., 2023; Wang et al., 2019). 190 

The specific process of drought event identification using the threshold method is as follows:  191 

1) It is initially identified as a drought event when SSI is less than -0.5 (blue area in Fig. 192 

2), as shown in Fig. 2 there are five droughts (a-e).   193 

2) On the basis of 1), small drought events are eliminated, i.e. for drought events with 194 

drought duration of only 1 month, if SSI > -1.0, it is classified as no drought occurred in this 195 

month (Fig. 2a), otherwise it is considered that an independent drought occurred (Fig. 2b). 196 

3) For two adjacent drought events with an interval of 1 month (Fig. 2d and 2e), if the 197 

interval month SSI < 0, the two adjacent drought events are merged into one drought event, 198 
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otherwise, they are two independent drought events. The drought duration is the sum of the 199 

two drought duration plus 1, and the drought severity is the sum of the severity of the two 200 

drought events. 201 

----------------------------------------------------- 202 

Place Figure 2 here. 203 

----------------------------------------------------- 204 

3.1.3. Trend analysis 205 

The Mann-Kendall (MK) trend test is a nonparametric test that distinguishes trends in 206 

time sequences (Mann, 1945). It has the advantage that the sample series do not need to 207 

follow a specific distribution and is often used to test the trend of variable time series (Guo et 208 

al., 2021; Yue et al., 2018). For time series xi, the specific principle of MK trend test is as 209 

follows:  210 
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where n is the data length; sgn is the sign function.   213 

Then the variance is: 214 
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The standard normalization statistic Z could be expressed as:  216 
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 217 

when Z > 0, the sequence has an upward trend, otherwise it has a downward trend. The 218 

significance level is set at 0.05. When |Z| ≥ 1.96, it represents that the trend of the series 219 
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passes the 95% significance test and the trend is significant. Conversely, the trend of the series 220 

is not significant.  221 

3.2. Vapor pressure deficit 222 

VPD is the difference between the saturation vapor pressure and the actual vapor 223 

pressure. In this study, the saturation vapor pressure (SVP) is first calculated using the 224 

Goff-Gratch formula, and then the actual vapor pressure (VAP) is subtracted to obtain the 225 

VPD. The Goff-Gratch formula is the saturation vapor pressure calculation formula 226 

recommended by the World Meteorological Organization in 1966. The VPD is calculated as: 227 

 VAPSVPVPD   (5) 228 

           7
/1627316

5
116273/4

321 11010116273/lg/162731lg(SVP) ccc..TcT..c T..c..Tc  
 (6) 229 

where c1=10.79574, c2=-5.02800, c3=1.50475 × 10-4, c4=-8.29690, c5=0.42873 × 10-3, 230 

c6=4.76955, c7=0.78614, and T=273.15+t, t is the Celsius temperature (℃). 231 

3.3. Drivers of the drought characteristics dynamics  232 

Based on the identification of drought characteristics, the XGB algorithm and SHAP 233 

values were combined to quantify the effects of marine, terrestrial and meteorological drivers 234 

on drought duration and drought severity (factors in Table 2).  235 

----------------------------------------------------- 236 

Place Table 2 here. 237 

----------------------------------------------------- 238 

The XGB uses a gradient boosting structure and has the advantage of parallel tree 239 

boosting (Chen and Guestrin, 2016). It integrates weak classifiers into a strong classifier to 240 

obtain a better regression performance than a single model. By introducing regular items to 241 

control the complexity of the model, it can prevent model overfitting and improve modeling 242 
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performance (Fan et al., 2018; Shin et al., 2019). Moreover, due to the lack of transparency 243 

and interpretability of traditional machine learning methods, the visibility of feature 244 

importance is poor. Therefore, determining the contribution of influencing factors to target 245 

variables changes and improving the interpretability of models are important issues in the 246 

modeling process of machine learning algorithms (Gilpin et al., 2018). Recently, the 247 

emergence of interpretable methods has improved the understanding of learning model or 248 

predictions (Deng et al., 2022; Wang et al., 2022b). The SHAP value is one such interpretable 249 

approach that quantifies feature importance, determines the contribution of drivers and 250 

elucidates the dependencies between input features and output targets (Lundberg and Lee, 251 

2017). Therefore, in this study, the XGB algorithm was used to construct regression 252 

relationships between drought characteristics and factors, and Grid Search method was used 253 

to determine the optimal combination of parameters. Then a model based on the optimized 254 

parameters was built to identify the response of factors to drought characteristics, and finally 255 

SHAP value was used to quantify the magnitude of the effect of each factor on drought 256 

characteristics.  257 

4. Results 258 

4.1. Spatial and temporal evolution of agricultural drought in China 259 

The time series curves of monthly SSI for nine basins in China from 1980 to 2021 are 260 

shown in Fig. 3. It can be seen that the regional average SSI in China ranges from -0.65 to 261 

0.80, with the smallest fluctuation range of -1.03 - 0.71 in the continental basin and the largest 262 

fluctuation range of -2.16 - 2.23 in the Huaihe River basin among the nine major basins. The 263 

statistical monthly SSI trends from 1980 to 2021 are shown in Fig. 4. Most of the northwest 264 
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regions, especially the Qinghai-Tibet Plateau region, show an increasing trend of SSI, 265 

accompanied by weakening trend of agricultural drought. In contrast, SSI tends to decrease in 266 

northeastern China, Yellow and Huaihua regions and southeastern China. Due to the influence 267 

of summer precipitation, there is a trend of becoming wet in parts of the middle and lower 268 

reaches of the Yangtze River from May to July. 269 

----------------------------------------------------- 270 

Place Figure 3 here. 271 

----------------------------------------------------- 272 

----------------------------------------------------- 273 

Place Figure 4 here. 274 

----------------------------------------------------- 275 

4.2. Agricultural drought characteristics and their variations 276 

For each raster, drought events were extracted according to the run theory, and then the 277 

mean values of drought characteristics under all drought events were calculated. As shown in 278 

Fig. 5, the frequency of drought in China ranges from 5 - 70, and the regions with higher 279 

frequency are mainly concentrated in the southern region (R5-R8). The drought severity and 280 

drought duration range from 2.15 - 35.02 and 1.76 - 31.20, respectively. Spatially, drought 281 

severity is greater and has a longer duration in the northwest (R9) and the western northeast 282 

(R1). In summary, the drought duration and drought severity in northern China are higher than 283 

those in other regions, but southern China has a high frequency of droughts and will face a 284 

higher risk of agricultural drought (Fig. 5g, h). 285 

----------------------------------------------------- 286 

Place Figure 5 here. 287 

----------------------------------------------------- 288 

4.3. Driving factors of drought characteristics 289 
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4.3.1. Dominant factors of basin-scale drought characteristics 290 

We used the XGB model to establish a model between drought characteristics and 291 

driving factors, and then used the Grid Search method to find the optimal parameters of the 292 

XGB model for each watershed (Table 3). Based on optimized parameters, a model was 293 

established to identify the response of different drivers to drought characteristics at the 294 

watershed scale, and then the feature importance was calculated based on the model and 295 

quantified as the mean absolute SHAP value of each factor. Fig. 6 shows the influence of the 296 

drivers on drought severity and drought duration in nine basins of China. The results indicate 297 

that the dominant drivers of drought characteristics of agricultural drought events in China 298 

vary among basins, with potential evapotranspiration (Ep) dominating in the majority of 299 

regions. For the basin scale, the influence of meteorological factors plays the largest role, 300 

followed by the impact of vegetation on the drought duration and severity. Compared to the 301 

influence of meteorological and vegetation factors on drought, the influence of circulation 302 

factors is weak, but cannot be ignored (Forootan et al., 2019; Wang et al., 2022a). As can be 303 

seen from Fig. 6, it was found that the closer the watershed to the ocean, the more prominent 304 

the influence of circulation factors, such as the R6 and R7 watersheds. 305 

----------------------------------------------------- 306 

Place Table 3 here. 307 

----------------------------------------------------- 308 

----------------------------------------------------- 309 

Place Figure 6 here. 310 

----------------------------------------------------- 311 

From the importance scores of drivers on drought severity (Table 4), it can be seen that 312 

the SHAP value of Ep spans 1.7, from the lowest value in the R6 (0.13) to the highest value in 313 
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the R9 (1.83). The influence of vegetation on drought severity is also significant in R4 and R8, 314 

where droughts are frequent and vegetation vulnerability is high. Soil moisture is a direct 315 

source of water available to vegetation. The promotion of ecological projects such as 316 

reforestation increases the amount of water dissipated by vegetation, which will further 317 

exacerbate soil water deficit and thus affect the severity of drought. As can be seen from the 318 

impact of the driving factors on the drought duration (Table 5), the SHAP values of Ep range 319 

from 0.13 to 1.68. In addition to Ep, precipitation (P) is the second most important factor 320 

affecting the drought duration in the R1 and R2, while VPD is the secondary factor affecting 321 

duration in R9. In the R1, R2, R5 and R6 basins, Pacific Decadal Oscillation (PDO) has a 322 

greater impact on drought duration than other circulation factors, while Nino3.4 plays a 323 

greater role in the R4 and the R7. 324 

----------------------------------------------------- 325 

Place Table 4 here. 326 

----------------------------------------------------- 327 

----------------------------------------------------- 328 

Place Table 5 here. 329 

----------------------------------------------------- 330 

4.3.2. Grid-based dominant factors on drought characteristic evolution and their dynamics 331 

To investigate the causes of the dynamics of drought characteristics, variable importance 332 

was calculated for each raster based on the XGB model and SHAP values to assess the 333 

influence of marine, terrestrial, and meteorological factors on drought characteristics, where 334 

the maximum score is identified as the dominant factor in the drought characteristics 335 

dynamics (Fig. 7). Fig. 7 shows that the dynamics of drought characteristics in southern China 336 

is mainly attributed to the actual evapotranspiration (E), while the dynamics of drought 337 



15 

characteristics in the north is mainly dominated by P. Among them, the percentages of drought 338 

duration and severity with E as the dominant factor are 30.7% and 32.7%, respectively, while 339 

the proportion of P as the dominant factor in drought duration and severity are 35.3% and 340 

35.0%, respectively. In addition, for the drought duration dynamics, the raster points with 341 

VPD as the dominant factor are mainly concentrated in the northern part of R1 and the 342 

western part of R4 and R5. The area of VPD influence on drought severity is mainly 343 

distributed in the western part of R4 and R5. 344 

----------------------------------------------------- 345 

Place Figure 7 here. 346 

----------------------------------------------------- 347 

SHAP values provide both global and local interpretability for machine learning models 348 

by providing feature importance values. Therefore, for each raster point, the SHAP values of 349 

individual factors in each drought event were calculated (Fig. 8). The temporal variation of 350 

SHAP values was used to evaluate the changing influence of each factor on drought 351 

characteristics. An increasing trend in SHAP values indicates that the contribution of the 352 

factor to drought characteristics is increasing, while a decreasing trend suggests that the factor 353 

is weakening the drought characteristics. As can be seen from Fig. 8 and Fig. 9, the decreased 354 

precipitation has an increasing influence on the dynamic evolution of drought severity at the 355 

majority of raster points in southern China basins, especially in the Pearl River basin (R6). 356 

While the contribution of water demand, such as potential evapotranspiration, VPD and 357 

vegetation transpiration, to drought dynamics is gradually increasing. Consequently, the 358 

decrease in water supply and the increase in water demand depletion further exacerbate the 359 

increased drought risk in southern China. Moreover, in the Yangtze and Pearl River basins 360 
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(R5 and R6), Atlantic Multidecadal Oscillation (AMO) exacerbates the severity of drought. 361 

And the rising trend of North Atlantic Oscillation (NAO) is also much more concentrated in 362 

the south, leading to a larger dynamic contribution to the drought duration. Therefore, future 363 

research should focus on the evolution of droughts in the southern basins of China. 364 

----------------------------------------------------- 365 

Place Figure 8 here. 366 

----------------------------------------------------- 367 

----------------------------------------------------- 368 

Place Figure 9 here. 369 

----------------------------------------------------- 370 

5. Discussion 371 

In the context of climate change, our findings show that agricultural drought events in 372 

northern China are low in frequency but high in severity and long in duration. In contrast, the 373 

southern region experiences high frequency, short duration and weak severity of droughts. 374 

Also, there is a trend of increasing duration and severity in this region, indicating an increased 375 

agricultural risk due to drought in this area. These results are consistent with previous studies 376 

that have found that droughts become more frequent, with a progressively larger impact area 377 

and extremely prominent extreme weather events under a warming climate (Ayantobo et al., 378 

2017; He et al., 2016; Ma et al., 2020; Zhou et al., 2021). 379 

We also investigated the spatial distribution and dynamic evolution of agricultural 380 

drought characteristics in China, and then used the XGB model and SHAP values to assess the 381 

contributions of marine, terrestrial, and meteorological factors to the duration and severity of 382 

agricultural drought. Regarding the dynamic evolution of drought characteristics, there are 383 

regional differences in the drivers of the duration and severity of agricultural droughts in 384 
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China. In the same basin, droughts would exhibit different conditions depending on 385 

meteorological factors, groundwater storage and underlying surface conditions (Han et al., 386 

2020; Yang et al., 2022). This is because the frequency of droughts occurring in each raster is 387 

different, and the corresponding drought duration and severity are different, so there is a slight 388 

difference in the relative importance derived from the modeling of each raster. However, the 389 

dominant factor still has a certain spatial distribution pattern in the watershed. It is found that 390 

drought characteristics are mainly influenced by P in the northern China, while E is the main 391 

driver for the evolution of drought characteristics in the southern region. To further investigate 392 

the influence of dominant factors on drought characteristics, we analyzed the inter-annual 393 

trend of annual precipitation. As seen in Fig. 9 and Fig. 5(g, h), the annual precipitation at the 394 

raster points where drought severity and drought duration decreased in the northern China 395 

showed an increasing trend. This indicates that the increased precipitation in the northern 396 

China alleviates the drought and mitigates the risk of agricultural drought. It is similar to the 397 

finding of Huang et al. (2015) that the frequency of extreme droughts decreases with 398 

increasing precipitation in northwest China. 399 

As known in previous studies, the frequency of drought events dominated by 400 

evapotranspiration decreases from southeast to northwest in China, and the frequency of 401 

drought events by Ep in southeast China is greater than that of drought events dominated by 402 

precipitation deficit (Ma et al., 2020). In terms of dominant factors, the dynamics of drought 403 

characteristics in the southern region are mostly influenced by E. To clarify the mechanisms 404 

by which drought characteristics are influenced by E, we explored the relationship between E 405 

and vegetation transpiration (Et). It is found that Et is closely related to E with high 406 
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correlation (Fig. 10a), and vegetation transpiration significantly increases in most of the 407 

regions (Fig. 10b), suggesting that vegetation transpiration has an important role in the 408 

intensification of agricultural drought in the southern China. Similar findings of vegetation 409 

significantly increasing evaporative water consumption and exacerbating the risk of 410 

agricultural drought are also confirmed in the Loess Plateau region (Han et al., 2021; Shao et 411 

al., 2019). Moreover, the second and third factors in the ranking of importance are mostly Ep 412 

and VPD in southern China (Fig. 7), indicating that the atmospheric evaporation demand due 413 

to temperature rise also has a greater impact on drought in this region. The significant increase 414 

of Ep and VPD in Fig.10 (c-d) also confirms the finding that the atmospheric evaporation 415 

demand increases in this region. Wang et al. (2022c) found that the contribution of increased 416 

terrestrial evapotranspiration is greater in humid areas, mainly because humid areas could 417 

provide sufficient water supply to meet atmospheric evaporation demands and vegetation 418 

physiological activities. Increased evapotranspiration indicates more surface water loss and 419 

less soil moisture, which could exacerbate drought stress in terrestrial ecosystems, affecting 420 

water resources, climate, and agriculture (Wang et al., 2022c; Zhang et al., 2021a). In 421 

summary, water shortage caused by increased atmospheric evaporative demand and water 422 

depletion caused by vegetation transpiration jointly contribute to the exacerbation of 423 

agricultural drought in the southern region. Our study improves the understanding of the 424 

response of the evolution of agricultural drought characteristics to the driving factors and 425 

provides a scientific basis for drought adaptation strategies. 426 

----------------------------------------------------- 427 

Place Figure 10 here. 428 

----------------------------------------------------- 429 
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In this study, machine learning with interpretable methods is used to obtain the drivers of 430 

the evolution of agricultural drought characteristics in China. Machine learning has the 431 

characteristics of nonlinearity, high estimation accuracy, and strong generalization ability, 432 

which can effectively process large amounts of data. However, it should be noted that 433 

machine learning methods cannot directly quantify the internal mechanisms of model 434 

behavior. It is a data-driven model subject to data and algorithm constraints, which may 435 

introduce some uncertainty to the quantification of the contribution of drivers. In addition, the 436 

method of parameter optimization in model construction is also one of the sources of 437 

uncertainty. Another deficiency of the attribution analysis is the insufficient consideration of 438 

human activities (e.g., CO2 emissions, irrigation, land use change, etc.), which needs to be 439 

enhanced in subsequent studies. Despite uncertainties and limitations, the XGB model can 440 

still estimate the impact of drivers on drought characteristics. It improves the understanding of 441 

machine learning models by combining with interpretability methods (SHAP), making it 442 

easier to quantify feature importance and clarify dependencies between input features and 443 

output targets. Therefore, to reduce uncertainty, future studies also need to evaluate the effects 444 

of variables on changes in agricultural drought characteristics under multiple models such as 445 

RNNs and LSTM models to obtain more reliable attribution results. 446 

6. Conclusion 447 

In this study, we applied an interpretable machine learning framework to identify the 448 

potential mechanisms affecting the dynamics of drought characteristics. Our findings showed 449 

that agricultural drought events in northern China have low frequency, high severity and long 450 

duration in the context of climate change, while those have the opposite characteristics in 451 

southern China. In addition, there is an increasing trend in drought duration and severity in 452 
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southeast, north, and northwest China. At the basin-scale, evapotranspiration is the most 453 

influential driver of drought characteristics. Moreover, we identified regional differences in 454 

the drivers of drought dynamics. The percentages of drought duration and severity with E as 455 

the dominant factor were 30.7% and 32.7%, and 35.3% and 35.0% with P as the dominant 456 

factor, respectively. Precipitation in northern China positively contributes to reducing drought 457 

duration and intensity, while water scarcity caused by increased atmospheric evaporation 458 

demand and water depletion due to vegetation transpiration led to the intensification of 459 

agricultural drought in southern China. Furthermore, the contributions of AMO and NAO to 460 

drought characteristics are gradually increasing. Our study explores the dynamics and driving 461 

patterns of agricultural drought characteristics and improves the understanding of the 462 

evolution of agricultural drought characteristics in response to drivers, which are important 463 

for developing effective drought mitigation measures and adapting to climate change. 464 
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Table 1. Nine basins of China   

Codes Name 
Areas 

(104km2) 
Average annual soil 
moisture (m3·m-3) 

Average annual 
precipitation (mm) 

R1 Songhua and Liaohe River Basin 124 0.938 538 
R2 Haihe River Basin 32 0.777 520 
R3 Huaihe River Basin 32 0.910 874 
R4 Yellow River Basin 80 0.897 479 
R5 Yangtze River Basin 180 1.178 1060 
R6 Pearl River Basin 57 1.172 1539 
R7 Southeast Basin 24 1.229 1736 
R8 Southwest Basin 85 1.078 747 
R9 Continental Basin 334 0.548 166 

 
 
 
 
 
Table 2. Drivers in the study 

Categories Drivers Symbols 

Meteorological 
factors 

Potential evapotranspiration Ep 
Actual evapotranspiration E 

Precipitation P 
Vapour pressure deficit VPD 

Aridity index AI 

Terrestrial 
factors 

Vegetation leaf area index Laihv, Lailv 
Digital elevation model dem 

Clay content  clay 
Sand content  sand 
Silt content  silt 

Circulation 
factors 

Correlation between precipitation and 
circulation factors  

P_AMO, P_AO, P_NAO, 
P_Nino, P_PDO, P_SOI 

Correlation between temperature and 
circulation factors 

T_AMO, T_AO, T_NAO, 
T_Nino, T_PDO, T_SOI 
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Table 3. Optimal parameters of the XGB model 

  
R1 R2 R3 R4 R5 R6 R7 R8 R9 

colsample_bytree 
Duration 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.9 0.7 
Severity 0.6 0.8 0.7 0.7 0.9 0.8 0.7 0.9 0.9 

learning_rate 
Duration 0.10 0.10 0.15 0.15 0.10 0.05 0.15 0.05 0.10 
Severity 0.05 0.10 0.05 0.10 0.15 0.10 0.05 0.05 0.15 

max_depth 
Duration 3 3 4 3 4 3 3 3 3 
Severity 4 7 3 3 3 3 3 3 4 

n_estimators 
Duration 500 500 500 500 500 500 300 500 500 
Severity 500 200 500 400 500 400 500 500 500 

subsample 
Duration 0.6 0.8 0.6 0.6 0.6 0.6 0.7 0.6 0.9 
Severity 0.6 0.7 0.8 0.6 0.6 0.6 0.6 0.6 0.8 

R2 
Duration 0.95 0.83 0.79 0.93 0.91 0.82 0.90 0.93 0.92 
Severity 0.93 0.83 0.88 0.89 0.92 0.78 0.88 0.91 0.89 

RMSE 
Duration 0.37 0.52 0.31 0.31 0.29 0.19 0.14 0.48 0.78 
Severity 0.49 0.55 0.28 0.40 0.30 0.23 0.17 0.62 1.04 

 
 



 
 
Table 4. Importance of driving factors on drought severity 

 
 
 

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

Ep 0.858 Ep 0.636 Ep 0.354 Ep 0.806 Ep 0.227 Ep 0.132 Ep 0.132 AI 0.621 Ep 1.834

E 0.324 dem 0.256 P_Nino 0.189 Lailv 0.287 E 0.194 E 0.129 E 0.104 Laihv 0.401 VPD 0.401

P 0.222 P 0.164 P_AO 0.146 P 0.111 Lailv 0.140 P 0.099 P 0.060 Ep 0.283 P 0.395

AI 0.128 VPD 0.075 AI 0.060 dem 0.087 P 0.126 P_PDO 0.058 P_Nino 0.045 T_NAO 0.139 Lailv 0.352

P_AMO 0.106 Lailv 0.055 P 0.057 E 0.078 Laihv 0.126 P_NAO 0.051 T_SOI 0.023 Lailv 0.121 T_PDO 0.285

P_AO 0.093 P_PDO 0.041 VPD 0.046 AI 0.074 P_SOI 0.125 dem 0.040 T_AO 0.020 VPD 0.095 T_AMO 0.237

T_NAO 0.067 E 0.028 dem 0.036 T_AO 0.058 T_PDO 0.112 T_AMO 0.035 P_AMO 0.019 dem 0.093 T_NAO 0.234

P_NAO 0.066 clay 0.022 T_NAO 0.028 P_PDO 0.045 P_Nino 0.102 T_AO 0.029 Lailv 0.019 P 0.080 T_AO 0.231

T_PDO 0.063 AI 0.021 E 0.025 P_NAO 0.043 VPD 0.066 P_AO 0.028 Laihv 0.017 T_Nino 0.071 dem 0.149

VPD 0.056 Laihv 0.020 T_AO 0.021 Laihv 0.041 T_AO 0.046 P_Nino 0.026 T_NAO 0.016 E 0.067 T_Nino 0.141

T_Nino 0.048 P_Nino 0.017 Lailv 0.020 P_Nino 0.039 P_PDO 0.044 Laihv 0.021 slit 0.013 T_SOI 0.061 P_Nino 0.107

T_AO 0.045 P_AO 0.016 slit 0.020 T_AMO 0.037 T_AMO 0.038 Lailv 0.020 P_SOI 0.011 T_AMO 0.057 E 0.093

Laihv 0.043 P_AMO 0.013 T_AMO 0.018 P_AO 0.032 T_Nino 0.032 T_NAO 0.018 dem 0.011 P_AMO 0.057 P_SOI 0.090

T_AMO 0.042 P_NAO 0.012 T_Nino 0.015 T_Nino 0.028 P_AO 0.025 T_SOI 0.017 P_PDO 0.010 P_NAO 0.055 T_SOI 0.081

Lailv 0.041 slit 0.010 T_PDO 0.015 T_NAO 0.025 dem 0.024 T_Nino 0.016 P_AO 0.010 P_PDO 0.051 sand 0.077

dem 0.033 P_SOI 0.009 P_SOI 0.013 clay 0.022 AI 0.024 P_SOI 0.015 T_PDO 0.010 P_AO 0.039 slit 0.076

P_SOI 0.032 T_Nino 0.009 clay 0.012 P_AMO 0.021 T_SOI 0.021 AI 0.013 VPD 0.010 T_AO 0.036 P_AMO 0.074

P_Nino 0.026 T_PDO 0.007 P_PDO 0.010 T_SOI 0.018 P_AMO 0.021 VPD 0.012 clay 0.008 P_Nino 0.025 P_NAO 0.069

T_SOI 0.025 T_AO 0.007 P_NAO 0.010 T_PDO 0.017 T_NAO 0.021 P_AMO 0.010 T_Nino 0.006 T_PDO 0.023 P_AO 0.059

P_PDO 0.023 T_SOI 0.006 Laihv 0.010 P_SOI 0.015 P_NAO 0.021 T_PDO 0.009 P_NAO 0.006 P_SOI 0.016 P_PDO 0.052

slit 0.014 T_NAO 0.005 sand 0.008 VPD 0.015 slit 0.019 slit 0.009 T_AMO 0.005 slit 0.010 AI 0.049

sand 0.012 sand 0.003 P_AMO 0.008 sand 0.010 clay 0.007 clay 0.006 AI 0.005 clay 0.010 clay 0.030

clay 0.011 T_AMO 0.003 T_SOI 0.004 slit 0.007 sand 0.006 sand 0.004 sand 0.001 sand 0.009 Laihv 0.008
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Table 5. Importance of driving factors on drought duration 

 
 

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

factor shap
value

Ep 1.000 Ep 0.593 Ep 0.398 Ep 0.630 Ep 0.222 Ep 0.127 Ep 0.139 AI 0.590 Ep 1.680

P 0.292 P 0.147 P_Nino 0.138 Lailv 0.229 E 0.156 E 0.111 E 0.089 Laihv 0.365 VPD 0.386

AI 0.254 dem 0.146 P_AO 0.109 AI 0.217 P 0.142 P 0.108 P 0.081 Ep 0.275 P 0.327

T_PDO 0.142 VPD 0.086 VPD 0.058 E 0.133 T_PDO 0.136 P_PDO 0.050 P_Nino 0.057 T_NAO 0.152 Lailv 0.293

VPD 0.110 P_PDO 0.070 P 0.046 P 0.127 Lailv 0.125 T_AO 0.046 P_AMO 0.029 VPD 0.100 T_PDO 0.251

E 0.094 Lailv 0.061 Lailv 0.031 dem 0.086 Laihv 0.101 T_NAO 0.027 P_PDO 0.023 P 0.099 T_AMO 0.216

P_AMO 0.077 E 0.034 AI 0.026 P_Nino 0.066 P_Nino 0.079 P_Nino 0.026 P_SOI 0.019 Lailv 0.097 T_NAO 0.203

Laihv 0.068 Laihv 0.033 P_AMO 0.025 T_Nino 0.047 VPD 0.062 P_AO 0.025 T_AMO 0.017 T_Nino 0.084 T_AO 0.139

P_AO 0.051 AI 0.031 dem 0.023 T_SOI 0.043 P_SOI 0.056 P_NAO 0.024 T_SOI 0.015 P_AMO 0.071 dem 0.122

Lailv 0.046 P_AMO 0.029 E 0.023 VPD 0.042 T_AO 0.051 T_AMO 0.023 Lailv 0.012 dem 0.068 T_Nino 0.109

T_AMO 0.045 slit 0.025 clay 0.020 Laihv 0.042 P_PDO 0.045 dem 0.021 T_PDO 0.012 P_PDO 0.067 P_SOI 0.099

T_SOI 0.042 P_Nino 0.022 T_AMO 0.017 T_NAO 0.035 AI 0.031 Laihv 0.014 dem 0.011 E 0.054 slit 0.081

T_Nino 0.041 P_AO 0.018 sand 0.017 T_AMO 0.034 P_AO 0.026 T_Nino 0.013 P_AO 0.011 T_SOI 0.048 T_SOI 0.077

T_NAO 0.040 T_AO 0.017 T_Nino 0.014 P_AMO 0.032 T_AMO 0.025 AI 0.012 VPD 0.009 P_NAO 0.045 E 0.074

dem 0.035 T_Nino 0.017 slit 0.014 P_NAO 0.029 T_Nino 0.024 Lailv 0.011 AI 0.008 P_AO 0.039 P_AMO 0.072

P_NAO 0.028 P_NAO 0.015 T_PDO 0.012 P_PDO 0.028 dem 0.024 VPD 0.011 T_AO 0.007 T_AMO 0.038 P_AO 0.063

P_SOI 0.021 sand 0.013 P_PDO 0.010 P_AO 0.026 T_SOI 0.023 P_SOI 0.010 T_NAO 0.006 T_AO 0.035 P_NAO 0.056

T_AO 0.020 P_SOI 0.013 Laihv 0.010 P_SOI 0.022 P_AMO 0.020 T_PDO 0.008 Laihv 0.006 T_PDO 0.034 sand 0.053

P_PDO 0.017 T_AMO 0.012 P_SOI 0.010 T_PDO 0.022 P_NAO 0.020 P_AMO 0.007 T_Nino 0.006 P_Nino 0.017 AI 0.052

clay 0.017 clay 0.008 P_NAO 0.010 slit 0.020 slit 0.016 clay 0.006 clay 0.005 P_SOI 0.014 P_Nino 0.051

P_Nino 0.015 T_PDO 0.008 T_AO 0.007 T_AO 0.019 T_NAO 0.016 T_SOI 0.006 P_NAO 0.004 slit 0.013 P_PDO 0.051

slit 0.013 T_SOI 0.007 T_NAO 0.006 clay 0.013 clay 0.010 slit 0.004 slit 0.003 sand 0.008 clay 0.025

sand 0.007 T_NAO 0.007 T_SOI 0.003 sand 0.013 sand 0.006 sand 0.003 sand 0.001 clay 0.008 Laihv 0.007

R7 R8 R9R1 R2 R3 R4 R5 R6



 

 

Fig.1 Basin division in China (Songhua and Liaohe River Basin (R1), Haihe River Basin (R2), Huaihe 

River Basin (R3), Yellow River Basin (R4), Yangtze River Basin (R5), Pearl River Basin (R6), Southeast 

Basin (R7), Southwest Basin (R8) and Continental Basin (R9)).
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Fig. 2. Schematic diagram of drought event identification, elimination and fusion process 



 

Fig.3 Temporal variation of SSI on the scale of nine basins and China from 1980 to 2021 

 
  



 

Fig.4 Spatial variation trend of monthly SSI in China from 1980 to 2021 

 



 

 

Fig. 5 Spatial distribution of agricultural drought characteristics and their changes in China (a-c) drought 

frequency, severity, and drought duration, (d-f) drought characteristics of the basin, (g-h) drought 

characteristics trend. 



 

Fig. 6 Importance of drivers at the basin scale. 



 

Fig. 7 Driving factors based on SHAP values. (a-c) the most, the second most, and third most important 

factor for drought duration, (d-e) the most, the second most, and third most important factor for drought 

severity. 



 

Fig.8 Trend of SHAP value of each factor 



 

 
Fig.9 Spatial distribution of regional annual precipitation trends in China 



 

 

Fig. 10 Spatial distribution of factors in southern basins of China (a) correlation analysis of vegetation 

transpiration (Et) and actual evapotranspiration (E), (b-d) inter-annual variation of Et, E and VPD. Black 

dots indicate passing the significance test of P<0.05 
 


