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Abstract 18 

High-frequency nitrate-N (𝑁𝑂3
− − 𝑁) data are increasingly available, while accurate assessments19 

of in-stream 𝑁𝑂3
− − 𝑁 retention in large streams and rivers require a better capture of complex20 

river hydrodynamic conditions. This study demonstrates a fusion framework between high-21 

frequency water quality data and hydrological transport models, that (1) captures river hydraulics 22 

and their impacts on solute signal propagation through river hydrodynamic modeling, and (2) 23 

infers in-stream retention as the differences between conservatively traced and reactively 24 

observed 𝑁𝑂3
− − 𝑁 signals. Using this framework, continuous 15-min estimates of 𝑁𝑂3

− − 𝑁25 

retention were derived in a 6th-order reach of the lower Bode River (27.4 km, central Germany), 26 

using long-term sensor monitoring data during a period of normal flow from 2015-2017 and a 27 

period of drought from 2018-2020. The unique 𝑁𝑂3
− − 𝑁 retention estimates, together with28 

metabolic characteristics, revealed insightful seasonal patterns (from high net autotrophic uptake 29 

in late-spring to lower uptake, to net heterotrophic release during autumn) and drought-induced 30 

variations of those patterns (reduced levels of net uptake and autotrophic nitrate uptake largely 31 

https://www.editorialmanager.com/wr/viewRCResults.aspx?pdf=1&docID=108403&rev=0&fileID=2972492&msid=86a0f14b-26cd-4eb6-89f6-c80ab0b600e7
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buffered by heterotrophic release processes, including organic matter mineralization). Four 32 

clusters of diel uptake patterns were identified, potentially representing changes in dominant 33 

𝑁𝑂3
− − 𝑁 retention processes according to seasonal and hydrological conditions. For example, 34 

dominance of autotrophic 𝑁𝑂3
− − 𝑁  retention extended more widely across seasons during the 35 

drought years. Such cross-scale patterns and changes under droughts are likely co-determined by 36 

catchment and river environments (e.g., river primary production, dissolved organic carbon 37 

availability and its quality), which resulted in more complex responses to the sequential 38 

droughts. Inferences derived from this novel data-model fusion provide new insights into 𝑁𝑂3
− 39 

dynamics and ecosystem function of large streams, as well as their responses to climate 40 

variability. Moreover, this framework can be flexibly transferred across sites and scales, thereby 41 

complementing high-frequency monitoring to identify in-stream uptake processes and to inform 42 

river management.  43 

Key words: long-term high-frequency monitoring; river hydrodynamic model; conservative 44 

tracer simulation; river metabolism; droughts; river ecosystem function 45 

 46 

1 Introduction 47 

Anthropogenically induced high nitrate (𝑁𝑂3
−) levels in rivers are a pervasive threat to 48 

freshwater and costal ecosystems, especially under the changing climate (Costa et al., 2022; 49 

Reusch et al., 2018; Rockström et al., 2009). In addition to efforts to control point- and diffuse-50 

sources, the “self-cleansing” capacity of river systems to retain and process 𝑁𝑂3
− has also been 51 

recognized (Ensign and Doyle, 2006; Jäger et al., 2017). Restoring rivers and their floodplains 52 

has been advocated as a part of “natural-based” solutions to reduce 𝑁𝑂3
− losses to water bodies, 53 

with multiple co-benefits (EEA, 2021).  54 

Large streams and rivers (e.g., ≥ 4th order) receive considerable management attention, due to the 55 

impacts of nutrient pollution on water-related ecosystem services, and because in-stream 56 

biological activity likely contributes disproportionately to whole-river ecosystem function 57 

(Wollheim et al., 2022). However, current understanding of in-stream processing is mostly 58 

extrapolated from tracer-addition experiments or intensive process monitoring in small, 59 
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headwater streams (Ensign and Doyle, 2006; Mulholland et al., 2008). Large streams and rivers 60 

are subject to a range of complex interactions between hydrodynamics, biological and 61 

anthropogenic activities that may limit the applicability of extrapolation from headwater 62 

measurements (Bernal et al., 2019). Moreover, owing to the practical challenges of making direct 63 

process measurements in large, deep non-wadeable rivers, there is a shortage of data on whole-64 

stream 𝑁𝑂3
− biochemical cycling and its constituent pathways (e.g., assimilation, denitrification, 65 

mineralization and nitrification). 66 

Fostered by sensor technology development, high-frequency measurements are increasingly 67 

being used to infer in-stream 𝑁𝑂3
− retention and release in large streams and rivers (Rode et al., 68 

2016b). Biochemical process-related information can be directly extracted from 𝑁𝑂3
−  timeseries 69 

(Burns et al., 2019; Heffernan and Cohen, 2010). However, inferences based purely on high-70 

frequency data are often conducted under well constrained conditions, e.g., a steady-state 71 

upstream boundary (Hensley and Cohen, 2016; Yang et al., 2019). While the more adaptive two-72 

station approach allows a dynamic upstream boundary, the inference accuracy is still largely 73 

subject to influences of hydraulic transformation (e.g., dispersion Hensley and Cohen, (2016)) 74 

and dilution/enrichment from lateral inflow along the reach between upstream and downstream 75 

stations (Zhang et al., 2022). Consequently, in-stream process quantifications remain uncertain 76 

when extrapolating to various hydro-morphological river conditions outside the monitored 77 

reaches. As a result, while continuous high-frequency monitoring has been deployed for multiple 78 

years across river sizes and geomorphological conditions (Arndt et al., 2022; Bieroza et al., 79 

2023; Rode et al., 2016b), inferences of in-stream processes using such invaluable long-term 80 

data, is often obscure due to dynamic flow conditions and their complex convolutions with 81 

biological activity (Hensley and Cohen, 2016; Payn et al., 2017). This complexity has hindered 82 

multi-year continuous investigations of in-stream 𝑁𝑂3
− retention, and the responses of in-stream 83 

processes to the changing climate, such as the severe droughts in Europe over last five years. 84 

Conventional two-station inferences of in-stream 𝑁𝑂3
− biogeochemical retention along the reach 85 

were based on load (𝑄 × 𝑁𝑂3
− − 𝑁) differences between the upstream and downstream stations. 86 

However, purely using the monitored high-frequency data is challenging to estimate lateral 87 

inflows and transport time lags, and their inferences on the calculation require specific 88 

justifications (Jarvie et al., 2018; Zhang et al., 2022). Alternatively, high-frequency discharge 89 
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(Q) and solute dataset are increasingly used to calibrate river modeling approaches, which 90 

normally include both hydraulic transport (advective and dispersive) and biogeochemical 91 

retention terms in their master equation of mass balance (Hensley and Cohen, 2016; Huang et al., 92 

2022). However, the simulations of biological processes are often challenged by complex 93 

hydraulic-biological convolutions and model parameterization (Rode et al., 2007). To benefit 94 

from the complementary data analysis and modelling, here we propose an innovative data-model 95 

fusion framework for in-stream process inferences in large streams and rivers. The framework is 96 

mainly based on the two-station high-frequency monitoring, but untangling impacts of hydraulic 97 

transformations along the reach using the advanced features of the WASP8 water and tracer 98 

simulations (Ambrose and Wool, 2017; Knightes et al., 2019). Such methodological 99 

improvements are necessary to study the nitrate uptake dynamics under varying climatic and 100 

flow conditions. 101 

Here we illustrated the analysis using six years of data from a 27.4 km 6th order reach of the 102 

lower Bode River, central Germany. The objectives of this study were: (1) to estimate continuous 103 

in-stream 𝑁𝑂3
− overall retention (net uptake/release) over the normal (2015-2017) and drought 104 

(2018-2020) years based on the fusion of high-frequency data analysis and modeling; (2) to 105 

investigate responses of the in-stream processes to the droughts from sub-daily to inter-annual 106 

scales; and (3) to unravel potential environmental factors that control the in-stream processes and 107 

their pattern shifts under the drought disturbances.    108 

2 Method and Materials 109 

2.1 Study site and long-term high-frequency monitoring 110 

The Bode River, ca. 169 km long with a watershed area of 3270 km2, originates in the Harz 111 

Mountain area, central Germany. The studied 27.4 km reach of the lower Bode River (6th order) 112 

is surrounded by intensive lowland arable land (Figure 1a). Between the study period 2015-2020, 113 

multi-parameter high-frequency monitoring equipment was deployed at two stations: the 114 

upstream station Groß Germersleben (GGL) and the downstream station Staßfurt (STF). The 115 

river reach mostly exhibits rectangular or trapezoidal cross-sections, due to artificial 116 

modifications in the 1970s for the purpose of agricultural activities. There are also three 117 

overflow weirs installed along the reach. The riverbed substrate consists of mostly sand and 118 

small gravel, with an average width and slope of 20 m and 0.4 ‰, respectively. Patchy bankside 119 
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deciduous trees partially shade the riparian margins during summer, while the relatively open 120 

canopy allows high irradiance at the river surface and development of phytoplankton and benthic 121 

algae (Huang et al., 2022). 122 

 123 

Figure 1. (a) The Lower Bode river reach and the multi-parameter high-frequency monitoring 124 

scheme. (b) 15-min measurements of discharge (Q), 𝑁𝑂3
− − 𝑁 concentrations, dissolved oxygen 125 

(DO) and water temperature (WT) at the upper Groß Germersleben (GGL) and lower Staßfurt 126 

(STF) stations. 127 

At each station, YSI 610 sensors (Yellow Springs, US) measured dissolved oxygen (DO), pH, 128 

water temperature (WT), and electric conductivity (EC) at 15-min intervals. ProPS-UV sensors 129 

(TriOS GmbH, Germany) measured spectral absorbance at 254 nm (SAC, as a proxy of 130 

dissolved organic carbon) and Nitrate-N (𝑁𝑂3
− − 𝑁, precision of 0.03 ±2% 𝑚𝑔𝑙−1) 131 

concentrations, also at 15-min intervals. More details about sensor accuracy and maintenance 132 

were described in Rode et al. (2016a). Hourly data on photosynthetically active radiation (PAR) 133 

were collected at an eddy-covariance flux tower at Wulferstedt station (15.6 km north-west of 134 

GGL). Discharge (Q) data at 15-min intervals were obtained from the Saxony-Anhalt water 135 

authority (Water Service data portal https://gld.lhw-sachsen-anhalt.de/, accessed 4/27/2023) at 136 

station Hadmersleben (HAD, 2.7 km upstream of GGL without significant lateral inflows) and 137 

https://gld.lhw-sachsen-anhalt.de/
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station STF (Figure 1a). There are eight small tributaries along the study reach; however, total 138 

tributary inputs contributed less than 2% of total Q over 2015-2020 as simulated by the 139 

catchment mHM-Nitrate model (Zhou, et. al., 2022).  140 

The study region has experienced dramatically changing climatic conditions, especially severe 141 

summer droughts since 2018 (Bakke et al., 2020). Annual average Q at STF decreased from 9.50 142 

𝑚3𝑠−1 during the “normal” years (2015-2017) to 7.21 𝑚3𝑠−1 during the “drought” years (2018-143 

2020) (Figure 1b). Comparing normal- and drought-year summers (Jun-August), average Q 144 

decreased from 6.58 to 2.75 𝑚3𝑠−1, average 𝑁𝑂3
− − 𝑁 concentration decreased from 1.79 to 145 

1.39 𝑚𝑔𝑙−1, and average WT increased from 20.1 to 21.6 ℃.  146 

2.2 Two-station inferences of 𝑵𝑶𝟑
− retention based on the fusion of high frequency data 147 

monitoring and the WASP water and tracer simulations  148 

The WASP model (version 8.32) has been developed by the United States Environmental 149 

Protection Agency and has been applied to different surface water systems (Wool et al., 2020). 150 

The model allows users to flexibly define and arrange control volumes (i.e., fully mixed finite 151 

segments), and resolves the mass balance over each control volume, considering material 152 

exchanges via advective and dispersive transports. WASP further distinguishes free-flowing, 153 

ponded and backwater/tidal influenced segments in a stream network, and solves them using 154 

equations of kinematic wave, weir overflow and dynamic flow, respectively (Ambrose and 155 

Wool, 2017). The tracer module implemented in WASP8 is a dummy sub-model for substances 156 

with no kinetic interactions.  157 

In this study, we conducted 15-min interval, one-dimensional WASP8 simulations of water and 158 

tracer (i.e., conservative 𝑁𝑂3
− − 𝑁) transport in the study reach. We upgraded a prior WASP 159 

model setup in the study reach by Huang et al. (2022), with 31 segments defined as free-flowing 160 

reaches and 3 segments as ponded reaches at the locations of the weirs (Figure 1a). Discharge at 161 

station HAD was used as the upstream flow inputs, and the measured 𝑁𝑂3
− − 𝑁 concentrations at 162 

GGL were taken as the tracer inputs. Inputs of flow and tracer loads from the tributaries were 163 

simulated from a catchment mechanistic model mHM-Nitrate (Yang et al., 2018; Yang and 164 

Rode, 2020) (see detailed model simulations in the Bode catchment in Zhou et al. (2022)). Using 165 

the WASP hydrodynamic simulations, the upstream tracing signals of conservative 𝑁𝑂3
− − 𝑁 166 

concentration (𝑁𝑡𝑟𝑐𝑘) were transported to the downstream station STF. Thus, differences 167 
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between the tracked loading (𝐿𝑡𝑟𝑐𝑘) predicted by the conservative WASP modeling and the 168 

observed loading (𝐿𝑜𝑏𝑠) at STF were taken as retention along the river reach. Areal retention 169 

rates (𝑈𝑇 , 𝑚𝑔𝑁𝑚−2 per time step) and efficiencies (𝐸𝑈𝑇, %) can be further obtained based on 170 

this data-model fusion inferences: 171 

𝑈𝑇 =
𝐿𝑡𝑟𝑐𝑘−𝐿𝑜𝑏𝑠

𝐴
=

(𝑁𝑡𝑟𝑐𝑘−𝑁𝑜𝑏𝑠)×𝑄𝑆𝑇𝐹

𝐴
                                               (1) 172 

𝐸𝑈𝑇 =
𝐿𝑡𝑟𝑐𝑘−𝐿𝑜𝑏𝑠

𝐿𝑡𝑟𝑐𝑘
× 100                                                            (2) 173 

where 𝐴 denotes the total river benthic area (27400×20 m2). Note that we used observed 174 

discharge at STF (𝑄𝑆𝑇𝐹) for 𝐿𝑡𝑟𝑐𝑘 to further reduce model uncertainty leveraged from hydraulic 175 

simulations (see Section 3). Therefore, 𝑈𝑇 represents overall 𝑁𝑂3
− net uptake or net release (with 176 

positive and negative values, respectively), and 𝐸𝑈𝑇 was only analyzed in periods exhibiting net 177 

uptake (𝑈𝑇>0). 178 

2.3 Calculations of stream metabolism and in-stream autotrophic 𝑵𝑶𝟑
− assimilation  179 

Estimates of whole-stream metabolisms (i.e., gross primary production - GPP and ecosystem 180 

respiration - ER) were calculated based on the 15-min DO measurements. The hydraulic 181 

characteristics at STF were heavily impacted by impoundment effects due to bridge piers and 182 

submerged macrophytes, and this hindered the calculations of stream metabolism at STF. 183 

Therefore, we applied the single-station method (Odum, 1956) using the data at the upper station 184 

GGL, which is representative of the metabolic conditions of the Lower Bode reaches (see 185 

detailed justifications in Text S1 and Table S1). Please also refer to Yang et al. (2019) for 186 

detailed calculation equations of the single-station approach. 187 

We further estimated 𝑁𝑂3
− − 𝑁 uptake via autotrophic assimilation based on the whole-stream 188 

metabolism at daily time step. Gross assimilations by autotrophs (𝑈𝐴, 𝑚𝑔𝑁𝑚−2𝑑−1) can be 189 

calculated based on the measured stream metabolism and the stoichiometric C:N ratio: 190 

𝑈𝐴 =
𝑟𝑎×𝐺𝑃𝑃

2.286×𝐶:𝑁
× 1000                                                            (3) 191 

where autotrophic respiratory rate 𝑟𝑎 was set as 0.5, assuming one mol of C fixed per mol of 𝑂2 192 

produced, and half of GPP (𝑔𝑂2𝑚−2𝑑−1) becomes net production (Rode et al., 2016a). The 193 
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molar C:N ratio was 9.4, taken from local biofilm measurements (Kamjunke et al., 2015), and 194 

the constant 2.286 (32/14) converts the molar ratios to a mass basis. 195 

2.4 Diel pattern detection and statistical analysis 196 

The 15-min continuous 𝑁𝑂3
− − 𝑁 retention timeseries allowed assessment of in-stream processes 197 

from sub-daily (i.e., the diel patterns) to inter-annual scales. At hourly scale, we specifically 198 

investigated diel patterns of net uptake (𝑈𝑇>0, 𝑚𝑔𝑁𝑚−2ℎ−1). Dates for this diel pattern analysis 199 

were detected sequentially according to (1) 𝑈𝑇>0 for all 24 hours, (2) minimal diel variations in 200 

Q (i.e., <50th quantile of coefficient of variations), and (3) generally low-flow conditions (i.e., 201 

daily Q < 25th quantile for each year). The constraints of relative steady Q were set to avoid 202 

impacts of flow variations on 𝑁𝑂3
− − 𝑁 signals. 203 

The k-mean clustering method was performed to further classify them into different clusters, 204 

using the “stat” R package (R core team, 2022). Please refer to Text S2 for details of the k-mean 205 

clustering analysis. Moreover, statistical analyses were all performed in R software, including 206 

the one-way ANOVA test ( “stats” package, with assumptions fulfilled when reporting p values) 207 

and the curve fitting (the GAM-based smooth function “geom_smooth” in “ggplot2” package).  208 

3 Results  209 

3.1 WASP simulations of discharge and traced 𝑵𝑶𝟑
− dynamics 210 

The WASP discharge simulations performed very well at the downstream station STF (i.e., 211 

Kling-Gupta Efficiency of 0.98 and percentage bias of 0.7%, Figure 2). This indicates that 212 

WASP captured water dynamics well in the lower Bode River, in line with Huang et al. (2022). 213 

We noted that discharge discrepancies were slightly greater during the recession and driest 214 

periods of the drought years 2018-2020, though they were negligible in terms of the general river 215 

water dynamics (Figure 2a).  216 
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 217 

Figure 2. The WASP simulations of discharge (a) and 𝑁𝑂3
− − 𝑁 tracer concentrations (b) in the 218 

reach of the lower Bode River plotted at a daily timestep. Discharge performance criteria KGE 219 

and PBIAS represent Kling-Gupta Efficiency and Percentage bias, respectively.  220 

3.2 Daily overall 𝑼𝑻 and stream metabolisms and their seasonal variations in the normal 221 

and drought years 222 

Continuous daily retention rates 𝑈𝑇 were estimated from the data-model fusion from 2015 to 223 

2020 (Figure 3a). 𝑈𝑇 mostly ranged between -337.8 and 419.4 𝑚𝑔𝑁𝑚−2𝑑−1 (i.e., 5% and 95% 224 

quantiles, respectively), while the values varied with season and across years. Apart from 225 

disturbances of annual high-flows and short-term flow events, 𝑈𝑇 exhibited a consistent seasonal 226 

pattern in the normal period 2015-2017 (Figure 3a, upper panels): (1) winter and early spring 227 

seasons exhibited extensive net 𝑁𝑂3
− release (𝑈𝑇<0), though largely affected by the annual high 228 

flows; (2) general net uptake  (𝑈𝑇>0) occurred after the annual high-flow season, with 229 

significantly higher retention in May-June than July-September (236.0±224.9 vs 104.7±65.2 230 

𝑚𝑔𝑁𝑚−2𝑑−1, among 123 and 230 days, respectively, with Q below the normal-year median 231 

value 7.10 𝑚3𝑠−1; ANOVA test, 𝑝<0.001); (3) after October, net 𝑁𝑂3
− release occurred until the 232 

next early spring (except for the low winter Q in 2016). For the drought-impacted period 2018-233 

2020 (Figure 3a, lower panels), 𝑈𝑇 seemed to be still higher during May-June than the later 234 

months, while the pattern was heavily disturbed by the annual-high flow recessions and small- to 235 
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median-size flow events. Moreover, 𝑈𝑇 was generally reduced during the annual low-flow 236 

seasons (e.g., 47.9±57.2 𝑚𝑔𝑁𝑚−2𝑑−1 in July-September, significantly lower than that of the 237 

normal years; ANOVA test, 𝑝<0.001), and the late-autumn net release during the drought years 238 

was not as consistently present as it was during the normal years. The uptake efficiency 𝐸𝑈𝑇 was 239 

higher during the drought than in normal years (10.8±8.1% vs 8.6±9.5%, respectively), and the 240 

drought years exhibited prolonged periods with higher 𝐸𝑈𝑇 (e.g., around 25%, Figure S1a).   241 

 242 

Figure 3. (a) Daily total retention rate 𝑈𝑇 in each year based on the model-data fusion 243 

framework, and monthly counts of the four clusters of diel patterns. (b) Daily ratios of whole-244 

stream gross primary production and respiration (i.e., P/R ratio) in the normal (2015-2017) and 245 

the drought (2018-2020) years. Note that, for subplot (b), P/R ratios on dates exhibiting diel 246 

patterns are highlighted with the same cluster colors as in subplot (a). 247 

Such varying seasonal patterns between the normal and drought years were also observed in the 248 

whole-stream metabolic characteristics (Figures 3b and S2). In spring seasons, the ratio of GPP 249 

to ER (P/R) was >1, indicating autotroph-dominated system. This occurred in both the normal 250 

and drought years (Figure 3b), though in the former it was likely driven by relatively high levels 251 

of GPP, while in the latter by relatively low ER (Figure S2). During the summer seasons, the 252 

P/R ratios varied largely among the normal years, often with similar levels of GPP but more 253 

variable ER (Figure S2). In contrast, the ratios were more consistent and relatively high in the 254 

drought years (0.77±0.20). In autumn and winter, P/R ratios were extensively less than 1, 255 
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indicating a heterotroph-dominated system for both normal and drought years. Comparatively, 256 

the drought years exhibited higher P/R ratios (Figure 3b) primarily induced by the significantly 257 

lower ERs (i.e., 2.85±1.04 vs 3.65±2.27 𝑔𝑂2𝑚−2𝑑−1 over October-February of the drought and 258 

normal years, respectively; ANOVA test, 𝑝<0.001, Figure S2). The GPP-informed autotrophic 259 

𝑁𝑂3
− uptake (𝑈𝐴) maintained similar in the normal and drought years (i.e., 47.92±42.76 vs 260 

51.04±42.38 𝑚𝑔𝑁𝑚−2𝑑−1, respectively, Figure S1a), while its proportions to 𝑈𝑇 were more 261 

consistently >1 during July-October of the drought years (calculated among dates with 𝑈𝑇>0 and 262 

below-median Q, Figure S1b). 263 

3.3 Diel patterns of net 𝑵𝑶𝟑
− − 𝑵 uptake and their predominance under the normal and 264 

drought years 265 

The high-frequency data-model fusion inference provided the unique opportunity to investigate 266 

sub-daily patterns of  𝑁𝑂3
− − 𝑁 uptake and their variations under different hydrological 267 

conditions. Quantifiable diurnal variation in 𝑈𝑇 was detected in a total of 178 days (90 and 88 268 

days in the normal and drought years, respectively), and could be further grouped into four 269 

distinct clusters (Figures 4 and 3, and detailed results of the k-mean clustering in Figure S3). 270 

Clusters C1 and C2 exhibited increased uptake during the daytime hours, with the diel maxima 271 

occur after and before 12:00, respectively (Figure 4a and b); Clusters C3 and C4 exhibited 272 

decreased uptake during the daytime hours, with the diel minima occur around 12:00 for the 273 

former (Figure 4c) while the latter exhibited more noteworthy decreases before noon and 274 

delayed diel minima (Figure 4d). Meanwhile, the seasonal occurrence of the four clusters likely 275 

changed between the normal and drought years (the upper and lower panels of Figure 3a, 276 

respectively). Specifically, in the normal years, C1 and C2 mostly occurred before August, while 277 

C3 and C4 dominated the late summer and autumn seasons; in contrast, during drought years C1 278 

and C2 patterns persisted into the late summer and autumn (accounting for 67% of total days 279 

detected in the drought years, compared to that of 38% in the normal years), and also more 280 

evenly distributed across summer-autumn seasons. The four diel patterns did not show 281 

substantial differences between normal and drought years, with the exception of the C1 cluster 282 

that exhibited more delayed diel maxima in the normal years than the drought years, (Figure 4, 283 

upper panels). However, the absolute uptake rates were significantly lower under the drought 284 
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conditions, except for the C3 cluster even though there existed extraordinarily high uptake days 285 

in 2017 (Figure 4, lower panels). 286 

 287 

Figure 4. The four types of 𝑈𝑇 diel patterns clustered among the detected 178 days and the 288 

corresponding hourly variations of retention rates (upper and lower panels, respectively). Note 289 

that the k-mean clustering was performed based on the max-min normalized 𝑈𝑇 values.  290 

4 Discussion 291 

4.1 Continuous inferences of 𝑵𝑶𝟑
− − 𝑵 retention in complex rivers enabled by a novel high-292 

frequency data-model fusion framework 293 

Using a novel data-model fusion framework, we derived continuous estimates of high-frequency 294 

𝑁𝑂3
− − 𝑁 retention over six years in the 6th order reach of the lower Bode River. To our 295 

knowledge, this is among the first time that such in-stream inferences have been made in a large 296 

stream or river with complex flow dynamics as well as across different hydrological conditions. 297 

Importantly, the model-data fusion framework provided reasonable estimates of in-stream 298 

𝑁𝑂3
− − 𝑁 retention in the well-studied lower Bode region, as cross validated by previous studies 299 

using different methodologies. For example, previous work (Zhang et al., 2022) using the 300 

conventional two-station method reported a similar range and seasonal variations in net 𝑁𝑂3
− −301 
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𝑁 retention and release (-205 and 381 𝑚𝑔𝑁𝑚−2𝑑−1 as for 5th and 95th quantiles, respectively, 302 

with consistently higher values in campaigns during May-June than July-September). Huang et 303 

al. (2022) applied the WASP biogeochemical modeling in the same lower Bode River reach and 304 

calibrated model parameters using the high-frequency data (including only the first drought year 305 

2018). They also obtained generally similar levels of net 𝑁𝑂3
− − 𝑁 uptake, and similar seasonal 306 

patterns (Huang et al., 2022).  307 

Our estimates of in-stream retention rate and retention efficiency were also well in line with 308 

wider literature ranges (Alexander et al., 2009; Ensign and Doyle, 2006; Miller et al., 2016; 309 

Mulholland et al., 2008; Seitzinger et al., 2002). Ensign and Doyle (2006) reported the 310 

interquartile range of 9.1 and 376.7 𝑚𝑔𝑁𝑚−2𝑑−1 based on14 nutrient-addition/isotope-tracer 311 

experiments conducted in 4th order streams. This fits well with our estimated range of the 𝑁𝑂3
− 312 

uptake (Figure 3a), which is also similar to the headwater measurements from the pioneering 313 

LINX II project (Hall Jr. et al., 2009). Heffernan and Cohen (2010) deployed a high-frequency 314 

monitoring in a Florida spring-fed river and revealed that 𝑈𝑇 is two times higher in spring than in 315 

fall seasons, though the reported magnitude was relatively high due to high denitrification rates 316 

in subtropical rivers (Heffernan et al., 2010). Using 𝐸𝑈𝑇 as a more cross-comparable uptake 317 

metric, Seitzinger et al. (2002) found that individual reaches generally retain <20% of N input, 318 

and specifically for 5th- and higher-order reaches, the proportions are mostly <10%. This is well 319 

in line with our estimated ranges (e.g., mostly < 20.8% as of the 90% quantile value over the six 320 

years). 321 

The high-frequency data-model fusion framework allows assessment of in-stream processes to 322 

be extended across temporal and spatial scales, thereby advancing understanding of 𝑁𝑂3
− 323 

processes. First, the framework can make use of the increasingly available long-term time series 324 

of high-frequency monitoring, being collected as part of routine monitoring by water authorities. 325 

Given the logistic convenience and advances of cross-parameter analysis (Rode et al., 2016b; 326 

van Geer et al., 2016), these continuous sensor deployments are often co-located with flow 327 

gauging stations, allowing assessment of varying and complex flow regimes and their impacts on 328 

biogeochemical processes (Bieroza et al., 2023; Oldham et al., 2013). Integrating the robust in-329 

stream hydraulic and conservative tracer modeling facilitates the extraction of biogeochemically 330 

induced nutrient signals, even with shifts between advective and dispersive flow dominance and 331 
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variations in water residence/travel times (Hensley and Cohen, 2016). This, in our view, serves 332 

as a step forward in maximizing the multi-benefits of these unique datasets, especially compared 333 

to the uses of constraining synthesized in-stream water quality models at a finer temporal 334 

resolution (though still informative, see Huang et al., (2022); Khorashadi Zadeh et al., (2019)).  335 

Second, the framework quantifies in-stream 𝑁𝑂3
− retention from sub-daily to inter-annual scales, 336 

providing new process understanding (see discussion in Section 4.2) and reference values for 337 

specific processes. For instance, the WASP modeling by Huang et al., (2022) also revealed the 338 

consistent pattern of net release after late-autumn (i.e., 𝑈𝑇<0), while with more conservative 339 

estimates (17.4 𝑚𝑔𝑁𝑚−2𝑑−1 compared to our inferences of >100 𝑚𝑔𝑁𝑚−2𝑑−1, Figure 3a). 340 

Given the well-acknowledged poor process understanding (von Schiller et al., 2015) and the 341 

simplified model conceptualization, our inferences derived more directly from high-frequency 342 

data, can be further used to validate model simulations and improve in-stream process 343 

representation in water quality models. 344 

There are several considerations when transferring the framework to a wider context. Firstly, the 345 

estimation uncertainty may be large during high-flow seasons and short-term runoff events, 346 

primarily induced by contributions from tributaries and lateral subsurface inflows. These lateral 347 

inputs are often ungauged and elevated during hydrologically active periods. Particularly for the 348 

lower Bode region, the high groundwater concentrations (up to > 10 𝑚𝑔𝑁𝑙−1, the authority data 349 

portal https://gld.lhw-sachsen-anhalt.de/) in the agricultural landscape might strongly affect 350 

riverine concentrations even under small runoff events (as illustrated by the discharge-351 

concentration hystereses in Zhang et al. (2020)). However, we cautiously estimated tributary 352 

inputs using the grid-based catchment modeling (Zhou et al., 2022), and found that the lateral 353 

loading inputs were marginal, as this was generally a loosing channel (Kunz et al., 2017; Zhang 354 

et al., 2022). Moreover, hyporheic exchange might need to be explicitly included in the hydraulic 355 

and tracer simulations, where the process is known to be significant and sufficient data are 356 

available to constrain it (Gomez-Velez et al., 2015).  357 

4.2 Insights into seasonal patterns of 𝑵𝑶𝟑
− retention and release under the changing climate 358 

Both net 𝑁𝑂3
− uptake (𝑈𝑇>0) and net 𝑁𝑂3

− release (𝑈𝑇<0) exhibited substantial seasonality, 359 

which also differed between the normal (2015-2017) and drought (2018-2020) years. Moreover, 360 
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this variation was well supported by the independent calculations of stream metabolic 361 

characteristics, which also exhibited strong seasonality (Figure 3 and S2).  362 

Despite the flow-induced uncertainty during the high-flow periods, winter to early-spring 363 

seasons showed extensive net 𝑁𝑂3
− release, which was more pronounced in the normal years 364 

than the drought years. Meanwhile, the normal-year P/R ≪1 and ER remained as high as that in 365 

the summer seasons, indicating higher heterotrophic microbiological activity during the normal 366 

year. Such net heterotrophy likely also reflects reduced rates of autotrophic activity (due to 367 

seasonally lower light availability and water temperature) and promoted remineralization 368 

processes (given that riverine dissolved organic carbon (DOC) is abundantly flushed from the 369 

catchment and riparian areas). The DOC in anthropogenically affected rivers is likely more labile 370 

to the microbial community than in unaffected rivers (Graeber et al., 2012; Stutter et al., 2018). 371 

Meanwhile the relatively high water temperature (i.e., interquartile range of 3.4 and 7.9 ℃) may 372 

have contributed to higher rates of microbiological transformation of DOC (Lu et al., 2013). 373 

However, under sequential droughts, the recalcitrance of DOC could have been increased due to 374 

the longer exposure times of terrestrial organic matter to catchment microbiological 375 

transformations before being transported (Catalán et al., 2016) and that the enzymatic hydrolysis 376 

of the recalcitrant components is limited with increasing temperature (Evans et al., 2005; 377 

Freeman et al., 2001). This agrees well with the observed low ERs (Figure S2) but with largely 378 

maintained DOC concentrations during the drought years (as indicated by the surrogate SAC 379 

measurements, although direct DOC quality information was missing). Also, the reduced levels 380 

of net 𝑁𝑂3
− release during winter and early-spring seasons may be ascribed to the drought-381 

induced reduction of heterotrophic activity. 382 

The extensive net uptake patterns during the mid-spring to early-autumn warmer seasons are 383 

well in line with general literature findings that highlight the significant nutrient “cleansing 384 

function” of lotic ecosystems, while the dominant mechanisms could vary largely under different 385 

stream and climatic conditions (Heffernan and Cohen, 2010; Jarvie et al., 2018; Jones et al., 386 

2015). The net uptake reached the highest level between mid-spring and early-summer, 387 

associated with the promoted and autotrophy-dominated ecosystem activities (the high P/R ratios 388 

and increased GPP and ER, Figures 3 and S2). The normal-year overall net uptake was still 389 

greater than the autotrophic assimilation, although with increasing amount and proportions for 390 
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the latter pathway. This indicates that (1) autotrophic assimilation played a dominant role in 391 

𝑁𝑂3
− − 𝑁 uptake, primarily due to the sufficient light availability during the season before leaf-392 

out (Rode et al., 2016a; Yang et al., 2019) and (2) other uptake pathways via heterotrophic direct 393 

assimilation and denitrification were likely substantial in the normal years, given the abundant 394 

nutrient and organic matter availability (Kamjunke et al., 2013). In contrast, the drought years 395 

exhibited relatively reduced overall net uptake and ER, but a similar level of GPP, together 396 

resulting in earlier, more consistent 𝑈𝐴/𝑈𝑇 >1 (Figure S1b). This indicates an earlier 397 

predominance of autotrophic assimilation, which is also buffered partly by N-release processes 398 

(Jarvie et al., 2018). The reduction in other heterotrophic pathways is likely ascribed to the 399 

limited allochthonous labile DOC during the droughts, given the synchronous changes between 400 

ER and 𝑁𝑂3
− − 𝑁 uptake (Stutter et al., 2018; Sunjidmaa et al., 2022). 401 

Nevertheless, autochthonous DOC from antecedent primary production may have provided an 402 

important energy source for heterotrophs in the lower Bode River during the driest summer and 403 

autumn seasons, in accordance with reduced catchment hydrological connectivity. This is 404 

evidenced by the increasingly buffered autotrophic assimilation (𝑈𝐴/𝑈𝑇 ≫1) and generally 405 

decreased net 𝑁𝑂3
− uptake, both of which exhibited higher degrees of changes in the drought 406 

years. This is supported by DOC measurements across the Bode River network by Kamjunke et 407 

al. (2013), that the September samples from the lower Bode River exhibited better DOC quality 408 

(i.e., lower molecular weights and lower humic content) than the headwater samples. Also, 409 

Dupas et al. (2017) demonstrated that the Bode lowland aquatic systems likely acted as a DOC 410 

source. There is a pressing and strategic need for better mechanistic understanding of the 411 

responses of river ecosystems to climate variability. Our results suggest that reduced inputs of 412 

allochthonous labile DOC during prolonged droughts may have resulted in shifts to greater and 413 

more sustained utilization of autochthonous DOC by microbes, corresponding with reductions in 414 

both net 𝑁𝑂3
− retention and net release. 415 

4.3 Insights into diel patterns of 𝑵𝑶𝟑
− retention under the changing climate 416 

The high-frequency data-model fusion framework also allowed in-depth investigations of diel 417 

patterns of 𝑁𝑂3
− − 𝑁 uptake. Here we identified four distinct clusters of diel patterns, as well as 418 

their seasonal distributions, revealing shifts in dominant 𝑁𝑂3
− retention processes under normal 419 
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and drought conditions. We can speculate as to some of the underlying mechanisms potentially 420 

responsible for generating these patterns. 421 

Cluster C1 represented a typical autotrophic assimilation induced diel pattern, which is 422 

correlated with the diurnal variations of GPP and related environmental factors (e.g., radiation, 423 

temperature and DO; Figures 4a, S4a and S5). Interestingly, the diel uptake maxima were 424 

delayed relative to those of GPP, indicating physiological time lags between 𝑁𝑂3
− − 𝑁 uptake 425 

and photosynthesis. This is potentially due to photosynthesis providing additional energy to 426 

further reduce 𝑁𝑂3
− for assimilation and biosynthesis (Mulholland et al., 2006). The observed 427 

time-lag differences between normal and drought years are in line with the spring-fall differences 428 

reported by Heffernan and Cohen (2010), which may be related to seasonal differences of such 429 

energetic costs.  430 

Cluster C2 also largely represented the dominance of autotrophic assimilation, given the 431 

extensive positive correlations with GPP-related factors (Figure S4) and their well-fitted falling 432 

limbs after 12:00 (Figure S5b). Besides, as a concatenation of Cluster 1 and Clusters 3/4, 𝑁𝑂3
− 433 

autotrophic assimilation in the afternoon might be buffered to a greater extent by release 434 

processes, resulting in apparently earlier net uptake maxima. These diurnally earlier 𝑁𝑂3
− uptake 435 

peaks are also reported in high-frequency 𝑁𝑂3
− data analysis, with complex, often unclear 436 

mechanisms (Aubert and Breuer, 2016; Greiwe et al., 2021; Heffernan and Cohen, 2010). Here 437 

we observed that (1) this pattern occurred mostly after high-flow recessions in the normal years 438 

(Figure 3a), which is coincidently presented by Aubert and Breuer (2016) via data mining of 439 

𝑁𝑂3
− timeseries; (2) the high correlations with SAC in drought years at the diurnally normalized 440 

scale (Figures S4 and S5b). This indicates a crucial role of DOC availability, particularly its 441 

quality as aforementioned, in shaping (either promoting or constraining) the diel pattern of 𝑁𝑂3
− 442 

uptake. 443 

Clusters C3 and C4 revealed less-explored diel patterns with diel minima uptake during the 444 

daytime. For C3, diel minima occurred nearly at mid-day hours, the timing of GPP and 445 

temperature maxima (Figure S5c); meanwhile, the 𝑁𝑂3
− uptake (𝑈𝑇 and the 𝑈𝐴 pathway) and 446 

metabolisms (GPP, ER and their ratios) were similar to Clusters C1 and C2, indicating high 447 

daytime photosynthesis. The exact mechanisms would need further specific investigations, while 448 

possible explanations could be: (1) this pattern occurred mostly during late summer and autumn, 449 
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when diel variations of denitrification rates govern the net 𝑁𝑂3
− uptake patterns; (2) redox 450 

controls (linked to high daytime O2 production by photosynthesis) will likely suppress 451 

denitrification, resulting in diel minima during daytime hours. The C4 pattern was highly 452 

comparable with C3 (see Figure 4c-d, and the clustering results in Figure S3), while likely 453 

exhibited higher rates of heterotrophic-related uptake like denitrification (linked to lower P/R 454 

ratios Figure 3b, and significantly positive correlations with SAC Figure S4).  455 

In addition to specific mechanistic understanding of the four cluster types, their seasonal 456 

distributions and changes between normal and drought years (Figure 3a, bar-plots), also reveal 457 

shifts in river ecosystem function. In the normal years, the autotrophy-characterized C1 and C2 458 

patters mostly occur during earlier seasons, which are then followed by a shift to heterotrophy-459 

dominated C3 and C4 patterns during later summer-autumn low-flow periods. However, the 460 

sequential droughts have shifted this seasonal distribution to greater persistence of C1 and C2 461 

across seasons, extending the window of autotrophic dominance into the late summer and 462 

autumn. Such varying seasonal distributions of diel patterns are likely linked to the drought-463 

induced changes in catchment and stream environmental factors and their contrasting impacts on 464 

in-stream 𝑁𝑂3
− biogeochemical processes. This also corresponds with the seasonal insights 465 

derived based on the daily timeseries (Section 4.2) that showed a shift to greater persistence of 466 

net autotrophy during the drought years.   467 

5 Conclusion 468 

This study proposed a data-model fusion framework that enables continuous inferences of in-469 

stream 𝑁𝑂3
− biogeochemical processes in large streams and rivers, overcoming major 470 

methodological constraints of using high-frequency monitoring data under variable flow and 471 

climatic conditions. Long-term high-frequency estimates in the 6th-order lower Bode River 472 

further revealed new insights into 𝑁𝑂3
− dynamics in relation to river ecosystem function, from 473 

sub-daily to seasonal scales and under a range of flow conditions. These estimates of net in-474 

stream retention and release, derived closely from direct in-situ measurements, provide useful 475 

reference values, e.g., for model validation or process conceptualization. Also, identifying and 476 

deconvoluting shifts in river ecosystem function (between autotrophy- and heterotrophy-477 

dominance) are of key importance for understanding the impacts of climate change on water 478 

quality, ecological status and river function. 479 
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This high-frequency data-model fusion method can be applied across sites and scales, and 480 

provides an opportunity for scientists and river managers to capitalize on the emergent wave of 481 

high-frequency water-quality monitoring. The method can also be extended from small-streams 482 

under dynamic flow conditions, to river network scale applications coupled with catchment 483 

models. Moreover, the method can complement high-frequency monitoring for cost-effective 484 

evaluation of the effectiveness of management practices and river-restoration projects.  485 
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