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Abstract8

The identification of fractographic features, such as the mirror–mist boundary, is central in the9

fractographic analysis of silicate glasses and other brittle materials. Although phase–field simula-10

tions have been previously applied to unstable cracks propagating in amorphous brittle materials,11

limited efforts have been made to establish the formation of fractographic features. This work pro-12

poses two distinct approaches to predict the formation of the mirror–mist boundary in soda–lime13

glass. Glass beams with embedded corner elliptical notches loaded in bending were considered, and14

unstable crack propagation was simulated in phase–field. In one approach, the ‘mist’ was expected15

to form when the crack–front’s speed reached a critical threshold. In the second approach, the16

thickness of the damaged zone predicted by phase–field was tracked and correlated to the forma-17

tion of the fractographic features. For the two proposed methods, both the shapes of the estimated18

mirror–mist boundaries and the magnitudes of the mirror radii were found to be in good agreement19

with experimental observations gathered from soda–lime glass beams fractured in bending.20

Keywords: phase–field, unstable crack, flexural fracture, mirror–mist boundary, silicate glass21

1. Introduction22

The identification of fractographic features on the fracture surface of amorphous brittle ma-23

terials, like silicate glasses, are central to fractographers to carry out root cause analysis of the24

components and estimate their fracture strength. The mirror, mist, and hackle regions form se-25

quentially on the fracture surface of glasses as the crack propagates away from the fracture origin26

[1], as for instance, shown in Figure 1(a). The optical perception of the ‘mist’ on the fracture surface27

is caused by the increase in surface roughness and micro–branching induced by the dynamic stress–28

field at the crack–tip occurring at high crack velocities [2]. For relatively thick plates fractured in29

bending or samples fractured in tension, the size of the mirror region, i.e., the mirror radius, Ri,30

is usually determined along the free surface and correlates with the fracture strength, σf , through31

an empirical function, σf = A/
√
Ri, where A is the mirror constant [3]. Recently, Dugnani &32

Zednik [4] and Ma & Dugnani [5] proposed semi–empirical adjustment to this equation to account33
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for the plate’s thickness in plates fractured in flexure although the topic is still debated. In optical34

fractography, the determination of the mirror–mist boundary is often found subjective and affected35

by many factors, such as illumination, observing tool, and observers’ experience [6, 7, 8]. Efforts36

have been also made recently in many references to objectively analyze the fracture surface features37

[5, 9, 10].38

Richter [11] suggested that characteristic values of the crack–tip velocity and (static) stress39

intensity factor (SIF) corresponded to the formation of specific fractographic features on the fracture40

surface, as shown in Figure 1(b). The formation of fractographic features was expected to correlate41

with the predominant energy dissipation mode as cracks advance. The crack velocity has been42

observed to increase rapidly within the mirror region but to keep a nearly uniform speed after the43

‘mist’ formation as a result of the increased energy dissipation due to local micro–cracking [1]. The44

underlying mechanisms relating the surface feature formation at high crack velocity were discussed45

by many references, to name a few [12, 13, 14, 15, 16], and some of them are still controversial.46

However, the high energy and crack speed is considered essential to the formation of the surface47

features.48

(a) (b)

Fig. 1 (a) Fractograhic features on the glass fracture surface; (b) crack–tip velocity vs. static stress intensity factor
and fractographic features (modified from [11])

Due to the difficulty in carrying out experimental studies on unstable cracks, and in the absence49

of a comprehensive analytical solution to the problem, numerical modeling has become an essential50

tool to shed light on the crack propagation process. In the past, dynamic crack instabilities, crack51

path undulation, and crack–branching have been investigated by Spatschek et al. [17] using a52

phase–field approach, by Menouillard & Belytschko [18] with extended finite element method, and53

by Rabczuk et al. [19] with cracking particles method. However, only limited theories to describe54

the fractographic features’ formation on fracture surfaces were put forwards. Kawabata et al. [20]55

predicted the location of the arrest lines in brittle steel using finite element methods. Silling et al.56

[21] analyzed glass rods fractured in tension with peridynamics. Features such as the mirror and the57

mist were accurately predicted based on the topographic features produced by dynamic crack–tip58

instabilities. Henry & Adda-Bedia [22] studied the crack–tip splitting instability of fast propagating59

cracks in brittle solids loaded in tension with phase–field. Local branching at the crack–front was60
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observed and qualitatively correlated to fracture surface features. Fracture surface features were61

also the focus of fracture animations. For instance, Hahn & Wojtan [23] used boundary element62

methods to simulate the topography of dynamic brittle fracture based on strength and fracture63

toughness. Similar work has been carried out by Pauly et al. [24], with a meshless method to64

represent the fracture surface with resampling elliptical splats. These methods reproduced the65

fracture surface topographies qualitatively but their relation to the actual fractographic features66

was not verified rigorously.67

In the phase–field approach, the crack is represented by a phase–field value. At high crack68

velocity, larger damaged zones simulated by phase–field are expected at the crack–tip, due to the69

high–speed instability at the crack–tip, and could be correlated to the fracture surface features70

[22]. Molnar et al. [25] used phase–field in ABAQUS to study dynamic crack branching in brittle71

materials in mode I. The fracture pattern in both 2D and 3D indicated that the damaged zone72

increased in the direction perpendicular to the crack propagation direction prior to branching.73

Borden et al. [26] modeled 2D brittle fracture in tension using phase–field, and also in this case74

the thickness of the damaged zone orthogonal to the crack propagation direction increased prior to75

branching for the mesh sizes considered. Analogous results were also observed in the 2D phase–field76

dynamic crack patterns in brittle materials in Hofacker & Miehe [27] and Mehrmashhadi et al. [28].77

The crack patterns in phase–field were validated by the experimental branching tests of glass, for78

instance in Mehrmashhadi et al. [28]. The regions with increased thickness prior to branching was79

expected to correspond to the regions with local micro–branching at high crack velocity on real80

fracture surfaces.81

To overcome the difficulties introduced by the crack–tip singularities, this work proposed a82

numerical approach, using the phase–field analysis, to objectively estimate the formation of the83

surface features such as the boundaries between the mirror and the mist regions. In this study, soda–84

lime glass (SLG) beams with quarter–elliptical corner notches loaded by three–point bending tests85

(3PBT) were modeled. The dynamic crack behavior was analyzed and compared with unstable crack86

evolution experiments reported in the literature. Following Richter’s [11] observations, this approach87

proposed that the onset of the mist occurred as the crack speed reached a critical threshold. An88

alternative approach to estimate the mirror–mist boundaries based on the damaged zone predicted89

in phase–field is also developed. The approach correlated the development of the damaged zone to90

the formation of surface features, as the result of high–speed instabilities of the propagating cracks.91

Section 2 of this manuscript introduces the numerical models used to investigate the dynamic92

crack propagation, including the phase–field formulation, implementation, and analysis. The method-93

ology proposed to predict the formation of the mirror–mist boundaries based on the crack velocity94

is also presented. The geometry and loading conditions for the cases simulated are described in95

Section 3, and experimental testing is presented in Section 4. The expected mirror–mist bound-96

aries are presented in Section 5, and discussed in Section 6. The alternative approach to predict the97

mirror–mist boundaries based on the damaged zone is described in Appendix A, and a parametric98

study of the mesh size for the simulations is presented in Appendix B.99

2. Numerical methodology100

This section introduces the methodology used to analyze unstable crack propagation in SLG by101

phase–field approach. The formulation of dynamic phase field, implementation, and analysis are102

also introduced in the section.103
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2.1. Dynamic variational phase–field approach104

2.1.1. Variational formulation of brittle fracture105

The problem is solved in a time interval t ∈ [0, T ] in a three–dimensional media occupying an106

open Lipschitz domain Ω ⊂ R3. Let ΓD,ΓN ⊆ ∂Ω be such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅;107

uD : ΓD× [0, T ]→ R3 and tN : ΓN× [0, T ]→ R3 be prescribed displacement and traction boundary108

conditions, respectively; let b : Ω × [0, T ] → R3 be the body force per unit volume exerted to the109

solid.110

The variational approach to fracture is built on energy minimization with respect to the dis-111

placement field u : Ω → R3 and its jump set, which is denoted as C = C(u) ⊂ Ω. Let |C| denote112

the one–dimensional Hausdorff measure of C. Following Griffith’s theory, the Lagrangian function113

is written as:114

LC [u, u̇, C] := Πkin [u, u̇]−ΠC [u, C]

:=

∫
Ω\C

(
1

2
ρu̇Tu̇− ψ0[ε]

)
dΩ−

∫
Ω

b · u dΩ−
∫

ΓN

tN · u dΓ +Gc|C|,
(1)

where constant Gc ∈ R+ is the strain energy released per unit length of fracture extension. The115

strain energy density ψ0[ε] is given by116

ψ0 (ε) :=
λ

2
(tr ε)

2
+G‖ε‖2, (2)

with λ and G Lamé constants. These constants are related to Young’s modulus, E, and Poisson’s117

ratio, ν, as λ = Eν/[(1 + ν)(1− 2ν)] and G = E/[2(1 + ν)], ‖ · ‖ denotes the Frobenius norm of a118

tensor.119

The linearized strain tensor takes the form:120

ε(u) :=
1

2

(
∇u +∇uT

)
. (3)

2.1.2. Regularized variational formulation of brittle fracture121

To develop a numerical method to approximate Eq. (1), the phase–field approach replaces the122

sharp–fracture description C with a phase–field description, where the phase–field is denoted as123

d : Ω → [0, 1]. In particular, regions with d = 0 and d = 1 correspond to the intact and fully124

broken materials, respectively. Using a phase–field approach, the one–dimensional fracture C is125

approximated with the help of an elliptic functional [29, 30]:126

C`[d] :=
1

4cw

∫
Ω

(
w(d)

`
+ `∇d · ∇d

)
dΩ, (4)

where ` > 0 is the regularization length scale, which may also be interpreted as a material property,127

e.g., the size of the process zone. Constant cw =
∫ 1

0

√
w(d) is a normalization constant such that128

when `→ 0, C`[d] converges to the length of the sharp fracture, |C|. Classical examples of w(d) and129

cw are w(d) = d2 and cw = 1/2 for the AT2 model, and w(d) = d and cw = 2/3 for the AT1 model.130

Interested readers are referred to [31, 32] for more elaborations.131
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On this basis, Eq. (1) is replaced by a global constitutive dissipation functional for a rate132

independent fracture process:133

L` [u, u̇, `] := Πkin [u, u̇]−Π`[u, `] :=

∫
Ω

(
1

2
ρu̇Tu̇− ψ(ε, d)

)
dΩ−

∫
Ω

b · u dΩ−
∫

ΓN

tN · u dΓ

+
Gc
4cw

∫
Ω

(
w(d)

`
+ `∇d · ∇d

)
dΩ.

(5)

Remark 1 (Strain energy degradation). The solid endures partial loss of stiffness due to the134

presence of fractures. In order to model this effect, the strain energy density is degraded with respect135

to the evolution of the phase field. Also note that as the damaged material responds differently to136

tension and compression, only a part of the strain energy density is degraded. For this purpose, the137

degraded strain energy in Eq. (5) takes the following general form:138

ψ(ε, d) = g(d)ψ+ + ψ−, (6)

where g(d) satisfies g(0) = 1, g(1) = 0, and g′(d) < 0 for all d such that 0 ≤ d ≤ 1 [33]. A usual139

choice is g(d) = (1− d)2 + k. On the other hand, ψ± are such that140

ψ+(ε) + ψ−(ε) = ψ0(ε). (7)

Now since ∂ψ/∂d = g′(d)ψ+, only ψ+ contributes to fracture propagation.141

There are several phase–field models that differ in their choice of ψ±. In this paper, the one142

proposed by Miehe et al. [34] is adopted. In this model, the negative and positive strain energies143

read as144

ψ±[ε] =
λ

2
〈tr ε〉2± +G

3∑
a=1

〈tr εa〉2± (8)

where {εa}3a=1 are the principal strains.145

Remark 2 (Irreversibility constraint). Miehe et al. [34] proposed a phase–field model based on a146

local history field to model the irreversibility. In this model, the evolution of the phase–field, d, is147

driven by the historically maximum value of ψ+ at the point of interest.148

2.2. Implementation of phase–field method for a dynamic crack in ABAQUS149

An open–source, implicit, staggered elastodynamic implementation of phase–field approach was150

developed by Molnar et al. [25] aided by a Fortran subroutine code implemented in the commercial151

finite element analysis software ABAQUS. The approach provided a convenient way of analyzing152

brittle, dynamic fracture cases using phase–field approach. In Molnar et al.’s method, three layers153

of elements were assigned to the nodes from the 3D mesh. The first layer of elements defined the154

displacement of the specimen, the second layer defined the fracture topology, i.e., the phase–field155

value, d, and the third layer added elements with infinitesimally small stiffness to visualize the156

simulation results in ABAQUS. The simulation results were presented in the solution–dependent157

variables defined in Molnar et al. [25]. Details of the method and phase–field implementation are158

found in [25, 35].159
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2.3. Analysis of phase–field simulations160

In this work, the dynamic crack propagation in beams with embedded elliptical corner notches161

loaded in 3PBT was simulated by the phase–field approach. The crack shape and velocity were162

later used to predict the formation of the mirror–mist boundary.163

2.3.1. Crack shape164

This work considers unstable cracks extending from the elliptical notch in glass beams loaded165

in bending. Figure 2 shows a schematic view for a beam of thickness H, width W , and length, L,166

with an embedded notch at the corner resting on the plane of symmetry (elliptical notch semi–axes,167

a0 and c0; notch thickness, d0). In the simulations, the cracked surface was defined as the region168

with phase–field, d, greater than 0.5 [36]. The crack size along the free surface and the side edge169

were denoted as c and a, respectively (Figure 3).170

Fig. 2 Geometry and loading conditions for the 3PBT beam

Fig. 3 Schematic view of propagated crack in a plate of thickness H and width W fractured in bending

2.3.2. Critical crack velocity171

The crack velocity along the main axes was evaluated at various time steps. The crack velocities172

along the surfaces, Vc and Va, at step n was approximated based on adjacent simulation steps173

{n− 1, n+ 1}:174
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Vc,n =
cn+1 − cn−1

2dt
, (9)

Va,n =
an+1 − an−1

2dt
. (10)

Figure 4 shows the crack velocity along the free surface, Vc, for the simulation case 3 in Table175

1. Based on Richter’s [11] observations, in this work the critical velocity, V ∗, was defined as the176

transition velocity between the fast propagating crack characteristic of the mirror region, and the177

slower propagating crack in the mist/hackle regions, as shown in Figure 4.178

Fig. 4 Crack velocity, Vc, along the free surface versus normalized crack length, c/W , for case 3 in Table 1

2.3.3. The mirror–mist boundary179

In this first approach, the mirror–mist boundary was established based on the crack–location180

as it reached the critical velocity. Figure 5 shows a schematic view of crack–front evolution for a181

short time step dt. For non–circular cracks, the crack velocity is not uniform along the crack–front.182

The crack–front velocity was evaluated by first estimating the velocity Vφ, in the direction AB in183

Figure 5. The mirror–mist boundary was predicted to occur when the velocity, Vφ, was such that:184

Vφ = lAB/dt = V ∗/ cos (θ − φ) . (11)

The mirror–mist boundary was then fitted using a conic section [10] after the location of the185

boundary was evaluated at various time steps.186

3. Numerical experiments187

This section describes the numerical examples simulated by the phase–field approach. The188

beams were model in the computational domains, Ω = [0,W ]× [0, H]× [−L/2, L/2] with the origin189
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Fig. 5 Schematic view of crack evolution with time step dt

of the coordinate system at the corner of the cross section in the middle of the beam. An quarter190

elliptical notch at the corner of the specimen was introduced to represent the corner flaws in real191

samples, Γ = [y2/a2
0 + z2/c20 ≤ 1]× [−d0/2, d0/2] (Figure 2). Dirichlet boundary conditions of the192

beam were assigned, such that the simply supported beam was loaded on the top surface in the193

middle:194

ux = uy = uz = 0 if (x, y, z) ∈ [0,W ]× {0} × {L/2}, (12)

ux = uy = 0 if (x, y, z) ∈ [0,W ]× {0} × {−L/2}, (13)

ux = 0 and uz = f(t) if (x, y, z) ∈ [0,W ]× {H} × {0}, (14)

where f(t) is a two–step displacement function:195

f(t) =

{
−v1 · t if t ≤ tc,
−v1 · tc − v2 · (t− tc) if t > tc,

(15)

and tc is the time that the fracture began to propagate from the notch. The two–step loading196

function for each case was applied to reduce the computational cost. Simulations initially used197

a time increment, δt1 = 2 × 10−6 s, at v1 = 103 mm/s; and as the crack started to propagate,198

δt2 = 1× 10−8 s, at v2 = 102 mm/s.199

A mesh with four–node tetrahedral element (type C3D4) was generated on the beam with the200

finest, effective mesh size, h, assigned near the symmetric plane at z = 0, and coarse mesh was201

assigned with linearly increasing size from the notch towards the end of the beam until the size202

0.25H was reached. The regularization length scale was selected equal to the finest mesh size in203

each simulation, i.e., ` = h. The notch size in each case was d0 = 2h. The magnitudes of h and204

` were selected to achieve various fracture strengths in the simulations, since the fracture strength205

σf =
√

3GcE/8` (material properties see below) for tensile AT1 model in phase–field [37]. An206

overview of the 3D mesh is shown in Figure 6. The effective mesh size is 0.01 mm while the coarsest207

mesh size is 0.25 mm. The effective mesh normalized with the beam geometry was h/H = 0.01.208

The notch size d0 = 0.02 mm.209

Twenty–one numerical scenarios corresponding to the beam geometries and notch sizes described210

in Table 1 were simulated. The ratio of W/H ranged between 1 and 20. Typical material properties211

for SLG are shown in Table 2.212
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Fig. 6 Overview of 3D meshes for a beam of thickness H = 1 mm, with 49,915 nodes and 273,454 elements (C3D4
tetrahedral element). Effective mesh size h = 0.01 mm, coarsest mesh size 0.25 mm

Table 1 Geometry conditions, simulated strength, and mirror radius for numerical cases

Case No. L H W c0 a0 d0 h tc σf Ri
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [10−4s] [MPa] [mm]

1 20 1 3 0.07 0.05 0.02 0.01 1.1 125 0.37
2 20 6 6 0.06 0.05 0.02 0.01 0.4 181 0.14
3 20 1 3 0.04 0.03 0.01 0.005 1.6 163 0.32
4 20 1 11 0.45 0.18 0.06 0.03 1.1 86 1.20
5 20 1 3 0.07 0.05 0.02 0.01 0.8 151 0.26
6 20 1 3 0.08 0.06 0.04 0.02 1.6 86 0.35
7 20 1 5 0.20 0.15 0.04 0.02 0.6 88 0.65
8 20 1 5 0.20 0.15 0.04 0.02 0.6 79 0.91
9 20 1 5 0.20 0.15 0.04 0.02 0.6 79 0.82
10 20 1 6 0.20 0.15 0.04 0.02 0.4 81 1.10
11 20 1 6 0.20 0.15 0.04 0.02 0.5 81 0.91
12 20 1 6 0.45 0.18 0.06 0.03 1.1 58 1.95
13 20 1 6 0.47 0.25 0.06 0.03 0.6 63 1.32
14 20 1 6 0.20 0.15 0.04 0.02 0.6 81 0.94
15 20 1 7 0.20 0.15 0.04 0.02 0.6 88 0.53
16 20 1 7 0.20 0.15 0.04 0.02 0.6 88 1.62
17 20 1 11 0.45 0.20 0.16 0.08 1.1 56 1.64
18 20 1 12 0.45 0.18 0.06 0.03 1.1 61 1.23
19 20 1 12 0.45 0.18 0.06 0.03 1.1 61 1.29
20 20 1 13 0.45 0.18 0.06 0.03 0.6 83 1.23
21 20 1 20 0.45 0.18 0.08 0.04 1.1 61 1.86

4. Experimental testing213

Various experimental tests were carried out to validate the numerical results. 2 mm–thick SLG214

plates were fractured by four-point bending tests (4PBT) using an MTS universal testing machine215
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Table 2 Material properties for soda-lime glass

Name Symbol Value Unit Ref.
Young’s modulus E 72 ×103 MPa [38]
Critical energy release rate† Gc 6.8×10−3 MPa·mm [39]
Density ρ 2.5 ×103 kg/m3 [38]
Poisson’s ratio ν 0.25 − [38]
†Gc = K2

Ic/E.

(model C45, load resolution 0.01 N). Adhesive tape was attached to the compressive side of the216

plates to collect the fractured shards after fracture. The outer and inner spans were 200 mm and217

100 mm, and rollers’ diameter was 10 mm. The 4PBT was applied based on ASTM C158 [40], with218

loading rate 0.01mm/s (stressing rate 0.15MPa/s). More details of the experimental test could be219

referred to in [40]. An image of the fixture is shown in Figure 7(a).220

In the numerical simulation, the bending stress field on the plane of crack propagation was gen-221

erated with 3PBT. The experimental validation was performed with 4PBT as recommended in [40],222

due to the distribution of natural flaws in experimental samples. However, both 3PBT and 4PBT223

generated mode-I bending stress field at the crack plane, hence they were considered equivalent in224

this work. Moreover, the results from the numerical and experimental tests were correlated by the225

fracture surface features, where identical shape of the mirror region should correspond to the same226

stress field at fracture according to the dimension analysis [5, 10].227

(a) (b)

Fig. 7 (a) MTS setup for 4PTB, (b) optical microscope SOPTOP ICX41M
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5. Results and validation228

This section presents the phase–field simulation results for SLG flexural beams with an initial229

notch at the corner. The evolution of the crack along the free surfaces was compared to the230

experimental findings in Sherman & Be’ery [41] for glass plates fractured in bending.231

Fracture surface features such as the mirror–mist boundary, were established based on the232

critical crack velocity, V ∗, and compared with the fracture surfaces of SLG samples produced233

experimentally.234

5.1. Fracture surface features235

The fracture surface of SLG beams tested experimentally were examined by optical microscope236

(SOPTOP ICX41M, Figure 7(b)). Figure 8(a) shows a fractured beam with the crack originating237

at the side edge, and the corresponding fracture surface is shown in Figure 8(b). The boundary238

between the mirror and the mist region is highlighted in the figure by the blue dotted line.239

(a)

(b)

Fig. 8 (a) An example of fracture pattern of SLG beam in 4PTB, and (b) image of the fracture surface near the
origin

5.2. Numerical simulations240

5.2.1. Crack pattern in phase–field241

Figure 9 shows an instance of crack propagation from an elliptical corner notch simulated by242

phase–field, d at z = 0 and the magnitude of the stress normal to the plane of symmetry, σzz, at243

five time steps.244
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5.2.2. Crack aspect ratio evolution245

The evolution of the crack aspect ratio, a/c, with respect to the normalized crack length, c/H,246

for cases 1 to 4 is presented in Figure 10. On the same figure, the experimental results reported247

in Sherman & Be’ery [41] are plotted with a solid line. Sherman & Be’ery measured the evolution248

of the crack for a glass plate (H = 6 mm and W = 60 mm) fractured in bending using a potential249

drop method [42].250

5.2.3. Crack velocity along the free surface251

Figure 11 shows the crack velocity along the free surface, Vc, estimated through Eq. (9) versus252

c/W , for cases 1 to 4 in Table 1. The corresponding experimental results reported in Sherman &253

Be’ery [41] are shown in the same figure. The estimated average magnitude of V ∗ for the simulated254

cases was 1496±220 m/s.255

5.3. The mirror–mist boundaries256

The boundaries between the mirror and the mist regions were predicted based on the critical257

crack velocity, V ∗, defined in Section 2.3.2. The mirror–mist boundaries estimated at V = V ∗, for258

cases 1 to 4 in Table 1, are shown as the white dotted lines in Figure 12(a) to 12(d), and the areas259

corresponded to the mist region are shaded. The mirror radius, Ri, was then determined along the260

free surface, as shown in Figure 12(a).261

Experimental validation was conducted with SLG specimens fractured in 4PBT. The fractured262

beams were selected with a similar value of the normalized mirror radius, Ri/H. For instance,263

Ri/H = 0.37 from the simulation in Figure 12(a), while Ri/H = 0.36 for the experimental sample264

in Figure 12(e). The mirror–mist boundaries in Figure 12(e) to 12(h) were visually determined265

following the fractographic guidelines in ASTM C1678 [3], and highlighted by white dotted lines.266

5.3.1. Fracture strength and mirror radius267

The fracture strengths were assumed to be equal to the maximum tensile stress induced on the268

free surface when the crack started propagating. The magnitudes of the strength and the estimated269

mirror radius for each case are summarized in Table 1. Figure 13 shows a plot of the dimensionless270

groups σf
√
H/KIc versus

√
H/Ri, for the twenty-one simulated scenarios following the analysis of271

Ma & Dugnani [5] for flexural fractures. On the same plot, the trend proposed by Ma & Dugnani272

[5] is also shown.273

6. Discussion274

In this work, phase–field analysis was used to investigate the crack propagation and the formation275

of the mist region on the fracture surface of SLG fractured in bending. The numerical simulations276

implemented in this work focused on only isotropic, elastic solids. Numerical simulations were run277

with the commercial finite element software ABAQUS with the Fortran subroutine code developed278

by Molnar et al. [25]. The crack front was assumed to correspond to the value of the phase field279

parameter d = 0.5.280

In one approach used in this work, the formation of the mist region in SLG samples was assumed281

to correspond to a critical value of the crack-front’s velocity, as suggested by Richter [11]. While282

the second approach predicted the onset of mist region based on the increased thickness of the283

damaged zone, as described in Appendix A.284
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6.1. Unstable crack evolution validation285

Figure 10 shows the crack aspect ratio, a/c, versus c/H and includes the experimental results286

obtained from fractured glass plates reported by Sherman & Be’ery [41]. The difference in the crack287

growth performance among the four cases was due to the difference in notch sizes and/or beam288

geometries at the initial stage of the propagation. The crack aspect ratio, a/c, converged to the289

same trend as the crack extended to c/H > 2, similar to the behavior in SLG plates fractured in290

bending reported by Sherman & Be’ery [41]. The better agreement between the experimental trend291

from Sherman and Be’ery and case 4 is possibly due to similar beam geometries (W/H = 11).292

6.2. Crack velocity293

The crack velocity along the free surface, Vc, was obtained at various time steps, and plotted as294

a function of c/W for the cases 1 to 4 reported in Table 1. As shown in Figure 11, the crack velocity295

increased rapidly at the initial stage for c/W < 0.1. For c/W > 0.1, additional energy dissipation296

sinks, such as micro–branching and micro–cracking, become increasingly significant [16, 43, 44, 45].297

When the crack propagated farther, at c/W > 0.5, inconsistent trends for the crack velocity were298

observed possibly due to the differences in the loading conditions, sample geometry, and mesh size.299

Hence this work mainly focused on crack speed at c/W < 0.5.300

Experimental measurements of the crack speed in SLG indicated that the crack initially ex-301

panded rapidly and subsequently reached a stage with nearly uniform ‘terminal velocity’ [46] as302

shown for instance in Sherman & Be’ery [41] (Figure 11). However, in the simulated cases, no ve-303

locity plateau was observed when V > V ∗, suggesting that the mist might form before the ‘terminal304

velocity’ is reached. As discussed in the NIST guideline [1], the mist in glasses is formed by local305

deviations of the crack front out of plane. The mist region consumes additional energy and retards306

crack velocity. In this work, the simulated critical velocity, V ∗, was 1496±220 m/s, consistent with307

the reported speed corresponding to mirror–mist transition in SLG, 1500∼1600m/s [11, 47, 48].308

6.3. The mirror–mist boundary based on crack velocity309

In this work, the mirror–mist boundary was assumed to occur as the crack velocity reached a310

critical value, V ∗, as explained in previous sections. The crack velocity along the crack–front as311

a function of the angle, φ, was obtained from the numerical simulations and the location of the312

mist region was established through Eq. (11). To minimize errors, the time interval between crack313

fronts, dt, was chosen so that the difference in crack shapes between two adjacent crack–fronts was314

small but distinct.315

The estimated mirror–mist boundaries obtained from representative simulations are shown in316

Figure 12. The corresponding mirror–mist boundaries from optical images of the fracture surfaces317

in SLG specimens are shown in the same figure. The experimental results were chosen with similar318

normalized mirror radius, Ri/H. Based on previous studies by Dugnani & Zednik [4, 10] and319

Johnson & Holloway [49], samples sharing the same normalized mirror radius, Ri/H, display the320

same shape of the mirror–mist boundary. A comparison of the mirror–mist boundaries in Figure 12321

suggest good agreement especially near the free surface (see also Figure 16). The difference between322

the shape of the mirror–mist boundaries might be due to numerical inaccuracies such as mesh size,323

regularization length and computational time increments.324
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6.3.1. The mirror–mist boundary based on damaged zone325

The second approach to predict the mirror–mist boundary was based on the evolution of the326

damaged zone’s thickness during crack extension simulated by phase–field, and is described in327

Appendix A. The damaged zone simulated by phase–field does not refer to the volume or topography328

of the real crack, its thickness mainly depend on the regularization length scale, `. However, the329

evolution of the damaged zone is likely correlated to the crack–tip’s instabilities in the mist region.330

The approach was successful in estimating the shape of the mirror–mist boundary, and could be331

used as supporting evidence for fractographic features analysis using phase–field. Although more332

accurate results could be obtained with finer mesh size, the computational cost would significantly333

increase.334

6.4. Crack strength and mirror radius335

The normalized fracture strength, σf
√
H/KIc versus

√
H/Ri, is plotted in Figure 13 for all the336

simulated cases. On the same plot, the trend corresponding to flexural fractures in brittle materials337

reported by Ma & Dugnani [5] is also shown. The error between the numerical results and the338

trend reported in Ma & Dugnani was on the average 7%. It could be concluded that the numerical339

simulations in this work leads to accurate estimation of the mirror radius, for Ri/H ranging from340

0.14 to 1.86. Regretfully no fracture resulting in a very long mirror radius, Ri/H � 1, could be341

simulated in this work as the finite notch width did not introduce a high stress singularity. It342

follows that the effect from sample’s thickness on the mist formation described in [4, 5] could not343

be independently verified in this study. The strength versus the inverse of the square root of the344

mirror radius could also be regressed with the equation σf = A/
√
Ri +C, with A = 1.7 MPa·

√
m,345

C = 22 MPa leading to average 4% strength differences between the estimations and the numerical346

results. The magnitude of A for SLG plates obtained from the numerical study, was found to be347

marginally larger than the magnitudes reported for SLG of similar thickness (e.g. A = 1.4 MPa·
√

m348

for samples with H = 1 mm [50]), but in line with the magnitudes of the mirror constant from349

other authors [5, 51, 52].350

7. Conclusions351

This work was aimed at developing a relationship between the fracture strength and charac-352

teristic length scale such as the mirror–mist radius on the fracture surface of soda–lime silicate353

glass. Phase–field numerical simulations were carried out to analyze unstable cracks in isotropic,354

elastic materials. The phase–field approach was implemented from an open–source subroutine in355

ABAQUS, and beams with corner elliptical notches loaded in 3PBT were modeled, and later vali-356

dated with the experimental crack extension information available in the literature.357

In this work, the mirror-mist boundary was assumed to occur in the last portion of the initial358

fast accelerating stage of the crack propagation based on experimental evidence reported in the359

literature. A novel approach combing phase–field simulations with the formation of the mirror-mist360

boundary was proposed. The shape of the mirror–mist boundary predicted numerically was in361

excellent agreement with the observed fracture surface features observed on fractured glass plates,362

and the predicted fracture strength versus mirror radius trend was on the average within 7% from363

average values reported in the literature. An alternative approach to interpret the mirror–mist364

boundary was also developed based on the thickness of the damaged zone. Although affected by365

the modeling and simulation parameters, like mesh size and regularization length, the alternative366

approach was able to provide a good visual representation of the fracture surface features without367
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significant post-processing. Both the approaches proposed in this work were successful in predicting368

the mirror–mist boundaries on soda–lime glass plates fractured in bending, and in the future they369

could be extended to carry out computer-aided fractographic analyses of brittle materials, for370

components of any user–defined geometry and material properties.371

Appendix A The mirror–mist boundary based on damaged zone372

This appendix introduces an alternative approach to estimate the mirror–mist boundary based373

on the phase–field’s damaged zone. The approach provides a novel view analyzing the result of374

phase–field simulation, building an intuitive connection between phase–field damage and fracture375

surface features.376

In the phase–field simulation, the crack–front was defined by the location where d = 0.5. The377

thickness of the damaged zone (with d > 0.5) in the direction orthogonal to the crack propagation,378

was denoted as ∆z, as shown in Figure 14(a). In the numerical simulations, the thickness of the379

damaged zone was observed to increase with respect to the reference magnitude near the notch,380

denoted as ∆z0 as shown in Figure 14(b). ∆z0 was defined within the mirror region as381

∆z0 ≡ ∆z at (x, y) = (c0, a0). (16)

The width of the damaged zone, ∆z, in the phase–field simulation was a numerical outcome related382

to the regularization length scale, `. Although hard to build the relation between ∆z and the383

physical values in the fracture process, its magnitude increased, i.e., ∆z/∆z0 ≥ 1, as crack advanced384

in all simulation cases, since phase-field was successful in predicting the dynamic instability at the385

crack–tip [22]. In this work, the mirror–mist boundary was arbitrarily set to occur at ∆z/∆z0 = 1.5.386

Figure 15 shows the magnitude of the ratio ∆z/∆z0 for cases 1 to 4 in Table 1. Although the387

damaged zone depends on the effective mesh size, h, similarities were observed in the behavior of the388

ratio ∆z/∆z0 as the crack grew. The regions corresponding to ∆z/∆z0 < 1.5 were shaded in light389

gray and the mirror–mist boundary was assumed to occur at ∆z/∆z0 = 1.5, and highlighted with390

red, dotted lines. In Figure 15(f) to 15(i), the experimental fracture surfaces with similar Ri/H391

as the simulated ones, were shown for comparison, and the estimated mirror–mist boundaries were392

highlighted with red, dotted lines. Figure 16 compares the mirror–mist boundaries estimated from393

the phase–field with the thickness of the damaged zone, ∆z/∆z0 = 1.5 (red), with the critical394

velocity, V = V ∗ (white), and the boundaries obtained from fractographic analysis (blue), for the395

four cases considered. Differences were expected between the approach based on the thickness of the396

damaged zone and experimental observations, due to the influences from the simulation parameters,397

such as effective mesh size, h, regularization length scale, `, etc.398

Appendix B Parametric study on `/h399

In the manuscript, the shape of mirror–mist boundary was investigated with the phase–field400

method. In the current appendix, the effect of the mesh size on the numerical outputs was studied.401

A separate case was studied with the properties: H ×W × L = 1 mm×3 mm×20 mm; c0 =402

0.07 mm, a0 = 0.05 mm, d0 = 2h; ` = 0.02 mm. Four mesh sizes were assigned near the expected403

crack path at the center of the beam in four separate simulations: h = 0.02 mm, 0.01 mm, 0.005 mm,404

and 0.0025 mm, resulting in `/h =1, 2, 4, and 8.405

The mirror–mist boundaries were analyzed using the proposed approaches in this manuscript.406

The results estimated based on the crack velocity for various `/h are shown in Figure 17; and the407
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results estimated based on the normalized thickness of the damaged area, ∆z/∆z0, are shown in408

Figure 18. In both Figures 17 and 18, the simulation with various `/h resulted in similar estimated409

mirror–mist boundaries. The slight variations observed in each case could be attributed to the410

difference in the mesh structures in corresponding simulation cases.411
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(a)

(b) d at t =1.242 × 10−4 s (c) σzz at t =1.242 × 10−4 s

(d) d at t =1.246 × 10−4 s (e) σzz at t =1.246 × 10−4 s

(f) d at t =1.250 × 10−4 s (g) σzz at t =1.250 × 10−4 s

(h) d at t =1.254 × 10−4 s (i) σzz at t =1.254 × 10−4 s

(j) d at t =1.258 × 10−4 s (k) σzz at t =1.258 × 10−4 s

Fig. 9 Phase–field profile, d ((b), (d), (f), (h), and (j)) and stress profile, σzz ((c), (e), (g), (i), and (k)) in 2D for
case 1 at the plane of symmetry, z = 0, at five time steps
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Fig. 10 Crack shape a/c versus c/H. Solid line corresponds to experimental results in Sherman & Be’ery [41]

Fig. 11 Crack velocity, Vc, versus normalized crack length, c/W , along the free surface. Solid trend corresponds to
experimental results in Sherman & Be’ery [41]
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(a) Ri/H = 0.37 (b) Ri/H = 0.14 (c) Ri/H = 0.32 (d) Ri/H = 1.20

(e) Ri/H = 0.36 (f) Ri/H = 0.14 (g) Ri/H = 0.32 (h) Ri/H = 1.20

Fig. 12 Mirror–mist boundaries estimated by crack velocity and from experimental observation for cases 1 to 4

Fig. 13 Normalized strength, σf
√
H/KIc, versus

√
H/Ri in logarithmic scale for twenty-one cases simulated. The

expected trend proposed by Ma & Dugnani [5] is shown for reference
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(a) (b)

Fig. 14 Thickness of the damage area, ∆z, with d > 0.5, in (a) 3D view and (b) 2D view at y = 0

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(f) (g) (h) (i)

Fig. 15 (a-d) Normalized thickness of the damaged area, ∆z/∆z0, for cases 1 to 4, and (f-i) experimental fracture
surface. Estimated mirror–mist boundary at ∆z/∆z0 =1.5 was shown in red dotted line

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 16 Comparison between mirror–mist boundaries estimated by critical velocity (white), thickness of the damage
area (red), and experimental observation (blue), for cases 1 to 4
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(a) `/h = 1 (b) `/h = 2 (c) `/h = 4 (d) `/h = 8

Fig. 17 Mirror–mist boundary estimated by crack velocity for various `/h

(a) `/h = 1 (b) `/h = 2 (c) `/h = 4 (d) `/h = 8

Fig. 18 Mirror–mist boundary estimated by the damaged area, ∆z/∆z0, for various `/h. Color scale is the same as
Figure 15
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